Energy Units

1 Joule [J] = 1 Watt-second [Ws] = 1 V A s = 1 N m = 1 kg m²s⁻².

It takes about 1 J to raise a 100-g-apple 1 m. Energy units can be preceded by various factors, including the following:

kilo (k=10³), Mega (M=10⁶), Giga (G=10⁹), Tera (T=10¹²), Peta (P=10¹⁵), Exa (E=10¹⁸).

Thus, a kiloJoule (kJ) is 1000 Joules and a MegaJoule (MJ) is 1,000,000 Joules. A related unit is the Watt, which is a unit of power (energy per unit time). Power units can be converted to energy units through multiplication by seconds [s], hours, [h], or years [yr].

For example, 1 kWh [kilowatt hour] = 3.6 MJ [MegaJoule]. With 1 kWh, about 10 liters of water can be heated from 20 °C to the boiling point.

There are many other energy units besides the "<u>Système International d'Unités (SI)</u>". A "ton of coal equivalent" (tce) is frequently used in the energy business. 1 tce equals 8.141 MWh. It means that the combustion of 1 kg of coal produces the same amount of heat as electrical heating for one hour at a rate of 8.141 kW.

More Units of Energy

1 cal_{IT} = 4.1868 J, International Table calorie 1 cal_{th} = 4.184 J, thermochemical calorie 1 cal₁₅ \approx 4.1855 J, calories to heat from 14.5 °C to 15.5 °C 1 erg = 10⁻⁷ J, cgs [centimeter-gram-second] unit 1 eV \approx 1.60218 \times 10⁻¹⁹ J, electron volt 1 Eh \approx 4.35975 \times 10⁻¹⁸ J, Hartree, atomic energy unit 1 Btu = 1055.06 J, British thermal unit according to ISO, to heat 1 pound water from 63 °F to 64 °F 1 tce = 29.3076 \times 10⁹ J, ton of coal equivalent, 7000 kcal_{IT} 1 toe = 41.868 \times 10⁹ J, ton of oil equivalent, 10000 kcal_{IT}

Calories and/or kilocalories [cal and/or kcal] were historically often used to measure heat (energy) and are still used fot thi sometimes today. Heating a gram of water 1 °C requires 1 cal. Different definitions are often the result of inconsistent starting temperatures of the heating.

Symbol	Exponential	Prefix	Quantity
k	10 ³	kilo	thousand
Μ	10 ⁶	Mega	million
G	10 ⁹	Giga	billion
Т	10 ¹²	Tera	trillion
Р	10 ¹⁵	Pet	quadrillion
Е	10^{18}	Exa	quintillion

Multiplication Table of Units

The unit Megagram is not used, since there is a special name for one million grams, one ton (t): 1 t = 1000 kg.

Multiplication of the Units of Power with Units of Time

When the Watt is multiplied by a unit of time, an energy unit is formed as follows: 1 Ws = 1 J.

The use of the kilowatt-hour is more common: 1 kWh = 3600 kWs = 3.6 MJ. Besides the second [s] and the hour [h], the day [d] and the year [yr] are also used, with 1 yr = 365.2425 d = 31,556,952 s.

So, for example, energy of one Megawatt-year can be written as 1 MWyr = 31.557952 TJ (TeraJoule).

The annual consumption of 1 toe/yr corresponds to the daily consumption of 31.557952 kWh/d.