Lateral-Torsional Buckling (LTB) – Uniform BM

- As soon as any portion of the cross-section reaches the yield stress F_y, the elastic LTB equation cannot be used.
 - L_r is the unbraced length that corresponds to a LTB moment $M_r = S_x (0.7F_y)$.
 - M_r will cause yielding of the cross-section due to residual stresses.
- When the unbraced length is less than L_r, then the elastic LTB Eq. cannot be used.
- When the unbraced length (L_b) is less than L_r but more than the plastic length L_p, then the LTB M_n is given by the Eq. below:

Lateral-Torsional Buckling – Uniform BM

• If
$$L_p \leq L_b \leq L_r$$
, then $M_n = \left[M_p - (M_p - M_r) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right]$

• This is linear interpolation between (L_p, M_p) and (L_r, M_r)

•
$$L_r = 1.95 r_{ts} \frac{E}{0.7F_y} \sqrt{\frac{Jc}{S_x h_0}} \sqrt{1 + \sqrt{1 + 6.76 \left(\frac{0.7F_y}{E} \frac{S_x h_0}{Jc}\right)^2}}$$

• $r_{ts}^{\bullet} = \frac{\sqrt{I_y C_w}}{S_x}$

- For a doubly symmetric I-shape: c = 1
- h_0 = distance between the flange centroids (mm)

Moment Capacity of Beams Subjected to Non-uniform BM

- As mentioned previously, the case with uniform bending moment is worst for lateral torsional buckling.
- For cases with non-uniform bending moment, the LTB moment is greater than that for the case with uniform moment.
- The AISC specification says that:
 - The LTB moment for non-uniform bending moment case
 - **C**_b **x** lateral torsional buckling moment for uniform moment case.

Moment Capacity of Beams Subjected to Non-uniform BM

- C_b is always greater than 1.0 for non-uniform bending moment.
 - C_b is equal to 1.0 for uniform bending moment.
 - Sometimes, if you cannot calculate or figure out C_b, then it can be conservatively assumed as 1.0. for doubly and singly symmetric sections

$$C_b = \frac{12.5 \,M_{\text{max}}}{2.5 \,M_{\text{max}} + 3 \,M_A + 4 \,M_B + 3 \,M_c} < 3.0$$

 M_{max} - magnitude of maximum bending moment in L_b M_A - magnitude of bending moment at quarter point of L_b

 M_B - magnitude of bending moment at half point of L_b

 $M_{\rm C}$ - magnitude of bending moment at three-quarter point of $L_{\rm b}$

• Use absolute values of M

Flexural Strength of Compact Sections

Moments determined between bracing points

Other quation for Cb

$$C_b = 1.75 + 1.05 \left(\frac{M_1}{M_2}\right) + 0.3 \left(\frac{M_1}{M_2}\right)^2$$
 (C-F1-1)

where

 M_1 = smaller moment at end of unbraced length, kip-in. (N-mm) M_2 = larger moment at end of unbraced length, kip-in. (N-mm) (M_1/M_2) is positive when moments cause reverse curvature and negative for single curvature

Moment Capacity of Beams Subjected to Non-uniform Bending Moments

- The moment capacity M_n for the case of non-uniform bending moment
 - $M_n = \mathbf{C}_b \times \{M_n \text{ for the case of uniform bending moment}\} \le \mathbf{M}_p$
 - Important to note that the increased moment capacity for the nonuniform moment case <u>cannot possibly be more than</u> M_p.
 - Therefore, if the calculated values is greater than M_p, then <u>you have</u> to reduce it to M_p

Moment Capacity of Beams Subjected to Non-uniform BM

Figure 11. Moment capacity versus Lb for non-uniform moment case $C_b = 1.0$ means uniform BM 54

Structural Design of Beams

- Steps for adequate design of beams:
 - 1) Compute the factored loads, factored moment and shear
 - 2) Determine unsupported length L_b and C_b
 - 3) Select a WF shape and choose Z_x assuming it is a compact section with full lateral support

$$Z_x = \frac{M_u}{\phi_b F_y}$$

 $M_{n} = M_{p} = ZF_{y}$ $M_{u} \le \phi_{b}M_{n} = 0.9ZF_{y}$

4) Check the section dimension for compactness and determine $\phi_b M_n$

$$M_{u} \leq \phi_{b} M_{n}$$

5) Use service loads to check deflection requirements

 Use Grade 50 steel to design the beam shown below. The unfactored uniformly distributed live load is equal to 40 kN/m. There is no dead load. Lateral support is provided at the end reactions. Select W16 section.

 Step I. Calculate the factored loads assuming a reasonable selfweight.

Assume self-weight = w_{sw} = 1.46 kN/m. Dead load = w_D = 0 + 1.46 = 1.46 kN/m. Live load = w_L = 40 kN/m. Ultimate load = w_u = 1.2 w_D + 1.6 w_L = 65.8 kN/m. Factored ultimate moment = M_u = w_u L²/8 = 462.3 kN-m. Is BM uniform?? Yes C_b =1.0 No Go to Step II

 Step II. Determine unsupported length L_b and C_b There is only one unsupported span with L_b = 7.5 m
 C_b = 1.14 for the parabolic bending moment diagram, See values of C_b shown in Table 3-1.

- Step III. Select a wide-flange shape
 - Compute $Z_x = 462.3 \times 10^6 / (0.9 \times 344) = 1493 \times 10^6 \text{ mm}^3$.
 - Select W16 x 50 steel section

• $Z_x = 1508 \times 10^3 \text{ mm}^3$ $S_x = 1327 \times 10^3 \text{ mm}^3$ $r_y = 40.4 \text{ mm}$

• $C_w = 610 \times 10^9 \text{ mm}^6$ $I_v = 15.5 \times 10^6 \text{ mm}^4$

 $J = 0.63 \times 10^6 \text{ mm}^4$

•
$$L_p = 1.76r_y\sqrt{E/F_y} = \frac{1.76 \times 40.4\sqrt{200000/344}}{1000} = 1.71 m$$

• $L_r = 1.95r_{ts}\frac{E}{0.7F_y}\sqrt{\frac{Jc}{S_xh_0}}\sqrt{1+\sqrt{1+6.76\left(\frac{0.7F_y}{E}\frac{S_xh_0}{Jc}\right)^2}}$

•
$$r_{ts} = \sqrt{\frac{\sqrt{I_y C_w}}{S_x}} = \sqrt{\frac{\sqrt{15.5 \times 10^6 \times 610 \times 10^9}}{1327 \times 10^3}} = 48.1 \, mm$$

58

• $h_0 = D - T_F = 414 - 16 = 398 \text{ mm}$

•
$$\sqrt{1+6.76\left(\frac{0.7F_y}{E}\frac{S_xh_0}{Jc}\right)^2} = \sqrt{1+6.76\left(\frac{0.7\times344}{200000}\frac{1327\times10^3\times398}{0.63\times10^6\times1}\right)^2} = 2.81$$

• $L_r = 1.95 \times \frac{48.1}{1000} \times \frac{200000}{0.7\times344} \sqrt{\frac{0.63\times10^6\times1}{1327\times10^3\times398}} \sqrt{1+2.81} = 5.26 m$

•
$$L_{b} > L_{r}$$

 $M_{n} = C_{b} \sqrt{\frac{\pi^{2} E I_{y}}{L_{b}^{2}} \left(GJ + \frac{\pi^{2} E C_{w}}{L_{b}^{2}}\right)}$
 $= 1.14 \sqrt{\frac{\pi^{2} \times 200 \times 15.5 \times 10^{6}}{7500^{2}} \left(77 \times 0.63 \times 10^{6} + \frac{\pi^{2} \times 200 \times 610 \times 10^{9}}{7500^{2}}\right)}$
 $= 222 \times 10^{3} \ kN.mm = 222 \ kN.m \quad < M_{p} = \frac{1508 \times 10^{3} \times 344}{10^{6}} = 518.8 \ kN.m$

59

- Step IV. Check if section is adequate
 - $M_u > \phi M_n$ Not OK
- Step V. Try a larger section.
 - After few trials select W16 x 67 $\phi M_n = 497.7 > M_u$ <u>OK</u>

Step VI. Check for local buckling. $\lambda = B_f / 2T_f = 7.7$;Corresponding $\lambda_p = 0.38 (E/F_y)^{0.5} = 9.19$ Therefore, $\lambda < \lambda_p$ - compact flange $\lambda = H/T_w = 35.9$;Corresponding $\lambda_p = 3.76 (E/F_y)^{0.5} = 90.5$ Therefore, $\lambda < \lambda_p$ - compact webCompact section.- OK!

- This example demonstrates the method for designing beams and accounting for $C_b > 1.0$)
- Values for L_r and L_p can be obtained from Tables too