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OVERVIEW The Fundamental Theorem tells us how to evaluate a definite integral once 
we have an antiderivative for the integrand function. However, finding antiderivatives (or 
indefinite integrals) is not as straightforward as finding derivatives. We need to develop 
some techniques to help us. Nevertheless, we note that it is not always possible to find an 
antiderivative expressed in terms of elementary functions.

In this chapter we study a number of important techniques which apply to finding 
integrals for specialized classes of functions such as trigonometric functions, products of 
certain functions, and rational functions. Since we cannot always find an antiderivative, 
we also develop some numerical methods for calculating definite integrals. Finally, we 
extend the idea of the definite integral to improper integrals, and we apply them to finding 
probabilities.

8.1 Using Basic Integration Formulas

Table 8.1 summarizes the forms of indefinite integrals for many of the functions we have 
studied so far, and the substitution method helps us use the table to evaluate more compli-
cated functions involving these basic ones. In this section we combine the Substitution 
Rules (studied in Chapter 5) with algebraic methods and trigonometric identities to help us 
use Table 8.1. A more extensive Table of Integrals is given at the back of the book, and we 
discuss its use in Section 8.6.

Sometimes we have to rewrite an integral to match it to a standard form in Table 8.1. 
We have used this procedure before, but here is another example.

EXAMPLE 1  Evaluate the integral

L

5

3

2x - 3

2x2 - 3x + 1
dx.

Solution We rewrite the integral and apply the Substitution Rule for Definite Integrals 
presented in Section 5.6, to find

L

5

3

2x - 3

2x2 - 3x + 1
dx =

L

11

1

du

2u

u = x2 - 3x + 1, du = (2x - 3) dx;

u = 1 when x = 3, u = 11 when x = 5

=
L

11

1
u-1>2 du

= 22u d 11

1
= 21211 - 12 ≈ 4.63. Table 8.1, Formula 2
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EXAMPLE 2  Complete the square to evaluate

L

dx

28x - x2
.

Solution We complete the square to simplify the denominator:

 8x - x2 = -(x2 - 8x) = -(x2 - 8x + 16 - 16)

= -(x2 - 8x + 16) + 16 = 16 - (x - 4)2.

Then

L

dx

28x - x2
=

L

dx

216 - (x - 4)2

=
L

du

2a2 - u2
  

a = 4, u = (x - 4),

du = dx

= sin-1 auab + C Table 8.1, Formula 18

= sin-1 ax - 4
4
b + C.

TABLE 8.1 Basic integration formulas

1.
L

k dx = kx + C (any number k)

2.
L

xn dx = xn+1

n + 1
+ C (n ≠ -1)

3.
L

dx
x = ln 0 x 0 + C

4.
L

ex dx = ex + C

5.
L

ax dx = ax

ln a
+ C (a 7 0, a ≠ 1)

6.
L

sin x dx = -cos x + C

7.
L

cos x dx = sin x + C

8.
L

sec2 x dx = tan x + C

9.
L

csc2 x dx = -cot x + C

10.
L

sec x tan x dx = sec x + C

11.
L

csc x cot x dx = -csc x + C

12.
L

tan x dx = ln 0 sec x 0 + C

13.
L

cot x dx = ln 0 sin x 0 + C

14.
L

sec x dx = ln 0 sec x + tan x 0 + C

15.
L

csc x dx = - ln 0 csc x + cot x 0 + C

16.
L

sinh x dx = cosh x + C

17.
L

cosh x dx = sinh x + C

18.
L

dx

2a2 - x2
= sin-1ax

ab + C

19.
L

dx
a2 + x2 = 1

a tan -1ax
ab + C

20.
L

dx

x2x2 - a2
= 1

a sec-1 ` xa ` + C

21.
L

dx

2a2 + x2
= sinh-1ax

ab + C (a 7 0)

22.
L

dx

2x2 - a2
= cosh-1ax

ab + C (x 7 a 7 0)
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EXAMPLE 3  Evaluate the integral

L
(cos x sin 2x + sin x cos 2x) dx.

Solution Here we can replace the integrand with an equivalent trigonometric expression 
using the Sine Addition Formula to obtain a simple substitution:

L
(cos x sin 2x + sin x cos 2x) dx =

L
(sin (x + 2x)) dx

=
L

sin 3x dx

=
L

1
3 sin u du u = 3x, du = 3 dx

= - 1
3 cos 3x + C. Table 8.1, Formula 6

In Section 5.5 we found the indefinite integral of the secant function by multiplying it 
by a fractional form identically equal to one, and then integrating the equivalent result. We 
can use that same procedure in other instances as well, which we illustrate next.

EXAMPLE 4 Find
L

p>4

0

dx
1 - sin x

.

Solution We multiply the numerator and denominator of the integrand by 1 + sin x,
which is simply a multiplication by a form of the number one. This procedure transforms 
the integral into one we can evaluate:

L

p>4

0

dx
1 - sin x

=
L

p>4

0

1
1 - sin x

# 1 + sin x
1 + sin x

dx

=
L

p>4

0

1 + sin x
1 - sin2 x

dx

=
L

p>4

0

1 + sin x
cos2 x

dx

=
L

p>4

0
(sec2 x + sec x tan x) dx

= c tan x + sec x d p>4
0

= 11 + 22 - (0 + 1)2 = 22.

EXAMPLE 5 Evaluate

L

3x2 - 7x
3x + 2

dx.

Solution The integrand is an improper fraction since the degree of the numerator is 
greater than the degree of the denominator. To integrate it, we perform long division to 
obtain a quotient plus a remainder that is a proper fraction:

3x2 - 7x
3x + 2

= x - 3 + 6
3x + 2

.

x - 3

3x + 2)3x2 - 7x

3x2 + 2x

-9x

-9x - 6

+ 6

Use  Table 8.1,
Formulas 8 and 10
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Therefore,

L

3x2 - 7x
3x + 2

dx =
L
ax - 3 + 6

3x + 2
b dx = x2

2
- 3x + 2 ln 0 3x + 2 0 + C.

Reducing an improper fraction by long division (Example 5) does not always lead to 
an expression we can integrate directly. We see what to do about that in Section 8.5.

EXAMPLE 6 Evaluate

L

3x + 2

21 - x2
dx.

Solution We first separate the integrand to get

L

3x + 2

21 - x2
dx = 3

L

x dx

21 - x2
+ 2

L

dx

21 - x2
.

In the first of these new integrals, we substitute

u = 1 - x2, du = -2x dx, so x dx = -1
2

du.

Then we obtain

 3
L

x dx

21 - x2
= 3

L

(-1>2) du

2u
= - 3

2L
u-1>2 du

= - 3
2
# u1>2
1>2 + C1 = -321 - x2 + C1.

The second of the new integrals is a standard form,

2
L

dx

21 - x2
= 2 sin-1 x + C2.  Table 8.1, Formula 18

Combining these results and renaming C1 + C2 as C gives

L

3x + 2

21 - x2
dx = -321 - x2 + 2 sin-1 x + C.

The question of what to substitute for in an integrand is not always quite so clear. 
Sometimes we simply proceed by trial-and-error, and if nothing works out, we then try 
another method altogether. The next several sections of the text present some of these new 
methods, but substitution works in the next example.

EXAMPLE 7 Evaluate

L

dx11 + 2x23 .

Solution We might try substituting for the term 2x, but we quickly realize the deriva-
tive factor 1>2x is missing from the integrand, so this substitution will not help. The 
other possibility is to substitute for 11 + 2x2, and it turns out this works:

L

dx11 + 2x23 =
L

2(u - 1) du

u3

u = 1 + 2x, du = 1

22x
dx;

dx = 22x du = 2(u - 1) du

=
L
a 2

u2 - 2
u3b du
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= -2
u

+ 1
u2 + C

= 1 - 2u
u2 + C

=
1 - 211 + 2x2
11 + 2x22 + C

= C - 1 + 22x11 + 2x22 .

When evaluating definite integrals, a property of the integrand may help us in calcu-
lating the result.

EXAMPLE 8 Evaluate 
L

p>2

-p>2
x3 cos x dx.

Solution No substitution or algebraic manipulation is clearly helpful here. But we 
observe that the interval of integration is the symmetric interval 3-p>2, p>24 . Moreover, 
the factor x3 is an odd function, and cos x is an even function, so their product is odd. 
Therefore,

L

p>2

-p>2
x3 cos x dx = 0. Theorem 8, Section 5.6

Assorted Integrations

The integrals in Exercises 1–40 are in no particular order. Evaluate 
each integral using any algebraic method or trigonometric identity 
you think is appropriate, and then use a substitution to reduce it to a 
standard form.

1.
L

1

0

16x
8x2 + 2

dx 2.
L

x2

x2 + 1
dx

3.
L

(sec x - tan x)2 dx 4.
L

p>3

p>4
dx

cos2 x tan x

5.
L

1 - x

21 - x2
dx 6.

L

dx

x - 2x

7.
L

e-cot z

sin2 z
dz 8.

L

2ln z3

16z
dz

9.
L

dz
ez + e- z 10.

L

2

1

8 dx
x2 - 2x + 2

11.
L

0

-1

4 dx
1 + (2x + 1)2 12.

L

3

-1

4x2 - 7
2x + 3

dx

13.
L

dt
1 - sec t

14.
L

 csc t sin 3t dt

15.
L

p>4

0

1 + sin u
cos2 u

du 16.
L

du

22u - u2

17.
L

ln y

y + 4y ln2 y
dy 18.

L

22y dy

22y

19.
L

du
sec u + tan u

20.
L

dt

t23 + t2

21.
L

4t3 - t2 + 16t
t2 + 4

dt 22.
L

x + 22x - 1

2x2x - 1
dx

23.
L

p>2

0
21 - cos u du 24.

L
(sec t + cot t)2 dt

25.
L

dy

2e2y - 1
26.

L

6 dy

2y (1 + y)

27.
L

2 dx

x21 - 4 ln2 x
28.

L

dx

(x - 2)2x2 - 4x + 3

29.
L

(csc x - sec x)(sin x + cos x) dx

30.
L

3 sinh ax
2

+ ln 5b dx

31.
L

3

22

2x3

x2 - 1
dx 32.

L

1

-1
21 + x2 sin x dx

33.
L

0

-1 A
1 + y
1 - y

dy 34.
L

ez+ez
dz

Exercises 8.1
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35.
L

7 dx

(x - 1)2x2 - 2x - 48
36.

L

dx

(2x + 1)24x + 4x2

37.
L

2u3 - 7u2 + 7u
2u - 5

du 38.
L

du
cos u - 1

39.
L

dx
1 + ex

Hint: Use long division.

Evaluate

L
(1 + 3x3)ex3

dx.

48. Use the substitution u =  tan x to evaluate the integral

L

dx
1 + sin2 x

.

49. Use the substitution u = x4 + 1 to evaluate the integral

L
x72x4 + 1 dx.

50. Using different substitutions Show that the integral

L
((x2 - 1)(x + 1))-2>3dx

can be evaluated with any of the following substitutions.

a. u = 1>(x + 1)

b. u = ((x - 1)>(x + 1))k for k = 1, 1>2, 1>3, -1>3, -2>3,
and -1

c. u = tan-1 x d. u = tan-1 2x

e. u = tan-1 ((x - 1)>2) f. u = cos-1 x

g. u = cosh-1 x

  What is the value of the integral?

40.
L

2x
1 + x3 dx

Hint: Let u = x3>2.
Theory and Examples
41. Area Find the area of the region bounded above by y = 2 cos x

and below by y = sec x, -p>4 … x … p>4.

42. Volume Find the volume of the solid generated by revolving 
the region in Exercise 41 about the x-axis.

43. Arc length Find the length of the curve y = ln (cos x),
0 … x … p>3.

44. Arc length Find the length of the curve y = ln (sec x),
0 … x … p>4.

45. Centroid Find the centroid of the region bounded by the x-axis,
the curve y = sec x, and the lines x = -p>4, x = p>4.

46. Centroid Find the centroid of the region bounded by the x-axis,
the curve y = csc x, and the lines x = p>6, x = 5p>6.

47. The functions y = ex3
 and y = x3ex3

 do not have elementary anti-
derivatives, but y = (1 + 3x3)ex3

 does.

8.2 Integration by Parts

Integration by parts is a technique for simplifying integrals of the form

L
ƒ(x)g(x) dx.

It is useful when ƒ can be differentiated repeatedly and g can be integrated repeatedly 
without difficulty. The integrals

L
x cos x dx and

L
x2ex dx

are such integrals because ƒ(x) = x or ƒ(x) = x2 can be differentiated repeatedly to 
become zero, and g(x) = cos x or g(x) = ex can be integrated repeatedly without diffi-
culty. Integration by parts also applies to integrals like

L
 ln x dx and

L
ex cos x dx.

In the first case, ƒ(x) =  ln x is easy to differentiate and g(x) = 1 easily integrates to x. In 
the second case, each part of the integrand appears again after repeated differentiation or 
integration.

Product Rule in Integral Form

If ƒ and g are differentiable functions of x, the Product Rule says that

d
dx
3ƒ(x)g(x)4 = ƒ′(x)g(x) + ƒ(x)g′(x).


