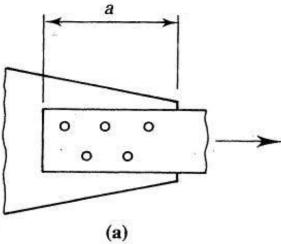

Ex. 2.6 – Design Tensile Strength

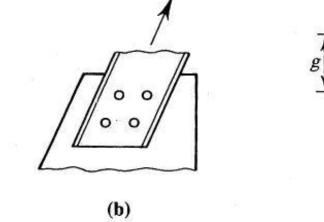
Determine the design tension strength for a single channel C15 x 50 connected to a 15 mm thick gusset plate as shown in Figure. Assume that the holes are for 20 mm diameter bolts. Also, assume structural steel with yield stress (F_y) equal to 344 MPa & ultimate stress (F_u) equal to 448 MPa.

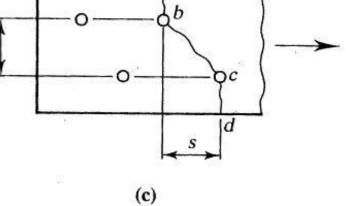
Ex. 2.6 – Design Tensile Strength

- Limit state of yielding due to tension: $\phi T_n = 0.9 * 344 * 9480 / 1000 = 2935 kN$
- Limit state of fracture due to tension:


$$A_n = A_g - nd_e t = 9480 - 4(18.2)(23.2) = 7791 \, mm^2$$

$$A_e = UA_n = \left(1 - \frac{x}{L}\right)A_n = \left(1 - \frac{20.3}{150}\right) * 7791 = 6736.6 \ mm^2$$


- Check: $U = 0.867 \le 0.9$ OK.
- Note: The connection eccentricity, x, for a C15X50 can be found in section property tables.


$$\phi T_n = 0.75 * 448 * 6736.6 / 1000 = 2263.5 kN$$

Staggered Bolts

a

72

Staggered Bolts

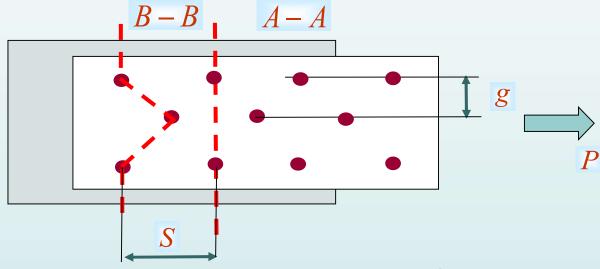
- For a bolted tension member, the connecting bolts can be staggered for several reasons:
 - To get more capacity by increasing the effective net area
 - To achieve a smaller connection length
 - To fit the geometry of the tension connection itself.
- For a tension member with staggered bolt holes (see example figure above), the relationship *f* = P/A does not apply & the stresses are a combination of tensile & shearing stresses on the inclined portion *b-c*.
- Net section fracture can occur along any zig-zag or straight line. For ex., fracture can occur along the inclined path *a-b-c-d* in the figure above. However, all possibilities must be examined.

Staggered Bolts

Empirical methods have been developed to calculate the net section fracture strength.

• net width = gross width -
$$\sum d + \sum \frac{s^2}{4g}$$

d - the diameter of hole to be deducted (d_b + 3.2 mm) s²/4g - added for each gage space in the chain being considered


s - the longitudinal spacing (pitch) of the bolt holes in the direction of loading

g - the transverse spacing (gage) of the bolt holes perpendicular to loading direction.

net area (A_n) = net width x plate thickness effective net area (A_e) = U A_n where $U = 1 - \frac{\overline{x}}{L}$ net fracture design strength = $\phi_t A_e F_u$ ($\phi_t = 0.75$)

74

Staggered Bolted Connections

 Stresses on inclined planes are a mix of tension and shear and thus a correction is needed.

$$W_n = W_g - \sum d + \sum \frac{S^2}{4g}$$

 All possible failure paths passes shall be examined. The path that yields the smallest area governs.

 $A_n = W_n t$