Lateral-Torsional Buckling (LTB) – Uniform BM **Lateral-Torsional Buckling (LTB) –
Uniform BM**
• As soon as any portion of the cross-section reaches the yield stress F_y , the elastic LTB equation cannot be used. **ateral-Torsional Buckling

niform BM**

As soon as any portion of the cross-sect

yield stress F_y, the elastic LTB equation car

• L_r is the unbraced length that corresponds to a L **prsional Buckling (LTB)** –
M
iny portion of the cross-section reaches the
, the elastic LTB equation cannot be used.
aced length that corresponds to a LTB moment **ral-Torsional Buckling (LTB) –

orm BM**

oon as any portion of the cross-section reaches the

stress F_y , the elastic LTB equation cannot be used.

is the unbraced length that corresponds to a LTB moment

= S_x (0.7F_y **eral-Torsional Buckli**
 form BM

soon as any portion of the cross

Id stress F_y , the elastic LTB equatio

L_r is the unbraced length that corresponds
 $M_r = S_x (0.7F_y)$.
 M_r will cause yielding of the cross-section

- ortion reaches the

the mot be used.

LTB moment

o residual stresses.

, then the elastic
- L_r is the unbraced length that corresponds to a LTB moment $(0.7F_y)$. **Example 11 DESIDE IS DUCKLIFT CAUSE 11 DEALLY AS SOON AS SOON AS ANY portion of the cross-section reaches the vield stress F_y, the elastic LTB equation cannot be used.
• L_r is the unbraced length that corresponds to** • As soon as any portion of the cross-section reaches the yield stress F_y , the elastic LTB equation cannot be used.
• L_r is the unbraced length that corresponds to a LTB moment $M_r = S_x (0.7F_y)$.
• M_r will cause yieldi As soon as any portion of the cross-section reachied stress F_y , the elastic LTB equation cannot be
 L_r is the unbraced length that corresponds to a LTB mom
 $M_r = S_x (0.7F_y)$.

In M_r will cause yielding of the cross-se
	-
-
- **EVALUATE:** The elastic LTD equation cannot be used.

 L_r is the unbraced length that corresponds to a LTB moment
 $M_r = S_x (0.7F_y)$.

 M_r will cause yielding of the cross-section due to residual stresses.

 When the sponds to a LTB moment
section due to residual stresses.
ses than L_r , then the elastic
) is less than L_r but more
the LTB M_n is given by the • L_r is the unbraced length that corresponds to a LTB moment
 $M_r = S_x (0.7F_y)$.

• M_r will cause yielding of the cross-section due to residual stre:

When the unbraced length is less than L_r, then the e

LTB Eq. cann at corresponds to a LTB moment

Exercises cross-section due to residual stresses.

th is less than L_r, then the elastic

gth (L_b) is less than L_r but more

then the LTB M_n is given by the

46 B moment
esidual stresses.
hen the elastic
in L_r but more
is given by the
⁴⁶ $M_r = S_x (0.7F_y)$.

• M_r will cause yielding of the cross-sect

When the unbraced length is less

LTB Eq. cannot be used.

When the unbraced length (L_b) is

than the plastic length L_p, then the

Eq. below:

Lateral-Torsional Buckling – Uniform BM

• If
$$
L_p \le L_b \le L_r
$$
, then $M_n = \left[M_p - (M_p - M_r) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right]$

• This is linear interpolation between (L_p, M_p) and (L_r, M_r))

• See Fig. 10 again.

$$
L_r = 1.95r_{ts} \frac{E}{0.7F_y} \sqrt{\frac{Jc}{S_x h_0}} \sqrt{1 + \sqrt{1 + 6.76 \left(\frac{0.7F_y}{E} \frac{S_x h_0}{Jc}\right)^2}}
$$

$$
r_{ts}^2 = \frac{\sqrt{I_y C_w}}{S_x}
$$

- For a doubly symmetric I-shape: $c = 1$
- h_0 = distance between the flange centroids (mm)

Moment Capacity of Beams Subjected to Non-uniform BM **Moment Capacity of Beams

Subjected to Non-uniform BM**

• As mentioned previously, the case with uniform bending

moment is worst for lateral torsional buckling. **Ioment Capacity of Beams

ubjected to Non-uniform BM**

As mentioned previously, the case with uniform bending

moment is worst for lateral torsional buckling.

For cases with non-uniform bending moment, the LTB

-
- **Moment Capacity of Beams

Subjected to Non-uniform BM**

 As mentioned previously, the case with uniform bending

moment is worst for lateral torsional buckling.

 For cases with non-uniform bending moment, the LTB

mome **oment Capacity of Beams
ubjected to Non-uniform BM**
As mentioned previously, the case with uniform bending
moment is worst for lateral torsional buckling.
For cases with non-uniform bending moment, the LTB
moment. moment. **Subjected to Non-uniform BM**

• As mentioned previously, the case with uniform bending

moment is worst for lateral torsional buckling.

• For cases with non-uniform bending moment, the LTB

moment is greater than that f As mentioned previously, the case with uniform bending
noment is worst for lateral torsional buckling.
For cases with non-uniform bending moment, the LTB
noment is greater than that for the case with uniform
noment.
The A entioned previously, the case with uniform bending
ent is worst for lateral torsional buckling.
cases with non-uniform bending moment, the LTB
ent is greater than that for the case with uniform
ent.
ISC specification says
- -
	- \bullet C_{b} x lateral torsional buckling moment for uniform moment case.

Moment Capacity of Beams Subjected to Non-uniform BM **is a meant Capacity of Beams

Signeted to Non-uniform BM**

is always greater than 1.0 for non-uniform bending
 **Parage and the 1.0 for uniform bending moment. ent Capacity of Beams

ected to Non-uniform BM**

always greater than 1.0 for non-uniform bending

ent.

is equal to 1.0 for uniform bending moment.

metimes, if you cannot calculate or figure out C_b, then it can be

ise

- C_b is always greater than 1.0 for non-uniform bending moment.
	- C_b is equal to 1.0 for uniform bending moment.
- **bjected to Non-uniform BM**
 \mathbf{c}_b is always greater than 1.0 for non-uniform bending
 \mathbf{c}_c is equal to 1.0 for uniform bending moment.

 \mathbf{c}_b is equal to 1.0 for uniform bending moment.

 Sometimes, if yo orm bending
, then it can be
ngly symmetric **conservatively assumed as 1.0. for Deams**
 is always greater than 1.0 for non-uniform bending
 **conservatively assumed as 1.0. for doubly and singly symmetric

Sometimes, if you cannot calculate or figure out** C_b **, the** sections s always greater than 1.0 for non-uniform bending
nent.

b is equal to 1.0 for uniform bending moment.

ometimes, if you cannot calculate or figure out C_b , then it can be

onservatively assumed as 1.0. for doubly and si at equal to 1.0 for uniform bending moment.

equal to 1.0 for uniform bending moment.

etimes, if you cannot calculate or figure out C_b , then it can be

ervatively assumed as 1.0. for doubly and singly symmetric

ons
 Example 1.0 for uniform bending moment.

equal to 1.0 for uniform bending moment.

etimes, if you cannot calculate or figure out C_b , then it can be

ervatively assumed as 1.0. for doubly and singly symmetric

ons
 $=\frac$ equal to 1.0 for uniform bending moment.

etimes, if you cannot calculate or figure out C_b , then it can be

ervatively assumed as 1.0. for doubly and singly symmetric

ons
 $=\frac{12.5 M_{\text{max}}}{2.5 M_{\text{max}} + 3 M_A + 4 M_B + 3 M_c} < 3.$ Sometimes, it you cannot calculate or figure out C_b , then it conservatively assumed as 1.0. for doubly and singly symmetries
sections
 $C_b = \frac{12.5 M_{\text{max}}}{2.5 M_{\text{max}} + 3 M_A + 4 M_B + 3 M_c} < 3.0$
 M_{max} - magnitude of maximum b

$$
C_b = \frac{12.5 M_{\text{max}}}{2.5 M_{\text{max}} + 3 M_A + 4 M_B + 3 M_c} < 3.0
$$

- M_A magnitude of bending moment at quarter point of L_b
- M_B magnitude of bending moment at half point of L_b

 M_c - magnitude of bending moment at three-quarter point of L_b

Flexural Strength of Compact Sections

Moments determined between bracing points

Other quation for Cb

$$
C_b = 1.75 + 1.05 \left(\frac{M_1}{M_2}\right) + 0.3 \left(\frac{M_1}{M_2}\right)^2 \tag{C-F1-1}
$$

where

 M_1 = smaller moment at end of unbraced length, kip-in. (N-mm) M_2 = larger moment at end of unbraced length, kip-in. (N-mm) (M_1/M_2) is positive when moments cause reverse curvature and negative for single curvature

Moment Capacity of Beams Subjected to Non-uniform Bending Moments

- The moment capacity M_n for the case of non-uniform bending moment
	- $M_n = C_b \times \{M_n \text{ for the case of uniform bending moment} \} \leq M_p$
	- Important to note that the increased moment capacity for the nonuniform moment case cannot possibly be more than M_p . .
	- Therefore, if the calculated values is greater than M_p , then you have to reduce it to M_p

Moment Capacity of Beams Subjected to Non-uniform BM

54 Figure 11. Moment capacity versus Lb for non-uniform moment case $C_b = 1.0$ means uniform BM

Structural Design of Beams

- Steps for adequate design of beams:
	- 1) Compute the factored loads, factored moment and shear
	- 2) Determine unsupported length L_b and C_b
	- 3) Select a WF shape and choose Z_{x} assuming it is a compact section with full lateral support Equivalent independent entropy to the set of the set of the set of with full lateral support

	with full lateral support
 $Z_x = \frac{M_u}{\phi_b F_y}$ $M_u \le \phi_b M_n = 0.9 Z F_y$

	4) Check the section dimension for compactness and determine

$$
Z_x = \frac{M_u}{\phi_b \ F_y}
$$

 $M_u \leq \phi_b M_n = 0.9 Z F_y$ $M_{n} = M_{p} = ZF_{y}$

4) Check the section dimension for compactness and determine $\phi_h M_n$

$$
\boxed{M_{u} \leq \phi_{b} M_{n}}
$$

**Ex. 4.4 – Beam Design
• Use Grade 50 steel to design the beam shown below. The unfactored uniformly distributed live load is equal to 4 Ex. 4.4 – Beam Design
• Use Grade 50 steel to design the beam shown below. The unfactored uniformly distributed live load is equal to 40
kN/m. There is no dead load. Lateral support is provided at x. 4.4 – Beam Design**
Use Grade 50 steel to design the beam shown below. The
unfactored uniformly distributed live load is equal to 40
kN/m. There is no dead load. Lateral support is provided at
the end reactions. Select **x. 4.4 – Beam Design Manuson State Convention Section**
Use Grade 50 steel to design the beam shown below. The
unfactored uniformly distributed live load is equal to 40
kN/m. There is no dead load. Lateral support is prov **x. 4.4 – Beam Design**
Use Grade 50 steel to design the beam shown below. The
unfactored uniformly distributed live load is equal to 40
kN/m. There is no dead load. Lateral support is provided at
the end reactions. Select

Ex. 4.4 – Beam Design

* Step I. Calculate the factored loads assuming a reasonable self-

weight. • Step I. Calculate the factored loads assuming a reasonable selfweight.

Assume self-weight = w_{sw} = 1.46 kN/m. Dead load = $w_D = 0 + 1.46 = 1.46$ kN/m. Live load = w_1 = 40 kN/m. Ultimate load = w_u = 1.2 w_D + 1.6 w_L = 65.8 kN/m. Factored ultimate moment = $M_u = w_u L^2/8 = 462.3$ kN-m. **4.4 – Beam Design**

Step I. Calculate the factored loads assuming a reasonable self-

weight.

Assume self-weight = w_{sw} = 1.46 kN/m.

Dead load = w_D = 0 + 1.46 = 1.46 kN/m.

Live load = w_L = 40 kN/m.

Ultimate loa red loads assuming a reasonable self-
= 1.46 kN/m.
 $b = 1.46$ kN/m.
 $V_D + 1.6$ w_L = 65.8 kN/m.
 $t = M_u = w_u L^2/8 = 462.3$ kN-m.
Yes $C_b = 1.0$
No Go to Step II
oorted length L_b and C_b

• Step II. Determine unsupported length L_b and C_b There is only one unsupported span with $L_b = 7.5$ m C_b = 1.14 for the parabolic bending moment diagram, See values of C_{b} shown in Table 3-1.

Ex. 4.4 – Beam Design

• Step III. Select a wide-flange shape

• Compute $Z = 462.3*10^6/(0.9*344) = 1493x10^6$ mm³ **Ex. 4.4 – Beam Design
• Step III.** Select a wide-flange shape
• Compute $Z_x = 462.3*10^6/(0.9*344) = 1493x10^6$ mm³.
• Select W16 x 50 steel section **4.4 – Beam Design

tep III.** Select a wide-flange shape

• Compute $Z_x = 462.3*10^6/(0.9*344) = 1493x10^6$ mm³.

• Select W16 x 50 steel section

• $Z_y = 1508x10^3$ mm³ s₅ = 1327x10³ mm³ r_y = 40 **m Design**
mge shape
/(0.9*344) = 1493x10⁶ mm³.
ection
S_v = 1327x10³ mm³ r_v = 40.4 mm **4.4 – Beam Design

tep III.** Select a wide-flange shape

• Compute $Z_x = 462.3*10^6/(0.9*344) = 1493x10^6$ mm³.

• Select W16 x 50 steel section

• $Z_x = 1508x10^3$ mm³ s_x = 1327x10³ mm³ r_y = 40.4 mm

• $C_w = 610x$ **Ex. 4.4 – Beam Design

• Step III.** Select a wide-flange shape

• Compute $Z_x = 462.3*10^6/(0.9*344) = 1493x10^6$ mm³.

• Select W16 x 50 steel section

• $Z_x = 1508x10^3$ mm³

• $S_x = 1327x10^3$ mm³

• $T_y = 40.4$ mm

- - .
	-

4.4 – Beam Design
 tep III. Select a wide-flange shape

• Compute $Z_x = 462.3*10^6/(0.9*344) = 1493x10^6$ mm³.

• Select W16 x 50 steel section

• $Z_x = 1508x10^3$ mm³ $S_x = 1327x10^3$ mm³ $r_y = 40.4$ mm

• $C_w = 610x1$ **nge shape**

(0.9*344) = 1493x10⁶ mm³.

ction

S_x = 1327x10³ mm³ r_y = 40.4 mm

I_y = 15.5x10⁶ mm⁴ J = 0.63x10⁶ mm⁴

(40.4 $\sqrt{200000/344}$ = 1.71 m

• $C_w = 610x10^9$ mm⁶ $I_v = 15.5x10^6$ mm⁴ $J = 0.63x10^6$ mm⁴

 $r_y = 40.4 \text{ mm}$
 $J = 0.63 \times 10^6 \text{ mm}^4$ $T_y = 40.4$ mm
J = 0.63x10⁶ mm⁴

•
$$
L_p = 1.76r_y \sqrt{E/F_y} = \frac{1.76 \times 40.4 \sqrt{200000/344}}{1000} = 1.71 m
$$

\n• $L_r = 1.95r_{ts} \frac{E}{0.7F_y} \sqrt{\frac{Jc}{S_x h_0}} \sqrt{1 + \sqrt{1 + 6.76 \left(\frac{0.7F_y S_x h_0}{E} \right)^2}}$

•
$$
r_{ts} = \sqrt{\frac{\sqrt{I_y C_w}}{S_x}} = \sqrt{\frac{\sqrt{15.5 \times 10^6 \times 610 \times 10^9}}{1327 \times 10^3}} = 48.1 \text{ mm}
$$

58

Ex. 4.4 – Beam Design
 \bullet $h_0 = D - T_F = 414 - 16 = 398 \text{ mm}$

11.4 - **Beam Design**
\n•
$$
h_0 = D - T_F = 414 - 16 = 398 \text{ mm}
$$

\n• $\sqrt{1 + 6.76 \left(\frac{0.7F_y S_x h_0}{E} \right)^2} = \sqrt{1 + 6.76 \left(\frac{0.7 \times 344}{200000} \frac{1327 \times 10^3 \times 398}{0.63 \times 10^6 \times 1} \right)^2} = 2.81$
\n• $L_r = 1.95 \times \frac{48.1}{1000} \times \frac{200000}{0.7 \times 344} \sqrt{\frac{0.63 \times 10^6 \times 1}{1327 \times 10^3 \times 398}} \sqrt{1 + 2.81} = 5.26 \text{ m}$
\n• $L_b > L_r$
\n $M_n = C_b \sqrt{\frac{\pi^2 E I_y}{L_h^2} \left(GJ + \frac{\pi^2 E C_w}{L_h^2} \right)}$

$$
L_{\rm b} > L_{\rm r}
$$

\n
$$
M_{\rm n} = C_{\rm b} \sqrt{\frac{\pi^2 EI_y}{L_b^2} \left(GJ + \frac{\pi^2 EC_w}{L_b^2} \right)}
$$

\n= 1.14 $\sqrt{\frac{\pi^2 \times 200 \times 15.5 \times 10^6}{7500^2} \left(77 \times 0.63 \times 10^6 + \frac{\pi^2 \times 200 \times 610 \times 10^9}{7500^2} \right)}$
\n= 222 × 10³ kN.mm = 222 kN.m $\langle M_{\rm p} = \frac{1508 \times 10^3 \times 344}{10^6} = 518.8 kN.m$

59

$x. 4.4 - \text{Beam Design}$ **
• Step IV.** Check if section is adequate
• $M_u > \phi M_n$ Not OK
• Step V. Try a larger section. **4 - Beam Design
V.** Check if section is adequate
 $>_{\phi M_n}$ Not OK
Y. Try a larger section.
Pr few trials select W16 x 67 $\phi M_n = 497.7 > M_u$ OK **1.4 – Beam Design

• Step IV.** Check if section is adequate

• $M_u > \phi M_n$ Not OK

• Step V. Try a larger section.

• After few trials select W16 x 67 $\phi M_n = 497.7 > M_u$ OK **4.4 - Beam Design

tep IV.** Check if section is adequate

• $M_u > \phi M_n$ Not OK
 tep V. Try a larger section.

• After few trials select W16 x 67 $\phi M_n = 497.7 > M_u$ OK

tep VI. Check for local buckling. Ex. $4.4 -$ Beam Design

• Step IV. Check if section is adequate

• $M_{\rm u} > \phi M_{\rm n}$ Not OK

- M_{u} > ϕM_{n} Not OK
- -

**4.4 – Beam Design

• Step IV.** Check if section is adequate

• $M_u > \phi M_n$ Not OK

• Step V. Try a larger section.

• After few trials select W16 x 67 $\phi M_n = 497.7 > M_u$ OK

• Step VI. Check for local buckling.
 $\lambda = B_f / 2T_f =$ **4.4 – Beam Designship of the Beam Section**

Step IV. Check if section is adequate

• M_u > ϕ M_n Not OK

Step V. Try a larger section.

• After few trials select W16 x 67 ϕ M_n = 4

Step VI. Check for local buckli **4 - Beam Design**

W. Check if section is adequate

y. PoM_n Not OK

W. Try a larger section.

ter few trials select W16 x 67 $\phi M_n = 497.7 > M_u$ OK

VI. Check for local buckling.
 $2T_f = 7.7$; Corresponding $\lambda_p = 0.38$ (E/F $> M_u$ **OK**
 $)0.5 = 9.19$
 $)0.5 = 90.5$ Therefore, $\lambda < \lambda_p$ - compact flange **Cam Design

section is adequate**

Not OK

er section.

elect W16 x 67 $\phi M_n = 497.7 > M_u$ <u>OK</u>

r local buckling.

Corresponding $\lambda_p = 0.38$ (E/F_y)^{0.5} = 9.19

- compact flange

Corresponding $\lambda_p = 3.76$ (E/F_y)^{0.5} **Step IV.** Check if section is adequate

• $M_u > \phi M_n$ Not OK
 Step V. Try a larger section.

• After few trials select W16 x 67 $\phi M_n = 2$
 Step VI. Check for local buckling.
 $\lambda = B_f / 2T_f = 7.7$; Corresponding $\lambda_p = 0.38$ Check if section is adequate
 ϕM_n Not OK

Try a larger section.

few trials select W16 x 67 $\phi M_n = 497.7 > M_u$ OK

Check for local buckling.
 $T_f = 7.7$; Corresponding $\lambda_p = 0.38$ (E/F_y)^{0.5} = 9.19
 $\lambda, \lambda < \lambda_p$ - compa > M_u <u>OK</u>
 $y^{0.5} = 9.19$
 $y^{0.5} = 90.5$ Therefore, $\lambda < \lambda_p$ - compact web of a dequate
 6×67 $\phi M_n = 497.7 > M_u$ **OK**

uckling.

uckling.

inding $\lambda_p = 0.38$ (E/F_y)^{0.5} = 9.19

it flange

inding $\lambda_p = 3.76$ (E/F_y)^{0.5} = 90.5

- compact web

- OK!

the method for designing beams and • $M_u > \phi M_n$ Not OK
 Step V. Try a larger section.

• After few trials select W16 x 67 $\phi M_n = 497.7 > M_u$ **OK**
 Step VI. Check for local buckling.
 $\lambda = B_f / 2T_f = 7.7$; Corresponding $\lambda_p = 0.38$ (E/F_y)^{0.5} = 9.19

There **Step V.** Try a larger section.

• After few trials select W16 x 67 $\phi M_n = 497.7 > M_u$ OK
 Step VI. Check for local buckling.
 $\lambda = B_f / 2T_f = 7.7$; Corresponding $\lambda_p = 0.38$ (E/F_y)^{0.5} = 9.19

Therefore, $\lambda < \lambda_p$ - compa • After few trials select W16 x 67 ϕ M_n = 497.7 > M_u **OM**
• **Step VI.** Check for local buckling.
 $\lambda = B_f / 2T_f = 7.7$; Corresponding $\lambda_p = 0.38$ (E/F_y)^{0.5} = 9.19
Therefore, $\lambda < \lambda_p$ - compact flange
 $\lambda = H/T_w = 35.9$; Step VI. Check for local buckling.
 $\lambda = B_f / 2T_f = 7.7$; Corresponding $\lambda_p = 0.38$ (E/F_y)^{0.5} = 9

Therefore, $\lambda < \lambda_p$ - compact flange
 $\lambda = H/T_w = 35.9$; Corresponding $\lambda_p = 3.76$ (E/F_y)^{0.5} = 9

Therefore, $\lambda < \lambda_p$ for local buckling.

Corresponding $\lambda_p = 0.38$ (E/F_y)^{0.5} = 9.19

Corresponding $\lambda_p = 3.76$ (E/F_y)^{0.5} = 90.5

- compact web

- OK!

constrates the method for designing beams and

1.0)

can be obtained from Tables t

-
-