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Electric Potential

CHAPTER OUTLINE ANSWERS TO QUESTIONS

25.1  Electric Potential and Potential
Difference : : : EP

252 Potential Difference in a Uniform Q25.1 When one object B with electric charge is immersed
Electric Field in the electric field of another charge or charges A, the

253  Electric Potential and Potential system possesses electric potential energy. The energy
Energy Due to Point Charges can be measured by seeing how much work the field does

25.4  Obtaining the Value of the
Electric Field from the Electric

on the charge B as it moves to a reference location. We

Potential choose not to visualize A’s effect on B as an action-at-a-
25.5  Electric Potential Due to distance, but as the result of a two-step process: Charge

Continuous Charge Distributions
25.6  Electric Potential Due to a

A creates electric potential throughout the surrounding

Charged Conductor space. Then the potential acts on B to inject the system

25.7 The Millikan Oil Drop Experiment
25.8  Application of Electrostatics

*Q25.3

Q254

Q255

#Q25.6

#Q25.7

Q25.8

with energy.

*Q25.2 (i) At points off the x axis the electric field has a nonzero y
component. At points on the negative x axis the field is to
the right and positive. At points to the right of x = 500 mm
the field is to the left and nonzero. The field is zero at one
point between x = 250 mm and x = 500 mm. Answer (b).
(i1) The electric potential is negative at this and at all
points. Answer (c). (iii) Answer (d). (iv) Answer (d).

The potential is decreasing toward the bottom of the page, so the electric field is downward.
Answer (f).

(a) The equipotential surfaces are nesting coaxial cylinders around an infinite line of charge.
(b) The equipotential surfaces are nesting concentric spheres around a uniformly charged sphere.

To move like charges together from an infinite separation, at which the potential energy of the
system of two charges is zero, requires work to be done on the system by an outside agent. Hence
energy is stored, and potential energy is positive. As charges with opposite signs move together
from an infinite separation, energy is released, and the potential energy of the set of charges
becomes negative.

The same charges at the same distance away create the same contribution to the total potential.
Answer (b).

(1) The two spheres come to the same potential, so g/R is the same for both. With twice the
radius, B has twice the charge. Answer (d).
(ii) All the charge runs away from itself to the outer surface of B. Answer (a).

The main factor is the radius of the dome. One often overlooked aspect is also the humidity of the

air—drier air has a larger dielectric breakdown strength, resulting in a higher attainable electric
potential. If other grounded objects are nearby, the maximum potential might be reduced.
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*Q25.9 The change in kinetic energy is the negative of the change in electric potential energy, so we

work out —gAV = —q(V,=V) in each case.

(a) —(—e)(60 V—-40 V) =+20eV (b) -(—e)(20 V-40 V) =-20eV
() ()20 V-40V)=+20eV (d)—(e)(1I0V-40V)=+30eV
(e) —(2e)(50 V—-40 V) =+20 eV ) =(-2e)(60 V—-40 V) =+40 eV
With also (g) 0 and (h) +10 eV, the rankingisf>d>c=e=a>h>g>b.

SOLUTIONS TO PROBLEMS

Section 25.1 Electric Potential and Potential Difference

P25.1

P25.2

(a)  Energy of the proton-field system is conserved as the proton moves from high to low poten-
tial, which can be defined for this problem as moving from 120 V down to 0 V.

K, +U,+AE

mech

L. .
=K, +U, O+qV+O—5mvp+O

: 1J ) 1 B
(1.60x107™" C)(120 V)(mjzz(mwlo 7 kg)v’

v, = 1.52x10° m/s

(b) The electron will gain speed in moving the other way,

from V,=0to V. =120 V: K, +U,+AE, , =K, +U,

mech
1
0+0+0:Emvf +qV
o=%(9.11><10*’“ kg)o? +(~1.60x10™ C)(120 J/C)
v, =]6.49%10° m/s
AV=-140V  and  Q=-N,e=-(6.02x10")(1.60x10"")=-9.63x10" C

av=7 50 W = QAV =(-9.63x10" C)(~14.0 J/C)=[ 135 MJ |

Section 25.2 Potential Difference in a Uniform Electric Field

P25.3

AU = —%m(v; ~0})= —%(9.11>< 107 kg)[(1.40 x10° m/s) —(3.70x10° m/s)z]
=6.23x10"*J
AU=gAV:  +6.23x10™% =(-1.60x10"")AV

AV =| =38.9 V. The origin is at highest potential. |
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P25.5

P25.6

P25.7
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B C B_. y

V-V, = j =—[E-ds-[Eds c . B
A C )\
0.500 0.400

V, =V, =(-Ecos180°) [ dy—(Ecos90.0°) | dx x
-0.300 —-0.200

V, -V, =(325)(0.800) = +260 V . |

E

|AV] 25.0x10° J/C 6 FIG. P25.4
E=—=———7-—=1.67%x10" N/C=|1.67 MN/C
d 1.50)(10_2 m /

Arbitrarily take V =0 at point P. Then the potential at the original position of the charge is
—E-s=—ELcos6. At the final point a, V=—FEL. Because the table is frictionless we have

(K+U),=(K+U),

1
O—qELcosezzmv2 —gEL

2¢EL(1— cos6) _\/2(2.00><10‘° C)(300 N/C)(1.50 m)(1 - cos60.0°)

0.010 0 kg =[0300 ms

m

(a) Arbitrarily choose V =0 at 0. Then at other points k Q -
E
V =-Ex and U,=QV =-QFx m —
Z

Between the endpoints of the motion,

(K+U,+U,), =(K+U,+U,),

0+0+0=0+— k)c2 — QEx, so x  =|—

max max max k

(b) Atequilibrium,
M F.=-F,+F,=0 or kx=QE

E
So the equilibrium position is at x = % .
d2
(c) The block’s equation of motion is Z F =—kx+QE= m_dt
E E
Let x’ —x—Q— or x=x’+Q—,
k k

so the equation of motion becomes:
E d’*(x+QE/k *x’
k(x 0 j*QE‘ Lt QB d_);:_ﬁf)x,
dt dt m

This is the equation for simple harmonic motion a_, =—®’x’

. k
with 0= |—
m
. L 2r m
The period of the motion is then T=—=|2rm n
(0]

continued on next page
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(@ (K+U,+U,) +AE,, =(K+U +U,),

mech —

0+0+0—u,mgx =O+lk;c2

max 2 max

—QEx

max

2(QE - :ukmg)
max k

P25.8  Assume the opposite. Then at some point A on some equipotential surface the electric field has a
nonzero component £, in the plane of the surface. Let a test charge start from point A and move
B

some distance on the surface in the direction of the field component. Then AV = —J E-ds is
A

nonzero. The electric potential charges across the surface and it is not an equipotential surface. The
contradiction shows that our assumption is false, that £, = 0, and that the field is perpendicular to the
equipotential surface.

P25.9  Arbitrarily take V =0 at the initial point. Then at distance d downfield, where L is the rod length,
V=-FEdand U, =—-ALEd.

@ (K+U), =(K+U),

i

0+0=%,LLL02—),LEd

[22Ed _ [2(40.0x107° C/m)(100 N/C)(2.00 m)
v= — =1 0.400 m/s
u \/ (0'100 kg/m)
(b) Each bit of the rod feels a force of the same size as before.

Section 25.3  Electric Potential and Potential Energy Due to Point Charges

-2
P25.10 () E = ke—?l + kg#z =0 becomes E =k, +—g + —q2 =0
x> (x=2.00) x° (x-2.00)
Dividing by £, 2gx* =q(x—-2.00) x*+4.00x—4.00=0
—4.00£+16.0+16.0
Therefore £ =0 h = =|—4.83
erefore when X 5
(Note that the positive root does not correspond to a physically valid situation.)
kg kg (+q 2q )
b) y=—eliy "l _ or V=k,| ——————|=0
®) x  2.00-x ‘Ux  200-x
Again solving for x, 2gx=q(2.00-x)

For 0<x<2.00 V=0 when x=[0.667 m
- For x<0 x=[-2.00m |

Wl 2~




P25.11

P25.12

P25.13

()

(b)

(©

(@)
(b)

(©)

(a)

(b)

Electric Potential 51

The potential at 1.00 cm is
g (8.99%x10° N-m?/C?)(1.60x10™" C)
-

- / =[1.44x107 Vv
1.00x107 m

The potential at 2.00 cm is
g (8.99x10° N-m’/C?)(1.60x10™" C)
P 2.00x1072 m

Thus, the difference in potential between the two pointsis AV =V, -V, =| =7.19x107 V |.

The approach is the same as above except the charge is —1.60 x 107" C. This changes the
sign of each answer, with its magnitude remaining the same.

That is, the potential at 1.00 cm is | —1.44x1077 V |.
The potential at 2.00 cmis —0.719x107 V, so AV=V,-V,=|7.19x10° V

V,=k

e

=0.719x107 V

Since the charges are equal and placed symmetrically, . 2.00 uC Y ’ 200 uC
.00 | q 00 uC
. o — —® o~
Since F=qE =0, [E=0]. r=-0800m 0 x=0800m
-6
v=2k 2-2(899x10° N-m?/c?)| 222X10_C FIG. P25.12
r 0.800 m
V=450x10* V=|45.0kV
ool
dre, r
_ 0
drey r
r=m=—3000V =|6.00 m
|E| 500 V/m
V=-3000V= 0

41 e, (6.00 m)

~3000 V
e= (8.99x10° V-m/c)(6'00 m)=[ -2.00 uC]|
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q0  (5.00x10” C)(-3.00x10” C)(8.99%x10° V-m/C)

= =|-3.86x107 ]
dmwe,r (0.350 m)

The minus sign means it takes 3.86 <107 J to pull the two charges apart from 35 cm to a
much larger separation.

S R
dre,, 4meyr,
(5.00x10” C)(8.99x10° V-m/C)+(—3.OO><10’9 C)(8.99x10° V-m/C)
0.175 m 0.175 m

P25.14 () U

(b)

4q; q
P25.15 v= Z kT \(‘D

4.00 3.£7
V=(8.99><109)(7.00><106){00_1100_00100+00;87} /m 1
4 -q

V=| ~1.10x10” V=—=11.0 MV |

«—2.00 cm —>1

FIG. P25.15
P25.16 (a) v=ﬂ+—ke"2=2("e—q) Y
nooon r pd (0,0.500 m)
8.99x10° N-m*/C?)(2.00x107° C 2.00 uC 2.00 uC
Voo (8.99x m*/C)(2.00x ) 2.004 X«
J(1.00 m)? +(0.500 m)* -1.00m,0) |  (1.00m,0)

V=322x10" V=|322kV FIG. P25.16
(b) U=qV=(-3.00x10" C)(3.22x10* J/C)=[-9.65x107J

1 q
P25.17 U,=qVi+qV,+q,V,=4q, (4” c )(%"'%4'73)
0 1 2 3

U, =(10.0x10° C)’(8.99x10° N-m*/C?) L, L, 21 2
0.600m  0.150 m /(0.600 m)* +(0.150 m)
U ,=(895]

P25.18 Each charge creates equal potential at the center. The total potential is:

st{ke(—q)}z Skq

R R

O

O
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Q P25.19 U=U,+U,+U,+U,
U=0+U,+(U,+U,)+(U, +U,, +U,,)
kQ? kQZ(l ) kQZ( 1 )
U=0+—"——+—"— —=+1 |+~ I+—=+1
s s V2 s V2
U=ke_Q2(4+l)= s kO FIG. P25.19
N \/E N

*P25.20

P25.21

(a)

(b)

(©)

(b)

2
We can visualize the term (4 + —) as arising directly from the 4 side pairs and 2 face diagonal
pairs.

2

The first expression, with distances squared, describes an electric field. The second expression

describes an electric potential. Then a | positive 7 nC charge | is 7 cm from the origin. To create

field that is to the left and downward, it must be in the first quadrant, with position

vector| 7 cm at 70°

A | negative 8 nC charge | 3 cm from the origin creates an upward

electric field at the origin, so it must be at| 3 cm at 90° |. We evaluate the given expressions:

E=-4.39 kN/Ci+67.8 kN/Cj
V=-1.50 kV

F=gE=-16x10" c(—4.39i+67.83)103 N/C= (7.03%—109j)><10-5 N

U, =qV=-16x10" C(~1.50x10* J/C)=[+240x107 J

Each charge separately creates positive potential everywhere. The total potential produced

by the three charges together is then the sum of three positive terms. There is ,
at a finite distance from the charges, at which this total potential is zero.

voka ka_|2kq
a a a
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P25.22 (a) V(x)=keQ1 kO, _ k,(+Q) .\ k. (+0)
d h \/x2+a2 \/x2+(_a)z
2k,Q k,Q ) 55,
Vi(x)= —==== 2
\/m a (x/a)2+1
V(x) 2 V(x)
- keQ/{l
(koja) \/(x/a)2+1 05
0.0
ko, ko, k(+0) k(-0)| & T 7 T g
(b) V(y): Y + 9 _k 0 Lk -0 I
h r, |y—a| |y+a|

FIG. P25.22(a)

ko 1
0= (Iy/a—ll Iy/a+1|j

V(y) 2( 11 ]
(kQ/a) [\Iy/a=1] |y/a+]|

-8
--10
yla

P25.23  Consider the two spheres as a system. FIG. P25.22(b)

(a) Conservation of momentum: 0= mlvlf+ m,v, (_i) or v,= mo
mZ
. k,(— 1 1 k
By conservation of energy, 0= k(-a)a. =—mo; +=m,v; +— (=44
d 2 2 n+r
and kag, kadx L, 0] mv}
n+r d 2 m,
2m,k 4,9, 1 1
v, = -—
m, (m] +m2) n+r, d
2(0.700 kg)(8.99x10° N-m?/C?)(2x10° C)(3x10™ C)( 1 1 )
v, = —
: (0.100 kg)(0.800 kg) 8x10° m 1.00 m
=(10.8 m/s
myo, 0.100 kg(10.8 m/s)
v, = = = 155 m/Ss
2 m, 0.700 kg
(b) If the spheres are metal, electrons will move around on them with negligible energy loss to

place the centers of excess charge on the insides of the spheres. Then just before they touch,
the effective distance between charges will be less than 7, +r, and the spheres will really

be moving | faster than calculated in (a) |
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P25.24 Consider the two spheres as a system.

P25.25

P25.26

(a) Conservation of momentum: 0=m,0,i+m,v, (—i)
mv
— 171
or ,=—L
mZ

ASAL Ly +%mzv§ AL

By conservation of energy,
d 2 n+r

and kag, ka4, _ 1

n+r d 2 2 m,

0 = 2m,k,q,9, 1 _l
! m,(ml-i-mz) n+r d

_|m _ 2mk,q,9, 1 _l
U2 - vl -
m, mz(m1+m2) n+rn d

(b) If the spheres are metal, electrons will move around on them with negligible energy loss to
place the centers of excess charge on the insides of the spheres. Then just before they touch,
the effective distance between charges will be less than r, +r, and the spheres will really

be moving | faster than calculated in (a) |

The original electrical potential energy is

k,q
U =qV=g-L
c=aV=q-7

In the final configuration we have mechanical equilibrium. The spring and electrostatic forces
2

k k .
on each charge are —k(2d)+q 4_=0. Then k=—L__ In the final configuration the total

(3d) 184°°

2 2
lk‘i(Zd ) + qM = ik‘—q The missing energy must have

1
otential energy is —kx* +qV =
P R S TYE 3d_9 d

2 2
become internal energy, as the system is isolated: kLTCI = % +AE,,.
2
AE‘im = é keq
9 d

Using conservation of energy for the alpha particle-nucleus system,

we have K,+U;,=K+U,

k
But U =-dedodng pmeo Thus, U, =0
7
Also K, =0 (v, =0 at turning point),
SO U, =K,
k
or eqaqgold — lmavi
rmin
2k 2(8.99x10° N-m*/C*)(2)(79)(1.60x 10 C)’
rmin — aqangold — ( / )( )( )( . ) — 2.74)(10_14 m
m,o,, (6.64x107kg)(2.00x10” m/s)

SEZI
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Section 25.4

P25.27

P25.28

P25.29

P25.30

P25.31

Chapter 25

Obtaining the Value of the Electric Field from the Electric Potential

V=5x-3x"y+2y7’
Evaluate E at (1, 0, —2).

x

y

E

oV
E Z—gz —5+6xy =—5+6(1)(0)=—5
A% 2 2

y

z=—%—:==4(0)(—2>=0

E=E2+E*+E? =|(-5) +(-5)’ +0’ =[7.07 N/C]

(a)

(b)

kQ
F V===
or r<R R
av
E:——:
== =10
For r>R V:k"—Q
,
dv koY [k0
E,=—d—=— m el
r r r

V=a+bx=10.0 V+(~7.00V/m)x

(a)

(b)

()

(b)

(©

E

y

E

y

At x=3.00 m, v=
At x=6.00 m, v=

E=——=-b=—-(-7.00V/m)=| 7.00 N/C in the +x direction |

. AV
E,>E, since E=—
s

AV (6-2)V
E,=——=———"—=[200N/C
B As 2 cm down

The figure is shown to the right, with sample field lines
sketched in.

=_8_V=_£[h_Qm(f+_ Jr+y ]]

ay ay| ¢ y

k,Q y kQ
= — 1— =
Ly f2+y2+€\/€2+y2 y\/£2+y2

FIG. P25.30
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Section 25.5  Electric Potential Due to Continuous Charge Distributions
P25.32 AV:VZR—VO:L k9 Q(——l) —0. 553k€Q
JR+(2R} R R \5
Y Bi——
P2533 (a) [a]=[&}=£(i)= < {T
x| m\m m |
LD
dq /ldx t xdx { ( LH | l
b) V=k =k ko =| ko L-dln| 1+— |
(b) J. J- e -(!-d+x d |<—d-> | N
A e 1 —]
FIG. P25.33
P25.34 V=j@=kgj‘“—d"2
r Jb*+(L/)2—x)
L
Let z=——x.
et z 5 x
L
Then xzz—z, and dx=—-dz
L/2— dz)
Voo EEACE) Rabp )
Vb +2 \/b b+ 2
k,aL

ln(z+\/zz +b° )+k‘,a\/z2 +b°

L
2
+k,o (E—x) +b°
2

oG- ]

— 3 L
V:—keaLln (é—x)-i- (E—x) +b
2 2 2
L 0
kaL. | L2—L+(L/2) +b’
V=—== In =
2 Lj2+(L/2) +b°
kol b +(L’/4)-L/2
V=|--= In
2 | P +(r/a)+ L2
P25.35 v:jdv=41 jﬂ
we,

All bits of charge are at the same distance from O.

1
4r €,

So V= (%)=(8.99x109 N

mz/Cz)(

~7.50%10° C
0.140 m/x

)-
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P2536 v=k, | dq ij" L lzs kJ-ldx

all charge r -3R semicircle
V=—kAln(-x) L +
e -3R

V=k ln%+k€/l7r+ke n3=[kA(z+2In3)

Section 25.6  Electric Potential Due to a Charged Conductor
P25.37 The electric field on the surface of a conductor varies inversely with the radius of curvature of the

surface. Thus, the field is most intense where the radius of curvature is smallest and vice-versa.
The local charge density and the electric field intensity are related by

o
E=— or o=¢, E
E0

(a) Where the radius of curvature is the greatest,

o =€, E,, =(885x10™" C*/N-m*)(2.80x10" N/C)=[248 nC/m’ |

(b)  Where the radius of curvature is the smallest,

o =€, E,, =(885x10™ C*/N-m’)(5.60 x10* N/C)=[496 nC/m” |

P25.38 Substituting given values into V = kg
’
8.99x10” N-m?*/C’
750x10° v =\ [C)q
0.300 m
Substituting ¢ =2.50x107"C,
2.50%x107 C

=| 1.56 x 10"* electrons

T160x10°"° Cle
P2539 (@ E=[0];

kq (8.99x107)(26.0x107)

V=g~ 0.140 =[167MV |

kg (8.99%10%)(26.0x10)

b) E=—5= =|5.84 MN/C
(b) 2 (0.200)2 away

kg (8.99%10°)(26.0x107°)

R 0.200 =[117 MV |

g (8.99x10°)(26.0x107)

() E=-%45-= © 140)2 =|11.9 MN/C | away
=|1.67 MV

V=

=~

v ka
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kg, _ k,q,
h )

P25.40 (a) Both spheres must be at the same potential according to

where also q,+q,=120x10"° C

Then q, = I
h

DIy g =120x10° C

r2
1.20x10° C

=—"—"""——=0.300x10"° C on the smaller sphere
1+6 cm/2 cm

4,

g,=120x10"° C-0.300x10° C=0.900x10° C
J_ kg, _(8:99x10° N-m’/C?)(0.900x10° C)

= = =[1.35x10° V
n 6x10” m

(b) Outside the larger sphere,

5
E = k"?‘ f:hf'=wf'= 2.25x10° V/m away |
2 0.06 m

Outside the smaller sphere,

B - 1.35x10° V

r=[674x10° V
) 002 m r /m away |

The smaller sphere carries less charge but creates a much stronger electric field than the
larger sphere.

Section 25.7  The Millikan Oil Drop Experiment

Section 25.8  Application of Electrostatics

P2541 (1) E, =3.00x10° V/m=~<_ (—) =V (—)
r r

V. =E_r=300x10°(0.150)=[ 450 kV

r

e

59

2 6 2
kO k0O, _ Epr® _3.00x10°(0.150)° _ ==
(b) —==E,, {Or ——Vm} s =% 8.99x10°

r
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P25.42 ()

(b)

B
Vo=V, =- J E-ds and the field at distance r from a uniformly <-4
A
charged rod (where r > radius of charged rod) is ‘
o A _ 2k, A
2re,yr r

In this case, the field between the central wire and the coaxial
cylinder is directed perpendicular to the line of charge so that FIG. P25.42

r 7

v, -V, =—jﬁdr= 2kglln(r—“j

or AV = zmm(ij

7

From part (a), when the outer cylinder is considered to be at zero potential, the potential at
a distance r from the axis is

V=2kA m(’—a)

r

The field at r is given by

E=-_ —2k A (L](_LZJ _2kA
or T, r r

AV
In(r, /1)

Therefore, Ezi(l) .
In(r, /1, )\r

But, from part (a), 2k A =
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P2543 (a) From the previous problem,

pobV_1
In(r, /1) r
We require just outside the central wire

3
5.50x10° V/mzw 1
In(0.850 m/r, )

7

0.850 mjzl

T

or (110 ml)rbln(

We solve by homing in on the required value

r, (m) 0.0100 | 0.00100 [ 0.00150 | 0.00145 | 0.00143 | 0.00142

4 0.850 m
(110 m™)7, In 489 | 0740 | 1.05 | 1017 | 1.005 | 0.999

)

Thus, to three significant figures,

(b) Atr,

50.0 kV 1
E= =(9.20 kV
In(0.850 m/0.001 42 m) (0.850 m)

Additional Problems

*P25.44 (a) The field within the conducting Earth is zero. E= o/€,

0 =Ee, = (=120 N/C)(8.85 x 107> C*/N-m?*) = |—1.06 nC/m*
(b) QE=0A=o04rnr=(-1.06x10" C/m? 4z (6.37 x 10°m)? =|-542 kC

_kQ _899x10° C(=5.42x10° O) _ s

R N-m?*(6.37 x10° m)

) V= Vi = Ed= (120 N/O)1.75 m =[210 V

99x10° N-m*(5.42x10° C)*(0.2
_ keq;q2 :899>< 0 sz &) >: 0 ZC) © 73):|4.88><103 N away from Earth
r C°(3.84x10° m)

© Vv

(e) F

(f)  The gravitational force is

_GM M, 6.67x 107" N-m*(5.98 x10** kg)(7.36 x 10** kg)
r kg’ (3.84 x10° m)’

toward the Earth

F =1.99x10°N

The gravitational force is larger by 1.99 x 10%%/4.88 x 10° = 4.08 x 10'¢ times and in the
opposite direction.

Electrical forces are negligible in accounting for planetary motion.

continued on next page
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(g) Werequire m(-g)+qE=0
6 x 1075 kg(-9.8 m/s?) + g(—=120 N/C) =0

q=5.88 x 107 N/(—120 N/C) =|-490 nC

(h)  Less charge to be suspended at the equator. The gravitational force is weaker at a greater
distance from the Earth’s center. The suspended particle is not quite in equilibrium, but
accelerating downward to participate in the daily rotation. At uniform potential, the planet’s
surface creates a stronger electric field at the equator, where its radius of curvature is smaller.

_k,q,9, —(8.99 x10° ) (] 60 % 10—19)2

—18
r 0.0529x10™ =-435x107" J=| 272 eV

_ k.9, —(8.99 X 109)(1.60 % 10719)2

) U==7= 22(0.0529%107) =[-680ev ]

(C) U — kteqZ — _keez - @

r

P2545 (@) U

*P25.46 (a) The two particles exert forces of repulsion on each other. As the projectile approaches the
target particle, the projectile slows. The target starts to move in the x direction. As long as
the projectile is moving faster than the second particle, the two will be approaching. Kinetic
energy will be being converted into electric potential energy. When both particles move
with equal speeds, the distance between them will momentarily not be changing: this is
the instant of closest approach. Thereafter, the target particle, still feeling a forward force,
will move faster than the projectile. The particles will separate again. The particles exert
forces on each other but never touch. The particles will eventually be very far apart, with
zero electric potential energy. All of the U, they had at closest approach is converted back
into kinetic energy. The whole process is an elastic collision. Compare this problem with
Problem 9.49 in Chapter 9.

(b) Momentum is constant throughout the process. We equate it at the large-separation initial
point and the point b of closest approach.

MYy +m,vV,, =mv,, + m,v,,

(2 g)(21i m/s)+0=(2g+5 2)¥,

v, = 6.00i m/s

(c) Energy conservation between the same two points:

1 1 1 k,q,q9
Emlvfi +5m205i -I-OZE(I’YL1 +m2)vb2 +r—;2

1 1 1

20002 k(21 m/s)’ +2,0.005 kg(0)’ +0= 0007 ke(6 m/s)’

N 8.99x10° Nm® 15x10° C8.5x10° C
C’ r,

1.15J-m

7

1.15m
%= a1~ 204 m]

0441J-0.126J =

continued on next page
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(d) The overall elastic collision is described by conservation of momentum:
myv,+mV,, = mv, +mv,,
(2 g)(211 m/s)+0=2 gv,i+5 g, i
and by the relative velocity equation:

vli

— 0y =0y — 0y
21 m/s-0=v,,-v,

we substitute

v,, =21 m/s+v,,

42 g-m/s=2gv,,+5 g(21 m/s+v,,)=2 gv,, +105 g-m/s+5 gv,,
-63 g-m/s=7 gv,,

v,, =—9.00 m/s

| ¥,,=-9.00i ms |
v,, =21 m/s—9 m/s=12.0 m/s

| v,,=12.0i m/s |

38)(54)(1.60 x 107 )’
P25.47 U=qV=ke%=(8.99x1o9)( )(54)( )

=4.04x10™" J=| 253 MeV
Ty (5.50+6.20)x 107"

P25.48 (a) Take the origin at the point where we will find the potential. One ring, of width dx, has
Qdx

charge = and, according to Example 25.5, creates potential

k,Qdx
hNx*+R?

The whole stack of rings creates potential

dv =

d+h

kQdx kO A
V= dV = —e= T — X p x+vxi+R
all c{arge d h\sz + R2 h ( )

ke_an[d+h+\/(d+h)2+R2J

d+h

d

63

h d+~d* + R
(b) A disk of thickness dx has charge Qdx and charge-per-area Qdf . According to
Example 25.6, it creates potential h TR A
v =2mk, 2& (Va? + R - x)
TRh
Integrating,
d+h 2 o d+h
V= J 2k§Q (\/x2 + dex—xdx) = Zkz"Q lx\/x2 +R’ +R—ln(x+ VX' +R® )_x_
5 R°h R°h|2 2 2 ],
d+h+y(d+h) +R
V= k;Q (d+h)\(d+h)" +R* —dd* +R* —2dh—h* + R*In (d+h)
R’h d+~Nd* + R
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*P25.49 For a charge at (x = —1 m, y = 0), the radial distance away is given by +/(x+1)* +y” . So the first Q

P25.50

P25.51

term will be the potential it creates if
(8.99x 10°N - m*/C*>)Q, =36V -m 0,=4.00nC
The second term is the potential of a charge at (x =0, y =2 m) with

(8.99 x 10°N - m*/C*)Q,=-45V - m 0,=-5.01nC

Thus we have |4.00 nC at (—1.00 m, 0) and —5.01 nC at (0, 2.00 m) |

The plates create uniform electric field to the right in the picture, with magnitude
w = Al . Assume the ball swings a small distance x to the right. It moves to a

. 2V,
place where the voltage created by the plates is lower by —Ex = —TOx . Its ground

connection maintains it at V =0 by allowing charge ¢ to flow from ground onto the ball,

2 2V, xR 4V xR
M+ ka _ 0 g¢g= Yox . Then the ball feels electric force F = gE = —2 );
R k,d k,d
the right. For equilibrium this must be balanced by the horizontal component of string
4V, xR 4VixR  x
—— tanf=—"—=— for small x.
d k,d"mg

where — to

tension according to 7 cosO = mg T'sin0 =
k,d’mg
4RL

hanging straight down. If V exceeds this value the ball will swing over to one plate or the other.

172
Then V, =( j . If V, is less than this value, the only equilibrium position of the ball is

O

From an Example in the chapter text, the potential at the center of the /W\
o k : N R
ringis V, = LAY and the potential at an infinite distance from the { Q x
_
ring is V, =0. Thus, the initial and final potential energies of the Uniforml}y
point charge-ring system are: charged ring
FIG. P25.51
k,Q’
U =0V = -
1 Q 1 R

and U, =QV,=0
From conservation of energy,

K, +U;,=K,+U,

2
or lMvi+0=0+k"Q
2 R
. 2k Q2
U, =| [——
giving v, VR
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P25.52

P25.53

P25.54

P25.55

P25.56
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Take the illustration presented with the problem as an initial picture.
No external horizontal forces act on the set of four balls, so its center
of mass stays fixed at the location of the center of the square. As the
charged balls 1 and 2 swing out and away from each other, balls 3
and 4 move up with equal y-components of velocity. The maximum-
kinetic-energy point is illustrated. System energy is conserved:

FIG. P25.52

kg kg 1 5. 1 5 1 5 1 ,

a 3a
2 2
2KG” _ 5 o= |kd
a 3am
V,-V,=—|E-df=- dr
. j J me, r

at+L ldx

L

=ke/lln[x+ (xz +b2)J

a

@l Al {a+L+q/(a+L)2+b2]
= . n

cz+\/112+b2

k,dq

N

For an element of area which is a ring of radius r and width dr, 4V =

dg=0dA= Cr(2n' rdr) and

R 2
V= c(znke)jr—drz C(ﬂke){R R +x +x° ln[
0

2 2

k.q
P

dU =Vdq where the potential V =

The element of charge in a shell is dg = p (volume element) or dg = p(477: rzdr) and the charge
¢q in a sphere of radius r is

[ drr’
=4mp| rdr =
q p! p( 3 j
Substituting this into the expression for dU, we have
drr (1 16m°
du = (deq —kp| = (—) plamrdr)=k | 1%\ prriar
r 3 r 3

1672 L ¢ . 167> ,
U=de=ke(ij erI”:ke ? pR
0

k0’
R

4
But the total charge, O = pg TR’ Therefore, | U = %
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P25.57 (1) v=id Ra_ka.,
I nohnh
From the figure, for r >> a, r,—1, =2acosf
Then U= kg 2acosf = M
nn
(b) Erz_a_vz 2kfp§:ose
or r

. . |
In spherical coordinates, the #component of the gradient is ——

’
i FIG. P25.57
Therefore, E, = _1(8_‘/) = kep—S:nQ
r\ 06 r
For r>>a E (0°)= 2k—§p
I

and  E (90°)=0,
E,(0°)=0

and £, (90°) = X2
r

These results are | reasonable for » >> a |. Their directions are as shown in Figure 25.13 (c).

However, for | r— 0, E(0)— oo. This is unreasonable, | since r is not much greater

than a if it is O.

k.py

and E __BV_ 3k, pxy

.= =

ox <x2 +y2)5/2

__a_V_kep(Zyz—xz)
Y9y (xz-i-yz)s/2
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*P25.58 (a) k,Q/r=899x10°(1.6x10°) V/2=[1.19V

P25.59

8.99 1.6+8.99 1.6_
21+ 20+%)

© B89 1.6(1 P S S J=7.84V

(b) 7.67V

4 I+Y 1+% 1+3% 1+7%
) Wefind3?2 10 1 1 1 ) [Fowav
32 1+%, 1+%, 1+634,

8.99 1.6 1 1 1
() Wefind + +ot =17.9010 V|
64 \1+% l1+% 141274,

(f)  We represent the exact result as

V:Qm[“-aj: 8.99 21'6 Vlnsz 79012V
a

Modeling the line as a set of points works nicely. The exact result, represented as 7.901 2 V, is
approximated to within 0.8% by the four-particle version. The 16-particle approximation gives a
result accurate to three digits, to within 0.05%. The 64-charge approximation gives a result accu-
rate to four digits, differing by only 0.003% from the exact result.

-9 2
The positive plate by itself creates a field E = 9 36.0x10 C/ m

2¢, 2(8.85x10"C*/N-m’)
away from the + plate. The negative plate by itself creates the same size field and between the
plates it is in the same direction. Together the plates create a uniform field 4.07 kN/C in the
space between.

=2.03 kN/C

(a) Take V=0 atthe negative plate. The potential at the positive plate is then
12.0 cm
V-0=- [ (~4.07 kN/C)dx
0

The potential difference between the plates is V = (4,07 x10° N/ C) (0.120 m) = .
(b) (lmv2 +qu = (lmv2 +qu
2 ;o\2 ;
gV =(1.60x10™ C)(488 V)= %mvj =
© v=

(d) v; =v; +2a(xf —xi)

(3.06x10° m/s) = 0+24(0.120 m)

a= | 3.90x10" m/s | toward the negative plate

© Y F=ma=(1.67x10"" kg)(3.90x10" m/s’)=[ 6.51x10™"° N | toward the negative

plate

F 6.51x107° N
() E:Tm: 4.07 kN/C
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P25.60 For the given charge distribution,

where

The surface on which

is given by

This gives:

which may be written in the form:

V(x, y,2)=

n=y(x+R)’+y +7> and r, =[x’ +y* + 7’

V(x, Y, z)= 0

keq[l_
n

4(x+R) +4y  +477 =x"+y* +7

)zO, or 2r, =r,

)

X +y +7 +(§R)x+(0)y+(0)z+(%R2)=0 [1]

The general equation for a sphere of radius a centered at (xo, Yoo zo) is:

(x=x, ) +(y=y ) +(z-2) ~a* =0

or

P +y 47 +(—2x0)x+(—2y0)y+(—2zo)z+(x§ +y; +z§—a2)=0

(2]

Comparing equations [1] and [2], it is seen that the equipotential surface for which V =0 is

indeed a sphere and that:
8
—2x0 = g R,

Thus, X, :_%R, Yo =2,=0, and

The equipotential surface is therefore a

P25.61 Inside the sphere, E =E =E_ = 0l.
Outside, E = _a_V - _i
* ox ox
So E = _[
1% 0
= _a_y = _a—y(VO —-Ezz+ an3z(x2

3 _
E, = —an3z(—5)(x2 +y* + zz) 2 2y

E. =—aa—‘Z/=E0 ~-E,a’z

=2y,=0; =2z,=0;

2
a

4
2 2 2 2 2
XotYy+z,—a =§R

4

5-3)

R =—F
4

9
—R,0,0

sphere centered at| | — , having a radius
3

|

-5/2
3E0a3xz(x2 +y + zz)

+y' +7 )73/2)

3E0a3yz()c2 +y +7 )_5/2

(_%)(xz +y + 12)'5/2 (2z)-E,a’ (xz Y+ Zz)—3/2

E =

E,+E,a’ (222 -x —)12)()c2 +y°

" Z2 )—5/2




Electric Potential 69

Q ANSWERS TO EVEN PROBLEMS

P25.2

P254

P25.6

P25.8

P25.10

P25.12

P25.14

P25.16

P25.18

P25.20

P25.22

P25.24

P25.26

P25.28

P25.30

P25.32

P25.34

P25.36

P25.38

P25.40

P25.42

1.35MJ

+260 V

0.300 m/s

See the solution.

(a) 4.83m (b) 0.667 m and —2.00 m
@0 (MmO (c)450kV

(@) =386 nJ (b) 103V

(@) 32.2kV  (b) -96.5 mJ

_dkg
R

(a) +7.00 nC with position vector 7.00 cm at 70.0° and —8.00 nC with position vector 3.00 cm at
90.0° (b)(0.0703 i —1.09 j)mN (c)+24.0 J

See the solution.

(@) v, = 2mak a4, 1 v, = 2m k4,9, 1 (b) Faster than
m, (my+m,)\ 1 +r, d my (my+my)\ i+, d

calculated in (a)

27.4 fm
@0 (b) %2 radially outward
r
(a) largerat A (b) 200 N/C down (c) See the solution.
—0.553k€—Q
R
koL b’ +(L/4)-L)2
¢ n
2 | P +(r/a)+ L2
k A(m+ 2 1In3)

1.56x10" electrons

(a) 135kV  (b) 2.25 MV/m away from the large sphere and 6.74 MV/m away from the small
sphere

See the solution.
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P25.44

P25.46

P25.48

P25.50

P25.52

P25.54

P25.56

P25.58

P25.60

Chapter 25

(a) negative 1.06 nC/m?> (b) =542 kC (c) 764 MV  (d) His head is higher in potential by

210 V. (e) 4.88 kN away from the Earth (f) The gravitational force is in the opposite direction
and 4.08 x 10'¢ times larger. Electrical forces are negligible in accounting for planetary motion.
(g) 490 nC (h) Less charge to be suspended at the equator. The gravitational force is weaker
at a greater distance from the Earth’s center. The suspended particle is not quite in equilibrium,
but accelerating downward to participate in the daily rotation. At uniform potential, the

planet’s surface creates a stronger electric field at the equator, where its radius of curvature is
smaller.

(a) The velocity of one particle relative to the other is first a velocity of approach, then zero at
closest approach, and then a velocity of recession. (b) 6.00 im/s (©)3.64m (d)—9.00 im/s
for the incident particle and 12.0 i m/s for the target particle.

(@) an[d+h+\/(d+h)z+R2j
h

d++d* + R

Q

k
(b) —
R’h

2 2
[(d+h)\/(d+h)2+R2—dx/d2+R2—2dh—h2+R21n[d+h+ (d+h) +R ]]

d+d*+ R*
See the solution.

X q2 12

(3am]

. Mn[a+L+\/(a+L)2 +b’ }

a+\/az+b2

3 k0
5 R

@719V (b)7.67V (¢)7.84V (d)79002V (e)7.9010V (f) Modeling the line as a
set of points works nicely. The exact result, represented as 7.901 2 V, is approximated to within
0.8% by the four-particle version. The 16-particle approximation gives a result accurate to three
digits, to within 0.05%. The 64-charge approximation gives a result accurate to four digits,
differing by only 0.003% from the exact result.

See the solution.



