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EXAMPLE 4  Find the length of the curve y = (x>2)2>3 from x = 0 to x = 2.

Solution The derivative

dy
dx

= 2
3 ax

2
b-1>3 a1

2
b = 1

3 a2xb
1>3

is not defined at x = 0, so we cannot find the curve’s length with Equation (3).
We therefore rewrite the equation to express x in terms of y:

y = ax
2
b2>3

y3>2 = x
2

Raise both sides
to the power 3>2.

x = 2y3>2. Solve for x.

From this we see that the curve whose length we want is also the graph of x = 2y3>2 from 
y = 0 to y = 1 (Figure 6.26).

The derivative

dx
dy

= 2a3
2
by1>2 = 3y1>2

is continuous on 30, 14 . We may therefore use Equation (4) to find the curve’s length:

L =
L

d

c B1 + adx
dy
b2

dy =
L

1

0
21 + 9y dy

Eq. (4) with
c = 0, d = 1.
Let u = 1 + 9y,
du>9 = dy,
integrate, and 
substitute back.

= 1
9
# 2
3 (1 + 9y)3>2 d

0

1

= 2
27
110210 - 12 ≈ 2.27.

The Differential Formula for Arc Length

If y = ƒ(x) and if ƒ′ is continuous on 3a, b4 , then by the Fundamental Theorem of Cal-
culus we can define a new function

s(x) =
L

x

a
21 + 3 ƒ′(t)4 2 dt. (5)

From Equation (3) and Figure 6.22, we see that this function s(x) is continuous and mea-
sures the length along the curve y = ƒ(x) from the initial point P0(a, ƒ(a)) to the point 
Q(x, ƒ(x)) for each x∊ 3a, b4 . The function s is called the arc length function for 
y = ƒ(x). From the Fundamental Theorem, the function s is differentiable on (a, b) and

ds
dx

= 21 + 3 ƒ′(x)4 2 = B1 + ady
dx
b2

.

Then the differential of arc length is

ds = B1 + ady
dx
b2

dx. (6)

A useful way to remember Equation (6) is to write

ds = 2dx2 + dy2, (7)

which can be integrated between appropriate limits to give the total length of a curve. From 
this point of view, all the arc length formulas are simply different expressions for the equation 
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FIGURE 6.26 The graph of 
y = (x>2)2>3 from x = 0 to x = 2
is also the graph of x = 2y3>2 from 
y = 0 to y = 1 (Example 4).
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L = 1ds. Figure 6.27a gives the exact interpretation of ds corresponding to Equation (7). 
Figure 6.27b is not strictly accurate, but is to be thought of as a simplified approximation of 
Figure 6.27a. That is, ds ≈ ∆s.

EXAMPLE 5  Find the arc length function for the curve in Example 2, taking 
A = (1, 13>12) as the starting point (see Figure 6.25).

Solution In the solution to Example 2, we found that

1 + 3ƒ′(x)4 2 = ax2

4
+ 1

x2b
2

.

Therefore the arc length function is given by

s(x) =
L

x

1
21 + 3ƒ′(t)4 2 dt =

L

x

1
at2

4
+ 1

t2b dt

= c t3

12
- 1

t d
x

1
= x3

12
- 1

x + 11
12

.

To compute the arc length along the curve from A = (1, 13>12) to B = (4, 67>12), for 
instance, we simply calculate

s(4) = 43

12
- 1

4
+ 11

12
= 6.

This is the same result we obtained in Example 2.
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FIGURE 6.27 Diagrams for remembering 
the equation ds = 2dx2 + dy2.

Finding Lengths of Curves
Find the lengths of the curves in Exercises 1–14. If you have a grapher, 
you may want to graph these curves to see what they look like.

1. y = (1>3)(x2 + 2)3>2 from x = 0 to x = 3

2. y = x3>2 from x = 0 to x = 4

3. x = (y3>3) + 1>(4y) from y = 1 to y = 3

4. x = (y3>2>3) - y1>2 from y = 1 to y = 9

5. x = (y4>4) + 1>(8y2) from y = 1 to y = 2

6. x = (y3>6) + 1>(2y) from y = 2 to y = 3

7. y = (3>4)x4>3 - (3>8)x2>3 + 5, 1 … x … 8

8. y = (x3>3) + x2 + x + 1>(4x + 4), 0 … x … 2

9. y = ln x - x2

8
from x = 1 to x = 2

10. y = x2

2
- ln x

4
from x = 1 to x = 3

11. y = x3

3
+ 1

4x
, 1 … x … 3

12. y = x5

5
+ 1

12x3 ,
1
2

… x … 1

13. x =
L

y

0
2sec4 t - 1 dt, -p>4 … y … p>4

14. y =
L

x

-2
23t4 - 1 dt, -2 … x … -1

Finding Integrals for Lengths of Curves
In Exercises 15–22, do the following.

a. Set up an integral for the length of the curve.

b. Graph the curve to see what it looks like.

c. Use your grapher’s or computer’s integral evaluator to find 
the curve’s length numerically.

15. y = x2, -1 … x … 2

16. y = tan x, -p>3 … x … 0

17. x = sin y, 0 … y … p
18. x = 21 - y2, -1>2 … y … 1>2
19. y2 + 2y = 2x + 1 from (-1, -1) to (7, 3)

20. y = sin x - x cos x, 0 … x … p

21. y =
L

x

0
tan t dt, 0 … x … p>6

22. x =
L

y

0
2sec2 t - 1 dt, -p>3 … y … p>4

Theory and Examples
23. a.  Find a curve with a positive derivative through the point (1, 1) 

whose length integral (Equation 3) is

L =
L

4

1 A1 + 1
4x

dx.

b. How many such curves are there? Give reasons for your answer.

T

Exercises 6.3
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24. a.  Find a curve with a positive derivative through the point (0, 1) 
whose length integral (Equation 4) is

L =
L

2

1 A1 + 1
y4 dy.

b. How many such curves are there? Give reasons for your answer.

25. Find the length of the curve

y =
L

x

0
2cos 2t dt

  from x = 0 to x = p>4.

26. The length of an astroid The graph of the equation x2>3 +
y2>3 = 1 is one of a family of curves called astroids (not “aster-
oids”) because of their starlike appearance (see the accompanying 
figure). Find the length of this particular astroid by finding 
the length of half the first-quadrant portion, y = (1 - x2>3)3>2,
22>4 … x … 1, and multiplying by 8.

x

y

0

1

1−1

−1

x2	3 + y2	3 = 1

27. Length of a line segment Use the arc length formula (Equation 3) 
to find the length of the line segment y = 3 - 2x, 0 … x … 2.
Check your answer by finding the length of the segment as the 
hypotenuse of a right triangle.

28. Circumference of a circle Set up an integral to find the cir-
cumference of a circle of radius r centered at the origin. You will 
learn how to evaluate the integral in Section 8.4.

29. If 9x2 = y(y - 3)2, show that

ds2 =
(y + 1)2

4y
dy2.

30. If 4x2 - y2 = 64, show that

ds2 = 4
y2

(5x2 - 16) dx2.

31. Is there a smooth (continuously differentiable) curve y = ƒ(x)
whose length over the interval 0 … x … a is always 22a? Give 
reasons for your answer.

32. Using tangent fins to derive the length formula for curves
Assume that ƒ is smooth on 3a, b4  and partition the interval 3a, b4
in the usual way. In each subinterval 3xk-1, xk4 , construct the 
tangent fin at the point (xk-1, ƒ(xk-1)), as shown in the accompa-
nying figure.

a. Show that the length of the kth tangent fin over the interval 
[xk-1, xk] equals 2(∆xk)2 + (ƒ′(xk-1) ∆xk)2.

b. Show that

lim
nSq a

n

k=1
(length of kth tangent fin) =

L

b

a
21 + (ƒ′(x))2 dx,

  which is the length L of the curve y = ƒ(x) from a to b.

x

Δxk

Tangent fin
with slope 
f ′(xk−1)

xk−1 xk

(xk−1, f (xk−1))

y = f (x)

33. Approximate the arc length of one-quarter of the unit circle 
(which is p>2) by computing the length of the polygonal approx-
imation with n = 4  segments (see accompanying figure).

x

y

0 10.750.50.25

34. Distance between two points Assume that the two points (x1, y1)
and (x2, y2) lie on the graph of the straight line y = mx + b. Use 
the arc length formula (Equation 3) to find the distance between 
the two points.

35. Find the arc length function for the graph of ƒ(x) = 2x3>2 using 
(0, 0) as the starting point. What is the length of the curve from 
(0, 0) to (1, 2)?

36. Find the arc length function for the curve in Exercise 8, using 
(0, 1>4) as the starting point. What is the length of the curve from 
(0, 1>4) to (1, 59>24)?

COMPUTER EXPLORATIONS
In Exercises 37–42, use a CAS to perform the following steps for the 
given graph of the function over the closed interval.

a. Plot the curve together with the polygonal path approxima-
tions for n = 2, 4, 8 partition points over the interval. (See 
Figure 6.22.)

b. Find the corresponding approximation to the length of the 
curve by summing the lengths of the line segments.

c. Evaluate the length of the curve using an integral. Compare 
your approximations for n = 2, 4, 8 with the actual length 
given by the integral. How does the actual length compare 
with the approximations as n increases? Explain your answer.

37. ƒ(x) = 21 - x2, -1 … x … 1

38. ƒ(x) = x1>3 + x2>3, 0 … x … 2

39. ƒ(x) = sin (px2), 0 … x … 22

40. ƒ(x) = x2 cos x, 0 … x … p

41. ƒ(x) = x - 1
4x2 + 1

, - 1
2

… x … 1

42. ƒ(x) = x3 - x2, -1 … x … 1


