
Chapter 25 

Electric Potential 



Electric Potential 

Electromagnetism has been connected to the study of forces in previous 

chapters. 

In this chapter, electromagnetism will be linked to energy. 

By using an energy approach, problems could be solved that were insoluble 

using forces. 

The concept of potential energy is of great value in the study of electricity. 

Because the electrostatic force is conservative, electrostatic phenomena can be 

conveniently described in terms of an electric potential energy. 

This will enable the definition of electric potential. 

 

Introduction 



Electrical Potential Energy 

When a test charge is placed in an electric field, it experiences a force. 

   

 The force is conservative. 

If the test charge is moved in the field by some external agent, the work done by 

the field is the negative of the work done by the external agent. 

      is an infinitesimal displacement vector that is oriented tangent to a path 
through space. 

 The path may be straight or curved and the integral performed along this 
path is called either a path integral or a line integral. 
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Electric Potential Energy, cont 

The work done within the charge-field system by the electric field on the charge is 

 

As this work is done by the field, the potential energy of the charge-field system 

is changed by ΔU = 

For a finite displacement of the charge from A to B, the change in potential 

energy of the system is 

 

Because the force is conservative, the line integral does not depend on the path 

taken by the charge. 
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Electric Potential 

The potential energy per unit charge, U/qo, is the electric potential.  

 The potential is characteristic of the field only. 

 The potential energy is characteristic of the charge-field system. 

 The potential is independent of the value of qo. 

 The potential has a value at every point in an electric field. 

The electric potential is  
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Electric Potential, cont. 

The potential is a scalar quantity. 

 Since energy is a scalar 

As a charged particle moves in an electric field, it will experience a change in 

potential. 

 

 

The infinitesimal displacement is interpreted as the displacement between two 

points in space rather than the displacement of a point charge. 
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Electric Potential, final 

The difference in potential is the meaningful quantity. 

We often take the value of the potential to be zero at some convenient point in 

the field. 

Electric potential is a scalar characteristic of an electric field, independent of any 

charges that may be placed in the field. 

The potential difference between two points exists solely because of a source 
charge and depends on the source charge distribution. 

 For a potential energy to exist, there must be a system of two or more 
charges. 

 The potential energy belongs to the system and changes only if a charge is 
moved relative to the rest of the system. 
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Work and Electric Potential 

Assume a charge moves in an electric field without any change in its kinetic 

energy. 

The work performed on the charge is 

W = ΔU = q ΔV 

Units:1 V ≡ 1 J/C 

 V is a volt. 

 It takes one joule of work to move a 1-coulomb charge through a potential 
difference of 1 volt. 

In addition, 1 N/C = 1 V/m 

 This indicates we can interpret the electric field as a measure of the rate of 
change of the electric potential with respect to position. 
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Voltage 

Electric potential is described by many terms. 

The most common term is voltage. 

A voltage applied to a device or across a device is the same as the potential 
difference across the device. 

 The voltage is not something that moves through a device. 
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Electron-Volts 

Another unit of energy that is commonly used in atomic and nuclear physics is 

the electron-volt. 

One electron-volt is defined as the energy a charge-field system gains or loses 

when a charge of magnitude e (an electron or a proton) is moved through a 

potential difference of 1 volt. 

 1 eV = 1.60 x 10-19 J 
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Potential Difference in a Uniform Field 

The equations for electric potential between two points A and B can be simplified 

if the electric field is uniform: 

 

The displacement points from A to B and is parallel to the field lines. 

The negative sign indicates that the electric potential at point B is lower than at 

point A. 

 Electric field lines always point in the direction of decreasing electric 

potential. 
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Energy and the Direction of Electric Field 

When the electric field is directed 

downward,  point B is at a lower 

potential than point A. 

When a positive test charge moves 

from A to B, the charge-field system 

loses potential energy. 

Electric field lines always point in the 

direction of decreasing electric 

potential. 
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More About Directions 

A system consisting of a positive charge and an electric field loses electric 
potential energy when the charge moves in the direction of the field. 

 An electric field does work on a positive charge when the charge moves in 
the direction of the electric field. 

The charged particle gains kinetic energy and the potential energy of the charge-
field system decreases by an equal amount. 

 Another example of Conservation of Energy 
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Directions, cont. 

If qo is negative, then ΔU is positive. 

A system consisting of a negative charge and an electric field gains potential 

energy when the charge moves in the direction of the field. 

 In order for a negative charge to move in the direction of the field, an 

external agent must do positive work on the charge. 
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Equipotentials 

Point B is at a lower potential than point 

A. 

Points A and C are at the same 

potential. 

 All points in a plane perpendicular 

to a uniform electric field are at the 

same electric potential. 

The name equipotential surface is 

given to any surface consisting of a 

continuous distribution of points having 

the same electric potential. 
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Charged Particle in a Uniform Field, Example 

A positive charge is released from rest 
and moves in the direction of the 
electric field. 

The change in potential is negative. 

The change in potential energy is 
negative. 

The force and acceleration are in the 
direction of the field. 

Conservation of Energy can be used to 
find its speed. 
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Potential and Point Charges 

An isolated positive point charge 

produces a field directed radially 

outward. 

The potential difference between points 

A and B will be 
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Potential and Point Charges, cont. 

The electric potential is independent of the path between points A and B. 

It is customary to choose a reference potential of V = 0 at rA = ∞. 

Then the potential due to a point charge at some point r is  
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Electric Potential of a Point Charge 

The electric potential in the plane 

around a single point charge is shown. 

The red line shows the 1/r nature of the 

potential. 
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Electric Potential with Multiple Charges 

The electric potential due to several point charges is the sum of the potentials 
due to each individual charge. 

 This is another example of the superposition principle. 

 The sum is the algebraic sum 

 

 

 V = 0 at r = ∞ 
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Electric Potential of a Dipole 

The graph shows the potential (y-axis) 

of an electric dipole. 

The steep slope between the charges 

represents the strong electric field in 

this region. 
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Potential Energy of Multiple Charges 

The potential energy of the system is                      . 

 

If the two charges are the same sign, U is positive and work must be done to 

bring the charges together. 

If the two charges have opposite signs, U is negative and work is done to keep 

the charges apart. 
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U with Multiple Charges, final 

If there are more than two charges, 
then find U for each pair of charges and 
add them. 

For three charges: 

 

 

 The result is independent of the 
order of the charges. 
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Finding E From V 

Assume, to start, that the field has only an x component. 

 

 

Similar statements would apply to the y and z components. 

Equipotential surfaces must always be perpendicular to the electric field lines 
passing through them. 
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E and V for an Infinite Sheet of Charge 

The equipotential lines are the dashed 

blue lines. 

The electric field lines are the brown 

lines. 

The equipotential lines are everywhere 

perpendicular to the field lines. 
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E and V for a Point Charge 

The equipotential lines are the dashed 

blue lines. 

The electric field lines are the brown 

lines. 

The electric field is radial. 

Er  = - dV / dr 

The equipotential lines are everywhere 

perpendicular to the field lines. 
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E and V for a Dipole 

The equipotential lines are the dashed 

blue lines. 

The electric field lines are the brown 

lines. 

The equipotential lines are everywhere 

perpendicular to the field lines. 
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Electric Field from Potential, General 

In general, the electric potential is a function of all three dimensions. 

Given V (x, y, z) you can find Ex, Ey and Ez as partial derivatives: 
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Electric Potential for a Continuous Charge Distribution 

Method 1: The charge distribution is 

known. 

Consider a small charge element dq 

 Treat it as a point charge. 

The potential at some point due to this 

charge element is  
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V for a Continuous Charge Distribution, cont. 

To find the total potential, you need to integrate to include the contributions from 

all the elements. 

 

 This value for V uses the reference of V = 0 when P is infinitely far away 

from the charge distributions. 
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V for a Continuous Charge Distribution, final 

If the electric field is already known from other considerations, the potential can 

be calculated using the original approach: 

 

 If the charge distribution has sufficient symmetry, first find the field from 

Gauss’ Law and then find the potential difference between any two points, 

 Choose V = 0 at some convenient point 
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Problem-Solving Strategies 

Conceptualize 

 Think about the individual charges or the charge distribution. 

 Imagine the type of potential that would be created. 

 Appeal to any symmetry in the arrangement of the charges. 

Categorize 

 Group of individual charges or a continuous distribution? 

 The answer will determine the procedure to follow in the analysis step. 
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Problem-Solving Strategies, 2 

Analyze 

 General 

 Scalar quantity, so no components 

 Use algebraic sum in the superposition principle 

 Keep track of signs 

 Only changes in electric potential are significant 

 Define V = 0 at a point infinitely far away from the charges. 

 If the charge distribution extends to infinity, then choose some other arbitrary 

point as a reference point. 
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Problem-Solving Strategies, 3 

Analyze, cont 

 If a group of individual charges is given 

 Use the superposition principle and the algebraic sum. 

 If a continuous charge distribution is given 

 Use integrals for evaluating the total potential at some point. 

 Each element of the charge distribution is treated as a point charge. 

 If the electric field is given 

 Start with the definition of the electric potential. 

 Find the field from Gauss’ Law (or some other process) if needed. 
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Problem-Solving Strategies, final 

Finalize 

 Check to see if the expression for the electric potential is consistent with 

your mental representation. 

 Does the final expression reflect any symmetry? 

 Image varying parameters to see if the mathematical results change in a 

reasonable way. 
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V for a Uniformly Charged Ring 

P is located on the perpendicular 

central axis of the uniformly charged 

ring . 

The symmetry of the situation means 

that all the charges on the ring are the 

same distance from point P. 

 The ring has a radius a and a total 

charge Q. 

The potential and the field are given by 
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V for a Uniformly Charged Disk 

The ring has a radius R and surface 

charge density of σ. 

P is along the perpendicular central 

axis of the disk. 

P is on the cental axis of the disk, 

symmetry indicates that all points in a 

given ring are the same distance from 

P. 

The potential and the field are given by 
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V for a Finite Line of Charge 

A rod of line ℓ has a total charge of Q 

and a linear charge density of λ. 

 There is no symmetry to use, but 

the geometry is simple. 
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V Due to a Charged Conductor 

Consider two points on the surface of 
the charged conductor as shown. 

    is always perpendicular to the 
displacement      . 

Therefore,   

Therefore, the potential difference 
between A and B is also zero. 

E
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V Due to a Charged Conductor, cont. 

V is constant everywhere on the surface of a charged conductor in equilibrium. 

 ΔV = 0 between any two points on the surface 

The surface of any charged conductor in electrostatic equilibrium is an 
equipotential surface. 

Every point on the surface of a charge conductor in equilibrium is at the same 
electric potential. 

Because the electric field is zero inside the conductor, we conclude that the 
electric potential is constant everywhere inside the conductor and equal to the 
value at the surface. 
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Irregularly Shaped Objects 

The charge density is high where the radius of curvature is small. 

 And low where the radius of curvature is large 

The electric field is large near the convex points having small radii of curvature 

and reaches very high values at sharp points. 
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Cavity in a Conductor 

Assume an irregularly shaped cavity is 

inside a conductor. 

Assume no charges are inside the 

cavity. 

The electric field inside the conductor  

must be zero. 
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Cavity in a Conductor, cont 

The electric field inside does not depend on the charge distribution on the outside 
surface of the conductor. 

For all paths between A and B, 

 

 

A cavity surrounded by conducting walls is a field-free region as long as no 
charges are inside the cavity. 
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Corona Discharge 

If the electric field near a conductor is sufficiently strong, electrons resulting from 

random ionizations of air molecules near the conductor accelerate away from 

their parent molecules. 

These electrons can ionize additional molecules near the conductor. 

This creates more free electrons. 

The corona discharge is the glow that results from the recombination of these 
free electrons with the ionized air molecules. 

The ionization and corona discharge are most likely to occur near very sharp 
points. 

 



Millikan Oil-Drop Experiment 

Robert Millikan measured e, the magnitude of the elementary charge on the 

electron. 

He also demonstrated the quantized nature of this charge. 

Oil droplets pass through a small hole and are illuminated by a light. 
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Millikan Oil-Drop Experiment – Experimental Set-Up 
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Oil-Drop Experiment, 2 

With no electric field between the 

plates, the gravitational force and the 

drag force (viscous) act on the electron. 

The drop reaches terminal velocity with 
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Oil-Drop Experiment, 3 

An electric field is set up between the 
plates. 

 The upper plate has a higher 
potential. 

The drop reaches a new terminal 
velocity when the electrical force equals 
the sum of the drag force and gravity. 
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Oil-Drop Experiment, final 

The drop can be raised and allowed to fall numerous times by turning the electric 

field on and off. 

After many experiments, Millikan determined: 

 q = ne where n = 0, -1, -2, -3, … 

 e = 1.60 x 10-19 C 

This yields conclusive evidence that charge is quantized. 
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Van de Graaff Generator 

Charge is delivered continuously to a 
high-potential electrode by means of a 
moving belt of insulating material. 

The high-voltage electrode is a hollow 
metal dome mounted on an insulated 
column. 

Large potentials can be developed by 
repeated trips of the belt. 

Protons accelerated through such large 
potentials receive enough energy to 
initiate nuclear reactions. 
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Electrostatic Precipitator 

An application of electrical discharge in 

gases is the electrostatic precipitator. 

It removes particulate matter from 

combustible gases. 

The air to be cleaned enters the duct 

and moves near the wire. 

As the electrons and negative ions 

created by the discharge are 

accelerated toward the outer wall by the 

electric field, the dirt particles become 

charged. 

Most of the dirt particles are negatively 

charged and are drawn to the walls by 

the electric field. 
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