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Electric Potential

CHAPTER OUTLINE

25.1 Electric Potential and Potential 
Difference

25.2 Potential Difference in a Uniform 
Electric Field

25.3 Electric Potential and Potential 
Energy Due to Point Charges

25.4 Obtaining the Value of the 
Electric Field from the Electric 
Potential

25.5 Electric Potential Due to 
Continuous Charge Distributions

25.6 Electric Potential Due to a 
Charged Conductor

25.7 The Millikan Oil Drop Experiment
25.8 Application of Electrostatics

ANSWERS TO QUESTIONS

Q25.1 When one object B with electric charge is immersed 
in the electric fi eld of another charge or charges A, the 
system possesses electric potential energy. The energy 
can be measured by seeing how much work the fi eld does 
on the charge B as it moves to a reference location. We 
choose not to visualize A’s effect on B as an action-at-a-
distance, but as the result of a two-step process: Charge 
A creates electric potential throughout the surrounding 
space. Then the potential acts on B to inject the system 
with energy.

*Q25.2 (i) At points off the x axis the electric fi eld has a nonzero y 
component. At points on the negative x axis the fi eld is to 
the right and positive. At points to the right of x = 500 mm 
the fi eld is to the left and nonzero. The fi eld is zero at one 
point between x = 250 mm and x = 500 mm. Answer (b). 
(ii) The electric potential is negative at this and at all 
points. Answer (c). (iii) Answer (d). (iv) Answer (d).

*Q25.3 The potential is decreasing toward the bottom of the page, so the electric fi eld is downward. 
Answer (f).

Q25.4  (a) The equipotential surfaces are nesting coaxial cylinders around an infi nite line of charge.
  (b) The equipotential surfaces are nesting concentric spheres around a uniformly charged sphere.

Q25.5   To move like charges together from an infi nite separation, at which the potential energy of the 
system of two charges is zero, requires work to be done on the system by an outside agent. Hence 
energy is stored, and potential energy is positive. As charges with opposite signs move together 
from an infi nite separation, energy is released, and the potential energy of the set of charges 
becomes negative.

*Q25.6 The same charges at the same distance away create the same contribution to the total potential. 
Answer (b).

*Q25.7 (i) The two spheres come to the same potential, so q /R is the same for both. With twice the 
radius, B has twice the charge. Answer (d).

 (ii) All the charge runs away from itself to the outer surface of B. Answer (a).

Q25.8 The main factor is the radius of the dome. One often overlooked aspect is also the humidity of the 
air—drier air has a larger dielectric breakdown strength, resulting in a higher attainable electric 
potential. If other grounded objects are nearby, the maximum potential might be reduced.
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48 Chapter 25 

*Q25.9 The change in kinetic energy is the negative of the change in electric potential energy, so we 
work out −q∆V = −q(V

f
 − V

i
) in each case.

 (a) −(−e)(60 V − 40 V) = +20 eV  (b) −(−e)(20 V − 40 V) = −20 eV 
 (c) −(e)(20 V − 40 V) = +20 eV  (d) −(e)(10 V − 40 V) = +30 eV 
 (e) −(−2e)(50 V − 40 V) = +20 eV (f) −(−2e)(60 V − 40 V) = +40 eV 
 With also (g) 0 and (h) +10 eV, the ranking is f > d > c = e = a > h > g > b.

SOLUTIONS TO PROBLEMS

Section 25.1 Electric Potential and Potential Difference 

P25.1 (a)  Energy of the proton-fi eld system is conserved as the proton moves from high to low poten-
tial, which can be defi ned for this problem as moving from 120 V down to 0 V.

  K U E K Ui i f f+ + = +∆ mech
 0 0

1

2
02+ + = +qV m pv

   1 60 10 120
1 1

2
1 67 1019. .×( )( )

⋅
⎛
⎝

⎞
⎠ = ×− C V

J

1 V C
−−( )27 2kg vp

   vp = ×1 52 105. m s

 (b) The electron will gain speed in moving the other way, 

  from Vi = 0  to Vf = 120 V: K U E K Ui i f f+ + = +∆ mech

   0 0 0
1

2
2+ + = +m qVev

   0
1

2
9 11 10 1 60 10 12031 2 19= ×( ) + − ×( )− −. .kg C Jve CC( )

   ve = ×6 49 106. m s

P25.2 ∆V = −14 0. V and Q N eA= − = − ×( ) ×( ) = − ×−6 02 10 1 60 10 9 63 1023 19 4. . . C

 ∆V
W

Q
= , so W Q V= = − ×( ) −( ) =∆ 9 63 10 14 0 1 354. . .C J C MJ

Section 25.2 Potential Difference in a Uniform Electric Field

P25.3 ∆U m f i= − −( ) = − ×( ) ×−1

2

1

2
9 11 10 1 40 102 2 31 5v v . . kg mm s m s

 J

( ) − ×( )⎡
⎣

⎤
⎦

= × −

2 6 2

18

3 70 10

6 23 10

.

.

 ∆ ∆U q V= :    + × = − ×( )− −6 23 10 1 60 1018 19. . ∆V

 ∆V = −38 9. V. The origin is at highest potentiial.
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P25.4 
V V d d d

V V

B A

A

B

A

C

C

B

B A

− = − ⋅ = − ⋅ − ⋅

− =

∫ ∫ ∫
� � � � � �
E s E s E s

−−( ) − ( )
− −
∫E dy E dxcos cos .
.

.

.

180 90 0
0 300

0 500

0

° °
2200

0 400

325 0 800 260

.

.

∫
− = ( )( ) = +V VB A V

P25.5 E
V

d
= = ×

×
= × =−

∆ 25 0 10

1 50 10
1 67 10 1

3

2
6.

.
. .

J C

m
N C 667 MN C

P25.6 Arbitrarily take V = 0 at point P. Then the potential at the original position of the charge is
− ⋅ = −

� �
E s EL cos .θ  At the fi nal point a, V = −EL. Because the table is frictionless we have 

 
K U K Ui f+( ) = +( )

 

0
1

2

2 1 2 2 00 10

2− = −

= −( )
=

×

qEL m qEL

qEL

m

cos

cos .

θ

θ

v

v
−−( )( )( ) −( )6 300 1 50 1 60 0

0 010 0

C N C m °

k

. cos .

. gg
m s= 0 300.

P25.7 (a) Arbitrarily choose V = 0  at 0. Then at other points 

  V Ex= −     and    U QV QExe = = −

  Between the endpoints of the motion,

  K U U K U Us e i s e f
+ +( ) = + +( )

  0 0 0 0
1

2
2+ + = + −kx QExmax max

 
so x

QE

kmax = 2

 (b) At equilibrium,

  F F Fx s e∑ = − + = 0
 

or kx QE=

  So the equilibrium position is at x
QE

k
= .

 (c) The block’s equation of motion is F kx QE m
d x

dtx∑ = − + =
2

2 .

  Let  ′ = −x x
QE

k
, or x x

QE

k
= ′ + ,

  so the equation of motion becomes:

  − ′ +⎛
⎝

⎞
⎠ + =

+( )
k x

QE

k
QE m

d x QE k

dt

2

2 , or 
d x

dt

k

m
x

2

2

′ = − ⎛
⎝

⎞
⎠ ′

  This is the equation for simple harmonic motion a xx′ = − ′ω 2

with ω = k

m

  The period of the motion is then    T
m

k
= =2

2
π

ω
π

FIG. P25.4

FIG. P25.7

continued on next page
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 (d) K U U E K U Us e i s e f
+ +( ) + = + +( )∆ mech

  

0 0 0 0
1

2

2

2+ + − = + −

=
−

µ

µ

k

k

mgx kx QEx

x
QE

max max max

max

mmg

k

( )

P25.8 Assume the opposite. Then at some point A on some equipotential surface the electric fi eld has a 
nonzero component Ep in the plane of the surface. Let a test charge start from point A and move 

 some distance on the surface in the direction of the fi eld component. Then ∆V d
A

B

= − ⋅∫
� �
E s  is 

 nonzero. The electric potential charges across the surface and it is not an equipotential surface. The 
contradiction shows that our assumption is false, that Ep = 0, and that the fi eld is perpendicular to the 
equipotential surface.

P25.9 Arbitrarily take V = 0 at the initial point. Then at distance d downfi eld, where L is the rod length, 
V = −Ed and U LEde = −λ .

 (a) K U K Ui f+( ) = +( )

  0 0
1

2

2 2 40 0 10 100

2

6

+ = −

= =
×( )−

µ λ

λ
µ

L LEd

Ed

v

v
. C m N CC m

kg m
m s

( )( )
( ) =

2 00

0 100
0 400

.

.
.

 (b) The same. Each bit of the rod feels a force of the same size as before.

Section 25.3 Electric Potential and Potential Energy Due to Point Charges

P25.10 (a) E
k q

x

k q

xx
e e= +

−( ) =1
2

2
22 00

0
.

 becomes  E k
q

x

q

xx e= + + −
−( )

⎛
⎝⎜

⎞
⎠⎟

=2 2

2

2 00
0

.

  Dividing by ke ,  2 2 002 2qx q x= −( ).  x x2 4 00 4 00 0+ − =. .

  Therefore E = 0  when  x = − ± + = −4 00 16 0 16 0

2
4 83

. . .
. m

  (Note that the positive root does not correspond to a physically valid situation.)

 (b) V
k q

x

k q

x
e e= +

−
=1 2

2 00
0

.
 or  V k

q

x

q

xe= + −
−

⎛
⎝

⎞
⎠ =2

2 00
0

.

  Again solving for x,   2 2 00qx q x= −( ).

  For 0 2 00≤ ≤x . V = 0  when  x = 0 667. m

  and q

x

q

x
= −

−
2

2
 For x < 0    x = −2 00. m
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P25.11 (a) The potential at 1.00 cm is

  V k
q

re1

9 198 99 10 1 60 10

1 00
= =

× ⋅( ) ×( )−. .

.

N m C C2 2

××
= ×−

−

10
1 44 102

7

m
V.

 (b) The potential at 2.00 cm is

  V k
q

re2

9 198 99 10 1 60 10

2 00
= =

× ⋅( ) ×( )−. .

.

N m C C2 2

××
= ×−

−

10
0 719 102

7

m
V.

  Thus, the difference in potential between the two points is ∆V V V= − = − × −
2 1

87 19 10. V .

 (c)  The approach is the same as above except the charge is − × −1 60 10 19. C. This changes the 
sign of each answer, with its magnitude remaining the same.

  That is, the potential at 1.00 cm is − × −1 44 10 7. V .

  The potential at 2.00 cm is − × −0 719 10 7. V, so ∆V V V= − = × −
2 1

87 19 10. V

P25.12 (a) Since the charges are equal and placed symmetrically, F = 0 .

 (b) Since F qE= = 0, E = 0 .

 (c) V k
q

re= = × ⋅( ) × −

2 2 8 99 10
2 00 109

6

.
.

N m C
C

0.800
2 2

mm

⎛
⎝⎜

⎞
⎠⎟

  V = × =4 50 10 45 04. .V kV

P25.13 (a) E
Q

r
=

∈4 0
2π

  

V
Q

r

r
V

E

=
∈

= = =

4

3 000
6 00

0π
V

500 V m
m.

 (b) V
Q= − =

∈ ( )3 000
4 6 000

V
mπ .

  Q = −
× ⋅( ) ( ) = −3 000

6 00 2 00
V

8.99 10 V m C
m C9 . . µ

FIG. P25.12
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P25.14 (a) U
qQ

r
=

∈
=

×( ) − ×( ) ×− −

4

5 00 10 3 00 10 8 99 1

0

9 9

π
. . .C C 00

0 350
3 86 10

9
7V m C

m
J

⋅( )
( ) = − × −

.
.

   The minus sign means it takes 3 86 10 7. × − J  to pull the two charges apart from 35 cm to a 
much larger separation.

 (b) V
Q

r

Q

r
=

∈
+

∈

=
×( ) ×−

1

0 1

2

0 2

9 9

4 4

5 00 10 8 99 10

π π

. .C V ⋅⋅( )
+

− ×( ) × ⋅( )−m C

m

C V m C

0 175

3 00 10 8 99 109 9

.

. .

00 175

103

. m

VV =

P25.15 V k
q

r

V

i

ii

=

= ×( ) ×( ) − −

∑

−8 99 10 7 00 10
1

0 010 0

1

0
9 6. .

. .. .

. .

010 0

1

0 038 7

1 10 10 11 07

+⎡
⎣
⎢

⎤
⎦
⎥

= − × = −V V MV

P25.16 (a) V
k q

r

k q

r

k q

r
e e e= + = ⎛

⎝
⎞
⎠

1

1

2

2

2

  
V =

× ⋅( ) ×( )
( ) +

−

2
8 99 10 2 00 10

1 00

9 6

2

. .

.

N m C C

m

2 2

00 500

3 22 10 32 2

2

4

.

. .

m

V kV

( )

⎛

⎝
⎜

⎞

⎠
⎟

= × =V

 (b) U qV= = − ×( ) ×( ) = − ×− −3 00 10 3 22 10 9 65 106 4 2. . .C J C J

P25.17 U q V q V q V q
q

r

q

r

q
e = + + =

∈
⎛
⎝⎜

⎞
⎠⎟

+ +4 1 4 2 4 3 4
0

1

1

2

2

31

4π rr3

⎛
⎝⎜

⎞
⎠⎟

 
Ue = ×( ) × ⋅( ) +−10 0 10 8 99 10

1

0 600
6 2 9. .

.
C N m C

m
2 2 11

0 150

1

0 600 0 150

8

2 2. . .

.

m m m
+

( ) + ( )

⎛

⎝
⎜

⎞

⎠
⎟

=Ue 995 J

P25.18 Each charge creates equal potential at the center. The total potential is:

 V
k q

R

k q

R
e e=

−( )⎡
⎣⎢

⎤
⎦⎥

= −5
5

FIG. P25.15

FIG. P25.16
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P25.19 U U U U U

U U U U U U U

= + + +

= + + +( ) + + +(
1 2 3 4

12 13 23 14 24 340 ))

= + + +⎛
⎝⎜

⎞
⎠⎟ + + +⎛

⎝⎜
⎞U

k Q

s

k Q

s

k Q

s
e e e0

1

2
1 1

1

2
1

2 2 2

⎠⎠⎟

= +⎛
⎝⎜

⎞
⎠⎟ =U

k Q

s

k Q

s
e e

2 2

4
2

2
5 41.

 We can visualize the term 4
2

2
+⎛

⎝⎜
⎞
⎠⎟  as arising directly from the 4 side pairs and 2 face diagonal 

pairs.

*P25.20  (a) The fi rst expression, with distances squared, describes an electric fi eld. The second  expression

  describes an electric potential. Then a positive nC charge7  is 7 cm from the origin. To create

  fi eld that is to the left and downward, it must be in the fi rst quadrant, with position

  vector 7 70cm at ° . A negative nC charge8  3 cm from the origin creates an upward

   electric fi eld at the origin, so it must be at 3 90cm at ° .  We evaluate the given expressions:

 
�
E i j= − +

= −
4 39 67 8

1 50

. ˆ . ˆ

.

kN C kN C

kVV

 (b) 
� �
F E i j= = − × − +( ) =−q 16 10 4 39 67 8 10 7 09 3C N C. ˆ . ˆ . 33 109 10 5ˆ ˆi j−( ) × − N

 (c) U qVe = = − × − ×( ) = ×− −16 10 1 50 10 2 40 109 3 5C J C J. .+

P25.21 (a) Each charge separately creates positive potential everywhere. The total potential produced 

  by the three charges together is then the sum of three positive terms. There is no point ,  

  at a fi nite distance from the charges, at which this total potential is zero.

 (b) V
k q

a

k q

a

k q

a
e e e= + = 2

FIG. P25.19
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P25.22 (a) V x
k Q

r

k Q

r

k Q

x a

k Q

x a
e e e e( ) = + =

+( )
+

+
+( )

+ −(
1

1

2

2
2 2 2 ))2

  

V x
k Q

x a

k Q

a x a

V x

k Q a

e e

e

( ) =
+

=
( ) +

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

( )

2 2

1
2 2 2

(( ) =
( ) +

2

1
2

x a

 (b) V y
k Q

r

k Q

r

k Q

y a

k Q

y a
e e e e( ) = + =

+( )
−

+
−( )
+

1

1

2

2

  

V y
k Q

a y a y a

V y

k Q a y a

e

e

( ) =
−

−
+

⎛
⎝⎜

⎞
⎠⎟

( )
( ) =

−
−

1

1

1

1

1

1

11

1y a +
⎛
⎝⎜

⎞
⎠⎟

P25.23 Consider the two spheres as a system.

 (a) Conservation of momentum: 0 1 1 2 2= + −( )m mv vˆ ˆi i
  

or  v
v

2
1 1

2

= m

m

  By conservation of energy, 0
1

2

1

2
1 2

1 1
2

2 2
2 1 2

1 2

=
−( )

= + +
−( )
+

k q q

d
m m

k q q

r r
e ev v

  and 
k q q

r r

k q q

d
m

m

m
e e1 2

1 2

1 2
1 1

2 1
2

1
2

2

1

2

1

2+
− = +v

v

  
v

v

1
2 1 2

1 1 2 1 2

1

2 1 1

2 0 7

=
+( ) +

−
⎛
⎝⎜

⎞
⎠⎟

=

m k q q

m m m r r d
e

. 000 8 99 10 2 10 3 109 6 6kg N m C C C2 2( ) × ⋅( ) ×( ) ×− −. (( )
( )( ) ×

−⎛
⎝

⎞
−0 100 0 800

1

8 10

1

1 003. . .kg kg m m⎠⎠

=

= =
( )

10 8

0 100

0 7002
1 1

2

.

.

.

m s

kg 10.8 m s
v

vm

m kkg
m s= 1 55.

 (b)  If the spheres are metal, electrons will move around on them with negligible energy loss to 
place the centers of excess charge on the insides of the spheres. Then just before they touch, 
the effective distance between charges will be less than r r1 2+  and the spheres will really 

  be moving faster than calculated in (a) .

FIG. P25.22(a)

FIG. P25.22(b)
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P25.24 Consider the two spheres as a system.

 (a) Conservation of momentum: 0 1 1 2 2= + −( )m mv vˆ ˆi i

  or v
v

2
1 1

2

= m

m
.

  By conservation of energy, 0
1

2

1

2
1 2

1 1
2

2 2
2 1 2

1 2

=
−( )

= + +
−( )
+

k q q

d
m m

k q q

r r
e ev v

  and 
k q q

r r

k q q

d
m

m

m
e e1 2

1 2

1 2
1 1

2 1
2

1
2

2

1

2

1

2+
− = +v

v
.

   

v

v

1
2 1 2

1 1 2 1 2

2
1

2

2 1 1=
+( ) +

−
⎛
⎝⎜

⎞
⎠⎟

=

m k q q

m m m r r d

m

m

e

⎛⎛
⎝⎜

⎞
⎠⎟

=
+( ) +

−
⎛
⎝⎜

⎞
⎠⎟

v1
1 1 2

2 1 2 1 2

2 1 1m k q q

m m m r r d
e

 (b)  If the spheres are metal, electrons will move around on them with negligible energy loss to 
place the centers of excess charge on the insides of the spheres. Then just before they touch, 
the effective distance between charges will be less than r r1 2+  and the spheres will really 

  be moving faster than calculated in (a) .

P25.25 The original electrical potential energy is

 U qV q
k q

de
e= =

 In the fi nal confi guration we have mechanical equilibrium. The spring and electrostatic forces 

 on each charge are − ( ) +
( ) =k d q
k q

d
e2

3
02 .  Then k

k q

d
e=

2

318
.  In the fi nal confi guration the total 

 potential energy is 
1

2

1

2 18
2

3

4

9
2

2

3

2
2

kx qV
k q

d
d q

k q

d

k q

d
e e e+ = ( ) + = . The missing energy must have 

 become internal energy, as the system is isolated: k q

d

k q

d
Ee e

2 24

9
= + ∆ int .

 ∆E
k q

d
e

int = 5

9

2

P25.26 Using conservation of energy for the alpha particle-nucleus system,

 we have K U K Uf f i i+ = +

 But  U
k q q

ri
e

i

= α gold   and r
i
 ≈ ∞ Thus, Ui = 0

 Also  K f = 0  (v f = 0
 
at turning point),

 so  U Kf i=

 or  
k q q

r
me α

α α
gold

min

= 1

2
2v

   
r

k q q

m
e

min

.
= =

× ⋅( )( )2 2 8 99 10 2 79
2

9
α

α α

gold
2 2N m C

v

(( ) ×( )
×( ) ×( )

−

−

1 60 10

6 64 10 2 00 10

19 2

27 7

.

. .

C

kg m s
22

142 74 10

27 4

= ×

=

−.

.

m

fm
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Section 25.4 Obtaining the Value of the Electric Field from the Electric Potential

P25.27 V x x y yz= − +5 3 22 2

 Evaluate E at 1 0 2, , .−( )
 

E
V

x
xy

E
V

y
x

x

y

= − ∂
∂

= − + = − + ( )( ) = −

= − ∂
∂

= + −

5 6 5 6 1 0 5

3 2 22 3 1 2 2 5

4 4 0 2

2 2 2z

E
V

z
yzz

= ( ) − −( ) = −

= − ∂
∂

= − = − ( ) −( ) ==

= + + = −( ) + −( ) + =

0

5 5 0 7 072 2 2 2 2 2E E E Ex y z . N C

P25.28 (a) For r R<  V
k Q

R
e=

   E
dV

drr = − = 0

 (b) For r R≥  V
k Q

r
e=

   E
dV

dr

k Q

r

k Q

rr
e e= − = − −⎛

⎝
⎞
⎠ =2 2

P25.29 V a bx x= + = + −( )10 0 7 00. .V V m

 (a) At x = 0,  V = 10 0. V

  At x = 3 00. m, V = −11 0. V

  At x = 6 00. m, V = −32 0. V

 (b) E
dV

dx
b x= − = − = − −( ) = +7 00 7 00. .V m N C in the direection

P25.30 (a) E E E
V

sA B> =since
∆
∆

 (b) E
V

sB = − = − −( )
=∆

∆
6 2

200
V

2 cm
N C

 
down

 (c) The fi gure is shown to the right, with sample fi eld lines 
 sketched in.

P25.31 E
V

y y

k Q y

yy
e= − ∂

∂
= − ∂

∂
+ +⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥�

� �
ln

2 2

 E
k Q

y

y

y y

k Q

y y
y

e e= −
+ + +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
+� � � � �

1
2

2 2 2 2 2 2

FIG. P25.30
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Section 25.5 Electric Potential Due to Continuous Charge Distributions

P25.32 ∆V V V
k Q

R R

k Q

R

k Q

RR
e e e= − =

+ ( )
− = −⎛

⎝⎜
⎞
⎠⎟ = −2 0 2 22

1

5
1 00 553.

k Q

R
e

P25.33 (a) α λ[ ] = ⎡
⎣⎢

⎤
⎦⎥

= ⋅⎛⎝
⎞
⎠ =

x

C

m m

C

m2

1

 (b) V k
dq

r
k

dx

r
k

xdx

d x
k L d

L

de e e

L

e= = =
+

= − +⎛∫ ∫ ∫
λ α α

0

1ln⎝⎝
⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

P25.34 V
k dq

r
k

xdx

b L x

e
e= =

+ −( )∫ ∫
α

2 2
2

 Let z
L

x= −
2

.

 Then x
L

z= −
2

,  and dx dz= −

  

V k
L z dz

b z

k L dz

b z
k

zdz
e

e
e=

−( ) −( )
+

= −
+

+∫α α α
2

22 2 2 2 bb z

k L
z z b k z b

V
k L

e
e

e

2 2

2 2 2 2

2

2

+
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∫∫
α α
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ln
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x
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2
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0
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⎞
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⎞
⎠ +

⎡

⎣
⎢
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⎤

⎦
⎥
⎥

+ −⎛α ⎝⎝
⎞
⎠ +
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P25.35 V dV
dq

r
= =

∈∫ ∫
1

4 0π

 All bits of charge are at the same distance from O.

 So V
Q

R
=

∈
⎛
⎝

⎞
⎠ = × ⋅( ) − × −1

4
8 99 10

7 50 10

0

9
6

π
.

.
N m C

C2 2

00.140 m
MV

π
⎛
⎝⎜

⎞
⎠⎟

= −1 51. .

FIG. P25.33
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P25.36 V k
dq

r
k

dx

x
k

ds

Re e

R

R

e= =
−

+∫ ∫
−

−

all charge semi

λ λ

3 ccircle
∫ ∫+ k

dx

xe

R

R λ3

 
V k x

k

R
R k x

V k
R

R

e R

R e
e R

R

e

= − −( ) + +

=

−
−λ λ π λln ln

ln

3

3

3 ++ + = +( )k k ke e eλ π λ πln ln3 2 3

Section 25.6 Electric Potential Due to a Charged Conductor

P25.37 The electric fi eld on the surface of a conductor varies inversely with the radius of curvature of the 
surface. Thus, the fi eld is most intense where the radius of curvature is smallest and vice-versa. 
The local charge density and the electric fi eld intensity are related by

 E =
∈
σ

0

  or  σ = ∈0 E

 (a) Where the radius of curvature is the greatest,

  σ = ∈ = × ⋅( ) ×( ) =−
0

12 48 85 10 2 80 10 2Emin
2 2C N m N C. . 448 nC m2

 (b) Where the radius of curvature is the smallest,

  σ = ∈ = × ⋅( ) ×( ) =−
0

12 48 85 10 5 60 10 4Emax . .C N m N C2 2 996 nC m2

P25.38 Substituting given values into V
k q

r
e=

  7 50 10
8 99 10

0 300
3

9

.
.

.
× =

× ⋅( )
V

N m C

m

2 2 q

 Substituting q = × −2 50 10 7. C,

  N
e

= ×
×

= ×
−

− −

2 50 10
1 56 10

7

19
12.

.
C

1.60 10 C
electrrons

P25.39 (a) E = 0 ;

  V
k q

R
e= =

×( ) ×( )
=

−8 99 10 26 0 10

0 140
1 67

9 6. .

.
. MV

 (b) E
k q

r
e= =

×( ) ×( )
( ) =

−

2

9 6

2

8 99 10 26 0 10

0 200
5 84

. .

.
. MMN C away

  V
k q

R
e= =

×( ) ×( )
=

−8 99 10 26 0 10

0 200
1 17

9 6. .

.
. MV

 (c) E
k q

R
e= =

×( ) ×( )
( ) =

−

2

9 6

2

8 99 10 26 0 10

0 140
11 9

. .

.
. MMN C away

  V
k q

R
e= = 1 67. MV
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P25.40 (a) Both spheres must be at the same potential according to 
k q

r

k q

r
e e1

1

2

2

=

  where also  q q1 2
61 20 10+ = × −. C

  Then q
q r

r1
2 1

2

=

   

q r

r
q

q

2 1

2
2

6

2

6

1 20 10

1 20 10

1

+ = ×

= ×
+

−

−

.

.

C

C

6 cm 2 ccm
C on the smaller sphere= ×

=

−0 300 10

1

6

1

.

.q 220 10 0 300 10 0 900 106 6 6

1

× − × = ×

=

− − −C C C. .

V
k q

r
e

11

9 6

2

8 99 10 0 900 10

6 10
=

× ⋅( ) ×( )
×

=
−

−

. .N m C C

m

2 2

11 35 105. × V

 (b) Outside the larger sphere,

   
�
E r r r1

1

1
2

1

1

51 35 10
2 2= = = × =k q

r

V

r
e ˆ ˆ

.
ˆ .

V

0.06 m
55 106× V m away

  Outside the smaller sphere,

   
�
E r2

5
61 35 10

6 74 10= × = ×.
ˆ .

V

0.02 m
V m away

   The smaller sphere carries less charge but creates a much stronger electric fi eld than the 
larger sphere.

Section 25.7 The Millikan Oil Drop Experiment

Section 25.8 Application of Electrostatics

P25.41 (a) E
k Q

r

k Q

r r
V

r
e e

max max.= × = = ⎛
⎝

⎞
⎠ = ⎛

⎝
⎞3 00 10

1 16
2V m ⎠⎠

  V E rmax max . .= = × ( ) =3 00 10 0 150 4506 kV

 (b) 
k Q

r
Ee max

max2 =
  

or
k Q

r
Ve max

max={ }
  

Q
E r

ke
max

max . .

.
.= = × ( )

×
=

2 6 2

9

3 00 10 0 150

8 99 10
7 51 Cµ
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P25.42 (a)  V V dB A

A

B

− = − ⋅∫
� �
E s

 

and the fi eld at distance r from a uniformly

  charged rod (where r > radius of charged rod) is

   E
r

k

r
e=

∈
=λ

π
λ

2

2

0

   In this case, the fi eld between the central wire and the coaxial
cylinder is directed perpendicular to the line of charge so that

   V V
k

r
dr k

r

rB A
e

r

r

e
a

ba

b

− = − =
⎛
⎝⎜

⎞
⎠⎟∫

2
2

λ λ ln

  or ∆V k
r

re
a

b

=
⎛
⎝⎜

⎞
⎠⎟

2 λ ln

 (b)  From part (a), when the outer cylinder is considered to be at zero potential, the potential at 
a distance r from the axis is

   V k
r

re
a= ⎛

⎝
⎞
⎠2 λ ln

  The fi eld at r is given by

   E
V

r
k

r

r

r

r

k

re
a

a e= − ∂
∂

= −
⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝

⎞
⎠ =2

2
2λ λ

  But, from part (a), 2k
V

r re
a b

λ = ( )
∆

ln
.

  Therefore, E
V

r r ra b

= ( )
⎛
⎝

⎞
⎠

∆
ln

.
1

FIG. P25.42
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P25.43 (a) From the previous problem,

   E
V

r r ra b

= ( )
∆

ln

1

  We require just outside the central wire

   5 50 10
50 0 10

0 850

16
3

.
.

ln .
× = ×

( )
⎛
⎝⎜

⎞
⎠

V m
V

m r rb b
⎟⎟

  or 110
0 850

11m
m−( ) ⎛

⎝⎜
⎞
⎠⎟

=r
rb
b

ln
.

  We solve by homing in on the required value

rb m( ) 0.0100 0.00100 0.00150 0.00145 0.00143 0.00142

110
0 8501m

m−( ) ⎛
⎝⎜

⎞
⎠⎟

r
rb
b

ln
.

4.89 0.740 1.05 1.017 1.005 0.999

  Thus, to three signifi cant fi gures,

   rb = 1 42. mm

 (b) At ra ,

   E = ( )
⎛
⎝

⎞
⎠ =50 0

0 850

1

0 850
9

.

ln . .

kV

m 0.001 42 m m
..20 kV m

Additional Problems

*P25.44 (a) The fi eld within the conducting Earth is zero. E = s /¨
0

  s  = E¨
0
 = (−120 N/C)(8.85 × 10−12 C2/N ⋅m2) =  −1.06 nC/m2  

  (b) QE = s A = s 4p r2 = (−1.06 × 10−9 C/m2) 4p  (6.37 × 106 m)2 = −542 kC

 (c) V
k Q

R
e= = × − ×

⋅ ×
8 99 10 5 42 10

6 37 10

9 5. ( .

( .

C C)

N m

2

2 66 764
m)

MV= −

 (d) V
head

 − V
feet

 = Ed = (120 N/C)1.75 m = 210 V

 (e) F
k q q

r
e= = × ⋅ ×1 2

2

9 58 99 10 5 42 10 0 273. ( . .N m C) (2 2 ))

C m)
N away from Ear2 2( .

.
3 84 10

4 88 108
3

×
= × tth

 (f) The gravitational force is

 

F
GM M

r
E M= = × ⋅ ×−

2

11 246 67 10 5 98 10. ( . N m  kg)(7.32 66  kg)

kg  m)
N

towar

2 2

×
×

= ×10

3 84 10
1 99 10

22

8
20

( .
.

dd the Earth

 

The gravitational force is larger by 1.99 × 1020/4.88 × 103 = 4.08 × 1016 times and in the 
opposite direction.

 Electrical forces are negligible in accounting for planetary motion.

continued on next page
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 (g) We require  m(−g) + qE = 0

   6 × 10−6 kg(−9.8 m/s2) + q(−120 N/C) = 0

   q = 5.88 × 10−5 N/(−120 N/C) = −490 nC

 (h)  Less charge to be suspended at the equator. The gravitational force is weaker at a greater 
distance from the Earth’s center. The suspended particle is not quite in equilibrium, but 
accelerating downward to participate in the daily rotation. At uniform potential, the planet’s 
surface creates a stronger electric fi eld at the equator, where its radius of curvature is smaller.

P25.45 (a) U
k q q

r
e= =

− ×( ) ×( )
×

−
1 2

9 19 2
8 99 10 1 60 10

0 052 9 10

. .

. −−
−= − × = −

9
184 35 10 27 2. . J  eV

 (b) U
k q q

r
e= =

− ×( ) ×( )
×

−
1 2

9 19 2

2

8 99 10 1 60 10

2 0 052 9

. .

. 110
6 809−( ) = − . eV

 (c) U
k q q

r

k ee e= = −
∞

=1 2
2

0

*P25.46  (a)  The two particles exert forces of repulsion on each other. As the projectile approaches the 
target particle, the projectile slows. The target starts to move in the x direction. As long as 
the projectile is moving faster than the second particle, the two will be approaching. Kinetic 
energy will be being converted into electric potential energy. When both particles move 
with equal speeds, the distance between them will momentarily not be changing: this is 
the instant of closest approach. Thereafter, the target particle, still feeling a forward force, 
will move faster than the projectile. The particles will separate again. The particles exert 
forces on each other but never touch. The particles will eventually be very far apart, with 
zero electric potential energy. All of the Ue  they had at closest approach is converted back 
into kinetic energy. The whole process is an elastic collision. Compare this problem with 
Problem 9.49 in Chapter 9.

 (b)  Momentum is constant throughout the process. We equate it at the large-separation initial 
point and the point b of closest approach.

  

m m m mi i b b1 1 2 2 1 1 2 2

2 21 0

� � � �
v v v v

i

+ = +

( )( ) +g m sˆ == +( )

=

2 5

6 00

g g

m s

�

�

v

v i

b

b . ˆ

 (c) Energy conservation between the same two points:

  

1

2

1

2
0

1

2

1

2

1 1
2

2 2
2

1 2
2 1 2m m m m

k q q

ri i b
e

b

v v v+ + = +( ) +

00 002 21
1

2
0 005 0 0

1

2
0 007

2 2
. . . kg  m s  kg  ( ) + ( ) + = kkg  m s

 Nm

C

 C .52

2

6

8 99 10 15 10 8 10

2

9 6 6

( )

+ × × ×− −.   C

 J  J
 J m

 m

r

r

r

b

b

b

0 441 0 126
1 15

1 15

0 3

. .
.

.

.

− = ⋅

=
115

3 64= .  m

continued on next page
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 (d) The overall elastic collision is described by conservation of momentum:

 
m m m mi i d d1 1 2 2 1 1 2 2

2 21 0

� � � �
v v v v

i

+ = +

( )( ) +g m sˆ == +2 51 2g g
� �
v i v id d

ˆ ˆ

  and by the relative velocity equation:

 
v v v v

v v
1 2 2 1

2 121 0
i i d d

d d

− = −
− = − m s

  we substitute

  

v v

v v
2 1

1 1

21

42 2 5 21
d d

d d

= +
⋅ = + +( ) =

 m s

 g m s  g  g  m s 22 105 5

63 7
1 1

1

1

 g  g m s  g

 g m s  g

v v

v

v

d d

d

d

+ ⋅ +
− ⋅ =

= −99 00

9 00

21 9 12 0

1

2

.

. ˆ

.

 m s

 m s

 m s  m s  

�
v id

d

= −

= − =v mm s

 m s
�
v i2 12 0d = . ˆ

P25.47 U qV k
q q

re= = = ×( ) ( )( ) × −
1 2

12

9
19

8 99 10
38 54 1 60 10

.
.(( )

+( ) ×
= × =−

−

2

15
11

5 50 6 20 10
4 04 10 253

. .
. J MeV

P25.48 (a)  Take the origin at the point where we will fi nd the potential. One ring, of width dx, has

  charge Qdx

h
 and, according to Example 25.5, creates potential

  dV
k Qdx

h x R
e=

+2 2

  The whole stack of rings creates potential

  

V dV
k Qdx

h x R

k Q

h
x xe

d

d h

e= =
+

= +∫ ∫
+

all charge
2 2

2ln ++( )

=
+ + +( ) +

+ +

⎛

⎝
⎜

⎞

⎠
⎟

+

R

k Q

h

d h d h R

d d R

d

d h

e

2

2 2

2 2
ln

 (b)  A disk of thickness dx has charge Qdx

h
 and charge-per-area Qdx

R hπ 2
.  According to 

Example 25.6, it creates potential

  dV k
Qdx

R h
x R xe= + −( )2 2

2 2π
π

  Integrating,

  

V
k Q

R h
x R dx xdx

k Q

R h
x x Re

d

d h

e= + −( ) = +
+

∫
2 2 1

22
2 2

2
2 2 ++ + +( ) −

⎡

⎣
⎢

⎤

⎦
⎥

= +( )

+
R

x x R
x

V
k Q

R h
d h

d

d h

e

2
2 2

2

2

2 2
ln

dd h R d d R dh h R
d h d h R

d
+( ) + − + − − +

+ + +( ) +2 2 2 2 2 2

2 2

2 ln
++ +

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥d R2 2
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*P25.49 For a charge at (x = −1 m, y = 0), the radial distance away is given by ( )x y+ +1 2 2 . So the fi rst 
term will be the potential it creates if

 (8.99 × 109 N ⋅ m2/C2)Q
1
 = 36 V ⋅ m         Q

1
 = 4.00 nC

 The second term is the potential of a charge at (x = 0, y = 2 m) with

 (8.99 × 109 N ⋅ m2/C2)Q
2
 = −45 V ⋅ m         Q

2
 = −5.01 nC

 Thus we have 4.00 nC at (−1.00 m, 0) and −5.01 nC at (0, 2.00 m) .

P25.50 The plates create uniform electric fi eld to the right in the picture, with magnitude

 
V V

d

V

d
0 0 02− −( )

= . Assume the ball swings a small distance x to the right. It moves to a

 place where the voltage created by the plates is lower by − = −Ex
V

d
x

2 0 . Its ground 

 connection maintains it at V = 0 by allowing charge q to fl ow from ground onto the ball,

 where − + = =
2

0
20 0V x

d

k q

R
q

V xR

k d
e

e

. Then the ball feels electric force F qE
V xR

k de

= =
4 0

2

2  to

 the right. For equilibrium this must be balanced by the horizontal component of string

 tension according to T mg T
V xR

k de

cos sinθ θ= =
4 0

2

2

 

tanθ = =
4 0

2

2

V xR

k d mg

x

Le  

for small x.

 Then V
k d mg

RL
e

0

2 1 2

4
=

⎛
⎝⎜

⎞
⎠⎟

.  If V0  is less than this value, the only equilibrium position of the ball is

 hanging straight down. If V0  exceeds this value the ball will swing over to one plate or the other.

P25.51 From an Example in the chapter text, the potential at the center of the

 ring is V
k Q

Ri
e=

 
and the potential at an infi nite distance from the

 ring is Vf = 0.  Thus, the initial and fi nal potential energies of the

 point charge-ring system are:

   U QV
k Q

Ri i
e= =

2

 and U QVf f= = 0

 From conservation of energy,

   K U K Uf f i i+ = +

 or  
1

2
0 02

2

M
k Q

Rf
ev + = +

 giving v f
ek Q

MR
= 2 2

FIG. P25.51
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P25.52 Take the illustration presented with the problem as an initial picture.
No external horizontal forces act on the set of four balls, so its center
of mass stays fi xed at the location of the center of the square. As the
charged balls 1 and 2 swing out and away from each other, balls 3 
and 4 move up with equal y-components of velocity. The maximum-
kinetic-energy point is illustrated. System energy is conserved:

 

k q

a

k q

a
m m m m

k q

a

e e

e

2 2
2 2 2 2

2

3

1

2

1

2

1

2

1

2

2

3

= + + + +v v v v

== =2
3

2
2

m
k q

am
ev v

P25.53 V V d
r

dr
r

r

r

r

2 1
01

2

1

2

2
− = − ⋅ = −

∈∫ ∫
� �
E r

λ
π

 V V
r

r2 1
0

2

12
− = −

∈
⎛
⎝⎜

⎞
⎠⎟

λ
π

ln

P25.54 V k
dx

x b
k x x b ke

a

a L

e
a

a L

e=
+

= + +( )⎡
⎣

⎤
⎦ =

+ +

∫
λ λ
2 2

2 2ln λλ ln
a L a L b

a a b

+ + +( ) +
+ +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 2

2 2

P25.55 For an element of area which is a ring of radius r and width dr, dV
k dq

r x
e=
+2 2

.

 dq dA Cr rdr= = ( )σ π2
 
and

 V C k
r dr

r x
C k R R x x

x

R R
e

R

e= ( )
+

= ( ) + +
+∫2

2

2 2
0

2 2 2π π ln
22 2+

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

x

P25.56 dU Vdq=  where the potential V
k q

r
e= .

 The element of charge in a shell is dq = ρ  (volume element) or dq r dr= ( )ρ π4 2  and the charge 
q in a sphere of radius r is

 q r dr
r

r

= =
⎛
⎝⎜

⎞
⎠⎟∫4

4

3
2

0

3

πρ ρ π

 Substituting this into the expression for dU, we have

 
dU

k q

r
dq k

r

r
re

e= ⎛
⎝⎜

⎞
⎠⎟ =

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ρ π ρ π4

3

1
4

3
2ddr k r dr

U dU k

e

e

( ) =
⎛
⎝⎜

⎞
⎠⎟

= =
⎛
⎝⎜

⎞
⎠∫

16

3

16

3

2
2 4

2

π ρ

π
⎟⎟ =

⎛
⎝⎜

⎞
⎠⎟∫ρ π ρ2 4

0

2
2 516

15
r dr k R

R

e

 But the total charge, Q R= ρ π4

3
3. Therefore, U

k Q

R
e= 3

5

2

.

FIG. P25.52
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P25.57 (a) V
k q

r

k q

r

k q

r r
r re e e= − = −( )

1 2 1 2
2 1

  From the fi gure, for r a>> ,    r r a2 1 2− ≈ cosθ

  Then v ≈ ≈k q

r r
a

k p

r
e e

1 2
22 cos

cosθ θ

 (b) E
V

r

k p

rr
e= − ∂

∂
= 2

3

cosθ

  In spherical coordinates, the q component of the gradient is − ∂
∂

⎛
⎝⎜

⎞
⎠⎟

1

r θ
.

  Therefore,     E
r

V k p

r
e

θ θ
θ= − ∂

∂
⎛
⎝⎜

⎞
⎠⎟ =1

3

sin

  For r a>>     E
k p

rr
e0

2
3

°( ) =

  and    Er 90 0°( ) = ,

   Eθ 0 0°( ) =

  and E
k p

r
e

θ 90 3°( ) =

   These results are reasonable for r a>> . Their directions are as shown in Figure 25.13 (c).

   However, for r E→ ( ) → ∞0 0, . This is unreasonable,  since r is not much greater

  than a if it is 0.

 (c) V
k py

x y
e=

+( )2 2 3 2

  and E
V

x

k pxy

x y
x

e= − ∂
∂

=
+( )

3
2 2 5 2

   E
V

y

k p y x

x y
y

e= − ∂
∂

=
−( )

+( )
2 2 2

2 2 5 2

FIG. P25.57
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*P25.58 (a) k
e
Q/r = 8.99 × 109 (1.6 × 10−9) V/2 = 7.19 V

 (b) 8 99 8 99

2 1
7 67

3
2

.

)

.

( )
.

1.6

2(1+

1.6
V

1
2

+
+

=

 (c) 8 99

4

1

1

1

1

1

1

1

1
7 8

1
4

3
4

5
4

7
4

.
.

  1.6

+
+

+
+

+
+

+
⎛

⎝
⎜

⎞

⎠
⎟ = 44 V

 (d) We fi nd 8 99

32

1

1

1

1

1

11
32

3
32

63
32

. ...  1.6

+
+

+
+ +

+
⎛
⎝⎜

⎞
⎠⎟

= 77 900 2.   V

 (e) We fi nd 8 99

64

1

1

1

1

1

11
64

3
64

127
64

. ...1.6

+
+

+
+ +

+
⎛
⎝⎜

⎞
⎠⎟

== 7 901. 0 V

 (f) We represent the exact result as

 V
k Q a

a
e= +⎛

⎝
⎜

⎞
⎠
⎟ =

⎛
⎝
⎜

⎞
⎠
⎟ =

�
�

ln
.

ln
8 99

2

3

1
7

  1.6 V
..901 2 V

 Modeling the line as a set of points works nicely. The exact result, represented as 7.901 2 V, is 
approximated to within 0.8% by the four-particle version. The 16-particle approximation gives a 
result accurate to three digits, to within 0.05%. The 64-charge approximation gives a result accu-
rate to four digits, differing by only 0.003% from the exact result.

P25.59 The positive plate by itself creates a fi eld E =
∈

= ×
× ⋅( ) =

−

−

σ
2

36 0 10

2 8 85 10
2 03

0

9

12

.

.
.

C m

C N m

2

2 2
  kN C

 

away from the + plate. The negative plate by itself creates the same size fi eld and between the 
plates it is in the same direction. Together the plates create a uniform fi eld 4 07. kN C  in the 
space between.

 (a) Take V = 0  at the negative plate. The potential at the positive plate is then

  V dx− = − −( )∫0 4 07
0

12 0

.
.

kN C
cm

  The potential difference between the plates is V = ×( ) ( ) =4 07 10 0 120 4883. . . N C  m  V

 (b) 1

2

1

2
2 2m qV m qV

i f

v v+⎛
⎝⎜

⎞
⎠⎟ = +⎛

⎝⎜
⎞
⎠⎟

  qV m f= ×( )( ) = = ×− −1 60 10 488
1

2
7 81 1019 2 17. . C  V  v JJ

 (c) v f = 306 km s

 (d) v vf i f ia x x2 2 2= + −( )

  
3 06 10 0 2 0 120

3 90 10

5 2

11

. .

.

×( ) = + ( )
= ×

m s  m

m s  t2

a

a ooward the negative plate

 (e)  F ma∑ = = ×( ) ×( ) = ×−1 67 10 3 90 10 6 51 1027 11. . . kg m s2 −−16  N  toward the negative

  plate

 (f) E
F

q
= = ×

×
=

−

−

6 51 10

1 60 10
4 07

16

19

.

.
.

N

C
kN C
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P25.60 For the given charge distribution, V x y z
k q

r

k q

r
e e, ,( ) =
( ) +

−( )
1 2

2

 where r x R y z1
2 2 2= +( ) + +  

and r x y z2
2 2 2= + +

 The surface on which V x y z, ,( ) = 0

 is given by k q
r re

1 2
0

1 2

−
⎛

⎝
⎜

⎞

⎠
⎟ = ,  or 2 1 2r r=

 This gives: 4 4 42 2 2 2 2 2x R y z x y z+( ) + + = + +

 which may be written in the form: x y z R x y z R2 2 2 28

3
0 0

4

3
0+ + + ⎛

⎝
⎞
⎠ + ( ) + ( ) + ⎛

⎝
⎞
⎠ =  [1]

 The general equation for a sphere of radius a centered at x y z0 0 0, ,( )  is:

  x x y y z z a−( ) + −( ) + −( ) − =0

2

0

2

0

2 2 0

 or x y z x x y y z z x y z2 2 2
0 0 0 0

2
0
2

02 2 2+ + + −( ) + −( ) + −( ) + + + 22 2 0−( ) =a  [2]

 Comparing equations [1] and [2], it is seen that the equipotential surface for which V = 0  is 
indeed a sphere and that:

 − = − = − =2
8

3
2 0 2 00 0 0x R y z; ; ;    x y z a R0

2
0
2

0
2 2 24

3
+ + − =

 Thus, x R0

4

3
= − , y z0 0 0= = , and  a R R2 2 216

9

4

3

4

9
= −⎛

⎝
⎞
⎠ =

 The equipotential surface is therefore a sphere centered at −
⎛
⎝
⎜

⎞
⎠
⎟

4

3
0 0R, , ,  having a radius

2

3
R .

P25.61 Inside the sphere, E E Ex y z= = = 0 .

 Outside, E
V

x x
V E z E a z x y zx = − ∂

∂
= − ∂

∂
− + + +( )( )−

0 0 0
3 2 2 2 3 2

 So  E E a z x y z xx = − + + −⎛
⎝

⎞
⎠ + +( ) ( )⎡

⎣⎢
⎤
⎦⎥

−
0 0

3

2
20

3 2 2 2 5 2
== + +( )−

3 0
3 2 2 2 5 2

E a xz x y z

 

E
V

y y
V E z E a z x y z

E

y

y

= − ∂
∂

= − ∂
∂

− + + +( )( )
=

−
0 0 0

3 2 2 2 3 2

−− −⎛
⎝

⎞
⎠ + +( ) = + +

−
E a z x y z y E a yz x y0

3 2 2 2 5 2

0
3 2 23

2
2 3 zz

E
V

z
E E a z x y zz

2 5 2

0 0
3 2 2 23

2

( )

= − ∂
∂

= − −⎛
⎝

⎞
⎠ + +( )

−

−55 2

0
3 2 2 2 3 2

0 0
3 2 2

2

2

z E a x y z

E E E a z x yz

( ) − + +( )

= + − −

−

22 2 2 2 5 2( ) + +( )−
x y z
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ANSWERS TO EVEN PROBLEMS

P25.2 1.35 MJ

P25.4 +260 V

P25.6 0 300. m s

P25.8 See the solution.

P25.10 (a) −4 83. m  (b) 0 667. m  and −2 00. m

P25.12 (a) 0 (b) 0 (c) 45 0. kV

P25.14 (a) −386 nJ  (b) 103 V

P25.16 (a) 32 2. kV  (b) −96 5. mJ

P25.18 − 5k q

R
e

P25.20 (a) +7.00 nC with position vector 7.00 cm at 70.0° and −8.00 nC with position vector 3.00 cm at 
90.0° (b) (0.070 3 î  − 1.09 ĵ)mN (c) +24.0 mJ

P25.22 See the solution.

P25.24 (a) v1
2 1 2

1 1 2 1 2

2 1 1=
+( ) +

−
⎛
⎝⎜

⎞
⎠⎟

m k q q

m m m r r d
e       v2

1 1 2

2 1 2 1 2

2 1 1=
+( ) +

−
⎛
⎝⎜

⎞
⎠⎟

m k q q

m m m r r d
e  (b) Faster than

 calculated in (a)

P25.26 27 4. fm

P25.28 (a) 0  (b) k Q

r
e

2
 
radially outward

P25.30 (a) larger at A  (b) 200 N C down  (c) See the solution.

P25.32 −0 553.
k Q

R
e

P25.34 −
+ ( ) −

+ ( ) +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

k L b L L

b L L

eα
2

4 2

4 2

2 2

2 2
ln

P25.36 k
e
l(p + 2 ln3)

P25.38 1 56 1012. × electrons

P25.40 (a) 135 kV   (b) 2 25. MV m away from the large sphere and 6 74. MV m  away from the small 
sphere

P25.42 See the solution.
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P25.44 (a) negative 1.06 nC/m2   (b) −542 kC  (c) 764 MV  (d) His head is higher in potential by
210 V.  (e) 4.88 kN away from the Earth  (f) The gravitational force is in the opposite direction
and 4.08 × 1016 times larger. Electrical forces are negligible in accounting for planetary motion. 
(g) −490 nC  (h) Less charge to be suspended at the equator. The gravitational force is weaker 
at a greater distance from the Earth’s center. The suspended particle is not quite in equilibrium, 
but accelerating downward to participate in the daily rotation. At uniform potential, the 
planet’s surface creates a stronger electric fi eld at the equator, where its radius of curvature is 
smaller.

P25.46 (a) The velocity of one particle relative to the other is fi rst a velocity of approach, then zero at 
closest approach, and then a velocity of recession.  (b) 6.00 î m/s  (c) 3.64 m  (d) −9.00 î m/s 
for the incident particle and 12.0 î m/s for the target particle.

P25.48 (a) k Q

h

d h d h R

d d R
e ln

+ + +( ) +
+ +

⎛

⎝
⎜

⎞

⎠
⎟

2 2

2 2

 (b) k Q

R h
e
2 d h d h R d d R dh h R

d h d h
+( ) +( ) + − + − − +

+ + +( )2 2 2 2 2 2
2

2 ln
++

+ +

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

R

d d R

2

2 2

P25.50 See the solution.

P25.52 k q

am
e

2 1 2

3

⎛
⎝⎜

⎞
⎠⎟

P25.54 k
a L a L b

a a b
eλ ln

+ + +( ) +
+ +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 2

2 2

P25.56 3

5

2k Q

R
e

P25.58 (a) 7.19 V  (b) 7.67 V  (c) 7.84 V  (d) 7.900 2 V  (e) 7.901 0 V  (f) Modeling the line as a 
set of points works nicely. The exact result, represented as 7.901 2 V, is approximated to within 
0.8% by the four-particle version. The 16-particle approximation gives a result accurate to three 
digits, to within 0.05%. The 64-charge approximation gives a result accurate to four digits,
differing by only 0.003% from the exact result.

P25.60 See the solution.
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