
Chapter 30 

Sources of the Magnetic Field 



Magnetic Fields 

The origin of the magnetic field is moving charges. 

The magnetic field due to various current distributions can be calculated. 

Ampère’s law is useful in calculating the magnetic field of a highly symmetric 

configuration carrying a steady current. 

Magnetic effects in matter can be explained on the basis of atomic magnetic 

moments. 

Introduction 



Biot-Savart Law – Introduction 

Biot and Savart conducted experiments on the force exerted by an electric 

current on a nearby magnet. 

They arrived at a mathematical expression that gives the magnetic field at some 

point in space due to a current. 

The magnetic field described by the Biot-Savart Law is the field due to a given 

current carrying conductor. 

 Do not confuse this field with any external field applied to the conductor from 

some other source. 
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Biot-Savart Law – Observations 

The vector        is perpendicular to both      and to the unit vector    directed 

from        toward P. 

The magnitude of       is inversely proportional to r2, where r is the distance 

from        to P. 

The magnitude of        is proportional to the current and to the magnitude ds 

of the length element      .   

The magnitude of      is proportional to sin q,  where q is the angle between 

the vectors        and    .  
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Biot-Savart Law – Equation 

The observations are summarized in the mathematical equation called the Biot-
Savart law: 

 

 

The constant mo is called the permeability of free space. 

mo = 4p x 10-7 T. m / A 
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Total Magnetic Field 

      is the field created by the current in the length segment ds. 

To find the total field, sum up the contributions from all the current elements 

I 

 

 

 The integral is over the entire current distribution. 

The law is also valid for a current consisting of charges flowing through 

space. 

 For example, this could apply to the beam in an accelerator. 
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 Magnetic Field Compared to Electric Field 

Distance  

 The magnitude of the magnetic field varies as the inverse square of the 

distance from the source. 

 The electric field due to a point charge also varies as the inverse square of 

the distance from the charge. 

Direction 

 The electric field created by a point charge is radial in direction. 

 The magnetic field created by a current element is perpendicular to both the 

length element       and the unit vector. 

 

ds r̂
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 Magnetic Field Compared to Electric Field, cont. 

Source 

 An electric field is established by an isolated electric charge. 

 The current element that produces a magnetic field must be part of an 

extended current distribution. 

 Therefore you must integrate over the entire current distribution. 
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 Magnetic Field for a Long, Straight Conductor 

Find the field contribution from a small 

element of current and then integrate 

over the current distribution. 

The thin, straight wire is carrying a 

constant current 

         

Integrating over all the current elements 

gives  
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 Magnetic Field for a Long, Straight Conductor, Special Case 

If the conductor is an infinitely long, 

straight wire, q1 = p/2 and q2 = -p/2 

The field becomes  
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 Magnetic Field for a Curved Wire Segment 

Find the field at point O due to the wire 

segment. 

Integrate, remembering I and R are 

constants 

 

 

 q  will be in radians 
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 Magnetic Field for a Circular Loop of Wire 

Consider the previous result, with a full circle 

 θ = 2π 

 

 

This is the field at the center of the loop. 
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 Magnetic Field for a Circular Current Loop 

The loop has a radius of R and carries 

a steady current of I. 

Find the field at point P: 
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Comparison of Loops 

Consider the field at the center of the current loop. 

At this special point, x = 0  

Then,  

 

 

 

 This is exactly the same result as from the curved wire. 

 

2

3
2 2 2 22

o o
x

μ a μ
B

aa x

 



I I

Section  30.1 



Magnetic Field Lines for a Loop 

Figure (a) shows the magnetic field lines surrounding a current loop. 

Figure (b) compares the field lines to that of a bar magnet. 

Notice the similarities in the patterns. 
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Magnetic Force Between Two Parallel Conductors 

Two parallel wires each carry a steady 

current. 

The field      due to the current in wire 2 

exerts a force on wire 1 of F1 = I1ℓ B2. 
2B
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Magnetic Force Between Two Parallel Conductors, cont. 

Substituting the equation for the magnetic field (B2) gives 

 

 

 Parallel conductors carrying currents in the same direction attract each 

other. 

 Parallel conductors carrying current in opposite directions repel each other. 
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Magnetic Force Between Two Parallel Conductors, final 

The result is often expressed as the magnetic force between the two wires, FB. 

This can also be given as the force per unit length: 

 

 

The derivation assumes both wires are long compared with their separation 

distance. 

 Only one wire needs to be long. 

 The equations accurately describe the forces exerted on each other by a 

long wire and a straight, parallel wire of limited length, ℓ.  
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Definition of the Ampere 

The force between two parallel wires can be used to define the ampere. 

When the magnitude of the force per unit length between two long, parallel wires 

that carry identical currents and are separated by 1 m is 2 x 10-7 N/m, the current 

in each wire is defined to be 1 A. 

Section  30.2 



Definition of the Coulomb 

The SI unit of charge, the coulomb, is defined in terms of the ampere. 

When a conductor carries a steady current of 1 A, the quantity of charge that 

flows through a cross section of the conductor in 1 s is 1 C. 
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Andre-Marie Ampère 

1775 – 1836 

French physicist 

Credited with the discovery of 

electromagnetism 

 The relationship between electric 

current and magnetic fields 

Also worked in mathematics 
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 Magnetic Field for a Long, Straight Conductor: Direction 

The magnetic field lines are circles 
concentric with the wire. 

The field lines lie in planes 
perpendicular to the wire. 

The magnitude of the field is constant 
on any circle of radius a. 

The right-hand rule for determining the 
direction of the field is shown. 
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Magnetic Field of a Wire 

A compass can be used to detect the 
magnetic field. 

When there is no current in the wire, 
there is no field due to the current. 

The compass needles all point toward 
the Earth’s north pole. 

 Due to the Earth’s magnetic field 
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Magnetic Field of a Wire, cont. 

Here the wire carries a strong current. 

The compass needles deflect in a 
direction tangent to the circle. 

This shows the direction of the 
magnetic field produced by the wire. 

If the current is reversed, the direction 
of the needles also reverse. 
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Magnetic Field of a Wire, final 

The circular magnetic field around the 

wire is shown by the iron filings. 
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Ampere’s Law 

The product of             can be evaluated for small length elements      on the 

circular path defined by the compass needles for the long straight wire. 

Ampere’s law states that the line integral of            around any closed path equals 

moI where I is the total steady current passing through any surface bounded by 

the closed path: 

 

Ampere’s law describes the creation of magnetic fields by all continuous current 

configurations. 

 Most useful for this course if the current configuration has a high degree of symmetry. 

Put the thumb of your right hand in the direction of the current through the 

amperian loop and your fingers curl in the direction you should integrate around 

the loop. 
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Field Due to a Long Straight Wire – From Ampere’s Law 

Calculate the magnetic field at a 
distance r from the center of a wire 
carrying a steady current I. 

The current is uniformly distributed 
through the cross section of the wire. 

Since the wire has a high degree of 
symmetry, the problem can be 
categorized as a Ampère’s Law 
problem. 

 For r ≥ R, this should be the same 

result as obtained from the Biot-

Savart Law. 
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Field Due to a Long Straight Wire – Results From Ampere’s Law 

Outside of the wire, r > R 

 

 

Inside the wire, we need I’, the current inside the amperian circle. 
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Field Due to a Long Straight Wire – Results Summary 

The field is proportional to r inside the 

wire. 

The field varies as 1/r outside the wire. 

Both equations are equal at r = R. 

Section  30.3 



Magnetic Field of a Toroid 

Find the field at a point at distance r 

from the center of the toroid. 

The toroid has N turns of wire. 
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Magnetic Field of a Solenoid 

A solenoid is a long wire wound in the 

form of a helix. 

A reasonably uniform magnetic field 

can be produced in the space 

surrounded by the turns of the wire. 

 The interior of the solenoid 
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Magnetic Field of a Solenoid, Description 

The field lines in the interior are  

 Nearly parallel to each other 

 Uniformly distributed 

 Close together 

This indicates the field is strong and almost uniform. 
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Magnetic Field of a Tightly Wound Solenoid 

The field distribution is similar to that of a bar magnet. 

As the length of the solenoid increases, 

 The interior field becomes more uniform. 

 The exterior field becomes weaker. 
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Ideal Solenoid – Characteristics  

An ideal solenoid is approached when: 

 The turns are closely spaced.  

 The length is much greater than 

the radius of the turns. 
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Ampere’s Law Applied to a Solenoid 

Consider an amperian loop (loop 1 in the diagram) surrounding the ideal 
solenoid. 

 The loop encloses a small current. 

 There is a weak field external to the solenoid. 

 A second layer of turns of wire could be used to eliminate the field. 

Ampere’s law can also be used to find the interior magnetic field of the solenoid. 

 Consider a rectangle with side ℓ parallel to the interior field and side w 

perpendicular to the field. 

 This is loop 2 in the diagram. 

 The side of length ℓ inside the solenoid contributes to the field. 

 This is side 1 in the diagram. 

 Sides 2, 3, and 4 give contributions of zero to the field. 
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Ampere’s Law Applied to a Solenoid, cont. 

Applying Ampere’s Law gives  

 

 

The total current through the rectangular path equals the current through each 

turn multiplied by the number of turns. 

 

Solving Ampere’s law for the magnetic field is  

 

 n = N / ℓ is the number of turns per unit length. 

This is valid only at points near the center of a very long solenoid. 
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Magnetic Flux 

The magnetic flux associated with a 

magnetic field is defined in a way 

similar to electric flux. 

Consider an area element dA on an 

arbitrarily shaped surface. 

The magnetic field in this element is    .  

       is a vector that is perpendicular to 

the surface and has a magnitude equal 

to the area dA. 

 

B
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Magnetic Flux, cont. 

The magnetic flux ΦB is  

 

The unit of magnetic flux is T.m2 = Wb 

 Wb is a weber 

B d  B A
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Magnetic Flux Through a Plane, 1 

A special case is when a plane of area 

A makes an angle θ with      . 

The magnetic flux is ΦB = BA cos θ. 

In this case, the field is parallel to the 

plane and ΦB = 0. 

dA

Section  30.5 



Magnetic Flux Through A Plane, 2 

The magnetic flux is B = BA cos q 

In this case, the field is perpendicular to 

the plane and  = BA. 

 This is the maximum value of the 

flux. 
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Gauss’ Law in Magnetism 

Magnetic fields do not begin or end at any point. 

 Magnetic field lines are continuous and form closed loops. 

 The number of lines entering a surface equals the number of lines leaving 

the surface. 

Gauss’ law in magnetism says the magnetic flux through any closed surface is 

always zero: 

 

This indicates that isolated magnetic poles (monopoles) have never been 

detected. 

 Perhaps they do not exist 

 Certain theories do suggest the possible existence of magnetic monopoles. 
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Magnetic Moments 

In general, any current loop has a magnetic field and thus has a magnetic dipole 
moment. 

This includes atomic-level current loops described in some models of the atom. 

This will help explain why some materials exhibit strong magnetic properties. 
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Magnetic Moments – Classical Atom 

The electrons move in circular orbits. 

The orbiting electron constitutes a tiny 

current loop. 

The magnetic moment of the electron is 

associated with this orbital motion. 

    is the angular momentum. 

    is magnetic moment. 

L

m
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Magnetic Moments – Classical Atom, cont. 

This model assumes the electron moves:  

 with constant speed v 

 in a circular orbit of radius r 

 travels a distance 2pr in a time interval T 

The current associated with this orbiting electron is 

 

 

The magnetic moment is 

The magnetic moment can also be expressed in terms of the angular momentum.   
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Magnetic Moments – Classical Atom, final 

The magnetic moment of the electron is proportional to its orbital angular 

momentum. 

 The vectors     and     point in opposite directions. 

 Because the electron is negatively charged  

Quantum physics indicates that angular momentum is quantized. 

L m
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Magnetic Moments of Multiple Electrons 

In most substances, the magnetic moment of one electron is canceled by that of 

another electron orbiting in the same direction. 

The net result is that the magnetic effect produced by the orbital motion of the 

electrons is either zero or very small. 
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Electron Spin 

Electrons (and other particles) have an intrinsic property called spin that also 

contributes to their magnetic moment. 

 The electron is not physically spinning. 

 It has an intrinsic angular momentum as if it were spinning. 

 Spin angular momentum is actually a relativistic effect 
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Electron Spin, cont. 

The classical model of electron spin is 

the electron spinning on its axis. 

The magnitude of the spin angular 

momentum is 

 

 

    is Planck’s constant. 

3

2
S 



Section  30.6 



Electron Spin and Magnetic Moment 

The magnetic moment characteristically associated with the spin of an electron 
has the value 

 

 

This combination of constants is called the Bohr magneton mB = 9.27 x 10-24 J/T. 
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Electron Magnetic Moment, final 

The total magnetic moment of an atom 

is the vector sum of the orbital and spin 

magnetic moments. 

Some examples are given in the table 

at right. 

The magnetic moment of a proton or 

neutron is much smaller than that of an 

electron and can usually be neglected. 
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Ferromagnetism 

Some substances exhibit strong magnetic effects called ferromagnetism. 

Some examples of ferromagnetic materials are: 

 iron 

 cobalt 

 nickel 

 gadolinium 

 dysprosium 

They contain permanent atomic magnetic moments that tend to align parallel to 

each other even in a weak external magnetic field. 
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Domains 

All ferromagnetic materials are made up of microscopic regions called domains. 

 The domain is an area within which all magnetic moments are aligned. 

The boundaries between various domains having different orientations are called 

domain walls. 
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Domains, Unmagnetized Material 

The magnetic moments in the domains 

are randomly aligned. 

The net magnetic moment is zero. 
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Domains, External Field Applied 

A sample is placed in an external 

magnetic field. 

The size of the domains with magnetic 

moments aligned with the field grows. 

The sample is magnetized. 
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Domains, External Field Applied, cont. 

The material is placed in a stronger 

field. 

The domains not aligned with the field 

become very small. 

When the external field is removed, the 

material may retain a net magnetization 

in the direction of the original field. 
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Curie Temperature 

The Curie temperature is the critical temperature above which a ferromagnetic 

material loses its residual magnetism. 

 The material will become paramagnetic. 

Above the Curie temperature, the thermal agitation is great enough to cause a 

random orientation of the moments. 
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Table of Some Curie Temperatures 
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Paramagnetism 

Paramagnetic substances have small but positive magnetism.  

It results from the presence of atoms that have permanent magnetic moments. 

 These moments interact weakly with each other. 

When placed in an external magnetic field, its atomic moments tend to line up 
with the field. 

 The alignment process competes with thermal motion which randomizes the 
moment orientations. 
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Diamagnetism 

When an external magnetic field is applied to a diamagnetic substance, a weak 

magnetic moment is induced in the direction opposite the applied field. 

Diamagnetic substances are weakly repelled by a magnet. 

 Weak, so only present when ferromagnetism or paramagnetism do not exist 
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Meissner Effect 

Certain types of superconductors also 

exhibit perfect diamagnetism in the 

superconducting state. 

 This is called the Meissner effect. 

If a permanent magnet is brought near 

a superconductor, the two objects repel 

each other. 
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