The AISC code approximate the effect by using two amplification factors B1 and B2

$$M_{u} = B_{1} M_{nt} + B_{2} M_{lt}$$
$$P_{r} = P_{nt} + B_{2} P_{lt}$$

AISC Equation

- □ Where
 - B₁ amplification factor for the moment occurring in braced member
 - □ **B**₂ amplification factor for the moment occurring from sidesway
 - \Box M_{nt} and P_{nt} is the maximum moment and axial force assuming no sidesway
 - □ M_{lt} and P_{lt} is the maximum moment and axial force due to sidesway
 - \Box P_r is the required axial strength

- **Braced frames are those frames prevented from sidesway.**
- □ In this case the moment amplification equation can be simplified to:

$$M_{ux} = B_{1x} M_{ntx} \qquad M_{uy} = B_{1y} M_{nty}$$

$$B_1 = \frac{C_m}{1 - \left(\frac{P_u}{P_e}\right)} \ge 1$$

$$AISC Equation$$

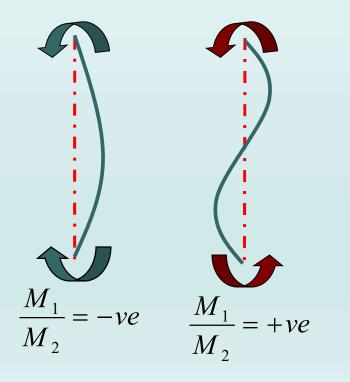
$$P_e = \frac{\pi^2 E A_g}{(KL / r)^2}$$

$$I = KL/r \text{ for the axis of bending considered}$$

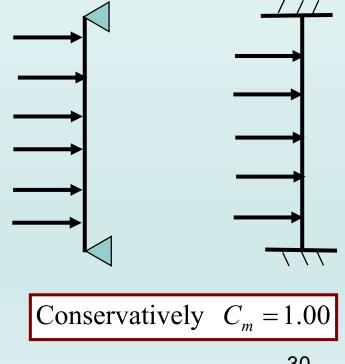
 $\Box K \leq 1.0$

The coefficient C_m is used to represent the effect of end moments on the maximum deflection along the element (only for braced frames)

$$C_m = 0.6 - 0.4 \left(\frac{M_1}{M_2}\right)$$



When there is transverse loading on the beam either of the following case applies



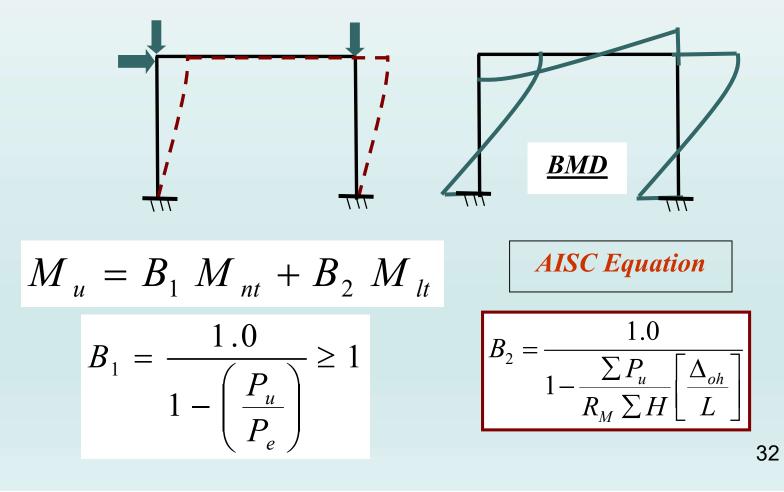
□ AISC requires stability bracing to have

- □ Specific strength to resist the lateral load
- □ Specific axial stiffness to limit the lateral deformation.

$$P_{br} = 0.004 \sum P_{u} \qquad \beta_{br} = \frac{2\sum P_{u}}{\phi L} \qquad \text{Braced} \\ \text{Frames} \\ \int \beta_{br} = \frac{3\sum P_{u}}{L} \qquad \text{Unbraced} \\ \text{Frames} \\ \end{pmatrix}$$

- **\Box** Where P_u is the sum of factored axial load in the braced story
- $\square P_{br} \text{ is bracing strength and } \beta_{br} \text{ is braced or unbraced frame stiffness (} \phi = 0.75)$

- □ Unbraced frames can observe loading + sidesway
- □ In this case the moment amplification equation can be simplified to:



□ A minimum lateral load in each combination shall be added so that the shear in each story is given by:

$$H_u = 0.0042 \sum P_u$$

Analysis of Unbraced Frames

$\sum P_u$	is the sum of factored axial loads on all columns in floor
\varDelta_{oh}	is the drift due to the unfactored horizontal forces
L	is the story height
$\sum H$	story shear produced by unfactored horizontal forces
$\left[\frac{\varDelta_{oh}}{L}\right]$	is the drift index (is generally between 1/500 to 1/200)
P_{e}	is the sum of Euler buckling loads of all columns in floor
P_u	is the factored axial load in the column
R_M	can be conservatively taken as 0.85

A 3.6-m W12x96 is subjected to bending and compressive loads in a braced frame. It is bent in single curvature with equal and opposite end moments and is not loaded transversely. Use Grade 50 steel. Is the section satisfactory if P_u = 3200 kN and first-order moment M_{ntx} = 240 kN.m

Step I: From Section Property Table W12x96 ($A = 18190 \text{ mm}^2$, $I_x = 347 \times 10^6 \text{ mm}^4$, $L_p = 3.33 \text{ m}$, $L_r = 14.25 \text{ m}$, $Z_x = 2409 \text{ mm}^3$, $S_x = 2147 \text{ mm}^3$)

Step II: Compute amplified moment - For a braced frame let K = 1.0 $K_x L_x = K_y L_y = (1.0)(3.6) = 3.6 \text{ m}$ - From Column Chapter: $\phi_c P_n = 4831 \text{ kN}$ $P_u / \phi_c P_n = 3200/4831 = 0.662 > 0.2$ \therefore Use eqn. - There is no lateral translation of the frame: $M_{lt} = 0$ $\therefore M_{ux} = B_1 M_{ntx}$

 $C_m = 0.6 - 0.4(M_1/M_2) = 0.6 - 0.4(-240/240) = 1.0$ $P_{e1} = \pi^2 E I_x / (K_x L_x)^2 = \pi^2 (200)(347 \times 10^6) / (3600)^2 = 52851 \text{ kN}$

$$B_{1} = \frac{C_{m}}{1 - \frac{P_{u}}{P_{e1}}} = \frac{1.0}{1 - \frac{3200}{52851}} = 1.073 > 1.0 \quad (OK)$$
$$M_{ux} = (1.073)(240) = 257.5 \text{ kN.m}$$

Step III: Compute moment capacity

Since $L_b = 3.6 m$ $L_p < L_b < L_r$ $\phi_b M_n = 739 \ kN.m$

Step IV: Check combined effect

$$\frac{P_u}{\phi_c P_n} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}} \right) = \frac{3200}{4831} + \frac{8}{9} \left(\frac{257.5}{739} + 0 \right) = 0.972 < 1.0$$

: Section is satisfactory