1. Electric machines

An electric machine is a device that can convert electrical energy to mechanical or mechanical energy to electrical with the existence of magnetic field (M.F).

Motor: Electrical $\xrightarrow{M.F}$ Mechanical Generator: Mechanical $\xrightarrow{M.F}$ Electrical Transformer: Electrical $\xrightarrow{M.F}$ Electrical

1. Electric machines

1.1. Generators convert mechanical energy from a prime mover to electrical energy through the action of the magnetic field.

Spring 2008

1. Electric machines

1.2. Transformers convert AC electrical energy at one voltage level to AC electrical energy at (an)other voltage level(s).

2. Rotational motion, Newton's law

Majority of electric machines rotate about an axis called a shaft of the machine.

2.1. Angular position θ - an angle at which the object is oriented with respect to an arbitrary reference point.

2.2. Angular velocity (speed) ω - a rate of change of the angular position.

$$\upsilon = \frac{d\theta}{dt} \left[rad/s \right]$$
(2.8.1)

(2.8.2)

(283)

 ω_m – angular velocity in radians per second f_m – angular velocity in revolutions per second n_m – angular velocity in revolutions per minute

$$f_m = \frac{\omega_m}{2\pi} \qquad \qquad n_m = \frac{\omega_m}{2\pi}$$
$$n_m = 60 f_m$$

2. Rotational motion, Newton's law

2.3. Angular acceleration α - a rate of change of angular velocity.

$$\alpha = \frac{d\omega}{dt} \left[\frac{rad}{s^2} \right]$$
(2.9.1)

2.4. Torque (moment)
$$\tau$$
 - a "rotating force".
axis ϕ F $\tau = r \times F = rF \sin \phi [Nm]$ (2.9.2)

Here *F* is an acting force, *r* is the vector pointing from the axis of rotation to the point where the force is applied, φ is the angle between two vectors.

Newton's law of rotation:

$$\tau = J \alpha$$
 (2.)

J is a moment of inertia (a mass equivalent). [kg.m²]

2. Rotational motion, Newton's law

2.5. Work W- amount of energy transferred by a force.

$$W = \int \tau \, d\theta \quad [J] \tag{2.10.1}$$

If the torque is constant:

$$W = \tau \theta \tag{2.10.2}$$

2.6. Power P- increase in work per unit time.

$$P = \frac{dW}{dt} \quad [W] \tag{2.10.3}$$

For a constant torque:

$$P = \frac{dW}{dt} = \frac{d(\tau\theta)}{dt} = \tau \frac{d\theta}{dt} = \tau\omega$$

