

Course: Sustainable Energy Technology -1 12150310

Title: PV Technology-L2

Dr. Mahmoud Ismail

Photovoltaics Characteristics IV Characteristics:

Pmax = Vmp * Imp //// ηmax = Pout max / Pin

= Vmp * Imp / G * Apvcell

Fill Factor (FF) = (Vmp * Imp)/ (Voc * Isc)

Photovoltaics Characteristics Example:

A PV cell area 100 cm2; Vmp = 0.47 v, Imp = 2.9 A; Voc = 0.62 V; Isc = 3 A. At G = 1000 W/cm2 find Efficiency and fill factor

 $\eta = 0.47 * 2.9 / 1000 * (100/10000) = 13.6\%$

FF = 0.47 * 2.9 / (0.62 * 3) = 73%

Effect of solar radiation and temperature change on IV curve:

(a) I-V characteristics of the module at different insolation levels

(c) I-V characteristics of the module at different temperature values

(b) P-V characteristics of the module at different insolation levels

(d) P-V characteristics of the module at different temperature values

Effect of solar radiation and temperature change on IV curve

Photovoltaics Characteristics Example: (PV module of cells)

A PV module is constructed of 6 pV cells each has Isc = 3 A, Imp = 2.6 A, Voc = 0.6 V, Vmp = 0.5 V. Find Efficiency and fill factor of this PV module at G= 1000 W/m2 and the area of each cell = 100 cm2.

Eff. Max = (0.5*6) * (2.6)/ (1000*6*(100/10000))

Example: (PV module of cells & PV array of modules)

A mono crystalline module is constructed of 36 cells connected in series each has the I-V curve as shown.

- 1- Draw the I-V curve of the module
- 2- Draw the I-V curve of the following array configurations.

Photovoltaics Characteristics PV Construction:

Photovoltaics Characteristics PV Equivalent circuit:

$$\mathbf{I}_{pv} = \mathbf{I}_{ph} - \mathbf{I}_{o} \left[exp \left(\frac{\mathbf{V}_{pv} + \mathbf{R}_{s} \quad \mathbf{I}_{pv}}{\mathbf{a} \quad \mathbf{V}_{T}} \right) - 1 \right] - \left(\frac{\mathbf{V}_{pv} + \mathbf{R}_{s} \quad \mathbf{I}_{pv}}{\mathbf{R}_{sh}} \right)$$

 $V_{T} \equiv (Ns * K * T) / q$

Ns is number of cells in series

- K is Boltzman constant = 1.38×10^{-23} J/K
- T is cell temperature
- q is the electron charge = 1.6×10^{-19} Coulombs

Photovoltaics Characteristics PV module output power:

 $P_{PV-gen} = P_{mp-STC} \times (G/G_{STC}) \times [I + K_T(T_{cell} - T_{STC})]$

 $T_{cell} = T_{comb} + (((NOCT-20)/800) \times G)$

Or $T_{cell} = T_{amb} + 0.0256 * G$

P_{mp-STC} is the rated power of the PV module (given by manufacturer)

GSTC is the radiation at standard test conditions 1000 W/m2

- TSTC is the temperature at standard test conditions 25 C
- NOCT is the normal cell temperature (given by manufacturer)