PHYS102 Previous Exam Problems *–*

CHAPTER 2 Electric Potential

Solutions to Selected Problems

$\left(1\right)$ Electric Potential Energy of *Point* Charges in *External* Electric Fields

21. A proton moves in a uniform electric field of 2.5×10^7 N/C from point A to point B by traveling a distance of 1.5 m. Find the magnitudes of the work done and the potential difference between points *A* and *B*.

21. $\Delta V = E \cdot \Delta x = 2.5 \times 10^7 \times 1.5 = 3.75 \times 10^7 \text{ V}$ (lower potential) $W = 9 \Delta V = 1.6 \times 10^{79} \times 3.75 \times 10^{7} = 6 \times 10^{-12} \text{ J}$

42. An electron is moving parallel to the *x* axis under the influence of a uniform electric field directed along the positive *x* axis. The electron has an initial velocity of 3.0×10^6 m/s at point *A* and its velocity is reduced to 2.0×10⁶ m/s at point *B*. Calculate the potential difference (V_B-V_A) .

in the direction of chapter 24
42. The election menes $\vec{\epsilon}$. (: it is decelerating)
: It moves towards points of lower potential. ⇒ $V_8 < V_8$
 $\Delta K = 9. \Delta V$ ⇒ $\Delta V = -\frac{1}{4} \Delta K = \frac{m}{2} (\Delta V_8^2 - U_8^2)$
 $\Delta V = \frac{9.11 \times 10^{-31}}{2 \times 1.6 \times 10^{-19}} \times (9.0 \times 10^{12} - 4.0 \times 10^{12}) = 14 V$
 $\Delta V = -\frac{9.11 \times 10^{-31}}{4} \times (9.0 \times 10^{12} - 4.0 \times 10^{12}) = 14 V$
 $\Delta V = -\frac{6.15}{$

44. Figure 22 shows two equipotential (dashed) surfaces such that $V_A = -5.0$ V and V_B = -15 V. What is the external work needed to move a -2.0 μ C charge at constant speed from *A* to *B* along the indicated path?

 $40. W = \Delta u = 9.0V = 9 (V_{\odot} - V_{\Delta})$ = $(-2.0 \times 10^{-6}) (-15+5) = + 20 \times 10^{-6}$ J = + 20 M J

 $-15V$

(2) Calculating the Electric Potential

 Δ **1.** Two points *A* (2.0 m, 3.0 m) and *B* (5.0 m, 7.0 m) are located in a region where there is a uniform electric field that is given by $E = 4.0 \hat{i} + 3.0 \hat{j}$ (N/C). What is potential difference $(V_A - V_B)$?

1.
$$
\Delta V = -\vec{E} \cdot \Delta \vec{r}
$$

\n $V_{A} - V_{B} = -\vec{E} \cdot (\vec{r}_{A} - \vec{r}_{B}) = \vec{E} \cdot (\vec{r}_{B} - \vec{r}_{A})$
\n $\vec{r}_{B} = 5.0 \hat{i} + 3.0 \hat{j} \quad (m)$
\n $\vec{r}_{B} = 2.0 \hat{i} + 3.0 \hat{j} \quad (m)$
\n $\vec{r}_{B} - \vec{r}_{A} = 3.0 \hat{i} + 4.0 \hat{j} \quad (m)$
\n $\vec{r}_{B} - \vec{r}_{A} = 3.0 \hat{i} + 4.0 \hat{j} \quad (m)$
\n $\vec{r}_{B} - V_{B} = (4.0 \hat{i} + 3.0 \hat{j}) \cdot (3.0 \hat{i} + 4.0 \hat{j}) = 12 + 12 = 24 \text{ V}$

45. A charge of +28 nC is placed at the origin in a uniform electric field that is directed along the positive *y* axis and has a magnitude of 4.0×10^4 V/m. What is the work done by the electric field when the charge moves to the point (3.0 m, 4.0 m)?

4S.
$$
\vec{r_i} = 0
$$
, $\vec{r_f} = 3\hat{i} + 4\hat{j}$ (m) $\Rightarrow 4\vec{r} = \vec{r_f} - \vec{r_i} = 3\hat{i} + 4\hat{j}$ (m)
\n $W = -\Delta\lambda = -9\Delta V = (-9)(-\vec{E}\cdot\Delta\vec{r})$
\n $= (9)(\vec{E}\cdot\Delta\vec{r}) = 28x1\vec{0} + 2(4.0x1\vec{0} + \vec{j})$
\n $= + 28x1\vec{0} + 29x1\vec{0} + 29x$

 Δ **63.** If the electric field has magnitude of 200 V/m and makes an angle of 30 \degree with the positive x-axis, what is the potential difference V_B-V_A between point A (0, 0) and point B (3.0 m, 0 m)?

 $63.$ $\Delta \vec{r} = \vec{r}_B - \vec{r}_A = (3\hat{i}) - 0 = 3\hat{i}$ (m) $\vec{\epsilon} = \epsilon_{\bf x} \hat{i} + \epsilon_{\bf y} \hat{j} = (200 \times 10330^\circ) \hat{i} + (200 \times 1030 \hat{j}) = 173 \hat{i} + 100 \hat{j}$ (\forall /m) $AV = -\vec{t} \cdot \Delta \vec{r} = -(3\hat{i}) \cdot (173\hat{i} + 1\omega \hat{j}) = -520V$

(3) Electric Potential due to Point Charges

51. A non-conducting solid sphere of radius $R = 10.0$ cm has a uniformly distributed charge $Q = +1.50 \mu C$. Find the magnitude of the potential difference between a point at $r = 50.0$ cm and a point on the surface of the sphere.

SI.
$$
V_r = \frac{kQ}{r}
$$

\n $v_s = kQ/R$
\n $\Delta V = V_s - V_r = kQ(\frac{1}{R} - \frac{1}{R}) = 9 \times 10^9 \times 1.5 \times 10^{-6} \times (\frac{1}{0.1} - \frac{1}{0.5}) = 108 \times V$

 $-3.0a$

E Calculating the Electric Field

06. Over a certain region of space, the electric potential is give by: $V(x,y) = x^2 + y^2 + 2xy$, where *V* is in volts and *x* and *y* are in meters. Find the magnitude of the electric field at the point P (1.0, 2.0).

6.
$$
E_x = -\frac{\partial V}{\partial x} = -\frac{\partial}{\partial x}(x^2 + y^2 + 2xy) = -2x - 2y
$$

\n $E_y = -\frac{\partial V}{\partial y} = -\frac{\partial}{\partial y}(x^2 + y^2 + 2xy) = -2y - 2x$
\nAt the repubital point:
\n $E_x = -2.0 - 4.0 = -6.0$ V/m
\n $E_y = -2.0 - 4.0 = -6.0$ V/m
\n $\Rightarrow E = E_x^2 + E_y^2 = 6\sqrt{2} = 8.5$ V/m

15. Consider the parallel conducting plates shown in figure 4. The distance between the equipotential surfaces *A* and *B* is 1.00 cm, and the electric potential on surface *A* is - 280 V. What is the electric potential on the equipotential surface *B*?

15. For the whole region:
$$
E = \frac{\Delta V}{\Delta x} = \frac{3.00}{0.05} = 6
$$
 kV/m \rightarrow uniform
\nNow, consider the A-B plots:
\n $\Delta V = E \cdot \Delta x = 6 \times 10^3 \times 1.00 \times 10^2 = 60$ V
\nFrom the configuration given : $V_B > V_A$
\n $\Rightarrow V_B - V_A = 60$ V
\n $\Rightarrow V_B = V_A + 60 = -280 + 60 = -220$ V

019. In a certain region of the *xy* plane, the electric potential is given by $V (x, y) = 2xy - 3x^2 + 5y$, where *V* is in volts, and *x* and *y* are in meters. At which point is the electric field equal to zero?

19.
$$
E_x = -\frac{2v}{2x} = -\frac{2}{2x}(2xy - 3x^2 + 5y) = -2y + 6x
$$

\n $E_y = -\frac{2v}{2y} = -\frac{2}{2y}(2xy - 3x^2 + 5y) = -2x - 5$
\n $E_y = 0 \Rightarrow 2x = -5 \Rightarrow 2 = -2.5m$
\n $E_x = 0 \Rightarrow -2y + 6x = 0 \Rightarrow 2y = 6x = -15 \Rightarrow y = -7.5m$

222. The electric potential at point in an *xy* plane is given by $V = 3x^2 - 4y^2$. What are the magnitude and direction of the electric field at the point (4.0, 2.0) m?

22.
$$
E_x = -\frac{\partial V}{\partial x} = -6x
$$

\n $E_y = -\frac{\partial V}{\partial y} = +4y$
\nAt the point $(u \cdot 0, 2 \cdot 0)$: $\vec{E} = -2y\hat{i} + 6y\hat{j} \quad (V/m)$
\n $\Rightarrow E = (2y^2 + 6y^2)^{\frac{1}{2}} = 28.8 \Rightarrow 29 \text{ V/m}$
\n \vec{E} is in the $2^{\frac{1}{2}} \text{ quad.}$
\n $\phi = \tan^{-1} (16/zy) = 33.7^{\circ}$
\n $\Rightarrow \theta = 180 - \phi = 146^{\circ}$ from the (+) X axis.

27. In figure 12, two large horizontal metal plates are separated by 4 mm. The lower plate is at a potential of -6.0 V. What potential should be applied to the upper plate to create an electric field of strength 4000 V/m upwards in the space between the plates?

27. What is the magnitude of AV?
\n4V = E.0x = 4000 × 4×10³ = 16 V
\n27. If E³ points upward, then the upper plate is at
\nthe lower potential
\n
$$
V_u = V_g - 16 = -6-16 = -22 V
$$

46. An electron is placed in an *xy* plane where the electric potential depends on *x* and *y* as shown in figure 23 (the potential does not depend on *z*). What is the electric field (in units of kV/m)?

$$
E_{\frac{1}{2}} = -\frac{\partial V_{1}}{\partial y} = -\frac{\partial D_{0}}{\partial y} = -2000 \text{ V/m} = -2 \text{ kV/m}
$$

\n
$$
\Rightarrow \vec{E} = 5\hat{i} - 2\hat{j} \quad (\text{ kV/m})
$$

(5) Work and Potential Energy for a System of Charges

9. What is the external work required to bring four 3.0×10^{-9} C positive point charges from infinity and place them at the corners of a square of side 0.12 m?

$$
9. \quad u = k_1^2 \left(\frac{1}{\alpha} + \frac{1}{r} + \frac{1}{\alpha} + \frac{1}{r} + \frac{1}{\alpha} \right)
$$
\n
$$
= k_1^2 \left(\frac{4}{\alpha} + \frac{2}{r} \right) = 2k_1^2 \left(\frac{2}{\alpha} + \frac{1}{r} \right)
$$
\n
$$
= 2k_1^2 \left(\frac{2}{\alpha} + \frac{1}{r} \right) = \frac{2k_1^2}{\alpha} \left(2 + \frac{1}{2} \right)
$$
\n
$$
= 2k_1^2 \left(\frac{2}{\alpha} + \frac{1}{r} \right) = \frac{2k_1^2}{\alpha} \left(2 + \frac{1}{2} \right)
$$
\n
$$
= 2k_1 \left(\frac{2}{\alpha} + \frac{1}{r} \right) = \frac{2k_1^2}{\alpha} \left(2 + \frac{1}{2} \right)
$$
\n
$$
= 2k_1 \left(\frac{2}{\alpha} + \frac{1}{r} \right) = 3.65 \times 10^{-6} \text{J} = +3.7 \text{ mJ}
$$

10. A point charge $q_1 = +2.4 \mu C$ is held stationary at the origin. A second point charge $q_2 = -4.3 \mu C$ moves from $x_1 = 0.15$ m, $y_1 = 0$ to a point $x_2 = 0.25$ m, $y_2 = 0.25$ m. How much work is done by the electric force on q_2 ?

10.
$$
Y_i = 0.15 \text{ m}
$$
, $Y_f = \sqrt{2} \times 0.25 = 0.35 \text{ m}$
\n $W = -\Delta U = -(2U_f - U_i) = 2U_i - 2U_f = \frac{k g_1 g_2}{Y_f} - \frac{k g_1 g_2}{Y_f}$
\n $= k g_1 g_2 (\frac{1}{Y_i} - \frac{1}{Y_f}) = 9 \times 10^9 \times (2.4 \times 10^{-6}) (-4.3 \times 10^{-6}) (\frac{1}{0.15} - \frac{1}{0.35})$
\n $= -0.36 \text{ J}$

16. A point charge of 5.0×10^{-9} C is transferred, by an external agent, from infinity to the surface of a ball of radius 5.0 cm. If the ball has a charge density of 5.0×10^{-4} C/m², what is the amount of work done, by the external agent, in the process? [assume $V = 0$ at infinity]

30. Three point charges are initially infinitely far apart. Two of the point charges are identical and have charge *Q*. If zero net work is required to assemble the three charges at the corners of an equilateral triangle of side *d*, what is the value of the third charge?

30.
$$
W = \Delta U = V_f = \frac{kQ^2}{d} + \frac{kqQ}{d} + \frac{kqQ}{d}
$$

\n
$$
0 = \frac{kQ^2}{d} + 2 \frac{kqQ}{d} \Rightarrow q = -\frac{Q}{2}
$$

34. Two balls with charges 5.0 µC and 10 µC are at a distance of 1.0 m from each other. In order to reduce the distance between them to 0.5 m, what amount of work needs to be performed?

$$
34. W = \Delta U = \Delta U_{f} - U_{i}
$$

= $\frac{k \, \hat{r}_{1} \, \hat{r}_{2}}{r_{i}} - \frac{k \, \hat{r}_{1} \, \hat{r}_{2}}{r_{i}} = k \, \hat{r}_{1} \, \hat{r}_{2} \left(\frac{1}{a_{.5}} - \frac{1}{1} \right) = k \, \hat{r}_{1} \, \hat{r}_{2}$
= $4 \, \kappa \, \frac{\partial}{\partial x} \, X \, \frac{\partial}{\partial y} \, X \, \frac{\partial}{\partial z} \, \frac{\partial}{\partial z} \left(\frac{1}{a_{.5}} - \frac{1}{1} \right) = k \, \hat{r}_{1} \, \hat{r}_{2}$

59. As shown in figure 32, two particle with charge $Q = 10 \mu C$ each are fixed at the vertices of an equilateral triangle with sides of length $a = 0.30$ m. How much work is required to move a particle with a charge $q = 1 \mu C$ from point *A* at the other vertex to point \bm{B} at the center of the line joining the fixed charges?

59. The polintials due to changes
$$
a
$$
:
\n $V_A = \frac{kQ}{a} + \frac{kQ}{a/2} = \frac{2kQ}{a}$
\n $V_B = \frac{kQ}{a/2} + \frac{kQ}{a/2} = 4kQ/a$
\nThe work:
\n $W = 9 \triangle V = 9 (V_B - V_A) = 2k \frac{qQ}{a} = 2X9x10^9 \times 10^6 \times 10^5 = 0.6 J$

G Conservation of Energy

 \triangle 4. Two identical and isolated 8.0-µC point charges are positioned on the *x* axis, one is at $x = +1.0$ m and the other is at $x = -1.0$ m. They are released from rest simultaneously. What is the kinetic energy of either of the charges after it has moved 2.0 m along the *x* axis?

4.
$$
u_i = \frac{kq^2}{r_i} = \frac{9 \times 10^9 \times 64 \times 10^{12}}{2 \cdot 0} = 288 \text{ mJ}
$$
 , $K_i = 0$
\n $u_f = \frac{kq^2}{r_f} = \frac{9 \times 10^9 \times 64 \times 10^{12}}{8 \cdot 0} = 96 \text{ mJ}$, $K_f = ?$
\n $u_i + K_i = u_f + k_f$
\n $k_f = u_i - u_f = 288 - 96 \frac{1}{192} = 96 \text{ mJ}$
\n \therefore The $K_i = .2$ each $= \frac{1}{2} = 96 \text{ mJ}$

8. A particle, with a mass of 9.0×10^{-9} kg and a charge of +8 nC, has a kinetic energy of 36 μ J at point *A* and moves to point *B* where the potential is 3.0×10^3 V greater than that at point A. What is the particle's kinetic energy at point B?

8.
$$
V_B = V_A + 3.0 \times 10^3 \Rightarrow V_B - V_A = +3.0 \times 10^3 \text{ V}
$$

\n $K_A + V_A = K_B + V_B$
\n $K_B = K_A + (v_A - v_B) = K_A + 9 (v_A - v_B)$
\n $= (36 \times 10^{-6}) + (8.0 \times 10^{-9}) (-3.0 \times 10^3)$
\n $= 36 \times 10^{-6} - 24 \times 10^{-6} = 12 \text{ MJ}$

11. An electron is accelerated from a speed of 3×10^6 m/s to 8×10^6 m/s. Calculate the electric potential through which electron has to pass to gain this acceleration?

$$
W_{i} + W_{i} = K_{f} + U_{f}
$$
\n
$$
K_{i} + 9V_{i} = K_{f} + 9V_{f}
$$
\n
$$
K_{f} - K_{f} = 9(V_{f} - V_{c})
$$
\n
$$
\frac{1}{2}m(v_{i}^{3} - v_{f}^{2}) = 9(V_{f} - V_{c})
$$
\n
$$
\Delta V = V_{f} - V_{c} = \frac{m(v_{i}^{2} - v_{f}^{2})}{2g} = \frac{9.11 \times 10^{-31} \times (9 \times 10^{12} - 64 \times 10^{12})}{2 \times 2 \times (-1.6 \times 10^{-19})} = 157 V
$$

18. Two electrons are initially far away. Each electron is initially moving toward the other one with a speed of 500 m/s. Find the closest distance they can get to each other.

18. The force
$$
g
$$
 repulsion with step then
\n $u_i = 0 \rightarrow \rho v_i$ away
\n
$$
K_i = \frac{Q}{\frac{1}{2}m}v_i^2 = m v_i^2
$$
\n
$$
K_f = 0 \rightarrow \text{Hug } will \text{ stop}
$$
\n
$$
u_g = \frac{ke^2}{f}
$$
\n
$$
2U_i^2 K_i = 2U_f + k_f^2
$$
\n
$$
2U_i^2 K_i = 2U_f + k_f^2
$$
\n
$$
2U_i^2 = m v_i^2 \rightarrow r_f = \frac{k}{m} \cdot \left(\frac{e}{v_i}\right)^2 = \frac{9 \times 10^9}{9 \cdot 1 \times 10^5} \cdot \left(\frac{16 \times 10^{-19}}{500}\right)^2 = 1.01 \text{ mm}
$$

 \triangle 48. An electron is projected with an initial kinetic energy of 3.6×10⁻²⁴ J toward a fixed proton. If the electron is initially infinitely far from the proton, at what distance from the proton is its speed equal to twice its initial speed?

48.
$$
u_i = 0
$$

\n $u_f = -\frac{ke^2}{r}$
\n $k_f = \frac{1}{2} m v_f^2 = \frac{1}{2} m (2v_i)^2 = 4k_i$
\n $2u_i^2 + k_i = 2u_f + k_f$
\n $u_f = k_i - k_f = k_i - 4k_i = -3k_i$
\n $+ \frac{ke^2}{r} = +3k_i \implies r = \frac{ke^2}{3k_i} = \frac{9 \times 10^9 \times (1.6 \times 10^{-19})^2}{3 \times 3.6 \times 10^{-24}} = 2.13 \times 10^{-5} m$

 \blacklozenge 53. In figure 29, a proton's speed as it passes point *A* is 5.0×10^4 m/s. It follows the trajectory shown in the figure. What is the proton's speed at point *B*? [mass of the proton = 1.67×10^{-27} kg]

53. $\Delta V = V_B - V_A = -30 - 30 = -60 \text{ V}$
 $\Delta U = 9 \Delta V = (1.6 \times 10^{-19}) (-60) = -9.6 \times 10^{-18} \text{ J}$ $\Delta K + \Delta U = 0$ $30K = -0U$ $k_B - k_A = -\Delta u$ $\Rightarrow k_B = k_A - \Delta u$ $\frac{1}{2}$ m $V_B^2 = \frac{1}{2}$ m $V_A^2 = \Delta U$
 $V_B^2 = V_A^2 - \frac{2 \Delta U}{M} = 25 \times 10^8 + \frac{2 \times 9.6 \times 10^{78}}{1.67 \times 10^{27}} = 1.4 \times 10^{10}$ (m/s)²
 $\Rightarrow V_B = 118 \times 10^3 = 1.2 \times 10^5$ (m/s)

 \bullet 60. A metallic sphere, of radius 8 cm, is charged to a potential of $-$ 500 V (take $V = 0$ at infinity). An electron is initially 15 cm from the center of the sphere. What must be the initial speed of the electron to barely hit the sphere $(v_f = 0)$?

60.
$$
K_i + U_i = K_f^0 + U_f
$$

\n $K_i = U_f - U_i$
\nConsider xLL sphere as a particle :
\n $\frac{1}{2} m V_i^2 = (kQ)(-e) (\frac{1}{R} - \frac{1}{r_i})$
\n $\frac{1}{2} m V_i^2 = -RVE(\frac{1}{R} - \frac{1}{r_i})$
\n $V_i^3 = -\frac{2RVe}{m} (\frac{1}{R} - \frac{1}{r_i})$
\n $= \frac{-2X0.08X(-500)X1.6X10^{-19}}{q \cdot 11X10^{-31}} \times (\frac{1}{0.08} - \frac{1}{0.15}) \Rightarrow V_i = 9.1X10^6 m/s$

7 Conductors

We did problems 62 and 66 from the textbook in the lecture.