6. Induced voltage on a conductor moving in a magnetic field

The third way in which a magnetic field interacts with its surrounding is by an induction of voltage in the wire with the proper orientation moving through a magnetic field.

$$
e_{ind} = (\nu \times B) \cdot l
$$
 Right hand rule

$$
e_{ind} = \nu B \sin\theta \cos\alpha
$$

Where v is the velocity of the wire, *l* is its length in the magnetic field, B – the magnetic flux density

v

This is a basis for a generator action.

1

Example: Induced voltage

Figure 1-18 shows a conductor moving with a velocity of 10 m/s to the right in a magnetic field. The flux density is 0.5 T, out of the page, and the wire is 1.0 m in length, oriented as shown. What are the magnitude and polarity of the resulting induced voltage?

$$
e_{\text{ind}} = (\mathbf{v} \times \mathbf{B}) \cdot \mathbf{I}
$$

= $(vB \sin 90^\circ) l \cos 30^\circ$
= $(10.0 \text{ m/s})(0.5 \text{ T})(1.0 \text{ m}) \cos 30^\circ$
= 4.33 V

2

FIGURE 1-19 A linear dc machine. The magnetic field points into the page.

1.8 THE LINEAR DC MACHINE—A SIMPLE **EXAMPLE**

A linear dc machine is about the simplest and easiest-to-understand version of a de machine, yet it operates according to the same principles and exhibits the same behavior as real generators and motors. It thus serves as a good starting point in the study of machines.

A linear dc machine is shown in Figure 1–19. It consists of a battery and a resistance connected through a switch to a pair of smooth, frictionless rails. Along the bed of this "railroad track" is a constant, uniform-density magnetic field directed into the page. A bar of conducting metal is lying across the tracks.

How does such a strange device behave? Its behavior can be determined from an application of four basic equations to the machine. These equations are

1. The equation for the force on a wire in the presence of a magnetic field:

$$
\boxed{\mathbf{F} = i(\mathbf{I} \times \mathbf{B})}
$$
 (1–43)

where $\mathbf{F} =$ force on wire

- $i =$ magnitude of current in wire
- $I =$ length of wire, with direction of I defined to be in the direction of current flow
- $B =$ magnetic flux density vector
- 2. The equation for the voltage induced on a wire moving in a magnetic field:

$$
e_{\text{ind}} = (\mathbf{v} \times \mathbf{B}) \cdot \mathbf{I} \tag{1-45}
$$

where e_{ind} = voltage induced in wire

- $v =$ velocity of the wire
- $B =$ magnetic flux density vector
- $I =$ length of conductor in the magnetic field

 \cdot

FIGURE 1-20 Starting a linear dc machine.

3. Kirchhoff's voltage law for this machine. From Figure 1–19 this law gives

$$
V_B - iR - e_{\text{ind}} = 0
$$

$$
V_B = e_{\text{ind}} + iR = 0
$$
 (1-46)

4. Newton's law for the bar across the tracks:

$$
F_{\text{net}} = ma \tag{1-7}
$$

We will now explore the fundamental behavior of this simple de machine using these four equations as tools.

Starting the Linear DC Machine

Figure 1-20 shows the linear dc machine under starting conditions. To start this machine, simply close the switch. Now a current flows in the bar, which is given by Kirchhoff's voltage law:

$$
i = \frac{V_B - e_{ind}}{R} \tag{1-47}
$$

Since the bar is initially at rest, $e_{ind} = 0$, so $i = V_B/R$. The current flows down through the bar across the tracks. But from Equation $(1-43)$, a current flowing through a wire in the presence of a magnetic field induces a force on the wire. Because of the geometry of the machine, this force is

$$
F_{\text{ind}} = i \, dB \qquad \text{to the right} \tag{1-48}
$$

Therefore, the bar will accelerate to the right (by Newton's law). However, when the velocity of the bar begins to increase, a voltage appears across the bar. The voltage is given by Equation $(1-45)$, which reduces for this geometry to

$$
e_{\text{ind}} = vBl \qquad \text{positive upward} \tag{1-49}
$$

The voltage now reduces the current flowing in the bar, since by Kirchhoff's voltage law

$$
i\mathbf{I} = \frac{V_B - e_{\text{ind}}\mathbf{I}}{R} \tag{1-47}
$$

As e_{ind} increases, the current *i* decreases.

The result of this action is that eventually the bar will reach a constant steady-state speed where the net force on the bar is zero. This will occur when e_{ind} has risen all the way up to equal the voltage V_B . At that time, the bar will be moving at a speed given by

$$
V_B = e_{\text{ind}} = v_{\text{ss}} B l
$$

$$
v_{\text{sr}} = \frac{V_B}{B l}
$$
 (1-50)

The bar will continue to coast along at this no-load speed forever unless some external force disturbs it. When the motor is started, the velocity v , induced voltage e_{ind} , current *i*, and induced force F_{ind} are as sketched in Figure 1-21.

To summarize, at starting, the linear dc machine behaves as follows:

- 1. Closing the switch produces a current flow $i = V_B/R$.
- 2. The current flow produces a force on the bar given by $F = iIB$.

