Integers differing by 2

divided by products of

lowest such line. None of the points (n, a_n) lies above y = L, but some do lie above any lower line $y = L - \epsilon$, if ϵ is a positive number. The sequence converges to L because

a. $a_n \leq L$ for *all* values of *n*, and

b. given any $\epsilon > 0$, there exists at least one integer *N* for which $a_N > L - \epsilon$.

The fact that $\{a_n\}$ is nondecreasing tells us further that

 $a_n \ge a_N > L - \epsilon$ for all $n \ge N$.

Thus, *all* the numbers a_n beyond the *N*th number lie within ϵ of *L*. This is precisely the condition for *L* to be the limit of the sequence $\{a_n\}$.

The proof for nonincreasing sequences bounded from below is similar.

It is important to realize that Theorem 6 does not say that convergent sequences are monotonic. The sequence $\{(-1)^{n+1}/n\}$ converges and is bounded, but it is not monotonic since it alternates between positive and negative values as it tends toward zero. What the theorem does say is that a nondecreasing sequence converges when it is bounded from above, but it diverges to infinity otherwise.

Exercises 10.1

Finding Terms of a Sequence

Each of Exercises 1–6 gives a formula for the *n*th term a_n of a sequence $\{a_n\}$. Find the values of a_1, a_2, a_3 , and a_4 .

1.
$$a_n = \frac{1-n}{n^2}$$

2. $a_n = \frac{1}{n!}$
3. $a_n = \frac{(-1)^{n+1}}{2n-1}$
4. $a_n = 2 + (-1)^n$
5. $a_n = \frac{2^n}{2^{n+1}}$
6. $a_n = \frac{2^n-1}{2^n}$

Each of Exercises 7-12 gives the first term or two of a sequence along with a recursion formula for the remaining terms. Write out the first ten terms of the sequence.

7. $a_1 = 1$, $a_{n+1} = a_n + (1/2^n)$ 8. $a_1 = 1$, $a_{n+1} = a_n/(n+1)$ 9. $a_1 = 2$, $a_{n+1} = (-1)^{n+1}a_n/2$ 10. $a_1 = -2$, $a_{n+1} = na_n/(n+1)$ 11. $a_1 = a_2 = 1$, $a_{n+2} = a_{n+1} + a_n$ 12. $a_1 = 2$, $a_2 = -1$, $a_{n+2} = a_{n+1}/a_n$

Finding a Sequence's Formula

17. $\frac{1}{9}, \frac{2}{12}, \frac{2^2}{15}, \frac{2^3}{18}, \frac{2^4}{21}, \ldots$

In Exercises 13–26, find a formula for the *n*th term of the sequence.

13. The sequence $1, -1, 1, -1, 1, \ldots$	1's with alternating signs
14. The sequence $-1, 1, -1, 1, -1, \ldots$	1's with alternating signs
15. The sequence $1, -4, 9, -16, 25, \ldots$	Squares of the positive inte- gers, with alternating signs
16. The sequence $1, -\frac{1}{4}, \frac{1}{9}, -\frac{1}{16}, \frac{1}{25}, \dots$	Reciprocals of squares of the positive integers, with alternating signs

18.
$$-\frac{3}{2}, -\frac{1}{6}, \frac{1}{12}, \frac{3}{20}, \frac{5}{30}, \dots$$

	consecutive integers
19. The sequence 0, 3, 8, 15, 24,	Squares of the positive integers diminished by 1
20. The sequence $-3, -2, -1, 0, 1, \ldots$	Integers, beginning with -3
21. The sequence 1, 5, 9, 13, 17,	Every other odd positive integer
22. The sequence 2, 6, 10, 14, 18,	Every other even positive integer
23. $\frac{5}{1}, \frac{8}{2}, \frac{11}{6}, \frac{14}{24}, \frac{17}{120}, \dots$	Integers differing by 3 divided by factorials
24. $\frac{1}{25}, \frac{8}{125}, \frac{27}{625}, \frac{64}{3125}, \frac{125}{15,625}, \dots$	Cubes of positive integers divided by powers of 5
25. The sequence $1, 0, 1, 0, 1, \ldots$	Alternating 1's and 0's
26. The sequence 0, 1, 1, 2, 2, 3, 3, 4,	Each positive integer repeated

Convergence and Divergence

Which of the sequences $\{a_n\}$ in Exercises 27–90 converge, and which diverge? Find the limit of each convergent sequence.

n + (-1)n

27.
$$a_n = 2 + (0.1)^n$$
28. $a_n = \frac{n + (-1)}{n}$
29. $a_n = \frac{1 - 2n}{1 + 2n}$
30. $a_n = \frac{2n + 1}{1 - 3\sqrt{n}}$
31. $a_n = \frac{1 - 5n^4}{n^4 + 8n^3}$
32. $a_n = \frac{n + 3}{n^2 + 5n + 6}$
33. $a_n = \frac{n^2 - 2n + 1}{n - 1}$
34. $a_n = \frac{1 - n^3}{70 - 4n^2}$

35.
$$a_n = 1 + (-1)^n$$

36. $a_n = (-1)^n \left(1 - \frac{1}{n}\right)$
37. $a_n = \left(\frac{n+1}{2n}\right) \left(1 - \frac{1}{n}\right)$
38. $a_n = \left(2 - \frac{1}{2^n}\right) \left(3 + \frac{1}{2^n}\right)$
39. $a_n = \frac{(-1)^{n+1}}{2n-1}$
40. $a_n = \left(2 - \frac{1}{2^n}\right) \left(3 + \frac{1}{2^n}\right)$
41. $a_n = \sqrt{\frac{2n}{n+1}}$
42. $a_n = \left(-\frac{1}{2}\right)^n$
43. $a_n = \sin\left(\frac{\pi}{2} + \frac{1}{n}\right)$
44. $a_n = n\pi \cos(n\pi)$
45. $a_n = \frac{\sin n}{n}$
46. $a_n = \frac{\sin^2 n}{2^n}$
47. $a_n = \frac{n}{2^n}$
48. $a_n = \frac{3^n}{n^3}$
49. $a_n = \frac{\ln(n+1)}{\sqrt{n}}$
50. $a_n = \frac{\ln n}{\ln 2n}$
51. $a_n = 8^{1/n}$
52. $a_n = (0.03)^{1/n}$
53. $a_n = \left(1 + \frac{7}{n}\right)^n$
54. $a_n = \left(1 - \frac{1}{n}\right)^n$
55. $a_n = \sqrt[n]{10n}$
56. $a_n = \sqrt[n]{n^2}$
57. $a_n = \left(\frac{3}{n}\right)^{1/n}$
58. $a_n = (n+4)^{1/(n+4)}$
59. $a_n = \frac{\ln n}{n^{1/n}}$
60. $a_n = \ln n - \ln(n+1)$
61. $a_n = \sqrt[n]{4^n n}$
62. $a_n = \sqrt[n]{3^{2n+1}}$
63. $a_n = \frac{n!}{n^n}$ (*Hint:* Compare with $1/n$.)

64.
$$a_n = \frac{(-4)^n}{n!}$$

65. $a_n = \frac{n!}{10^{6n}}$
66. $a_n = \frac{n!}{2^n \cdot 3^n}$
67. $a_n = \left(\frac{1}{n}\right)^{1/(\ln n)}$
68. $a_n = \ln\left(1 + \frac{1}{n}\right)^n$
69. $a_n = \left(\frac{3n + 1}{3n - 1}\right)^n$
70. $a_n = \left(\frac{n}{n+1}\right)^n$
71. $a_n = \left(\frac{x^n}{2n+1}\right)^{1/n}, \quad x > 2$
72. $a_n = \left(1 - \frac{1}{n^2}\right)^n$
73. $a_n = \frac{3^n \cdot 6^n}{2^{-n} \cdot n!}$
74. $a_n = \frac{(10/11)^n}{(9/10)^n + (11/12)^n}$
75. $a_n = \tanh n$
76. $a_n = \sinh(\ln n)$
77. $a_n = \frac{n^2}{2n-1} \sin \frac{1}{n}$
78. $a_n = n\left(1 - \cos \frac{1}{n}\right)$
79. $a_n = \sqrt{n} \sin \frac{1}{\sqrt{n}}$
80. $a_n = (3^n + 5^n)^{1/n}$
81. $a_n = \tan^{-1} n$
82. $a_n = \frac{1}{\sqrt{n}} \tan^{-1} n$
83. $a_n = \left(\frac{1}{3}\right)^n + \frac{1}{\sqrt{2^n}}$

84.
$$a_n = \sqrt[n]{n^2 + n}$$

85. $a_n = \frac{(\ln n)^{200}}{n}$
86. $a_n = \frac{(\ln n)^5}{\sqrt{n}}$
87. $a_n = n - \sqrt{n^2 - n}$
88. $a_n = \frac{1}{\sqrt{n^2 - 1} - \sqrt{n^2 + n}}$
89. $a_n = \frac{1}{n} \int_{1}^{n} \frac{1}{x} dx$
90. $a_n = \int_{1}^{n} \frac{1}{x^p} dx$, $p > 1$

Recursively Defined Sequences

In Exercises 91–98, assume that each sequence converges and find its limit.

91.
$$a_1 = 2$$
, $a_{n+1} = \frac{12}{1+a_n}$
92. $a_1 = -1$, $a_{n+1} = \frac{a_n + 6}{a_n + 2}$
93. $a_1 = -4$, $a_{n+1} = \sqrt{8+2a_n}$
94. $a_1 = 0$, $a_{n+1} = \sqrt{8+2a_n}$
95. $a_1 = 5$, $a_{n+1} = \sqrt{5a_n}$
96. $a_1 = 3$, $a_{n+1} = 12 - \sqrt{a_n}$
97. $2, 2 + \frac{1}{2}, 2 + \frac{1}{2+\frac{1}{2}}, 2 + \frac{1}{2+\frac{1}{2+\frac{1}{2}}}, \dots$
98. $\sqrt{1}, \sqrt{1 + \sqrt{1}}, \sqrt{1 + \sqrt{1 + \sqrt{1}}}, \dots$

Theory and Examples

0

99. The first term of a sequence is $x_1 = 1$. Each succeeding term is the sum of all those that come before it:

$$x_{n+1} = x_1 + x_2 + \cdots + x_n.$$

Write out enough early terms of the sequence to deduce a general formula for x_n that holds for $n \ge 2$.

100. A sequence of rational numbers is described as follows:

$$\frac{1}{1}, \frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \dots, \frac{a}{b}, \frac{a+2b}{a+b}, \dots$$

Here the numerators form one sequence, the denominators form a second sequence, and their ratios form a third sequence. Let x_n and y_n be, respectively, the numerator and the denominator of the *n*th fraction $r_n = x_n/y_n$.

a. Verify that $x_1^2 - 2y_1^2 = -1$, $x_2^2 - 2y_2^2 = +1$ and, more generally, that if $a^2 - 2b^2 = -1$ or +1, then

$$(a + 2b)^2 - 2(a + b)^2 = +1$$
 or -1 ,

respectively.

- **b.** The fractions $r_n = x_n/y_n$ approach a limit as *n* increases. What is that limit? (*Hint*: Use part (a) to show that $r_n^2 - 2 = \pm (1/y_n)^2$ and that y_n is not less than *n*.)
- **101. Newton's method** The following sequences come from the recursion formula for Newton's method,

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$