Design of Connections

 1

Bolted Connections

- Types of Connections
- Simple Bolted Shear Connections
- **Bearing and Slip Critical Connections**
- Eccentric Bolted Connections
- **Moment Resisting Bolted Connections**
- **Simple Welded Connections**
- Eccentric Welded Connections
- **Moment Resisting Welded Connections**

Simple Bolted Connections

- **Simple Bolted Connections**
• There are different types of bolted connections.
They can be categorized based on the type of loading. **imple Bolted Connections**
There are different types of bolted connections.
They can be categorized based on the type of
loading. loading. mple Bolted Connections

There are different types of bolted connections.

They can be categorized based on the type of

Dading.

• Tension member connection and splice. It subjects the

bolts to forces that tend to shear **pple Bolted Connections**
ere are different types of bolted connections.
ey can be categorized based on the type of
ding.
Tension member connection and splice. It subjects the
bolts to forces that tend to shear the shank.
 Indee Bolted Connections

Fhere are different types of bolted connections.

They can be categorized based on the type of

boading.

• Tension member connection and splice. It subjects the

bolts to forces that tend to sh The model of the shank.

The share of the shank of the type

ding.

Tension member connection and splice. It subjects

bolts to forces that tend to shear the shank.

Beam end simple connection. It subjects the bolts to for Fhere are different types of bolted connections.

They can be categorized based on the type of

bolding.

• Tension member connection and splice. It subjects the

bolts to forces that tend to shear the shank.

• Beam end s ey can be categorized base
iding.
Tension member connection and
bolts to forces that tend to shear the
Beam end simple connection. It sub-
that tend to shear the shank.
Hanger connection. The hanger coi
in tension
	-
	-
	-

Simple Bolted Connections

Tension member Connection/ splice

Beam end Simple shear connection

Simple Bolted Connections

Simple Bolted Connections **Simple Bolted Connections**
• The bolts are subjected to shear or tension loading.
• In most bolted connection, the bolts are subjected to shear. mple Bolted Connections
The bolts are subjected to shear or tension loading.
In most bolted connection, the bolts are subjected to shear.
Bolts can fail in shear or in tension. FRICT CONNECTIONS

• In most bolted connection, the bolts are subjected to shear.

• Bolts can fail in shear or in tension.

• You can calculate the shear strength or the tensile strength of a bo Figure 11 You can calculate the shear or tension loading.

• In most bolted connection, the bolts are subjected to shear.

• Bolts can fail in shear or in tension.

• You can calculate the shear strength or the tensile str

- -
	-
	-
- Simple Bolted Connections

The bolts are subjected to shear or tension loading.

In most bolted connection, the bolts are subjected to shear.

Bolts can fail in shear or in tension.

You can calculate the shear strength or **INDIE Bolted Connections**
The bolts are subjected to shear or tension loading.
In most bolted connection, the bolts are subjected to shear.
Bolts can fail in shear or in tension.
You can calculate the shear strength or th The bolts are subjected to shear or tension loading.

In most bolted connection, the bolts are subjected to shear.

Bolts can fail in shear or in tension.

You can calculate the shear strength or the tensile strength of a The bolts are subjected to shear or tension load.

In most bolted connection, the bolts are subjected

Bolts can fail in shear or in tension.

You can calculate the shear strength or the tensile

Simple connection: If the In most bolted connection, the bolts are subjected to shear.

Bolts can fail in shear or in tension.

You can calculate the shear strength or the tensile strength of a bolt

Simple connection: If the line of action of the Bolts can fail in shear or in tension.

You can calculate the shear strength or the tensile strength of a bolt

Simple connection: If the line of action of the force acting on

the connection passes through the center of g
-

Bolt Types & Materials

A307 - Unfinished (Ordinary or Common) bolts low carbon steel A36, F_{11} = 413 MPa, for light structures under static load A325 - High strength bolts, heat-treated medium carbon steel, F_{μ} = 827 MPa, for structural joints A490 - High strength bolts, Quenched and Tempered Alloy steel, F_{μ} = 1033 MPa for structural joints A449 - High strength bolts with diameter $> 1 \frac{1}{2}$, anchor bolts, lifting hooks, tie-downs

Common Bolts

- ASTM A307 bolts
- **Common bolts are no longer common for current structural** design but are still available

$$
P_u \leq \phi R_n \qquad \phi = 0.75
$$

$$
R_n = f_v A_{\text{bolt}}
$$

 $f_v = 165$ MPa

High Strength Bolts

• High strength bolts (HSB) are available as ASTM A 325 and ASTM A490 Bolt

Nut

Slip Critical

Bearing Type

□ Advantages of HSB over A307 bolts

- **Fewer bolts will be used compared to 307** \rightarrow **cheaper connection!**
- Smaller workman force required compared to 307
- Higher fatigue strength

Washer-

Ease of bolt removal \rightarrow changing connection

HSB – Bearing Type Connections
• The shear strength of bolts shall be determined as follows

The shear strength of bolts shall be determined as follows

$$
P_u \leq \phi R_n
$$

\n
$$
\phi = 0.75
$$

\n
$$
R_n = f_v A_{\text{bolt}}
$$

\n**ASC Table J3.2**

The table bellow shows the values of f_v (MPa) for different types of bolts

• If the level of threads is not known, it is conservative to assume that the threads are type N.

- **Bolted Shear Connections**
We want to design the bolted shear connections so that
the factored design strength (ϕ R_n) is greater than or equal
to the factored load. ϕ R_n \geq P_u **olted Shear Connections**
We want to design the bolted shear connections so that
the factored design strength (ϕ R_n) is greater than or equal
to the factored load. ϕ R_n \geq P_u **ections**

The arrow connections so that
 $\frac{1}{2}$ is greater than or equal **olted Shear Connections**
We want to design the bolted shear connections
the factored design strength (ϕ R_n) is greater t
to the factored load. ϕ R_n \geq P_u
So, we need to examine the various pos to the factored load. $\phi R_n \geq P_n$ **Bolted Shear Connections**

• We want to design the bolted shear connections so that

the factored design strength (ϕR_n) is greater than or equal

to the factored load. $\phi R_n \ge P_u$

• So, we need to examine the various **olted Shear Connections**
We want to design the bolted shear connections so that
the factored design strength (ϕ R_n) is greater than or equal
to the factored load. ϕ R_n \geq P_u
So, we need to examine the variou **Bolted Shear Connections**

• We want to design the bolted shear connections so

the factored design strength (ϕ R_n) is greater than or e

to the factored load. ϕ R_n \geq P_u

• So, we need to examine the variou We want to design the bolted shear connection
he factored design strength (ϕ R_n) is greater than
o the factored load. ϕ R_n \geq P_u
So, we need to examine the various possib
modes and calculate the corresponding We want to design the bolted shear connections so that
he factored design strength (ϕR_n) is greater than or equal
o the factored load. $\phi R_n \geq P_u$
So, we need to examine the various possible failure
modes and calculate be factored design strength (ϕR_n) is greater than or equal

be factored load. $\phi R_n \geq P_u$

So, we need to examine the various possible failure

modes and calculate the corresponding design strengths.

Possible failure m
- b the factored load. ϕ R_n ≥ P_u

So, we need to examine the various possible failure

modes and calculate the corresponding design strengths.

Possible failure modes are:

* Shear failure of the bolts

* Failure o • Excessive bearing deformation at the bolt hole that the bolts
• Excessible failure modes are:
• Shear failure of the bolts
• Failure of member being connected due to fracture or yielding or
• Edge tearing or fractur
- -
	-
	-
	-
	-

Failure Modes of Bolted Connections

Possible failure modes

■ Failure of bolts: single or double shear

- **Failure of connected elements:**
	- **Shear, tension or bending failure** of the connected elements (e.g. block shear)
	- **Bearing failure** at bolt location

Bolted Shear Connections **Bolted Shear Connections**
• Shear failure of bolts
• Average shearing stress in the bolt = f_v = P/A = P/(π d **Ited Shear Connections**

Shear failure of bolts

• Average shearing stress in the bolt = $f_v = P/A = P/(\pi d_b^2/4)$

• P is the load acting on an individual bolt **Shear Connections**

Shear failure of bolts

• Average shearing stress in the bolt = f_v = P/A = P/(πd_b ^{2/4)}

• P is the load acting on an individual bolt

• A is the area of the bolt and db is its diameter

• Change

- $^{2}(4)$
-
-
- **Shear Shear Connections**

Shear failure of bolts

 Average shearing stress in the bolt = f_v = P/A = P/($\pi d_b^2/4$)

 P is the load acting on an individual bolt

 A is the area of the bolt and db is its diameter

 S **Shear failure of bolts**

Shear failure of bolts

• Average shearing stress in the bolt = $f_v = P/A = P/(\pi d_b^2/4)$

• P is the load acting on an individual bolt

• A is the area of the bolt and db is its diameter

• Strength o **DIMECTIONS**
the bolt = f_v = P/A = P/(πd_b^2 /4)
dividual bolt
db is its diameter
x (πd_b^2 /4) where f_v = shear yield
or *double* shear as shown above. Strength of the bolt = $P = f_y x (\pi d_h^2/4)$ where $f_y =$ shear yield **ections**
 $t = f_v = P/A = P/(\pi d_b^2/4)$

al bolt

is diameter

(4) where $f_v =$ shear yield

where $f_v =$ shear yield

where shown above. **ted Shear Connectio**
ear failure of bolts
Average shearing stress in the bolt = $f_v = P/A$:
P is the load acting on an individual bolt
A is the area of the bolt and db is its diameter
Strength of the bolt = $P = f_v \times (\pi d_b^2/4)$ **Shear failure of bolts**

• Average shearing stress in the bolt = $f_y = P/A = P/(\pi d_b^2/4)$

• P is the load acting on an individual bolt

• A is the area of the bolt and db is its diameter

• Strength of the bolt = $P = f_y x (\pi d_b^$
-
- Shear failure of bolts

 Average shearing stress in the bolt = $f_v = P/A = P/(\pi d_b^2/4)$

 P is the load acting on an individual bolt

 A is the area of the bolt and db is its diameter

 Strength of the bolt = P = $f_v \times (\pi d_b$ Average shearing stress in the bolt = $f_v = P/A = P/(\pi d_b^2/4)$

P is the load acting on an individual bolt

A is the area of the bolt and db is its diameter

Strength of the bolt = $P = f_v \times (\pi d_b^2/4)$ where $f_v =$ shear yield

st Average shearing stress in the bolt = $f_v = P/A = P/(\pi d_b^2/4)$

P is the load acting on an individual bolt

A is the area of the bolt and db is its diameter

Strength of the bolt = $P = f_v \times (\pi d_b^2/4)$ where $f_v =$ shear yield

st

Failure of connected member

- covered this in detail in this course on tension members
- Member can fail due to tension fracture or yielding.
- Bearing failure of connected/connecting part due to bearing from bolt holes
	- Hole is slightly larger than the fastener and the fastener is loosely placed in hole
	- Contact between the fastener and the connected part over approximately half the circumference of the fastener
	- As such the stress will be highest at the radial contact point (A). However, the average stress can be calculated as the applied force divided by the projected area of contact

- **blied Shear Connections**
• Average bearing stress $f_p = P/(d_b t)$, where P is the force applied to the fastener.
• The bearing stress state can be complicated by the presence of **the Solutions**
t), where P is the force applied
complicated by the presence of **Ited Shear Connect**
Average bearing stress $f_p = P/(d_b t)$, where
to the fastener.
The bearing stress state can be complicat
nearby bolt or edge. The bolt spacing and ϵ
- **blied Shear Connections**
• Average bearing stress $f_p = P/(d_b t)$, where P is the force applied
to the fastener.
• The bearing stress state can be complicated by the presence of
nearby bolt or edge. The bolt spacing and edge **ited Shear Connections**
Average bearing stress $f_p = P/(d_b t)$, where P is the force applied
to the fastener.
The bearing stress state can be complicated by the presence of
nearby bolt or edge. The bolt spacing and edge dist **Shear Connections**
Average bearing stress $f_p = P/(d_b t)$, where P is the force ap
to the fastener.
The bearing stress state can be complicated by the presen
nearby bolt or edge. The bolt spacing and edge distance will
an ef • Average bearing stress $f_p = P/(d_b t)$, where P is the force applied
to the fastener.
• The bearing stress state can be complicated by the presence of
nearby bolt or edge. The bolt spacing and edge distance will have
an eff **the d Shear Connections**
Average bearing stress $f_p = P/(d_b t)$, where P is the force applied
to the fastener.
The bearing stress state can be complicated by the presence of
nearby bolt or edge. The bolt spacing and edge dis
-
- Average bearing stress $f_p = P/(d_b t)$, where P is the force applied

 The bearing stress state can be complicated by the presence of

 The bearing stress state can be complicated by the presence of

 mearing stress effe Average bearing stress $f_p = P/(d_b t)$, where P is the force applied
to the fastener.
The bearing stress state can be complicated by the presence of
nearby bolt or edge. The bolt spacing and edge distance will have
an effect Average bearing stress $f_p = P/(d_b t)$, where P is the force applied
to the fastener.
The bearing stress state can be complicated by the presence of
nearby bolt or edge. The bolt spacing and edge distance will have
an effect to the fastener.
The bearing stress state can be complicated by the presence of
nearby bolt or edge. The bolt spacing and edge distance will have
an effect on the bearing strength.
Bearing stress effects are independent o bearing stress state can be complicated by the
rby bolt or edge. The bolt spacing and edge dister
frect on the bearing strength.
ring stress effects are independent of the bolt
bearing stress acts on the connected plate n alle can be complicated by the presence of
the bolt spacing and edge distance will have
ig strength.
a are independent of the bolt type because
s on the connected plate not the bolt.
de resulting from excessive bearing cl

$$
R_n = 2 \times 0.6 F_u L_c t = 1.2 F_u L_c t
$$