

Tank Analysis Results

Hinged Top Hinged Base

Deflections on pages 3-5 & 3-6

	N	lon	nents	
b/a	c/a	•		page
1	3.0			3-7
	2.0	13	• 16	3-7
4.0	1.5	82	•	3-8
	1.0	81		3-8
	0.5			3-9
* 1	2.0		2	3-9
3.0	1.5			3-10
0.0	1.0			3-10
1.1	0.5			3-11
4.1	1.5	-		3-11
2.0	1.0			3-12
	0.5			3-12
1 5	1.0	100		3-13
1.5	0.5	0.00		3-13
1.0	0.5			3-14

Long Side - Along Midheight (y = a/2)

2

.-

S - 333	X	END	0.1b	0.2b	0.3b	0.4b	0.5b
b/a	0/8		0.9b	0.8b	0.7b	0.6b	1. 2. 1
4.0	3.0	0	2.30	4.70	5.80	6.20	6.30
4.0	2.0	0	2.30	4.70	5.80	6.20	6.30
4.0	1.5	0	2.40	4.70	5.80	6.20	6.30
4.0	1.0	0	2.60	4.80	5.80	6.30	6.30
4.0	0.5	0	2.80	4.90	5.90	6.30	6.40
3.0	2.0	0	1.60	3.60	5.00	5.60	5.80
3.0	1.5	0	1.70	3.70	5.00	5.70	5.90
3.0	1.0	0	1.80	3.80	5.10	5.70	5.90
3.0	0.5	0	2.10	4.00	5.20	5.80	6.00
2.0	1.5	0	0.90	2.20	3.30	4.00	4.30
2.0	1.0	0	1.00	2.40	3.50	4.20	4.40
2.0	0.5	0	1.20	2.60	3.70	4.40	4.60
1.5	1.0	0	0.60	1.40	2.20	2.70	2.90
1.5	0.5	0	0.80	1.70	2.50	3.00	3.10
1.0	0.5	0	0.30	0.70	1.00	1.20	1.30

		END	0.1c	0.2c	0.3c	0.4c	0.50	
b/a	de		0.9c	0.8c	0.7c	0.60		
4.0	3.0	. 0	1.60	3.60	5.00	5.60	5.80	
4.0	2.0	0	0.80	2.10	3.30	4.00	4.20	
4.0	1.5	0	0.30	1.10	1.90	2.40	2.60	
4.0	1.0	0	0.00	0.10	0.40	0.50	0.60	
4.0	0.5	0	-0.20	-0.30	-0.40	-0.40	-0.40	
3.0	2.0	0	0.80	2.10	3.30	4.00	4.20	
3.0	1.5	0	0.30	1.10	1.90	2.40	2.60	
3.0	1.0	0	0.00	0.10	0.40	0.50	0.60	
3.0	0.5	0	-0.20	-0.30	-0.40	-0.40	-0.40	
2.0	1.5	0	0.40	1.20	1.90	2.40	2.60	
2.0	1.0	0	0.00	0.20	0.40	0,60	0.60	
2.0	0.5	0	-0.20	-0.30	-0.30	-0.40	-0.40	
1.5	1.0	0	0.00	0.20	0.50	0.70	0.70	
1.5	0.5	0	-0.10	-0.20	-0.30	-0.30	-0.30	
1.0	0.5	0	-0.10	-0.10	-0.20	-0.20	-0.20	

Short Side - Along Midheight (y = a/2)

Deflection Coefficients, C_d

-4-1

1

TOP	0.9a	0.8a	0.7a ·	0.6a	0.5a	0.4a	0.3a	0.2a	0.1a	вот.	da	b/a
	1.90	3.60	5.00	5.90	6.30	6.10	5.30	4.00	2.10	0	3.0 .	4.0
0	1.90	3.60	5.00	5.90	6.30	6.10	5.30	4.00	2.10	0	2.0	4.0
0	1.90	3.60	5.00	5.90	6.30	6.10	5.30	4.00	2.10	0	1.5	4.0
0	1.90	3.60	5.00	5.90	6.30	6.20	5.40	4.00	2.10	0	1.0	4.0
0	1.90	3.60	5.00	5.90	6.40	. 6.20	5.40	4.00	2.10	0	0.5	4.0
0	1.70	3.30	4.60	5.50	5.80	5.70	4.90	3.70	2.00	0	2.0	3.0
0	1.70	3.30	4.60	5.50	5.90	5.70	5.00	3.70	2.00	0	1.5	3.0
0	1.70	3.30	4.60	5.50	5.90	5.70	5.00	3.70	2.00	0	1.0	3.0
0	1.70	3.30	4.70	5.60	6.00	5.80	5.00	3.70	2.00	0	0.5	1.0
	1.20	2.40	3.30	4.00	4.30	4.20	3.70	2.70	1.50	0	1.5	2.0
0	1.30	2.40	3.40	4.10	4.40	4.30	3.80	2.80	1.50	0	1.0	2.0
0	1.30	2.50	3.50	4.20	4.60	4.50	3.90	2.90	1.60	o	0.5	2.0
0	0.80	1.50	2.20	2.60	2.90	2.80	2.50	1.90	1.00	0.	1.0	.5
	0.00	1 70	2.40	2.90	3.10	3.10	2.70	2.10	1.10	0	0.5	.5
	0.30	0.70	1.001	1.20	1.30	1.30	1.20	0.90	0.50	o	0.5	.0

TOP	0.99	0.8a	0.7a	0.6a	0.5a	0.4a	0.3a	0.2a	0.1a	вот.	da	b/a
101	1 70	2 20	4.60	5.50	5.80	5.70	4.90	3.70	2.00	0	3.0	4.0
0	1.20	2.90	3.20	3.90	4.20	4.10	3.60	2.70	1.50	0	2.0	4.0
0	0.70	1.40	1 90	2.30	2.60	2.50	2.30	1.70	0.90	0	1.5	4.0
	0.10	0.30	0.40	0.50	0.60	0.60	0.60	0.50	0.30	0	1.0	4.0
	-0.10	-0.20	-0.30	-0.40	-0.40	-0.40	-0.30	-0.20	-0.10	ol	0.5	4.0
0	1 20	2 30	3.20	3.90	4.20	4.10	3.60	2.70	1.50	0	2.0	3.0
0	0.70	1.40	1 90	2.30	2.60	2.50	2.30	1.70	0.90	0	1.5	3.0
0	0.10	0.30	0.40	0.50	0.60	0.60	0.60	0.50	0.30	0	1.0	3.0
	0.10	0.30	-0.30	-0.40	-0.40	-0.40	-0.30	-0.20	-0.10	0	0.5	3.0
0	0.70	1.40	1 90	2.40	2.601	2.60	2.30	1.70	0.901	0	1.5	2.0
	0.10	0.30	0.40	0.50	0.60	0.70	0.70	0.50	0.30	0	1.0	2.0
	0.10	0.00	0.30	-0.40	-0.40	-0.40	-0.30	-0.20	-0.10	oj	0.5	2.0
0	-0.10	0.20	0.50	0.60	0.70	0.80	0.70	0.601	0.30	0	1.0	1.5
	0.20	0.30	-0.30	-0.30	-0.30	-0.30	-0.20	-0.20	-0.10	oi	0.5	1.5
	-0.10	-0.20	-0.50	-0.20	-0.20	-0.10	-0.10	-0.10	0.00	0!	0.5	1.0

Hinged Top Hinged Base

CASE	1
OAOL	

Moment = Coef. × qa²/1000

$\frac{b}{a} = 4.0, \frac{c}{a} =$	= 3.0	7	M	, Coe	fficle	nt	8	My Coefficient						M _{xy} Coefficient					
	- 00	CORNER	0.1b	0.2b	0.36	0.4b	0.5b	CORNER	0.1b	0.2b	0.3b	0.4b	0.5b	CORNER	0.1b	0.2b	0.3b	0.4b	0.5b
			0.9b	0.8b	0.7b	0.6b			0.9b	0.8b	0.70	0.6b	Sauras	1	0.9b	0.8b	0.7b	0.66	
	TOP	0	0	0	0	0	0	0	0	0	0	0	0	1	17	10	4	1	0
40 04 30	0.9a	-3	5	11	15	16	16	-16	2	5	4	4	- 4		17	- 10	4	1	0
	0.8a	-6	10	22	28	31	31	-32	4	9	8	7	7	1	14	8	4	1	0
	0.7a	-9	15	32	40	44	44	-45	6	12	11	. 10	10	1	11	6	3	1	0
Long Side	0.6a	-11	19	40	50	54	55	-56	8	15	14	12	12	1	7	3	1	0	0
Long olde	0.5a	-12	22	46	56	60	61	-62	9	17	15	14	13	0	1	0	0	0	0
61 B) B)	0.4a	-13	24	48	58	62	63	-64	10	17	15	14	14	0	4	3	1	0	0
	0.3a	-12	25	46	54	58	58	-59	10	15	14	13	13	1	10	6	2	1	0
	0.2a	-10	22	38	44	47	47	-48	8	12	11	10	10	1	15	8	3	1	0
	0.1a	-6	15	23	27	28	28	-28	5	7	7	6	6	2	18	10	. 4	1	0
	BOT.	0	0	0	0	0	0	0	0	0	0	0	0	2	20	10	4	1	0

M_z Coefficient

My Coefficient

Myz Coefficient

1	CORNER	0.1c	0.2c	0.3c	0.4c	0.5c	CORNER	0.1c	0.2¢	0.3c	0.4c	0.5c	CORNER	0.1c	0.2c	0.3c	0.4c	0.5c
a - 1		0.9c	0.8c	0.7c	0.6c	1.1		0.9c	0.8c	0.7c	0.6c	100.000		0.9c	0.8c	0.7c	0.6c	100
TOP	0	0	0	0	0	0	0	0	0	0	0	0	1	17	14	8	4	0
0.9a	-3	3	9	12	14	15	-16	0	4	5	4	4	1	17	14	8	3	0
0.8a	-6	'6	17	24	28	29	-32	0	8	9	8	8	1	15	12	. 7	3	0
0.7a	-9	9	25	35	39	41	-45	0	11	13	12	11	1	12	9	5	2	0
0.6a	-11	11	31	43	49	51	-56	· 0	14	15	- 14	14	1	7	5	3	1	0
0.5a	-12	14	36	49	55	57	-62	1	16	17	16	15	0	2	1	0	0	0
0.4a	-13	16	38	51	57	59	-64	2	16	17	16	16	0	4	4	2	1	0
0.3a	-12	17	37	48	53	55	-59	3	15	16	15	14	1	10	8	5	2	0
0.28	-10	15	32	40	44	45	-48	4	12	12	12	11	1	15	12	7	3	0
0.1a	-6	11	20	24	26	27	-28	3	7	7	7	7	2	20	14	8	3	0
BOT.	0	0	0	0	0	0	0	0	0	0	0	0	2	21	15	8	4	0

Short Side

Example 1

Design of Single-Cell Rectangular Tank

- > The tank shown has a clear height of a = 3m. horizontal inside dimensions are b = 9.0 m and c = 6.0 m.
- > Height of the soil against wall is 1.3m. Assume $f_c = 30$ Mpa and $f_y = 420$ MPa
 - > The tank will consider fixed at the base and free at

Example 1 (Design of Rectangular Tank)

Design of Wall for Loading Condition 1 (Leakage Test)

- Design for Shear Forces (Top Free anbd bottom Fixed)
 - According to Case 3 for : b/a = 3.0 and c/a = 2.0 (Page 2-17)

LOCATION D/B	4.0	3.0	2.5	2.0	1.75	1.5	1.25	1.0	0.75	0.5
Bottom edge midpoint	0.50	0.50	0.48	0.45	0.43	0.40	0.36	0.32	0.26	0.19
Side edge — maximum	0.38	0.37	0.33	0.27	0.26	0.26	0.25	0.24	0.22	0.17
Side edge — midpoint	0.23	0.24	0.25	0.26	0.26	0.26	0.25	0.23	0.19	0.13

Example 1 (Design of Rectangular Tank)

- Assume the wall thickness is 30 cm
- Check for shear at bottom of the wall

$$V = C_{s} \times q \times a$$

= 0.5×(10×3)×3 = 45KN
$$V_{u} = 1.4 \times V$$

= 1.4×45 = 63KN
$$\oint_{c} = \oint (0.17) \quad \sqrt{f_{c}}(b)(d)$$

= 0.75(0.17) \sqrt{30}(1000)(243)/1000
= 167KN > V_{u}
d = 300 - 50 - 14/2 = 243mm

For b/a = 3 (long wall),

Bottom edge - midpoint = 0.50Side edge - maximum = 0.37Side edge - midpoint = 0.24

For b/a = 2 (short wall),

Bottom edge - midpoint = 0.45 Side edge - maximum = 0.27 Side edge - midpoint = 0.26

Example 1 (Design of Rectangular Tank)

Check for shear at side edge of the long wall

$$V = C_s \times q \times a = 0.37 \times (10 \times 3) \times 3 = 33.3KN$$

$$V_u = 1.4 \times V = 1.4 \times 33.3 = 46.7 KN$$

- This wall is subjected to tensile forces due to shear in the short wall
- Shear in the short wall

$$V = C_{s} \times q \times a = 0.27 \times (10 \times 3) \times 3 = 24.3 ton$$

$$V_{u} = 1.4 \times V = 1.4 \times 24.3 = 34KN$$

$$\oint_{c} = \oint_{c} \left(1 + \frac{N}{3.5A_{g}}\right) \sqrt{f_{c}(b)(d)}$$
Shear capacity when shear combined with tension forces
$$= 0.75 \times 0.16 \times \left(1 - \frac{34 \times 1000}{3.5 \times (300 \times 1000)}\right) \sqrt{30(1000)(243)/1000}$$

$$= 163KN > V_{u}$$