Effective Length

□ Specific Values of *K* shall be known

End conditions	K
Pin-Pin	1.0
Pin-Fixed	0.8
Fixed-Fixed	0.65
Fixed-Free	2.1

Recommended design values (not theoretical values)

Values for K for different end conditions range from 0.5 for theoretically fixed ends to 1.0 for pinned ends and are given by:

 Table C-C2.2 AISC Manual

For compression elements connected as rigid frames the effective length is a function of the relative stiffness of the element compared to the overall stiffness of the joint. This will be discussed later in this chapter

K Factor for Rigid Frames

- If we assume all connections are pinned then: $K_x L = 3$ m and $K_y L = 6$ m
- However the rigidity of the beams affect the rotation of the columns. Thus in rigid frames the K factor can be determined from the relative rigidity of the columns
- Determine a G factor

$$G = \frac{\sum_{E_c I_c / L_c}}{\sum_{E_g I_g / L_g}}$$

$$G = \frac{\sum I_c / L_c}{\sum I_g / L_g}$$

 $K_{x}L = 3 \text{ m}$

 $K_{y}L = 6 \text{ m}$

- Where "c" represents column and "g" represents girder
- The G value is computed at each end of the member and K is computed factor from the monograms in

AISC Manual – Figure C-C2.2

......

3 m

3 m

Effective Length of Columns in Frames

- So far, we have looked at the buckling strength of individual columns. These columns had various boundary conditions at the ends, but they were not connected to other members with moment (fix) connections.
- The effective length factor K for the buckling of an individual column can be obtained for the appropriate end conditions from Table C-C2.2 of the AISC Manual .
- However, when these individual columns are part of a frame, their ends are connected to other members (beams etc.).
 - Their effective length factor K will depend on the restraint offered by the other members connected at the ends.
 - Therefore, the effective length factor K will depend on the relative rigidity (stiffness) of the members connected at the ends.

Effective Length of Columns in Frames

- The effective length factor for columns in frames must be calculated as follows:
 - First, you have to determine whether the column is part of a braced frame or an unbraced (moment resisting) frame.
 - If the column is part of a braced frame then its effective length factor 0 < K \leq 1
 - If the column is part of an unbraced frame then $1 < K \le \infty$
 - Then, you have to determine the relative rigidity factor G for both ends of the column
 - G is defined as the ratio of the summation of the rigidity (EI/L) of all columns coming together at an end to the summation of the rigidity (EI/L) of all beams coming together at the same end.

$$G = \frac{\sum \frac{E I_c}{L_c}}{\sum \frac{E I_b}{L_b}}$$

c: for columns

It must be calculated for both ends of the column

b: for beams

Effective Length of Columns in Frames

- Then, you can determine the effective length factor K for the column using the calculated value of G at both ends, i.e., G_A and G_B and the appropriate alignment chart
- There are two alignment charts provided by the AISC manual,
 - One is for columns in braced (sidesway inhibited) frames. $0 < K \le 1$
 - The second is for columns in unbraced (sidesway uninhibited) frames.
 1 < K ≤ ∞
 - The procedure for calculating G is the same for both cases.

Effective Length

Monograph or Jackson and Moreland Alignment Chart for Unbraced Frame

50

Effective Length

Monograph or Jackson and Moreland Alignment Chart for braced Frame

Fig. C-C2.3. Alignment chart—sidesway inhibited (braced frame).

Ex. 3.6 – Effective Length Factor

 Calculate the effective length factor for the W12 x 53 column AB of the frame shown. Assume that the column is oriented in such a way that major axis bending occurs in the plane of the frame. Assume that the columns are braced at each story level for outof-plane buckling. Assume that the same column section is used for the stories above and below.

Ex. 3.6 – Effective Length Factor

Step I. Identify the frame type and calculate L_x , L_y , K_x , and K_y if possible.

It is an unbraced (sidesway uninhibited) frame.

$$L_x = L_y = 12 \text{ ft}$$

 $K_v = 1.0$

 K_x depends on boundary conditions, which involve restraints due to beams and columns connected to the ends of column AB. Need to calculate K_x using alignment charts.

Step II. Calculate K_x

$$I_{xx}$$
 of W 12 x 53 = 425 in⁴ I_{xx} of W14x68 = 753 in⁴
 $G_A = \frac{\sum \frac{I_c}{L_c}}{\sum \frac{I_b}{L_b}} = \frac{\frac{425}{10 \times 12} + \frac{425}{12 \times 12}}{\frac{723}{18 \times 12} + \frac{723}{20 \times 12}} = \frac{6.493}{6.360} = 1.021$

Ex. 3.6 – Effective Length Factor

$$G_{B} = \frac{\Sigma \frac{I_{c}}{L_{c}}}{\Sigma \frac{I_{b}}{L_{b}}} = \frac{\frac{425}{12 \times 12} + \frac{425}{15 \times 12}}{\frac{723}{18 \times 12} + \frac{723}{20 \times 12}} = \frac{5.3125}{6.360} = 0.835$$

Using G_A and G_B: K_x = 1.3 - f
16.1-242

- from Alignment Chart on Page

- Design Column AB of the frame shown below for a design load of 2300 kN.
- Assume that the column is oriented in such a way that major axis bending occurs in the plane of the frame.
- Assume that the columns are braced at each story level for out-of-plane buckling.
- Assume that the same column section is used for the stories above and below.
- Use A992 steel.

56

- Step I Determine the design load and assume the steel material.
 Design Load = P_u = 2300 kN.
 Steel yield stress = 344 MPa (A992 material).
- Step II. Identify the frame type and calculate L_x, L_y, K_x, and K_y if possible.

It is an unbraced (sidesway uninhibited) frame.

$$L_x = L_y = 3.6 \text{ m}$$

 $K_y = 1.0$

 K_x depends on boundary conditions, which involve restraints due to beams and columns connected to the ends of column AB.

Need to calculate K_x using alignment charts.

Need to select a section to calculate K_x

Step III - Select a column section Assume minor axis buckling governs. $K_y L_y = 3.6 \text{ m}$ Select section W12x53 $K_y L_y/r_y = 57.2 F_e = 604.4 F_{cr} = 271.1$ $\phi_c P_n$ for y-axis buckling = 2455.4 kN

Step IV - Calculate K_x I_{xx} of W 12 x 53 = 177x10⁶ mm⁴ I_{xx} of W14x68 = 301x10⁶ mm⁴

$$G_{A} = \frac{\sum \frac{I_{c}}{L_{c}}}{\sum \frac{I_{b}}{L_{b}}} = \frac{\left(\frac{177}{3} + \frac{177}{3.6}\right)}{\frac{301}{5.4} + \frac{301}{6}} = 1.02$$

$$G_{B} = \frac{\sum \frac{I_{c}}{L_{c}}}{\sum \frac{I_{b}}{L_{b}}} = \frac{\left(\frac{177}{3.6} + \frac{177}{4.5}\right)}{\frac{301}{5.4} + \frac{301}{6}} = 0.836$$

Using GA and GB: $K_x = 1.3$ - from Alignment Chart

• Step V - Check the selected section for X-axis buckling $K_x L_x = 1.3 \times 3.6 = 4.68 \text{ m}$ $K_x L_x/r_x = 35.2 \qquad F_e = 1590.4 \qquad F_{cr} = 314.2$ For this column, $\phi_c P_n$ for X-axis buckling = 2846.3

Step VI - Check the local buckling limits

For the flanges,
$$b_f/2t_f = 8.69 < \lambda_r = 0.56 \times \sqrt{\frac{E}{F_y}} = 13.5$$

For the web,
$$h/t_w = 28.1 < \lambda_r = 1.49 \times \sqrt{\frac{E}{F_y}} = 35.9$$

Therefore, the section is non-compact. OK, local buckling is not a problem