Integers differing by 2 divided by products of

lowest such line. None of the points (n, a_n) lies above $y = L$, but some do lie above any **10.1** Sequences **581**
lowest such line. None of the points (n, a_n) lies above $y = L$, but some do lie above any
lower line $y = L - \epsilon$, if ϵ is a positive number. The sequence converges to L because
a. $a_n \le L$ for *all* **10.1** Sequences **581**

blowest such line. None of the points (n, a_n) lies above $y = L$, but some do lie above any
 a. $a_n \le L$ for *all* values of *n*, and
 b. given any $\epsilon > 0$, there exists at least one integer *N* f

a. $a_n \leq L$ for all values of *n*, and

Thus, *all* the numbers a_n beyond the *N*th number lie within ϵ of *L*. This is precisely the condition for *L* to be the limit of the sequence $\{a_n\}$.

The proof for nonincreasing sequences bounded from below is similar.

It is important to realize that Theorem 6 does not say that convergent sequences are monotonic. The sequence $\{(-1)^{n+1}/n\}$ converges and is bounded, but it is not monotonic since it alternates between positive and negative values as it tends toward zero. What the theorem does say is that a nondecreasing sequence converges when it is bounded from above, but it diverges to infinity otherwise.

Exercises 10.1

Finding Terms of a Sequence

Each of Exercises 1–6 gives a formula for the *n*th term a_n of a 2² sequence $\{a_n\}$. Find the values of a_1, a_2, a_3 , and a_4 . .

1.
$$
a_n = \frac{1-n}{n^2}
$$

\n**2.** $a_n = \frac{1}{n!}$
\n**3.** $a_n = \frac{(-1)^{n+1}}{2n-1}$
\n**4.** $a_n = 2 + (-1)^n$
\n**5.** $a_n = \frac{2^n}{2^{n+1}}$
\n**6.** $a_n = \frac{2^n - 1}{2^n}$

Each of Exercises 7–12 gives the first term or two of a sequence along with a recursion formula for the remaining terms. Write out the first ten terms of the sequence.

7. $a_1 = 1$, $a_{n+1} = a_n + (1/2^n)$ $\binom{n}{k}$ $)$ **8.** $a_1 = 1$, $a_{n+1} = a_n/(n+1)$ **9.** $a_1 = 2$, $a_{n+1} = (-1)^{n+1} a_n/2$ $/2$ 5. $a_n = \frac{2^n}{2^{n+1}}$

6. $a_n = \frac{2^n - 1}{2^n}$

Each of Exercises 7-12 gives the first term or two of a sexith a recursion formula for the remaining terms. Writ

ten terms of the sequence.

7. $a_1 = 1$, $a_{n+1} = a_n + (1/2^n)$

8. 10. $a_1 = -2$, $a_{n+1} = na_n/(n + 1)$ 11. $a_1 = a_2 = 1$, $a_{n+2} = a_{n+1} + a_n$ Each of Exercises 7–12 gives the first term or two of a sequence al
with a recursion formula for the remaining terms. Write out the 1
ten terms of the sequence.
7. $a_1 = 1$, $a_{n+1} = a_n + (1/2^n)$
8. $a_1 = 1$, $a_{n+1} = a_n/(n + 1$ 12. $a_1 = 2$, $a_2 = -1$, $a_{n+2} = a_{n+1}/a_n$ 14. The sequence 1, -1, 1, -1, 1, ... It is with alternating signs

14. The sequence 1, -1, 1, -1, 1, -1, 1, ... Squares of the positive inter-

15. The squence 1, -4, 9, -16, 25, ... Squares of the positive inter-

16. T

Finding a Sequence's Formula

In Exercises 13–26, find a formula for the nth term of the sequence.

multiples of 3

18.
$$
-\frac{3}{2}, -\frac{1}{6}, \frac{1}{12}, \frac{3}{20}, \frac{5}{30}, \ldots
$$

Convergence and Divergence

Which of the sequences $\{a_n\}$ in Exercises 27–90 converge, and which diverge? Find the limit of each convergent sequence.

 $n + (-1)$ n

27.
$$
a_n = 2 + (0.1)^n
$$

\n28. $a_n = \frac{n + (-1)}{n}$
\n29. $a_n = \frac{1 - 2n}{1 + 2n}$
\n30. $a_n = \frac{2n + 1}{1 - 3\sqrt{n}}$
\n31. $a_n = \frac{1 - 5n^4}{n^4 + 8n^3}$
\n32. $a_n = \frac{n + 3}{n^2 + 5n + 6}$
\n33. $a_n = \frac{n^2 - 2n + 1}{n - 1}$
\n34. $a_n = \frac{1 - n^3}{70 - 4n^2}$

35.
$$
a_n = 1 + (-1)^n
$$

\n36. $a_n = (-1)^n \left(1 - \frac{1}{n}\right)$
\n37. $a_n = \left(\frac{n+1}{2n}\right) \left(1 - \frac{1}{n}\right)$
\n38. $a_n = \left(2 - \frac{1}{2^n}\right) \left(3 + \frac{1}{2^n}\right)$
\n39. $a_n = \frac{(-1)^{n+1}}{2n-1}$
\n40. $a_n = \left(-\frac{1}{2}\right)^n$
\n41. $a_n = \sqrt{\frac{2n}{n+1}}$
\n42. $a_n = \frac{1}{(0.9)^n}$
\n43. $a_n = \sin\left(\frac{\pi}{2} + \frac{1}{n}\right)$
\n44. $a_n = n\pi \cos(n\pi)$
\n45. $a_n = \frac{\sin n}{n}$
\n46. $a_n = \frac{\sin^2 n}{2^n}$
\n47. $a_n = \frac{n}{2^n}$
\n48. $a_n = \frac{3^n}{n^3}$
\n49. $a_n = \left(1 + \frac{7}{n}\right)^n$
\n50. $a_n = \frac{\ln n}{\ln 2n}$
\n51. $a_n = 8^{1/n}$
\n52. $a_n = (0.03)^{1/n}$
\n53. $a_n = \left(1 + \frac{7}{n}\right)^n$
\n54. $a_n = \left(1 - \frac{1}{n}\right)^n$
\n55. $a_n = \sqrt[n]{10n}$
\n56. $a_n = \sqrt[n]{n^2}$
\n57. $a_n = \left(\frac{3}{n}\right)^{1/n}$
\n58. $a_n = (n + 4)^{1/(n+4)}$
\n59. $a_n = \frac{\ln n}{n^{1/n}}$
\n60. $a_n = \ln n - \ln(n + 1)$
\n61. $a_n = \sqrt[n]{4^n n}$
\n62. $a_n = \sqrt[n]{3^{2n+1}}$
\n63. $a_n = \frac{n!}{n!}$ (Hint: Compare with $1/n$.)
\n

74.
$$
a_n = \frac{(10/11)}{(9/10)^n + (11/12)^n}
$$

76. $a_n = \sinh(\ln n)$

$$
78. \, a_n = n \bigg(1 - \cos \frac{1}{n} \bigg)
$$

80.
$$
a_n = (3^n + 5^n)^{1/n}
$$

\n**81.** $a_n = \tan^{-1} n$
\n**82.** $a_n = \frac{1}{\sqrt{n}} \tan^{-1} n$
\n**83.** $a_n = \left(\frac{1}{3}\right)^n + \frac{1}{\sqrt{2^n}}$

75. $a_n = \tanh n$

77. $a_n = \frac{n^2}{2n-1} \sin \frac{1}{n}$

79. $a_n = \sqrt{n} \sin \frac{1}{\sqrt{n}}$

84.
$$
a_n = \sqrt[n]{n^2 + n}
$$

\n**85.** $a_n = \frac{(\ln n)^{200}}{n}$
\n**86.** $a_n = \frac{(\ln n)^5}{\sqrt{n}}$
\n**87.** $a_n = n - \sqrt{n^2 - n}$
\n**88.** $a_n = \frac{1}{\sqrt{n^2 - 1} - \sqrt{n^2 + n}}$
\n**89.** $a_n = \frac{1}{n} \int_1^n \frac{1}{x} dx$
\n**90.** $a_n = \int_1^n \frac{1}{x^p} dx$, $p > 1$

Recursively Defined Sequences

In Exercises 91-98, assume that each sequence converges and find its limit. 72

Theory and Examples

99. The first term of a sequence is $x_1 = 1$. Each succeeding term is the sum of all those that come before it:

$$
x_{n+1} = x_1 + x_2 + \cdots + x_n.
$$

Write out enough early terms of the sequence to deduce a general formula for x_n that holds for $n \geq 2$.

100. A sequence of rational numbers is described as follows:

$$
\frac{1}{1}, \frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \ldots, \frac{a}{b}, \frac{a+2b}{a+b}, \ldots
$$

Here the numerators form one sequence, the denominators form a second sequence, and their ratios form a third sequence. Let x_n and y_n be, respectively, the numerator and the denominator of the *n*th fraction $r_n = x_n/y_n$.

a. Verify that $x_1^2 - 2y_1^2 = -1$, $x_2^2 - 2y_2^2 = +1$ and, more generally, that if $a^2 - 2b^2 = -1$ or +1, then

$$
(a + 2b)^2 - 2(a + b)^2 = +1 \quad \text{or} \quad -1,
$$

respectively.

- **b.** The fractions $r_n = x_n/y_n$ approach a limit as *n* increases. What is that \lim it? (*Hint*: Use part (a) to show that $r_n^2 - 2 = \pm (1/y_n)^2$ and that y_n is not less than *n*.)
- 101. Newton's method The following sequences come from the recursion formula for Newton's method,

$$
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}
$$