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Lateral-Torsional Buckling (LTB) –
Uniform BM
 As soon as any portion of the cross-section reaches the

yield stress Fy, the elastic LTB equation cannot be used.

• Lr is the unbraced length that corresponds to a LTB moment

Mr = Sx (0.7Fy).

• Mr will cause yielding of the cross-section due to residual stresses.

 When the unbraced length is less than Lr, then the elastic
LTB Eq. cannot be used.

 When the unbraced length (Lb) is less than Lr but more
than the plastic length Lp, then the LTB Mn is given by the
Eq. below:
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Lateral-Torsional Buckling –
Uniform BM
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Moment Capacity of Beams 
Subjected to Non-uniform BM
 As mentioned previously, the case with uniform bending

moment is worst for lateral torsional buckling.

 For cases with non-uniform bending moment, the LTB
moment is greater than that for the case with uniform
moment.

 The AISC specification says that:
• The LTB moment for non-uniform bending moment case

• Cb x lateral torsional buckling moment for uniform moment case.
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Moment Capacity of Beams 
Subjected to Non-uniform BM

 Cb is always greater than 1.0 for non-uniform bending
moment.
• Cb is equal to 1.0 for uniform bending moment.

• Sometimes, if you cannot calculate or figure out Cb, then it can be
conservatively assumed as 1.0. for doubly and singly symmetric
sections

Mmax - magnitude of maximum bending moment in Lb

MA - magnitude of bending moment at quarter point of Lb

MB - magnitude of bending moment at half point of Lb

MC - magnitude of bending moment at three-quarter point of Lb

• Use absolute values of M
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Flexural Strength of Compact 
Sections
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Moment Capacity of Beams Subjected 
to Non-uniform Bending Moments
 The moment capacity Mn for the case of non-uniform 

bending moment
• Mn = Cb x {Mn for the case of uniform bending moment}  Mp

• Important to note that the increased moment capacity for the non-
uniform moment case cannot possibly be more than Mp.

• Therefore, if the calculated values is greater than Mp, then you have 
to reduce it to Mp
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Moment Capacity of Beams 
Subjected to Non-uniform BM
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Figure 11. Moment capacity versus Lb for non-uniform moment case
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Structural Design of Beams
• Steps for adequate design of beams:

1) Compute the factored loads, factored moment and shear

2) Determine unsupported length Lb and Cb

3) Select a WF shape and choose Zx assuming it is a compact section 
with full lateral support

4) Check the section dimension for compactness and determine bMn

5) Use service loads to check deflection requirements
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Ex. 4.4 – Beam Design
 Use Grade 50 steel to design the beam shown below. The

unfactored uniformly distributed live load is equal to 40
kN/m. There is no dead load. Lateral support is provided at
the end reactions. Select W16 section.

24 ft.

wL = 3 kips/ft.

Lateral support / bracing

wL = 40 kN/m

7.5 m
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Ex. 4.4 – Beam Design
• Step I. Calculate the factored loads assuming a reasonable self-

weight.
Assume self-weight = wsw = 1.46 kN/m.
Dead load = wD = 0 + 1.46 = 1.46 kN/m.
Live load = wL = 40 kN/m.
Ultimate load = wu = 1.2 wD + 1.6 wL = 65.8 kN/m.
Factored ultimate moment = Mu = wu L2/8 = 462.3 kN-m.
Is BM uniform?? Yes Cb =1.0

No Go to Step II

• Step II. Determine unsupported length Lb and Cb

There is only one unsupported span with Lb = 7.5 m
Cb = 1.14 for the parabolic bending moment diagram, See values of 
Cb shown in Table 3-1.
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Ex. 4.4 – Beam Design

mFErL yyp 71.1
1000

3442000004.4076.1
/76.1 




mm
S

CI
r

x

wy

ts 1.48
101327

10610105.15
3

96







• Step III. Select a wide-flange shape

• Compute Zx = 462.3*106/(0.9*344) = 1493x106 mm3.

• Select W16 x 50 steel section

• Zx = 1508x103 mm3 Sx = 1327x103 mm3 ry = 40.4 mm

• Cw = 610x109 mm6 Iy = 15.5x106 mm4 J = 0.63x106 mm4

•

•
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Ex. 4.4 – Beam Design
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• Step IV. Check if section is adequate
• Mu > Mn Not OK

• Step V. Try a larger section.
• After few trials select W16 x 67 Mn = 497.7 > Mu OK

• Step VI. Check for local buckling.
 = Bf / 2Tf = 7.7; Corresponding p = 0.38 (E/Fy)0.5 = 9.19

Therefore,  <  p - compact flange

 = H/Tw = 35.9; Corresponding p = 3.76 (E/Fy)0.5 = 90.5

Therefore,  <  p - compact web

Compact section. - OK!

 This example demonstrates the method for designing beams and
accounting for Cb > 1.0)

 Values for Lr and Lp can be obtained from Tables too

Ex. 4.4 – Beam Design


