Design of Base Plates

- □ We are looking for design of concentrically loaded columns. These base plates are connected using anchor bolts to concrete or masonry footings
- □ The column load shall spread over a large area of the bearing surface underneath the base plate

AISC Manual Part 16, J8

Design of Base Plates

The design approach presented here combines three design approaches for light, heavy loaded, small and large concentrically loaded base plates

□ The dimensions of the plate are computed such that *m* and *n* are approximately equal. Area of Plate is computed such that

$$\phi P_p < P_u$$

where:

 $\phi = 0.6$

If plate covers the area of the footing

$$P_P = 0.85 f'_c A_1$$

If plate covers part of the area of the footing

$$P_{P} = 0.85 f_{c}' A_{1} \sqrt{\frac{A_{2}}{A_{1}}} \le 1.7 f_{c}' A_{1}$$

 A_1 = area of base plate

 A_2 = area of footing

 f'_c = compressive strength of concrete used for footing

Design of Base Plates

Thickness of plate

$$t_{pl} = l \sqrt{\frac{2P_u}{0.9BNF_y}} \approx 1.5l \sqrt{\frac{P_u}{BNF_y}} \qquad l = \max \begin{cases} m \\ n \\ \lambda n' \end{cases}$$
$$m = \frac{N - 0.95 d}{2} \qquad n = \frac{B - 0.8 b_f}{2} \qquad n' \lambda = \frac{1}{4} \sqrt{db_f} \lambda$$
$$\chi = \left[\frac{4db_f}{1 - \sqrt{1 - X}} \right] \frac{P_u}{2} \qquad \lambda = \frac{2\sqrt{X}}{1 - \sqrt{1 - X}}$$

$$X = \left[\frac{4db_f}{\left(d + b_f\right)^2}\right] \frac{P_u}{\phi_c P_p}$$

 $\phi_{c} = 0.6$

m

 P_p = Nominal bearing strength

54

Ex. 5.5 – Design of Base Plate

 For the column base shown in the figure, design a base plate if the factored load on the column is 10000 kN.
 Assume 3 m x 3 m concrete footing with concrete strength of 20 MPa.

Ex. 4.7- Design of Base Plate

- Step I: Plate dimensions
 - Assume $\sqrt{\frac{A_2}{A_1}} > 2$ thus:

$$\phi P_p = 1.7 f_c' A_{\rm T} = P_u$$

$$0.6 \times 1.7 \times 20 \times A_1 = 10000 \times 10^3$$

$$A_1 = 490.2 \times 10^3 \ mm^2$$
 $\sqrt{\frac{A_2}{A_1}} = 4.28 > 2$

Assume m = n

$$N = 0.95d + 2m = 0.95 \times 399 + 2m = 379 + 2m$$

$$B = 0.8b_f + 2m = 0.8 \times 401 + 2m = 321 + 2m$$

$$A_1 = NB = (379 + 2m)(321 + 2m) = 490.2 \times 10^3 \implies m = 175.4 \text{ mm}$$

$$N = 729.8 \text{ mm say N} = 730 \text{ mm}$$

$$B = 671.8 \text{ mm say B} = 680 \text{ mm}$$

56

Ex. 4.7- Design of Base Plate

• **Step II:** Plate thickness

$$t_p = 1.5(m, n, or n') \sqrt{\frac{f_p}{F_y}}$$

$$m = (N - 0.95d)/2 = 175.5 mm$$

 $n = (B - 0.8b_f)/2 = 179.5 mm$

$$n' = \frac{1}{4}\sqrt{db_f} = 100\,mm$$

57

Ex. 4.7- Design of Base Plate

• Selecting the largest cantilever length

$$f_p = \frac{10000 \times 10^3}{680 \times 730} = 20.14 MPa$$
$$t_{req} = 1.5(179.5) \sqrt{\frac{20.14}{248}} = 76.7 mm$$

• use 730 mm x 680 mm x 80 mm Plate

Eccentrically Loaded Columns

- For eccentrically loaded columns
- Compute dimensions such that stress (q) is less than concrete compressive strength.
- Compute thickness so that the ultimate moment on the plate equals the full plastic moment multiplied by ϕ , where $\phi = 0.9$.

$$q_{\max} = \frac{P_u}{BN} \left(1 + \frac{6e}{N \text{ or } B} \right) \le f_c'$$

$$q_{\min} = \frac{P_u}{BN} \left(1 - \frac{6e}{N \text{ or } B} \right) \ge 0$$
no tension
$$e = \text{eccentricity}$$

 $t_p = 2.1 \sqrt{\frac{M_u}{F_y}}$

 M_u = ultimate moment per (mm) width on the plate