Chapter 8

Field-Effect Transistors (FETs)

n-channel JFET

n-channel E-MOSFET

1

Comparison between BJT and FET

Bipolar Junction Transistor (BJT)	Field Effect Transistor (FET)
Bipolar : use both electron and hole current	Unipolar : operated with one type of carrier
Current-controlled device : base current controls the amount of collector current	Voltage-controlled device: voltage between two of the terminals (gate and source) controls the current through the device
	 Advantage: very high input resistance Applications: low-voltage switching(faster) <u>Two main types of FETs:</u> Junction field-effect transistor (JFET) Metal oxide semiconductor field-effect transistor (MOSFET).

Junction Field Effect Transistor (JFET)

Basic Structure

Symbols

(a) n channel

(b) p channel

- The JFET is a type of FET that operates with a reverse-biased pn junction to control current in a channel.
- Depending on their structure, JFETs fall into either of two categories, n channel or p channel.

Basic Operation of JFET

- V_{DD} provides a drain-to-source voltage and supplies current from drain to source.
- V_{GG} sets the reverse-bias voltage between the gate and the source, as shown.
- Reverse biasing of the gate-source junction produces a depletion region which increases channel resistance by restricting the channel width → Controlling I_D.

n-channel JFET Operation

Greater V_{GG} narrows the channel (between the white areas) which increases the resistance of the channel and decreases I_{D} .

Less V_{GG} widens the channel (between the white areas) which decreases the resistance of the channel and increases I_{D} .

JFET Characteristics and Parameters

When V_{GS} = 0

- The JFET operates as a voltage-controlled, **constant-current** device.
- The JFET must be operated between $V_{GS}=0$ V and $V_{GS(off)}$. For this range of gate-to-source voltages, I_D will vary from a maximum of I_{DSS} to a minimum of almost zero.
- **Pinch-Off Voltage, Vp:** For V_{GS} 0 V, the value of V_{DS} at which I_D becomes essentially constant (point *B*)
- As V_{DS} increase above the Vp, I_D becomes constant.
- I_{DSS} (Drain to Source current with gate Shorted): is the maximum drain current and it is always specified for the condition, $V_{GS} = 0$ V.

Drain Characteristic Curve for $V_{GS}=0$

JFET Characteristics and Parameters

When V_{GS} Controls I_D

- As V_{GS} is set to increasingly more negative values by adjusting V_{GG} , a family of drain characteristic curves is produced.
- Notice that I_D decreases as the magnitude of V_{GS} is increased to larger negative values because of the narrowing of the channel.
- **Cutoff Voltage,** $V_{GS \text{ (off)}}$: The value of V_{GS} that makes I_D = zero.

(b) Family of drain characteristic curves

P-channel JFET Operation

The basic operation of a *p*-channel JFET is the same as for an *n*-channel device except that a *p*-channel JFET requires a **negative** V_{DD} and a **positive** V_{GS} , as illustrated below.

A biased *p*-channel JFET.

EXAMPLE 8-1

For the JFET in Figure 8–11, $V_{GS(off)} = -4 \text{ V}$ and $I_{DSS} = 12 \text{ mA}$. Determine the *minimum* value of V_{DD} required to put the device in the constant-current region of operation when $V_{GS} = 0 \text{ V}$.

Since $V_{GS(off)} = -4 V$, $V_P = 4 V$. The minimum value of V_{DS} for the JFET to be in its constant-current region is

This is the value of V_{DD} to make $V_{DS} = V_P$ and put the device in the constant-current region.

JFET Universal Transfer Characteristic

- Figure shows a general transfer characteristic curve that illustrates graphically the relationship between V_{GS} and I_{D} .
- For an *n*-channel JFET, $V_{GS(off)}$ is negative, and for a *p*-channel JFET, $V_{GS(off)}$ is positive.

JFET Universal Transfer Characteristic

• The transfer characteristic curve can also be developed from the drain characteristic curves by plotting values of I_D for the values of V_{GS} taken from the family of drain curves at pinch-off. Each point on the transfer characteristic curve corresponds to specific values of V_{GS} and I_D on the drain curves.

