Load & Resistance Factor Design

-
- **and & Resistance Factor Design
• Step III. Design the members
• The failure (design) strength of the designed member moreater than the corresponding design forces calculated in 4 & Resistance Factor Design
tep III. Design the members
• The failure (design) strength of the designed member must be
greater than the corresponding design forces calculated in Step
II: & Resistance Factor Design
p III. Design the members
The failure (design) strength of the designed member must be
greater than the corresponding design forces calculated in Step
II:** II: **8. Resistance Factor Design**

p III. Design the members

The failure (design) strength of the designed member mus

preater than the corresponding design forces calculated in \

i:
 $\phi R_n > \sum \gamma_i Q_i$

- the calculated failur itep III. Design the members

• The failure (design) strength of the designed member must be

greater than the corresponding design forces calculated in Step

II:
 $\phi R_n > \sum \gamma_i Q_i$
 R_n - the calculated failure strength of • The failure (design) strength of the des
greater than the corresponding design 1
II:
 $\phi R_n > \sum \gamma_i Q_i$
 R_n - the calculated failure strength of the m
 ϕ - the resistance factor used to account for
 Q_i - the nominal loa greater than the corresponding design forces calculated in Step

II:
 $\phi R_n > \sum \gamma_i Q_i$
 R_n - the calculated failure strength of the member
 ϕ - the resistance factor used to account for the reliability of the

material b

$$
\phi R_n > \sum \gamma_i Q_i
$$

 R_n - the calculated failure strength of the member

material behavior & equations for R_n

estimate the ultimate loading

Design Strength of Tension Members

Yielding of the gross section will occur when the stress f reaches F_{y} .

$$
f = \frac{P}{A_g} = F_y
$$

- Therefore, nominal yield strength = $P_n = A_q F_v$
- Factored yield strength = ϕ_t P_n ϕ_t = 0.9 for tension yielding limit state

Design Strength of Tension Members

 Fracture of the net section will occur after the stress on the net section area reaches the ultimate stress F_{μ}

$$
f = \frac{P}{A_e} = F_u
$$

- Therefore, nominal fracture strength = $P_n = A_{e} F_{u}$
- Where, A_e is the effective net area, which may be equal to the net area or smaller.
- The topic of A_{α} will be addressed later.
- Factored fracture strength = $\phi_t A_e F_u$ where: $\phi_t = 0.75$ for tension fracture limit state

Net Area

- We calculate the net area by deducting the width of the "bolts + some tolerance around the bolt"
- Use a tolerance of 1.6 mm above the diameter hole which is typically 1.6 mm larger than the bolt diameter

Design Strength

Tensile strength of a section is governed by two limit states:

- Yield of gross area (excessive deformation)
- Fracture of net area
- Thus the design strength is one of the following

$$
P_u ≤ \qquad \begin{cases} \phi_t P_n = \phi_t F_y A_g \qquad & \phi_t = 0.9 \qquad \text{YIELD} \\ \phi_t P_n = \phi_t F_u A_n & \phi_t = 0.75 \qquad \text{FRACTURE} \end{cases}
$$

The difference in the ϕ factor for the two limit states represent the

- Seriousness of the fracture limit state
- The reliability index (probability of failure) assumed with each limit state

Important Notes

Important Notes
• Why is fracture (& not yielding) the relevant limit state at
the net section?
Yielding will occur first in the net section. However, the **portant Notes**
Why is fracture (& not yielding) the rele
the net section?
Yielding will occur first in the net secter
deformations induced by yielding will be loca

portant Notes
Why is fracture (& not yielding) the relevant limit state at
the net section?
Yielding will occur first in the net section. However, the
deformations induced by yielding will be localized around the net
sec **portant Notes**
Why is fracture (& not yielding) the relevant limit state at
the net section?
Yielding will occur first in the net section. However, the
deformations induced by yielding will be localized around the net
sec **portant Notes**
Why is fracture (& not yielding) the relevant limit state at
the net section?
Yielding will occur first in the net section. However, the
deformations induced by yielding will be localized around the net
sec **portant Notes**
Why is fracture (& not yielding) the relevant limit state at
the net section?
Yielding will occur first in the net section. However, the
deformations induced by yielding will be localized around the net
sec **profit and Motes**
Why is fracture (& not yielding) the relevant limit state at
the net section?
Yielding will occur first in the net section. However, the
deformations induced by yielding will be localized around the net Why is fracture (& not yielding) the relevant limit state at
the net section?
Yielding will occur first in the net section. However, the
deformations induced by yielding will be localized around the net
section. These loc Why is fracture (& not yielding) the
the net section?
Yielding will occur first in the net
deformations induced by yielding will be
section. These localized deformations
deformations in the complete tension m
the net sect **The net section?**

Yielding will occur first in the net section. However, the deformations induced by yielding will be localized around the net section. These localized deformations will *not* cause excessive deformation The field section?

Yielding will occur first in the net section. However, the

deformations induced by yielding will be localized around the net

section. These localized deformations will *not* cause excessive

deformat Yielding will occur first in the net section. However, the
deformations induced by yielding will be localized around the net
section. These localized deformations will *not* cause excessive
deformations in the complete te

Important Notes

 \overline{y}_p

Important Notes
• What is the design strength of the tension member?
The design strength of the tension member will be the <u>lesser</u> value of
the strength for the two limit states (gross section yielding & net **nportant Notes**
What is the design strength of the tension member?
The design strength of the tension member will be the <u>lesser</u> value of
the strength for the two limit states (gross section yielding & net
section fractu **nportant Notes**
What is the design strength of the tension member?
The design strength of the tension member will be the <u>lesser</u> value of
the strength for the two limit states (gross section yielding & net
section fractu **nportant Notes**
What is the design strength of the tensi
The design strength of the tension member v
the strength for the two limit states (gross
section fracture).

Important Notes

• What is the design strength of the tension member?

The design strength of the tension member will be the <u>lesser</u>

the strength for the two limit states (gross section yieldir

section fracture).

• **tes**
 tension member will be the <u>lesser</u> value of

imit states (gross section yielding & net

values for different steel materials?

s values for different steel materials are **MPOTTANT NOTES**
What is the design strength of the tension member?
The design strength of the tension member will be the <u>lesser</u> value of
the strength for the two limit states (gross section yielding & net
section fract **What is the design strength of the tension member?**
The design strength of the tension member will be the <u>less</u>
the strength for the two limit states (gross section yield
section fracture).
Where are the F_y & F_u val

Ex. 2.1 – Tensile Strength
• A 125 x 10 mm bar of A572 (F_y = 344 MPa) steel is used as a tension
member. It is connected to a gusset plate with six 20 mm. diameter **Ex. 2.1 – Tensile Strength**
A 125 x 10 mm bar of A572 (F_y = 344 MPa) steel is used as a tension
member. It is connected to a gusset plate with six 20 mm. diameter
bolts as shown below. Assume that the effective net are **X. 2.1 – Tensile Strength**
A 125 x 10 mm bar of A572 (F_y = 344 MPa) steel is used as a tension
member. It is connected to a gusset plate with six 20 mm. diameter
bolts as shown below. Assume that the effective net area **x. 2.1** – **Tensile Strength**
A 125 x 10 mm bar of A572 (F_y = 344 MPa) steel is used as a tension
member. It is connected to a gusset plate with six 20 mm. diameter
bolts as shown below. Assume that the effective net bolts as shown below. Assume that the effective net area A_{e} equals **x. 2.1** – **Tensile Strength**
A 125 x 10 mm bar of A572 (F_y = 344 MPa) steel is used as a tension
member. It is connected to a gusset plate with six 20 mm. diameter
bolts as shown below. Assume that the effective net member.

Ex. 2.1 – Tensile Strength
• Gross section area = A_g = 125 x 10 = 1250 mm² From Sile Strength

From Since section area $A_g = 125 \times 10 = 1250$ mm²

Vet section area (A_n)

• Bolt diameter = $d_b = 20$ mm.

• Nominal hole diameter = $d_h = 20 + \frac{1.6}{1.6} = 21.6$ mm

• Hole diameter for calculating ne

- Gross section area = A_q = 125 x 10 = 1250 mm²
- Net section area (A_n)
	- Bolt diameter = d_h = 20 mm.
	- Bolt diameter = d_b = 20 mm.
• Nominal hole diameter = d_h = 20 + 1.6 = 21.6 mm
	- Hole diameter for calculating net area = $21.6 + 1.6 = 23.2$ mm

 $3.2₄$

-
- Gross yielding design strength = $\phi_t P_n = \phi_t F_v A_q$
	- Gross yielding design strength = $0.9 \times 344 \times 1250/1000 = 387$ kN

Ex. 2.1 – Tensile Strength
• Fracture design strength = ϕ_t P_n = ϕ_t F_u A_e

- Fracture design strength = $\phi_t P_n = \phi_t F_u A_e$
	- Assume $A_e = A_n$ (only for this problem)
	- Fracture design strength = $0.75 \times 448 \times 786/1000 = 264$ kN
- Design strength of the member in tension = smaller of 264 kN & 387 kN
	- Therefore, design strength = 264 kN (net section fracture controls).