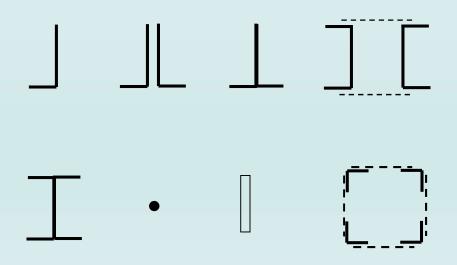
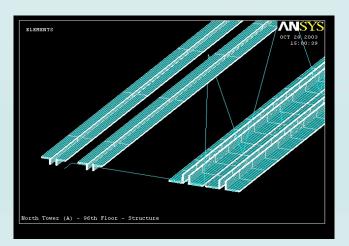

Tension Member Design


Table of Contents


- Typical Tension Members
- Introductory Concepts
- Design Strength
- Effective and Net Areas
- Staggered Bolted Connections
- Block Shear
- Design of Tension Members
- Slenderness Requirements

Tension Members

- Applications
- In bridge, roof and floor trusses, bracing systems, towers, and tie rods
- Consist of angles, channels, tees, plates, W or S shapes, or combinations

Typical Tension Members

Tension chord in a truss "Tension" Diagonal Bottom "Tension" Chord

Typical Tension Members

Cables

Ties

Tension Members

- Commonly Used Sections:
 - W/H shapes
 - Square and Rectangular or round HSS
 - Tees and Double Tees
 - Angles and double angles
 - Channel sections
 - Cables

Introductory Concepts

 Stress: The stress in the column cross-section can be calculated as

$$f = \frac{P}{A}$$

f - assumed to be uniform over the entire cross-section.

P - the magnitude of load

A - the cross-sectional area normal to the load

- The stress in a tension member is uniform throughout the cross-section except:
 - near the point of application of load
 - at the cross-section with holes for bolts or other discontinuities, etc.