

Academic Quality Assurance Department Course Syllabus Form

College	Engineering and Technology					
Department	Electrical Engineering					
Program	Electrical Engineering					
Course Title	Power System Planning and desig	n Course Number:	12110531			
Year	2023-2024	Semester:	Summer			
Prerequisite(s)	Electrical Power Systems II					
Instructor	Prof. Samer Alsadi					
Instructor's e-mail	s.alsadi@ptuk.edu.ps , samer_sadi@	yahoo.com				
Office Hours						
Class Time	08:00-10:00 Sun, Mon, Tus.	Class Room:	-			
Course description	Demonstrate the ability to model p line diagram into an impedance transformers, generators, and loads model the dynamic generator usin state, reactances. Analyze the power	ower systems (convert a diagram, model transi , model the tap-changin g sub-transient, transien flow of a simple intercor	network one- nission lines, g transformer, t, and steady- nnected power			
	state, reactances, maryze the power now of a simple interconnected power system with multiple sources and loads. Apply the principles of Gauss- Siedel, Newton-Raphson, and Decoupled power flow methods, calculate the voltage profile, power injections, and line flows of a network, build the bus admittance matrix from network data and a one-line diagram.					
Course Intended	A) Knowledge and understand	ing				
Learning Outcomes	1- Describe the elements that make up a power system;					
(CILOs)	2- Build basic understandings on modern power system operation;					
	3- Model major components of power systems: three-phase power					
	transformers, short, medium and long-transmission lines, loads,					
	generators. Analyze the impact of different loading conditions on a					
	<i>transmission line;</i>	ifferent means for voltage	a control and			
	reactive power compensation	n in a power system.	se control and			
	5- Describe and use per unit sy	stem to perform studies in t	power systems.			
	6- Understand the basic conce	ot of load flow analysis:				
	7- Determine the optimal disp	atch of generation in a po	wer system.			
	B) Intellectual/Cognitive skills	concept of MATIAD a	no anomina in			
	obtaining Load curve;	concept of MATLAB p	rogramming m			
	2- Ability to understand the	concept of MATLAB p	rogramming in			
	solving parameters and performance of a power transformer;					
	3- Ability to understand the concept of MATLAB programming in					
	solving short, medium and	ong transmission line perfo	rmances;			
	4- Ability to understand the	concept of MATLAB p	rogramming in			
	solving power flow analysi	s using Gauss-Siedel and N	ewton-Raphson			
	methods;					
	5- Ability to understand the	concept of MATLAB p	rogramming in			
	solving optimal dispatch of	generation.				

Course Syllabus Form C) Subject specialization and practical skills 1- Understand the computer techniques and algorithms used to obtain the transmission line parameters, line performance, compensation, solution of the load flow problem and optimal dispatch of generation; 2- Identify and formulate engineering problems to solve problems in the field of electrical power engineering; 3- Specify and evaluate manufacturing of components and equipment related to electrical power and machines. **D)** General and transferable skills 1- Work cooperatively and effectively in a group 2- Find information independently "Power system analysis", Hadi Saadat, 1999. Textbook(s) Other required 1- "Power system analysis", Grainger, John J., William D. Stevenson, material (References): and William D. Stevenson. 2- "Power system analysis and design", Gupta, B. R., and S. Chand. **Other Resources used** Some Electronic resources, Websites related to the course: (e.g. e-learning, field 1. https://www.youtube.com/watch?v=0T6QT2Pxrvisits, periodicals, 4&list=PLYkE215HOwIYLU28cfGdE-hA7xs1F7PF0

Course Teaching Methods					
Teaching Method	CILOs				
1- Lecturing	A1-A7				
2- Presentation & Discussion	B1-B5; D1-D2				
3- Discussion through field visits	C1-C3; D1-D2				

software, etc.)

Assessment Type	Details/Explanation of assessment in relation to CILOs	Weight	Date(s)
Midterm Exam	A1-A7; B1-B5	30	Week 10
Quizzes	A1-A7		
Assignments	B1-B5; D1-D2	30	During Semester
Presentation	C1-C3; D1-D2		
Final Exam	A1-A7; B1-B5	40	Announced by Registrar
Total		100%	

Academic Quality Assurance Department Course Syllabus Form

Cour	Course Intended Learning Outcomes (CILOs)											
CILOs Mapping to Program ILOs												
On s	a	ł)	c	d	e	f	g	h	Ι	j	
A)	Knowledge and understanding											
1-	Describe the elements that make up a power system;											
2-	Build basic understandings on modern power system operation;											
3-	Model major components of power systems: three-phase power transformers, short, medium and long-transmission lines, loads, generators. Analyze the impact of different loading conditions on a transmission line;											
4-	Explain and implement different means for voltage control and reactive power compensation in a power system;											
5-	Describe and use per unit system to perform studies in power systems;											
6-	Understand the basic concept of load flow analysis;											
7-	Determine the optimal dispatch of generation in a power system											
B)	Intellectual/Cognitive skills											
1-	Ability to understand the concept of MATLAB programming in obtaining Load curve;											
2-	Ability to understand the concept of MATLAB programming in solving parameters and performance of a power transformer;											
3-	Ability to understand the concept of MATLAB programming in solving short, medium and long transmission line performances;											
4-	Ability to understand the concept of MATLAB programming in solving power flow analysis using Gauss-Siedel and Newton- Raphson methods;											

Course	S	ılla	hus	Form	
COULSE	3	yna	DUS	гонн	

5- Ability to understand the concept of MATLAB programming in solving optimal dispatch of generation.	
C) Subject specialization and practical skills	
 Understand the computer techniques and algorithms used to obtain the transmission line parameters, line performance, compensation, solution of the load flow problem and optimal dispatch of generation; 	
2- Identify and formulate engineering problems to solve problems in the field of electrical power engineering;	
3- Specify and evaluate manufacturing of components and equipment related to electrical power and machines.	
D) General and transferable skills	
1- Work cooperatively and effectively in a group	
2- Find information independently	

Course	Course Weekly Breakdown					
Week	Date	Topics Covered	CILOs	Lab Activities	Assessment	
1	20/9	 The power system (an Overview) 1.1 Introduction 1.2 Modern power system 1.2.1 Generation 1.2.2 Transmission 	A1-A7 B1-B5; D1-D2; C1-C3		In Midterm, Final	
2	27/9	 The power system (an Overview) 1.2 Modern power system 1.2.3 Distribution 1.2.4 Loads 	A1-A7 B1-B5; D1-D2; C1-C3		In Midterm, Final	
3	4/10	 Basic Principles 2.1 Power in single phase ac circuit 2.2 Complex Power 2.3 The complex power balance 2.4 Complex power flow 	A1-A7 B1-B5; D1-D2; C1-C3		In Midterm, Final	

Course	Syllabus	Form
--------	----------	------

4	11/10	 Network Calculations and Power Load Flow Analysis: 3.1 Power Transformer 3.2 Equivalent circuit of a transformer 3.3 Determination of equivalent circuit parameters 3.4 Transformer Performance 	A1-A7 B1-B5; D1-D2; C1-C3	In Midterm, Final
5	18/10	Network Calculations and Power Load Flow Analysis: 3.5 The per unit system 3.6 Change of Base	A1-A7 B1-B5; D1-D2; C1-C3	In Midterm, Final
6	25/10	 Line model and performance 4.1 Short-line model 4.2 Medium-line model 4.3 Long-line model Inductance of single Phase Lines 	A1-A7 B1-B5; D1-D2; C1-C3	In Midterm, Final
7	1/11	 Line model and performance 4.4 Voltage and current waves 4.5 Surge impedance loading 4.6 Complex power flow Through TL 	A1-A7 B1-B5; D1-D2; C1-C3	In Midterm, Final
8	8/11	Line model and performance4.7 Power Transmission Capability4.8 Line compensation4.9 Line performance program	A1-A7 B1-B5; D1-D2; C1-C3	In Midterm, Final
9	15/11	Power Flow Analysis5.1 Power Flow Solution5.2 Gauss-Seidel power flow Solution	A1-A7 B1-B5; D1-D2; C1-C3	In Midterm, Final
10	22/11	 Power Flow Analysis 5.3 Line flows and losses 5.4 Tap changing Transformers 5.5 Power Flow programs 5.6 Data preparation 	A1-A7 B1-B5; D1-D2; C1-C3	In Final
11	29/11	 Power Flow Analysis 5.7 Newton-Raphson power Flow solution 5.8 Power flow analysis using Simulink 	A1-A7 B1-B5; D1-D2; C1-C3	In Final

	Course Syllabus Form				
12	6/12	Optimal Dispatch of Generation6.1 Introduction6.2 Operating cost of a thermal plant	A1-A7 B1-B5; D1-D2; C1-C3		In Final
13	13/12	Optimal Dispatch of Generation6.3 Economic dispatch neglecting losses and no generation limits	A1-A7 B1-B5; D1-D2; C1-C3		In Final
14	20/12	 Optimal Dispatch of Generation 6.4 Economic dispatch neglecting losses and including generation limits 6.5 Economic dispatch including losses 	A1-A7 B1-B5; D1-D2; C1-C3		In Final
15	27/12	Optimal Dispatch of Generation6.6 Derivation of Loss formula	A1-A7 B1-B5; D1-D2; C1-C3		In Final
16	04/01	FINALS			

Prepared by:	Prof. Samer Alsadi	Signature	
Head of Department	Dr. Nabeel Tanneh	Signature	
Date	21-07-2024		