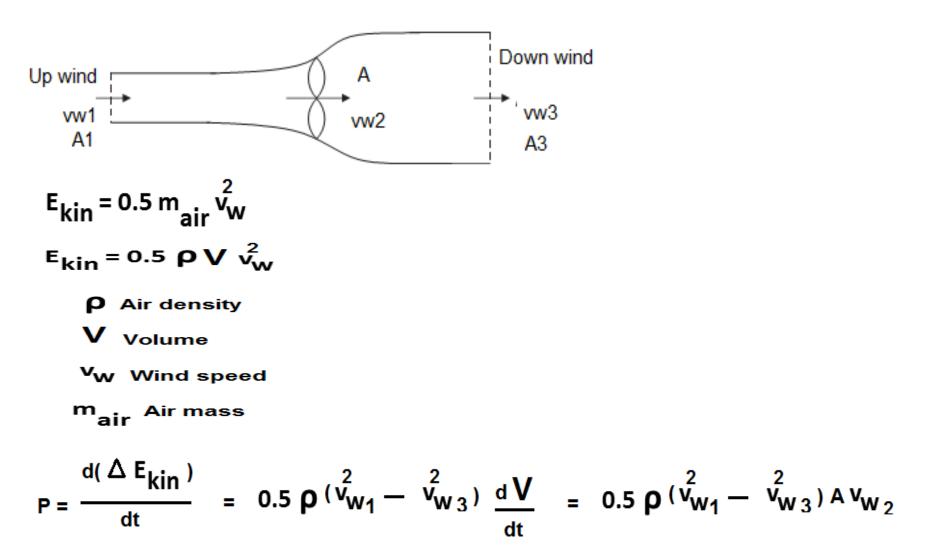

Course: Sustainable Energy Technology 1 12150310

Title: Wind Energy –L2

Dr. Mahmoud Ismail

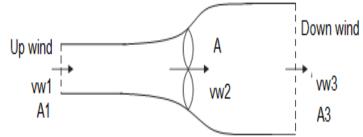

Wind Speed Measurement (Ramallah):

Speed range (m/s)	Mid range (m/s)	Duration (hours)	Occurrence percentage	Speed range (m/s)	Mid range (m/s)	Duration (hours)	Commultive Duration (Hours)
()	(,		(%)	((
0-1	0.5	82	0.936	23-24	23.5	8	8
1-2	1.5	589	6.724	22-23	22.5	7	15
2-3	2.5	1058	12.078	21-22	21.5	7	22
3-4	3.5	1209	13.801	20-21	20.5	4	26
4-5	4.5	1242	14.178	19-20	19.5	9	35
5-6	5.5	1240	14.155	18-19	18.5	10	45
6-7	6.5	961	10.970	17-18	17.5	14	59
7-8	7.5	728	8.311	16-17	16.5	15	74
8-9	8.5	563	6.427	15-16	15.5	28	102
9-10	9.5	390	4.452	14-15	14.5	56	158
10-11	10.5	218	2.489	13-14	13.5	60	218
11-12	11.5	159	1.815	12-13	12.5	103	321
12-13	12.5	103	1.176	11-12	11.5	159	480
13-14	13.5	60	0.685	10-11	10.5	218	698
14-15	14.5	56	0.639	9-10	9.5	390	1088
15-16	15.5	28	0.320	8-9	8.5	563	1651
16-17	16.5	15	0.171	7-8	7.5	728	2379
17-18	17.5	14	0.160	6-7	6.5	961	3340
18-19	18.5	10	0.114	5-6	5.5	1240	4580
19-20	19.5	9	0.103	4-5	4.5	1242	5822
20-21	20.5	4	0.046	3-4	3.5	1209	7031
21-22	21.5	7	0.080	2-3	2.5	1058	8089
22-23	22.5	7	0.080	1-2	1.5	589	8678
23-24	23.5	8	0.091	0-1	0.5	82	8760
Sum		8760	100%	Sur	Sum		

Wind Power:

It is the power extracted from wind by delaying mass of wind.

According to <u>aerodynamic theorem</u>:


Pmax of wind power extraction from wind turbine occurs when

 $v_{W_2} = (2/3) v_{W_1}$ and $v_{W_3} = (1/3) v_{W_1}$ $P_{max} = \frac{16}{27} 0.5 \rho \land v_{W_1}^{\bar{3}}$ $\frac{16}{27}$ is the Pitz number = 59.3% $P_{in} = 0.5 \rho \land v_{W_1}^{\bar{3}}$

P is the input power in wind (available power in wind) in

Cp is the coeffecient performance or can be defined as

$$\eta_{tur} = \frac{P_{out}}{P_{in}}$$

Tip Speed Ratio:

It is given by <u>dividing the speed of the tips of the turbine blades</u> by the <u>speed of the wind</u>.

For a given wind speed, <u>rotor efficiency is a function of the rate at which the</u> <u>rotor turns</u>.

If the rotor turns too slowly, the efficiency drops off since the blades are <u>letting too much wind pass by unaffected</u>.

If the rotor turns <u>too fast</u>, efficiency is reduced as <u>the turbulence caused by</u> <u>one blade increasingly affects the blade that follows</u>.

The usual way to <u>illustrate rotor efficiency is to present it as a function of its</u> <u>tip-speed ratio (TSR)</u>.

Tip-Speed-Ratio (TSR) = $\frac{\text{Rotor tip speed}}{\text{Wind speed}} = \frac{\text{rpm} \times \pi D}{60 v_{w}}$

where rpm is the rotor speed, revolutions per minute; D is the rotor diameter (m); and v is the wind speed (m/s) upwind of the turbine.

\mathbf{n}_{tur} is function of TSR

Solidity of the machine = Area of the baldes / Captured area and it is function of TSR

Optimum Tip Speed Ratio

- The optimum tip speed ratio depends on the number of blades in the wind turbine rotor. <u>The fewer the number of blades, the faster the wind turbine</u> <u>rotor needs to turn to extract maximum power from the wind</u>.
- A <u>two-bladed</u> rotor has an optimum tip speed ratio of <u>around 6</u>, <u>a three-bladed rotor around 5</u>, and <u>a four-bladed rotor around 3</u>.

Example 1:

An anemometer mounted at a height of 10 m above a surface with crops, hedges, and shrubs shows a windspeed of 5 m/s. Estimate the windspeed and the specific power in the wind at a height of 50 m. The friction coefficient α for ground with hedges is estimated to be 0.20 The air density $\rho = 1.225 \text{ kg/m}^3$.

$$\left(\frac{v}{v_0}\right) = \left(\frac{H}{H_0}\right)^{\alpha}$$

$$v_{50} = 5 \cdot \left(\frac{50}{10}\right)^{0.20} = 6.9 \text{ m/s}$$

Specific power will be

$$P_{50} = \frac{1}{2}\rho v^3 = 0.5 \times 1.225 \times 6.9^3 = 201 \text{ W/m}^2$$

That turns out to be more than two and one-half times as much power as the 76.5 W/m^2 available at 10 m.

$$\left(\frac{P}{P_0}\right) = \left(\frac{1/2\rho A v^3}{1/2\rho A v_0^3}\right) = \left(\frac{v}{v_0}\right)^3 = \left(\frac{H}{H_0}\right)^{3\alpha}$$

Example 2:

A 40-m, three bladed wind turbine produces 600 kW at a windspeed of 14 m/s.

Air density is the standard 1.225 kg/m³. Under these conditions,

- a. At what rpm does the rotor turn when it operates with a TSR of 4.0?
- b. What is the tip speed of the rotor?
- c. If the generator needs to turn at 1800 rpm, what gear ratio is needed to match the rotor speed to the generator speed?
- d. What is the efficiency of the complete wind turbine (blades, gear box, generator) under these conditions?

Solution

a.
$$\operatorname{rpm} = \frac{\operatorname{TSR} \times 60 \ v}{\pi D} = \frac{4 \times 60 \ \text{s/min} \times 14 \ \text{m/s}}{40 \pi \,\text{m/rev}} = 26.7 \ \text{rev/min}$$

That's about 2.2 seconds per revolution ... pretty slow!

b. The tip of each blade is moving at

Tip speed =
$$\frac{26.7 \text{ rev/min} \times \pi 40 \text{ m/rev}}{60 \text{ s/min}} = 55.9 \text{ m/s}$$

Notice that even though 2.2 s/rev sounds slow; the tip of the blade is moving at a rapid 55.9 m/s, or 125 mph.

Example 2:

c. If the generator needs to spin at 1800 rpm, then the gear box in the nacelle must increase the rotor shaft speed by a factor of

Gear ratio =
$$\frac{\text{Generator rpm}}{\text{Rotor rpm}} = \frac{1800}{26.7} = 67.4$$

d. The power in the wind is

$$P_w = \frac{1}{2}\rho A v_w^3 = \frac{1}{2} \times 1.225 \times \frac{\pi}{4} \times 40^2 \times 14^3 = 2112 \text{ kW}$$

so the overall efficiency of the wind turbine, from wind to electricity, is

Overall efficiency =
$$\frac{600 \text{ kW}}{2112 \text{ kW}} = 0.284 = 28.4\%$$

Notice that if the rotor itself is about 43% efficient, then the efficiency of the gear box times the efficiency of the generator would be about 66% ($43\% \times 66\% = 28.4\%$).