- **Ex. 3.2 Column Strength**
• Calculate the design strength of W14 x 74 with length of 6 Calculate the design strength of W14 x 74 with length of 6 m and pinned ends. A36 steel is used.
	- **Step I.** Calculate the effective length and slenderness ratio for the problem

$$
K_x = K_y = 1.0
$$

$$
L_x = L_y = 6 \text{ m}
$$

Major axis slenderness ratio = $K_xL_x/r_x = 6000/153.4 = 39.1$

Minor axis slenderness ratio = $K_yL_y/r_y = 6000/63 = 95.2$

Step II. Calculate the buckling strength for governing slenderness ratio

The governing slenderness ratio is the larger of ($\mathsf{K}_{\mathsf{x}}\mathsf{L}_{\mathsf{x}}\!/\mathsf{r}_{\mathsf{x}},\,\mathsf{K}_{\mathsf{y}}\mathsf{L}_{\mathsf{y}}\!/\mathsf{r}_{\mathsf{y}})$)

Ex. 3.2 - Column Strength
 $K_y L_y/r_y$ is larger and the governing slenderness ratio;

 \bullet K_yL_y/r_y is larger and the governing slenderness ratio;

$$
K_y L_y / r_y < 4.71 \sqrt{\frac{E}{F_y}} = 4.71 \sqrt{\frac{200000}{248}} = 133.7
$$

8.3.2 Column Streamg
\n**9.2 Column Strength**
\n**10.2 Example**
\n**11.2**
$$
K_y L_y / r_y
$$
 is larger and the governing slenderness ratio;
\n**12.2** $K_y L_y / r_y$ **13.2**
\n**14.2 Example**
\n**15.2 Example**
\n**16.2 Example**
\n**17.2 Example**
\n**18.3 Example**
\n**19.3 19.4 19.5 19.6 19.7**
\n**19.8 19.8 19.9 19.9**
\n**19.1 19.**

- Therefore, $F_{cr} = \left(0.658^{F_y/F_e}\right)F_y = 154$ MPa
- Design column strength = ϕ_cP_n = 0.9 (A_g F_{cr}) = 0.9 (14060x154)/1000= 1948.7 kN.
- Design strength of column = 1948.7 kN.

 The AISC specifications for column strength assume that column buckling is the governing limit state. However, if the column section is made of thin (slender) plate elements, then failure can occur due column steright
assume that column
buckling is the
governing limit state.
However, if the
column section is
made of thin (slender)
plate elements, then
failure can occur due
to *local buckling* of
the flanges or the
webs. the flanges or the webs. 28

Figure 4. Local buckling of columns

Local buckling is another limitation that represents the instability of the cross section itself.

• If local buckling occurs, the full strength of the cross section can buckling not be developed.

- **Local Buckling Limit State**
• If *local buckling* of the individual plate elements occurs, then
the column may not be able to develop its buckling strength.
• Therefore, the local buckling limit state must be prevented **ocal Buckling Limit State**
If *local buckling* of the individual plate elements occurs, then
the column may not be able to develop its buckling strength.
Therefore, the local buckling limit state must be prevented
from co
- **Local Buckling Limit State**
• If *local buckling* of the individual plate elements occurs, then
the column may not be able to develop its buckling strength.
• Therefore, the local buckling limit state must be prevented
fr **ocal Buckling Limit State**
If *local buckling* of the individual plate elements occurs, the
the column may not be able to develop its buckling strength.
Therefore, the local buckling limit state must be prevente
from cont
- **Local Buckling Limit State**

 If *local buckling* of the individual plate elements occurs, then

the column may not be able to develop its buckling strength.

 Therefore, the local buckling limit state must be prevente **ocal Buckling Limit State**
If *local buckling* of the individual plate elements occurs, then
the column may not be able to develop its buckling strength.
Therefore, the local buckling limit state must be prevented
from c (F_v) of the material. **Cal Buckling Limit St**
 Cal buckling of the individual plate elem
 Cal buckling of the individual plate elem
 Example 1 and the material buckling depends on the sleng

ckness b/t ratio) of the plate element a

of
- **Each plate is the individual plate elements occurs, then**
the column may not be able to develop its buckling strength.
Therefore, the local buckling limit state must be prevented
from controlling the column strength.
Loc If *local buckling* of the individual plate elements occurs, then
the column may not be able to develop its buckling strength.
Therefore, the local buckling limit state must be prevented
from controlling the column streng strength. • Therefore, the local buckling limit state must be prevented from controlling the column strength.

• Local buckling depends on the slenderness (width-to-

thickness b/t ratio) of the plate element and the yield stress
 from controlling the column strength.

Local buckling depends on the slenderness (width-to-

thickness b/t ratio) of the plate element and the yield stress
 (F_y) of the material.

Each plate element must be stocky enoug Local buckling depends on the slenderness
thickness b/t ratio) of the plate element and the
(F_y) of the material.
Each plate element must be stocky enough, i.e.,
ratio that prevents local buckling from governing
streng
-

• Local buckling can be prevented by limiting the width to thickness ratio known as " λ " to an upper limit λ_r

Local Buckling Limit State
• The AISC specification provides two slenderness limits (λ_p and λ_r) for the local buckling of plate elements. and λ_r) for the local buckling of plate elements. **Il Buckling Limit State**
ISC specification provides two slenderness limits (λ_p) for the local buckling of plate elements.

- **DCAl Buckling Limit State**
• If the slenderness ratio (b/t) of the plate element is greater than λ_r then it *is slender*. It will locally buckle in the elastic range *before* reaching F_y **Cal Buckling Limit State**
If the slenderness ratio (b/t) of the plate element is greater than λ_r
then it *is slender*. It will locally buckle in the elastic range *before*
If the slenderness ratio (b/t) of the plate e **Cal Buckling Limit St**
If the slenderness ratio (b/t) of the plate elem
then it *is slender*. It will locally buckle in the
reaching F_y
If the slenderness ratio (b/t) of the plate eleme
greater than λ_p , then it is
- **If the slenderness ratio (b/t) of the plate element is greater than** λ_r **then it** *is slender***. It will locally buckle in the elastic range** *before* **reaching** F_y **•** If the slenderness ratio (b/t) of the plate element **Cal Buckling Limit St**
If the slenderness ratio (b/t) of the plate elem
then it *is slender*. It will locally buckle in the
reaching F_y
If the slenderness ratio (b/t) of the plate elem
immediately after reaching F_y **kling Limit State**

s ratio (b/t) of the plate element is greater than λ_r

r. It will locally buckle in the elastic range *before*

s ratio (b/t) of the plate element is less than λ_r but

r reaching F_y

ss ratio **Cal Buckling Limit State**
If the slenderness ratio (b/t) of the plate element is greater that
then it *is slender*. It will locally buckle in the elastic range bei
reaching F_y
If the slenderness ratio (b/t) of the plat
- **If the slenderness ratio (b/t) of the plate element is greater than** λ_r **then it** *is slender***. It will locally buckle in the elastic range** *before* **reaching** F_y **e** If the slenderness ratio (b/t) of the plate element , **Cal Buckling Limit State**
If the slenderness ratio (b/t) of the plate element is greater than λ_r
then it *is slender*. It will locally buckle in the elastic range *before*
reaching F_y
If the slenderness ratio (b/t) Cal Buckling Limit St
If the slenderness ratio (b/t) of the plate elem
then it *is slender*. It will locally buckle in the
reaching F_y
If the slenderness ratio (b/t) of the plate elem
greater than λ_p , then it is *non* If the slenderness ratio (b/t) of the plate element is greater than λ_r
then it *is slender*. It will locally buckle in the elastic range *before*
reaching F_y
If the slenderness ratio (b/t) of the plate element is les then it is stender. It will locally buckle in the elastic range before
reaching F_y
If the slenderness ratio (b/t) of the plate element is less than λ_r but
greater than λ_p , then it is *non-compact*. It will locally greater than λ_p , then it is *non-compact*. It will locally buckle
immediately after reaching F_y

• If the slenderness ratio (b/t) of the plate element is less than λ_p ,

then the element is *compact*. It will local
- - non-compact
	- slender.

- **Local Buckling Limit State**
• Cross section can be classified as *"compact"*, *"non compact"* or *"slender"* sections based on their width to thickness ratios
• If the cross-section does not satisfy local buckling require
- **DCAI Buckling Limit State**

Cross section can be classified as "*compact*", "non compact" or

"*slender*" sections based on their width to thickness ratios

If the cross-section does not satisfy local buckling requiremen **Local Buckling Limit State**
• Cross section can be classified as "*compact*", "*non compact*" or "*slender*" sections based on their width to thickness ratios
• If the cross-section does not satisfy local buckling requir
- **DCAl Buckling Limit State**
Cross section can be classified as "*compact*", "*non compact*" or
"*slender*" sections based on their width to thickness ratios
If the cross-section does not satisfy local buckling requirement **Local Buckling Limit State**
• Cross section can be classified as "*compact*", "*non compact*" or "*slender*" sections based on their width to thickness ratios
• If the cross-section does not satisfy local buckling requir **State**
 State

Cross section can be classified as "*compact*", "not

"*slender*" sections based on their width to thickness ration

If the cross-section does not satisfy local buckling recritical buckling stress F_{cr} • If the cross-section does not satisfy local buckling requirements its
critical buckling stress F_{cr} shall be reduced
• If $\lambda \geq \lambda_r$ then the section is slender, a reduction factor for capacity
shall be computed from
 • If $\lambda \geq \lambda_r$ then the section is slender, a reduction factor for capacity

AISC Manual for Steel **Design**

- **Local Buckling Limit State**
• The slenderness limits λ_p and λ_r for various plate
• Note that the slenderness limits (λ_p and λ_r) and the de The slenderness limits λ_p and λ_r for various plate elements with different boundary conditions are given in the AISC Manual. **mit State**
for various plate elements with
n in the AISC Manual.
and λ_r) and the definition of plate
- **Local Buckling Limit State**

 The slenderness limits λ_p and λ_r for various plate elements with

different boundary conditions are given in the AISC Manual.

 Note that the slenderness limits (λ_p and λ_r) and Note that the slenderness limits $(\lambda_p$ and λ_r) and the definition of plate slenderness (b/t) ratio depend upon the boundary conditions for the **State**
 State

(and the definition of plate

(and the definition of plate

(and the definition of plate

(and the definition of the **Slenderness (b) slenderness** (b) ratio depend upon the AISC Manual.

Note that the slenderness limits λ_p and λ_r for various plate elements with different boundary conditions are given in the AISC Manual.

Note th plate. **• If the plate is supported along only and of a set of the direction of plate ifferent boundary conditions are given in the AISC Manual.**
 lote that the slenderness limits (λ_p **and** λ_r **) and the definition of plate l cal Buckling Limit State**

slenderness limits λ_p and λ_r for various plate elements with

erent boundary conditions are given in the AISC Manual.

e that the slenderness limits (λ_p) and λ_r) and the definition o Cal Buckling Limit

Senderness limits λ_p and λ_r for varent boundary conditions are given in the

e that the slenderness limits (λ_p and λ

nderness (b/t) ratio depend upon the l

e.

If the plate is supported a **• If the slenderness limits** λ_p **and** λ_r **for various plate elements with different boundary conditions are given in the AISC Manual.**
Jote that the slenderness limits (λ_p) and λ_r) and the definition of plate lend is slenderness limits λ_p and λ_r for various plate elements with
prent boundary conditions are given in the AISC Manual.
 e that the slenderness limits (λ_p) and λ_r) and the definition of plate
 nderness (b/t different boundary conditions are given in the AISC Manual.

Note that the slenderness limits (λ_p) and λ_r) and the definition of plate

slenderness (b/t) ratio depend upon the boundary conditions for the

plate.

If Note that the slenderness limits (λ_p) and λ_r) and the definition of plate slenderness (b/t) ratio depend upon the boundary conditions for the plate.

• If the plate is supported along *two edges* parallel to the dire
	-
- shapes. slenderness (b/t) ratio depend upon the boundary
plate.

• If the plate is supported along two edges parallel

compression force, then it is a *stiffened* element. For

W shapes

• If the plate is supported along only one
-
-

STATES CONSULT

B5. FABRICATION, ERECTION AND QUALITY CONTROL

Shop drawings, fabrication, shop painting, erection, and quality control shall meet the requirements stipulated in Chapter M, Fabrication, Erection, and Quality Control.

B6. EVALUATION OF EXISTING STRUCTURES

Provisions for the evaluation of existing structures are presented in Appendix 5, Evaluation of Existing Structures.