

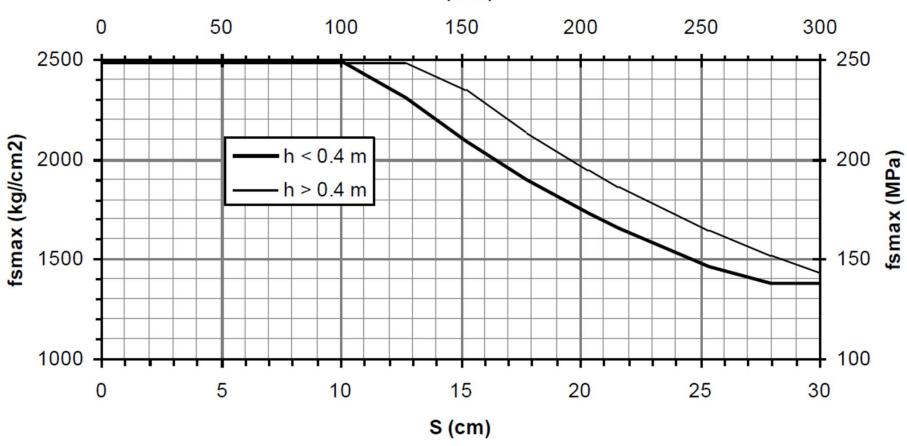
- Note when design of Wall for Loading Condition 3 (cover in place) (Top hinged and bottom fixed)
- Case 4 page 2-23 for the shear coefficient is smaller than previous case.

LOCATION b/a	4.0	3.0	2.5	2.0	1.75	1.5	1.25	1.0	0.75	0.5
Bottom edge — midpoint	0.40	0.40	0.40	0.40	0.39	0.38	0.36	0.32	0.26	0.20
Side edge maximum	0.26	0.26	0.26	0.27	0.26	0.26	0.25	0.24	0.22	0.17
Side edge — midpoint	0.26	0.26	0.26	0.26	0.26	0.26	0.25	0.23	0.19	0.13
Top edge — midpoint	0.10	0.11	0.11	0.11	0.11	0.11	0.09	0.07	0.05	0.03

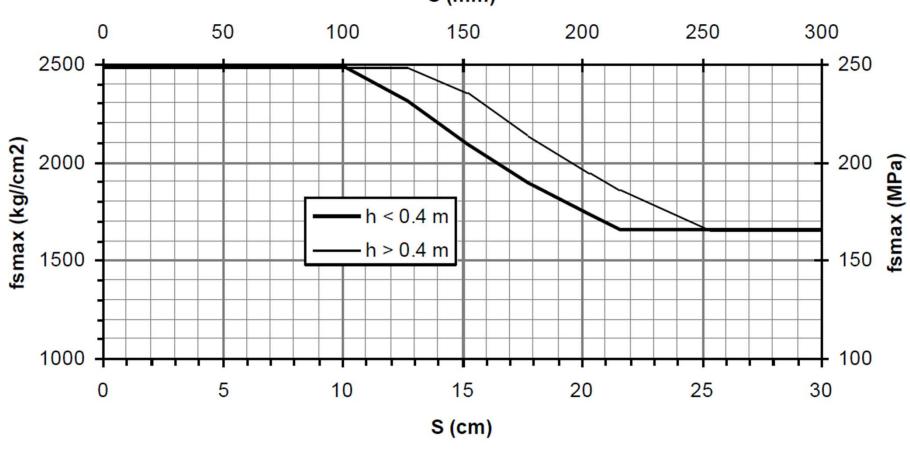
- Design of Wall for Loading Condition 1 (Leakage Test)
 - Design for Vertical Reinforcement (Mx)
 - Moments are in KN.m if coefficients are multiplied by $qa^2/1000 = 30*9/1000 = 0.27$
 - Moment coefficients taken from Table 5-1 for b/a = 3 and c/a = 2
 - > For Sanitary Structures

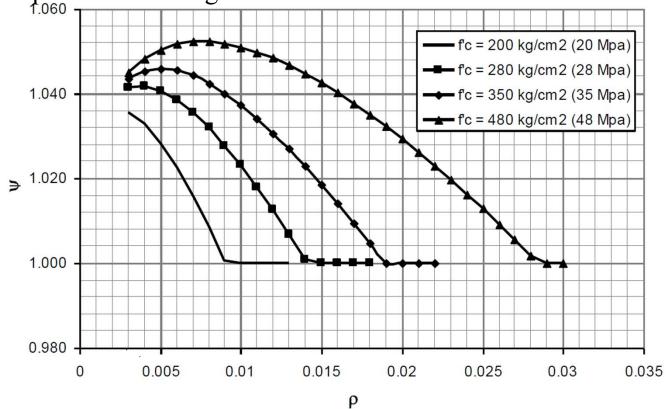
Required Strength = S_d · factored load= S_d · U

$$S_d = \frac{\phi f_y}{\gamma f_s} \ge 1.0$$
 where : $\gamma = \frac{\text{factored load}}{\text{unfactored load}}$


$$f_s = 165$$
 from diagram $S_d = \frac{0.9 \times 420}{1.4 \times 165} = 1.6$

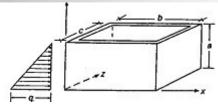

$$M_{ux} = 1.6 \times 1.4 \times 0.27 \times M_x Coef .= 0.605 \times M_x Coef$$
.


Normal exposure - One way


Normal exposure - Two way S (mm)

After finding the reinforcement check the table below where Mu design = ψ x Sd x Mu where Mu = 1.4 M_{from tables} Or use ψ = 1.044 at design stage for concrete f'c ≤ 35 Mpa

The required reinforcing of the interior face of the wall is



Free Top Fixed Base

0 -17 -44 -65 -78 -82

Moment = Coef. $\times qa^2/1000$

$\frac{b}{a} = 3.0, \frac{c}{a}$	= 2.0	M _x Coefficient						My Coefficient						M _{xy} Coefficient					
122		CORNER	0.1b	0.2b	0.3b	0.4b	0.5b	CORNER	0.1b	0.2b	0.3b	0.46	0.5b	CORNER	0.1b	0.26	0.3b	0.4b	0.5b
	<u> </u>		0,9b	0.86	0.7b	0.6b			0.9b	0.8b	0.7b	0.6b		1	0.9b	0.8b	0.7b		
	TOP	-11	0	0	0	0	0	-55	-20	9	20	23	24	1	16	_	13		1 0
	0.9a	-16	-2	2	4	4	5	-78	-18	9	19	21	22	5	14	17	13		0
	0.8a	-14	-3	4	7	8	8	-71	-15	9	18	19	19	5	14	_	13	7	0
	0.7a	-13	-1	6	9	10	10	-65	-12	9	16	17	17	4	15	17		7	0
Long Side	0.6a	-12	0	7	9	9	9	-59	-9	9	14	14	14	4	16	18	14	7	0
	0.5a	-10	- 1	6	6	5	4	-52	-6	8	10	10	10	4	17	18	14	-	0
	0.4a	-9	1	2	-2	-5	-7	-43	-4	6	6	5	5	4	18				0
	0.3a	-6	-2	-7	-16	-22	-24	-32	-2	2	1	0	-1	3	18	17	11	6	0
	0.2a	-4	-8	-23	-37	-46	-49	-18	-2	-2	-5	-7	-8	2	15	14	9	4	0
	0.1a	-1	-19	-46	-67	-80	-84	-6	-4	-9	-13	-15	-16	1	10	8	5	2	0
	BOT.	0	-38	-80	-109	~124	-129	0	-8	-16		-25	-26	0	0	0	0	0	0

		1 2 1	М	, Coe	fficien	rt	19	My Coefficient Myx Coefficient											
		CORNER	0.1c	0.2c	0.3c	0.4c	0.5c	CORNER	0.1c	0.2c	0.3c	0.4c	0.5c	CORNER	0.1c	0.2c	0.3c	0.4c	0.5c
_	3		0.9c	0.8c	0.7c	0.6c			0.9c	0.8c	0.7c	0.6c			0.9c	0.8c	0.7c	0.6c	
L	TOP	-11	0	0	0	0	0	-55	-34	-3	15	24	27	11	4	8	. 7	4	0
	0.9a	-16	-5	0	-3	4	5	-78	-31	-2	15	23	26	5	3	7	7	4	0
L	0.8a	-14	-5	2	6	9	10	-71	-28	-1	15	22	24	5	3	7	7	. 4	0
	0.7a	-13	-4	4	10	13	14	-65	-24	1	14	20	22	4	4	8	8	5	0
	0.6a	-12	-1	7	12	15	16	-59	-20	2	13	18	20	4	5	9	9	5	0
	0.5a	-10	0	8	13	15	16	-52	-15	3	12		17	4	7	11	10	6	0
	0.4a	-9	2	8	11	12	12	-43	-10	4	9	12	12	4	8	12	10	6	- 0
G	0.3a	-6	1	4	3	2	2	-32	-6	3	6	7	7	3	10	13		-	
C).2a	-4	-1	-4	-10	-15	-16	-18	-3	1	1	0	0	2	10	12	9	5	
().1a	-1	-6	-20	-32	-41	-43	-6	-2	-3	-6	-7	-8	1	8	8	6	3	0

Short Side

0

- **Vertical Bending Reinforcement:**
 - ✓ Inside Reinforcement (Mu=-78 kn.m)
- The required reinforcing of the interior face of the wall is

$$M_{ux} = 0.605 \times (-129) = -78 \text{ KN.m} \times \sqrt{-129}$$

$$\rho = \frac{0.85(30)}{420} \left[1 - \sqrt{1 - \frac{2.61(10)^6 (78)}{1000(243)^2 (30)}} \right] = 0.0036 \times \rho_{min}$$

$$A_s = 0.0036 \times 1000 \times 243 = 875 \text{ mm}_2 / \text{m} \times 1.094$$

Use $8\phi12$ mm/m on the inside of the wall.

Outside Reinforcement
$$M_{ux} = 0.605 \times (10) = 6.05 \text{ kn.m}$$

This maximum positive moment is very small and will controlled by minimum reinforcement.

- Design for Horizontal Reinforcement (My)
- **➤** Horizontal Bending Reinforcement:
 - **✓** Inside Reinforcement

$$M_{ux} = 0.605 \times (-78) = -47 \text{ kn.m}$$

$$\rho = \frac{0.85(30)^{\lceil}}{420} \left[1 - \sqrt{1 - \frac{2.61(10)^{6}(47)}{1000(243)^{2}(30)}} \right] = 0.0021 < \rho_{\min}$$

$$A_{s} = 0.0033 \times 1000 \times 243 = 800 \text{ mm} / m$$
So from table $\psi = 1.044$, Mux design = 1.044x-47 = 49 so ρ = 0.0022 < ρ_{\min}

Use $8\phi12$ mm/m on the inside of the wall.

Outside Reinforcement $M_{ux} = 0.605 \times (24) = 14.5 kn.m$

This maximum positive moment is very small and will controlled by minimum reinforcement.