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Preface to Second Edition

I have ventured to bring out the second edition of the book Signals and Systems in its
new form due to the success and wide patronage extended to the previous edition and
reprints by the members of the teaching faculty and student community. The present
edition as in the previous edition covers the undergraduate syllabus in Signals and
Systems for the B.E. degree courses. A thorough revision of all the chapters in the
previous edition has been undertaken. Few errors noticed in the previous edition have
been removed and appropriate corrections have been made. Signal representation is
a vital topic to understand the importance of the theoretical concepts in Signals
and Systems. A large number of numerical problems have been included in Chap. 1
which describes signal representation (both continuous and discrete time signals).
Similarly, the classification of systems is well explained in Chap. 2 with graphical
illustration wherever possible. More number of numerical problems have been added
in Chap. 4 which describes Fourier Series Analysis. Further, the properties of FS are
well explained and applied in solving many FS problems by cutting short lengthy
procedures. Similarly, in Chap. 6, explanation is provided for the Fourier Transform
method of Analysis and for the properties of FT which are frequently used to solve
numerical problems in an easier way. However, in FS and FT, conventional methods
of solving the numerical problems are also retained. In Chap. 8, numerical problems
using LT properties have been solved. I hope that the readers of this book would
appreciate the above attempts. Since every theoretical concept is explained by a
variety of numerical examples which are presented in a graded manner, the book is
voluminous. I take this opportunity to thank Ane Books Pvt. Ltd and the publisher
for taking up this difficult job.

Pudukkottai, India S. Palani
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Preface to First Edition

The book SIGNALSANDSYSTEMS presents a comprehensive treatment of signals
and linear systems for the undergraduate level study. It is a rich subject with
diverse applications such as signal processing, control systems and communica-
tion systems. It provides an integrated treatment of continuous-time and discrete-
time forms of signals and systems. These two forms are treated side by side. Even
though continuous-time and discrete-time theory havemanymathematical properties
common between them, the physical processes that are modelled by continuous-time
systems are very much different from the discrete-time systems counterpart.

I have written this book with the material I have collected during my long experi-
ence of teaching signals and systems to the undergraduate level students in national
level reputed institutions. The book in the present form is written to meet the require-
ments of undergraduate syllabus of Indian Universities in general and Anna Univer-
sity in particular for B.E./B.Tech. degree courses. The organization of the chapters
is as follows.

Chapter 1 deals with the representation of signals and systems. It motivates the
reader as to what signals and systems are and how they are related to other areas
such as communication systems, control systems and digital signal processing. In
this chapter, various terminologies related to signals and systems are defined. Further,
mathematical description, representation and classifications of signals and systems
are explained.

Chapter 2 presents a detailed descriptions of system classifications. Under broader
category, systems are classified as continuous-time and discrete-time systems. Each
of them is further classified as linear and non-linear, time invariant and time varying,
static and dynamic, causal and non-causal, stable and unstable and invertible and
non-invertible. Systems are identified accordingly.

A comprehensive treatment of time domain analysis of continuous-time and
discrete-time systems are given in Chapter 3. It develops convolution from the repre-
sentation of an input signals as a superposition of impulses. To find the convolution
of two time signals, both analytical as well as graphical methods are explained.

Chapter 4 deals with the Fourier representation of continuous-time signals.
Continuous time periodic signals are represented by trigonometric Fourier series,
polar Fourier series and exponential Fourier series.
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viii Preface to First Edition

In Chapter 5, discrete-time signals is represented by exponential Fourier series
and their properties are derived. The Fourier spectra of discrete-time signal is also
determined in this chapter.

It is not possible to find Fourier series representation of non-periodic signals. In
Chapter 6, Fourier transform is introduced which can represent periodic as well as
non-periodic signals. In this chapter the Fourier transform for continuous-time signal
is explained.

In Chapter 7, the representation of discrete-time signal using discrete time Fourier
transform is explained. Further, discrete Fourier transform and Fast Fourier Trans-
form algorithm are also explained here. The Laplace transform is a very powerful
tool in the analysis of continuous time signals and systems.

InChapter 8, the Laplace transformmethod is explained and its properties derived.
The use of Laplace transform to solve differential. equation is described. Finally
different forms of structure realization of continuous-time systems are discussed.

Chapter 9 is devoted to the z-transform and its application to discrete time signals
and systems. The properties of z-transform and techniques for inversion are intro-
duced in this chapter. The use of z-transform for solving difference equation is
explained. Different forms of structure realization of discrete-time system is also
explained in this chapter.

In Chapter 10, the sampling theorem is explained. The necessary condition to
avoid aliasing is also explained here.

The notable features of this book includes the following:

1. The syllabus content of signals and systems for undergraduate level of most of
the Indian Universities in general and Anna University in particular has been
covered.

2. The organization of the chapter are sequential in nature.
3. Large number of numerical examples have been worked out.
4. Chapter objectives and summary are given in each chapter.
5. For the students to practice, short and long questions with answers are given at

the end of each chapter.

I take this opportunity to thank Shri. Sunil, Managing Director Ane Books India, for
coming forward to publish the book. I would like to express my sincere thanks to
Shri. R. Krishnamoorthi, sales manager Ane Books India who took the initiatives to
publish the book in a short span of time. I would like to express my sincere thanks to
Mr. V. Ashok who has done a wonderful job to key the voluminous book like this in
a very short time and beautifully too. My sincere thanks are also due to my colleague
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Mr. N. Sathurappan who gave some useful suggestions. I would also like to thank my
wife Dr. S. Manimegalai, M.B.B.S., M.D., who was the source of inspiration while
preparing this book.

S. Palani
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Chapter 1
Representation of Signals

Learning Objectives

� To define various terminologies related to signals and systems.
� To classify signals and systems.
� To give mathematical description and representation of signals and systems.
� To perform basic operations on CT and DT signals.
� To classify CT and DT signals as periodic and non-periodic, odd and even and

power and energy signals.

1.1 Introduction

The concepts of signals and systems play a very important role in many areas of
science and technology. These concepts are very extensively applied in the field of
circuit analysis and design, long distance communication, power system generation
and distribution, electron devices, electrical machines, biomedical engineering, aero-
nautics, process control and speech and image processing to mention a few. Signals
represent some independent variables that contain some information about the
behavior of somenatural phenomenon.Voltages and currents in electrical and elec-
tronic circuits, electromagnetic radio waves, human speech and sounds produced by
animals are some of the examples of signals. When these signals are operated on
some objects, they give out signals in the same or modified form. These objects
are called systems. A system is, therefore, defined as the interconnection of objects
with a definite relationship between objects and attributes. Signals appearing at vari-
ous stages of the system are attributes. R, L, C components, spring, dash-pots, mass,
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2 1 Representation of Signals

etc. are the objects. The electrical and electronic circuits comprising of R, L, C com-
ponents and amplifiers, the transmitter and receiver in a communication system, the
petrol and diesel engines in an automobile, chemical plants, nuclear reactor, human
beings, animals, a government establishment, etc. are all examples of systems.

1.2 Terminologies Related to Signals and Systems

Before we give mathematical descriptions and representations of various terminolo-
gies related to signals and systems, the following terminologies which are very fre-
quently used are defined as follows:

1.2.1 Signal

A signal is defined as a physical phenomenon that carries some information or data.
The signals are usually functions of independent variable time. There are some cases
where the signals are not functions of time. The electrical charge distributed in a
body is a signal which is a function of space and not time.

1.2.2 System

A system is defined as the set of interconnected objects with a definite relationship
between objects and attributes. The inter-connected components provide desired
function.

Objects are parts or components of a system. For example, switches, springs,
masses, dash-pots, etc. in mechanical systems and inductors, capacitors and resistors
in an electrical system are the objects. The displacement of mass, spring and dash-pot
and the current flow and the voltage across the inductor, capacitor and resistor are
the attributes. There is a definite relationship between the objects and attributes. The
voltages across R, L, C series components can be expressed as vR = iR, VL = L di

dt

and VC = 1
C

∫
idt. If this series circuit is excited by the voltage source ei(t), the ei(t)

is the input attribute or the input signal. If the voltage across any of the objects R, L
and C is taken, then such an attribute is called the output signal. The block diagram
representation of input and output (voltage across the resistor) signals and the system
is shown in Fig. 1.1.
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Fig. 1.1 Block diagram
representation of signals and
systems

ei(t) VR(t)SYSTEM
(R, L, C) 

Input signal
or excitation

Output signal

1.3 Continuous and Discrete Time Signals

Signals are broadly classified as follows:

1. Continuous Time signal (CT signal).
2. Discrete Time signal (DT signal).

The signal that is specified for every value of time t is called continuous time signal
and is denoted by x(t). On the other hand, the signal that is specified at the discrete
value of time is called discrete time signal. The discrete time signal is represented as
a sequence of numbers and is denoted by x[n] where n is an integer. Here time t is
divided into n discrete time intervals. The Continuous Time signal (CT) and Discrete
Time signal (DT) are represented in Figs. 1.2 and 1.3, respectively.

It is to be noted that in continuous time signal representation the independent
variable t which has unit as sec. is put in the parenthesis (·) and in discrete time signal
the independent variable n which is an integer is put inside the square parenthesis
[·]. Accordingly, the dependent variables of the continuous time signal/system are

Fig. 1.2 CT signal x(t)

0 tt

Fig. 1.3 DT signal x[n]
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denoted as x(t), g(t), u(t), etc. Similarly the dependent variables of discrete time
signals/systems are denoted as x[n], g[n], u[n], etc.

A discrete time signal x[n] is represented by the following two methods:

1.

x[n] =
{(

1
a

)n
n ≥ 0

0 n < 0
(1.1)

Substituting various values of n where n ≥ 0 in Eq. (1.1) the sequence for x[n]
which is denoted by x{n} is written as follows:

x[n] =
{

1,
1

a
,
1

a2
, . . . ,

1

an

}

2. The sequence is also represented as given below.

x[n] = {3, 2, 5, 4, 6, 8, 2}
↑

The arrow indicates the value of x[n] at n = 0which is 5 in this case. The numbers
to the left of the arrow indicate to the negative sequence n = −1,−2, etc. The
numbers to the right of the arrow correspond to n = 1, 2, 3, 4, etc. Thus, for the
above sequence, x[−1] = 2; x[−2] = 3; x[0] = 5; x[1] = 4; x[2] = 6; x[3] = 8
and x[4] = 2. If no arrow is marked for a sequence, the sequence starts from the
first term in the extreme left. Consider the sequence

x[n] = {5, 3, 4, 2}.

Here, x[0] = 5; x[1] = 3; x[2] = 4 and x[3] = 2. There is no negative sequence
here.

� Example 1.1

Graphically represent the following sequence:

x[n] = {1, 0, −1, 1}

Solution: The graphical representation x[n] = {1, 0, −1, 1} is shown in Fig. 1.4.

� Example 1.2

Graphically represent the following sequence:

x[n] = {−2, 1, 0, 1, 2, 0, 1}
↑
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x[n]

1 1

2 31 nn 0

1

Fig. 1.4 Graphical representation of x[n]

x[n]

1 11

2

31 nn 0

2

123

Fig. 1.5 Graphical representation of x[n]

Solution: The sequence

x[n] = {−2, 1, 0, 1, 2, 0, 1}
↑

is represented in Fig. 1.5.
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1.4 Basic Continuous Time Signals

Basic signals play a very important role in signals and systems analysis. The following
are the basic continuous time signals which serve as a basis to represent other signals.
The basic continuous time signals are as follows:

1. Unit impulse function.
2. Unit step function.
3. Unit ramp function.
4. Unit parabolic function.
5. Unit rectangular pulse (or Gate) function.
6. Unit area triangular function.
7. Unit signum function.
8. Unit Sinc function.
9. Sinusoidal signal.
10. Real exponential signal.
11. Complex exponential signal.

The mathematical description and graphical representation of the above signals are
discussed below. Similar to continuous time signals, basic discrete time signals are
also available. The descriptions of these signals will immediately follow this.

1.4.1 Unit Impulse Function

The unit impulse function is also known as Dirac delta function which is repre-
sented in Fig. 1.6. The unit impulse function is denoted as δ(t) and its mathematical
description is given below.

δ(t) =
{
0 t �= 0

1 t = 0
(1.2)

Fig. 1.6 Unit impulse
function

x(t)

(t)

tt 0
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1.4.1.1 Importance of Impulse Function

1. By applying impulse signal to a system, one can get the impulse response of
the system. From impulse response, it is possible to get the transfer function of
the system.

2. For a linear time invariant system, if the area under the impulse response curve
is finite, then the system is said to be stable.

3. From the impulse response of the system, one can easily get the step response
and ramp response by integrating it once and twice, respectively.

4. Impulse signal is easy to generate and apply to any system.

1.4.1.2 Some Properties of Impulse Function

1. δ(at) = 1
aδ(t)

2. δ(−t) = δ(t)
3. x(t)δ(t) = x(0)δ(t)
4. x(t)δ(t − t0) = x(t0)δ(t − t0)
5.
∫∞
−∞ δ(t)dt = 1

6. tδ(t) = 0
7. t dδ(t)

dt = −δ(t)
8. x(t) ∗ δ(t − t0) = x(t − t0)

1.4.2 Unit Step Function

The unit step function is shown in Fig. 1.7. The function is defined as follows:

u(t) =
{
1 t ≥ 0

0 t < 0
(1.3)

Fig. 1.7 Unit step function u(t)

t0

1
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The step function is denoted by u(t). Any causal signal which begins at t = 0 (which
has a value of zero for t < 0) ismultiplied by the signal by u(t). For example, a causal
exponentially decaying signal e−at (t ≥ 0) is represented as x(t) = e−at u(t).
Similarly e−at (t < 0) is represented as x(t) = e−at u(−t).

1.4.2.1 Importance of Step Function

1. Step function is easy to generate and apply to the system.
2. By differentiating the step response, the impulse response can be obtained. By

integrating the step response, the ramp response can be obtained.
3. Step signal is considered as a white noise which is drastic. If the system response

is satisfactory for a step signal, it is likely to give a satisfactory response to other
types of signals.

4. Application of step signal is equivalent to the application of numerous sinusoidal
signals with a wide range of frequencies.

1.4.3 Unit Ramp Function

The unit ramp function is represented in Fig. 1.8. It is defined by the following
mathematical equation:

r(t) =
{

t t ≥ 0

0 t < 0
(1.4)

For a causal signal (t ≥ 0), the ramp function can also be expressed as

r(t) = t u(t) (1.5)

Fig. 1.8 Unit ramp function r(t)

2

1

0 1 2 t
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1.4.3.1 Relationships between Impulse, Step and Ramp Signals

1. Integrating the unit step signal u(t), we get

∫
u(t)dt =

∫
dt = t (1.6)

By integrating the unit step function, unit ramp function is obtained. In the
reverse process, by differentiating a ramp function, a step function is obtained.

2. The continuous time unit step function is the running integral of the unit impulse
function which is expressed as

u(t) =
∫ t

−∞
δ(τ )dτ

du(t)

dt
= δ(t) (1.7)

3. By differentiating the ramp function twice, the impulse function is obtained.

r(t) = t
dr(t)

dt
= 1 = u(t) (1.8)

d2r(t)

dt2
= du(t)

dt
= δ(t) (1.9)

Thus, the impulse function is obtained by differentiating the ramp function twice.
By the reverse process, by integrating the impulse function twice, the ramp
function is obtained which is mathematically expressed as follows:

r(t) =
∫ ∫

δ(t) dt (1.10)

The relationships between the impulse, step and ramp signals are represented
below.

δ(t)
integrate−→ u(t)

integrate−→ r(t)

r(t)
differentiate−→ u(t)

differentiate−→ δ(t)
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Fig. 1.9 Unit parabolic
function

x(t)

2

1
2

0 1 2 t

1.4.4 Unit Parabolic Function

The unit parabolic function x(t) is represented in Fig. 1.9. The mathematical expres-
sion is given below.

x(t) = 1

2
t2 t ≥ 0 (1.11)

If the parabolic function is differentiated, unit ramp function is obtained. Thus,

dx(t)

dt
= t t ≥ 0.

Step, ramp and parabolic functions are called singularity functions.

1.4.5 Unit Rectangular Pulse (or Gate) Function

The unit area rectangular pulse which is also called gate function is represented in
Fig. 1.10. Mathematically it is described as follows:

x(t) =
{
1 for |t| ≤ T

2

0 otherwise
(1.12)

The above equation is also written in the following form:

x(t) = 1 − T

2
≤ t ≤ T

2

The function is written as x(t) = rect( t
T ).
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x(t) = rect(  )

0

T

tt T
2

t
T

T
2

Fig. 1.10 Unit area rectangular pulse (or gate) function

Fig. 1.11 Unit area
triangular function

x(t) = tri(t) 

t0 11t

1

1.4.6 Unit Area Triangular Function

The unit area triangular function is represented in Fig. 1.11. It is symbolically written
as x(t) = tri(t). It is defined as

tri(t) =
{
[1 − |t|] |t| ≤ 1

0 |t| > 1
(1.13)

The above equation can be written in the following form also:

tri(t) = [1 + t] − 1 ≤ t ≤ 0

= [1 − t] 0 ≤ t ≤ 1
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Fig. 1.12 Representation of
unit signum function

x(t) = sgn(t)

t0t

1

1

1.4.7 Unit Signum Function

The signum function is written in the abbreviated form as sgn(t). It represents the
characteristics of an ideal relay. This is shown in Fig. 1.12. It is defined by the
following equations:

sgn(t) =

⎧
⎪⎨

⎪⎩

1 t > 0

0 t = 0

−1 t < 0

(1.14)

1.4.8 Unit Sinc Function

The unit sinc function is represented in Fig. 1.13. It is defined as

sinc(t) = sin π t

π t
− ∞ < t < ∞. (1.15)

1.4.9 Sinusoidal Signal

The sinusoidal signal is represented in Fig. 1.14. It is defined as

x(t) = A sin(ωt − φ) (1.16)

where A = Peak amplitude, ω = radian frequency and φ = phase shift.
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tt 4 3 2 1 0 1

1

2 3 4

sinc(t)

Fig. 1.13 Representation of unit sinc function

t

x(t) = Asin( t )

A

Fig. 1.14 Representation of sinusoidal signal

1.4.10 Real Exponential Signal

Let
x(t) = est (1.17)

where s = σ + jω is a complex number. The signal x(t) in Eq. (1.17) is called general
complex exponential. Equation (1.17) is written in the following form:

x(t) = e(σ+jω)t

= eσ tejωt

= eσ t(cosωt + j sinωt) (1.18)

If ω = 0,
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tt

x(t) = e t

> 0 < 0

(a) (b)

0 tt

x(t) = e t

0

Fig. 1.15 Representation of real exponential signals. a Growing exponential; b Decaying
exponential

x(t) = eσ t (1.19)

Equation (1.19) is real exponential. The plot of x(t) with respect to t for σ > 0 and
σ < 0 is shown inFig. 1.15a andb, respectively. Forσ > 0, the signal is exponentially
growing and for σ < 0, it is exponentially decaying.

1.4.11 Complex Exponential Signal

The signal x(t) in Eq. (1.18) is the general complex exponential which has real
part as eσ t cosωt and the imaginary part eσ t sinωt. For σ = 0, the signal x(t) is a
sinusoid. For σ > 0, x(t) is a sinusoid which is exponentially building and is shown
in Fig. 1.16a. For σ < 0, the signal x(t) = e−σ t(cosωt + j sinωt) is exponentially
decaying and is shown in Fig. 1.16b.

tt tt

x(t)

0

x(t)

0

> 0

(a) (b)

< 0

Fig. 1.16 Complex exponential signals. a Exponentially growing (σ > 0); b Exponentially
decaying (σ < 0)
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Fig. 1.17 Basic unit impulse
sequence

nn 3 2 1 1

1

0 2 3

[n]

1.5 Basic Discrete Time Signals

Similar to continuous time signals, basic discrete signals are available. However,
these signals are represented at discrete intervals of time “n” where n is an integer.
Representation of basic discrete time signals is discussed below.

1.5.1 The Unit Impulse Sequence

The basic impulse sequence is shown in Fig. 1.17. The unit impulse sequence also
called sample is defined as

δ[n] =
{
1 n = 0

0 n �= 0
(1.20)

δ[n] is also called Kronicker delta function.

1.5.2 The Basic Unit Step Sequence

The basic unit step sequence is represented in Fig. 1.18. It is denoted by u(n). It is
defined as

u[n] =
{
1 n ≥ 0

0 n < 0
(1.21)

Any discrete sequences x[n] for n ≥ 0 is expressed as x[n]u[n]. For n < 0, it is
expressed as x[n]u[−n]. It is be noted that at n = 0, the value of u[n] = 1.
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u[n]

1

nn 0 1 2 3 4 5

Fig. 1.18 Basic unit step sequence

r[n]

nn 0 1 2 3 4 5

5

4

3
2

1

Fig. 1.19 Basic unit ramp sequence

1.5.3 The Basic Unit Ramp Sequence

The basic unit ramp sequence which is denoted by r[n] is represented in Fig. 1.19.
It is defined as

r[n] =
{

n n ≥ 0

0 n < 0
(1.22)

1.5.4 Unit Rectangular Sequence

The discrete time unit rectangular sequence is shown in Fig. 1.20a. It is defined as

rect[n] =
{
1 |n| ≤ N

0 |n| > N
(1.23)

The above equation can also be expressed as
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rect[n]

1

(a)

nn N 3 2 1 1 2 3 N0

rect4[n]

1

(b)

nn 4 3 2 1 1 2 3 40

Fig. 1.20 Unit rectangular sequence

rect[n] =
{
1 − N ≤ n ≤ N

0 otherwise

N indicates the width of the rectangular sequence on both sides of −n and +n.
For example, the notation rect4[n] indicates four samples for 0 < n ≤ 4 and four
samples for −4 ≤ n < 0 and one sample at n = 0. Thus, there will be nine samples
for rect4[n]. This is represented in Fig. 1.20b.

1.5.5 Sinusoidal Sequence

The discrete time sinusoidal signal is defined by the following mathematical expres-
sion:

x[n] = Ae−αn sin(ω0n + φ) (1.24)

where A and α are real numbers and φ is the phase shift. Depending on the value of
α, the sinusoidal sequence is divided into the following categories:

• A purely sinusoidal sequence (α = 0).
• Decaying sinusoidal sequence (α > 0).
• Growing sinusoidal sequence (α < 0).

The above sinusoidal sequences are illustrated in Fig. 1.21a–c, respectively.
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x[n] = Asin( 0n)
(a)

nn

x[n] = Ae n sin( 0n )
(b)

nn

> 0

x[n] = Ae n sin( 0n )

nn

< 0

(c)

Fig. 1.21 Discrete time sinusoidal signal. a Purely sinusoidal; b Decaying sinusoidal; c Growing
sinusoidal
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n

(a) (b)

)d()c(

n

n

n

> 1

< 1

0 < < 1

1 < < 0

Fig. 1.22 Discrete time real exponential sequences. a α > 1; b 0 < α < 1;
c α < −1; d −1 < α < 0

1.5.6 Discrete Time Real Exponential Sequence

The general complex exponential sequence is defined as

x[n] = Aαn (1.25)

where A and α are in general complex numbers.
In Eq. (1.25) if A and α are real, the sequence is called real exponential. These

sequences for various values of α are shown in Fig. 1.22. Depending on the value of
α, the sequence is classified as:

1. Exponentially growing signal (α > 1, Fig. 1.22a).
2. Exponentially decaying signal (0 < α < 1, Fig. 1.22b).
3. Exponentially growing for alternate value of n (α < −1, Fig. 1.22c).
4. Exponentially decaying for alternate value of n (−1 < α < 0, Fig. 1.22d).

1.6 Basic Operations on Continuous Time Signals

The basic operations performed on continuous time signals are given below:

1. Addition of CT signals.
2. Multiplications of CT signals.
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x1(t)

1

(a) (b)

0 1 2

2

12 tt

x2(t)

0 1
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x(t) = x1(t) x2(t)

0
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1

2
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Fig. 1.23 Additions of two CT signals

3. Amplitude scaling of CT signals.
4. Time scaling of CT signals.
5. Time shifting of CT signals.
6. Reflection or folding of CT signals.
7. Inverted CT signal.

1.6.1 Addition of CT Signals

Consider the signals x1(t) and x2(t) which are shown in Fig. 1.23a, b. The amplitude
of these two signals at each instant of time is added to get their sum. The following
table is prepared.

From Table 1.1, x(t) = x1(t) + x2(t) is plotted and is shown in Fig. 1.23c.
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Table 1.1 Addition of two CT signals

t −3 −2 −1 0 1 2

x1(t) 0 1 2 2 0 0

x2(t) 1 −2 −2 1 3 0

x(t) =
x1(t) +
x2(t)

1 −1 0 3 3 0

Table 1.2 Multiplication of two CT signals

t −3 −2 −1 0 1 2

x1(t) 0 1 2 2 0 0

x2(t) 1 −2 −2 1 3 0

x(t) =
x1(t) ×
x2(t)

0 −2 −4 2 0 0

1.6.2 Multiplications of CT Signals

Consider the two signals x1(t) and x2(t) shown in Fig. 1.23a and b, respectively.
These signals x1(t) and x2(t) are multiplied to get x(t)

x(t) = x1(t) × x2(t)

The functions x1(t) and x2(t) at different time intervals are determined from figure
and multiplied. Table 1.2 is prepared to get x(t) at different time intervals. Table 1.2
is transformed to plot x(t) = x1(t) × x2(t) which is shown in Fig. 1.24.

1.6.3 Amplitude Scaling of CT Signals

Consider the signals x(t) sketched and shown in Fig. 1.25a. This signal when mul-
tiplied by a factor A is expressed as Ax(t). At any time t, the amplitude of x(t) is
multiplied by A. This type of signal transformation is called amplitude scaling. The
signal 3x(t) is shown in Fig. 1.25b. At any instant t, x(t) is multiplied by a factor 3.

Consider the signal x(t)
2 . At any time t, the amplitude of x(t) shown in

Fig. 1.25a is divided by the factor 2. The above transformation is plotted in Fig. 1.25c.
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x(t) x1(t) x2(t)

tt

2

0 1
12

2

4

Fig. 1.24 Multiplications of two CT signals

1.6.4 Time Scaling of CT Signals

The compression or expansion of a signal in time is known as time scaling. Consider
the signal x(t) shown in Fig. 1.26a. The signal is time compressed and shown in
Fig. 1.26b as x(4t). For any given magnitude of x(t), the time is divided by the
factor 4. The time expanded signal x( t

4 ) is shown in Fig. 1.26c. Here, for any given
magnitude of x(t), the time is multiplied by the factor 4. In general, for any given
amplitude of x(t), x(at) is time compressed by a factor a and x( t

a ) is time expanded
by a factor a.

1.6.5 Time Shifting of CT Signals

Consider the signal x(t) = u(t), the unit step function. The step function is shown in
Fig. 1.27a as u(t). The transformation t = t − t0 where t0 is any arbitrary constant
amounts to shifting u(t) to the right by t0 unit if t0 is positive and is denoted as
u(t − t0). If t0 is negative, the function is shifted to the left by t0 unit and is denoted
as u(t + t0). The right shifted u(t − t0) is shown in Fig. 1.27b and left shifted u(t + t0)
is shown in Fig. 1.27c. The signal u(−t) is shown in Fig. 1.27d and is obtained by
folding u(t) as shown in Fig. 1.27a. u(−t) = 1 for t < 0. If we fold across the vertical
axis, the signal to the right of the vertical axis is transformed to its left and vice versa.
That is why it is called folded signal. The signal u(−t − t0) is obtained by shifting



1.6 Basic Operations on Continuous Time Signals 23

(b)

(a) x(t)

t0 1

1

2

2

123 tt

3x(t)

0 1 2

3

6

123

x(t)

tt 123 0 1

1

2
(c)

2

0.5

Fig. 1.25 Amplitude scaling. a x(t); b 3x(t) and c
x(t)

2

the signal u(−t) to the left by t0 unit as shown in Fig. 1.27e. The signal u(−t + t0) is
obtained by shifting the signal u(−t) to the right by t0 unit and is shown in Fig. 1.27f.

Summary of Shifting of CT signal
1. It x(t) is given, then x(t + t0) is plotted by shifting x(t) to the left by t0.
2. It x(t) is given, then x(t − t0) is plotted by shifting x(t) to the right by t0.
3. It x(−t) is given, then x(−t − t0) is plotted by shifting x(−t) to the left

by t0.
4. It x(−t) is given, then x(−t + t0) is plotted by shifting x(−t) to the right by

t0.
5. In general for x(t + t0) and x(−t − t0) the time shift is made to the left of

x(t) and x(−t), respectively, by t0. For x(t − t0) and x(−t + t0) the time
shift is made to the right of x(t) and x(−t), respectively, by t0.
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Fig. 1.26 Time scaling of CT signals

1.6.6 Signal Reflection or Folding

Consider the signal x(t) shown in Fig. 1.28a. The signal x(−t) is obtained by putting a
mirror along the vertical axis. The signal to the right of the vertical axis gets reflected
to the left and vice versa. Alternatively, if we make a folding across the vertical axis,
the signal in the right of the vertical axis is printed in the left and vice versa. The
signal so obtained is x(−t).

1.6.7 Inverted CT Signal

Consider theCT signal x(t) shown in Fig. 1.29a. The inverted signal−x(t) is obtained
by inverting its amplitude. By this the signal above the horizontal axis (time axis)
comes below the axis and vice versa. Alternatively, if a mirror is put along the
horizontal axis, the signal above the axis gets reflected below the axis and vice versa.



1.6 Basic Operations on Continuous Time Signals 25

u(t)
(a) (b) (c)

t

1

0 t

u(t t0)

t

1

0

u(t t0)

t

1

0 t0 t0

(d) (e)

t

1

0 tt

u( t t0)

t

1

0

u( t)

t0

(f)

t

u( t t0)

t

1

0 t0

Fig. 1.27 Representation of time shifting CT signals
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Fig. 1.28 CT signal reflection or folding
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Fig. 1.29 Inverted CT signal

1.6.8 Multiple Transformation

The transformation namely amplitude scaling, time reversal, time shifting, time scal-
ing, etc. when applied simultaneously, the sequence of operation is important. If not
followed correctly, it would give erroneous results.

Consider the following signal:

y(t) = Ax

(−t − t0
a

)

The following sequence of transformation is followed:

1. y(t) is written in the following form:

y(t) = Ax

(

− t

a
− t0

a

)

2. Plot x(t).
3. Plot Ax(t) using amplitude scaling.
4. Plot Ax(−t) using time reversal.
5. Plot Ax(−t − t0

a ) by shifting Ax(−t) to the left by t0
a (time shifting).

6. Plot Ax(− t
a − t0

a ) by time expansion.
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The following examples illustrate the above sequence of operation.

� Example 1.3

Consider the signal y(t) = 5x(−3t + 1) where x(t) is shown in Fig. 1.30a. Plot y(t)
and −y(t).

Solution:
y(t) = 5x(−3t + 1)

1. The given signal x(t) is represented in Fig. 1.30a.
2. The signal x(t) is amplitude scaled and plotted in Fig. 1.30b.
3. 5x(−t) is obtained by folding 5x(t) in Fig. 1.30b and is plotted in

Fig. 1.30c.
4. 5x(−t) is time shifted by one unit to the right and 5x(−t + 1) is obtained and

shown in Fig. 1.30d.
5. 5x(−t + 1) is time compressed by a factor 3 and 5x(−3t + 1) is obtained. This

is shown in Fig. 1.30e.
6. 5x(−3t + 1) amplitude inverted to get −5x(−3t + 1). This is shown in

Fig. 1.30f.

� Example 1.4

Consider the signal
x(t) = rect(t)

Plot y(t) = 5rect( t−3
4 ).

Solution:

x(t) = 5rect
(t − 3)

4

1. x(t) can be written as x(t) = 5rect
(

t
3 − 3

4

)
. The plot of rect(t) is shown in

Fig. 1.31a.
2. The time delayed (t0 = 3/4) signal is right shifted by 3/4 and with its amplitude

multiplied by 5 is shown in Fig. 1.31b.
3. The time shifted signal represented in step 2 is to be time expanded by a factor
4. This is shown in Fig. 1.31c as y(t) = 5rect (t−3)

4 .

� Example 1.5

For the signal shown in Fig. 1.32a, sketch

y(t) = −3x

(

−2

3
t + 1.5

)
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Fig. 1.30 Basic operations on CT signal
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Solution:

1. x(t) is sketched as shown in Fig. 1.32a.
2. By time reversal x(−t) is obtained and sketched as shown in Fig. 1.32b.
3. By amplitude scaling and inversion−3x(t) is obtained and is shown in Fig. 1.32c.
4. The signal obtained in step 3 is right shifted by t = 1.5 and −3x(−t + 1.5) is

shown in Fig. 1.32e.
5. By time scaling expanded by 3/2, we get −3x(−(2/3)t + 1.5) which is shown

in Fig. 1.32f.

� Example 1.6

For the signal x(t) shown in Fig. 1.33 give mathematical equation in terms of step
signals.

Solution: The signal x(t) shown in Fig. 1.33 is in the form of stair case in the time
interval −3 ≤ t ≤ 3. The mathematical expression in terms of step signals can be
derived as explained below:

1. For the time interval −3 ≤ t < ∞, the step signal is generated as u(t + 3).
2. For the time interval −2 ≤ t < ∞, the step signal is generated as u(t + 2).
3. For the time interval −1 ≤ t < ∞, the step signal is generated as 2u(t + 1).
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tt

x(t)

1

(a) (b)

0 3

4

1

2

tt

x( t)

0 1

4

3

2

(d)

tt 0 1.5 2.5

6

1.5

12

(c)

tt

3x( t)
3x( t 1.5)

0 1

6

3

12

(e)

tt 0 2.25 3.75

6

2.25

12

y(t) 3x(   t 1.5)3
2

Fig. 1.32 Sketch of y(t) = −3x
(− 2

3 t + 1.5
)
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x(t)

tt 3 2 1 0

1

2

4

1 2 3

Fig. 1.33 The signal x(t) for Example 1.6

If the above three step signals are added, wewill get the stair-case signal−3 ≤ t ≤ 1.
However, these step signals are extended to t → ∞ also and hence, they are to be
canceled by negative going steps at t = 1, t = 2 and t = 3 as −2u(t − 1),−u(t − 2)
and u(t − 3), respectively. Thus, x(t) is obtained by adding these step signals.

x(t) = u(t + 3) + u(t + 2) + 2u(t + 1) − 2u(t − 1) − u(t − 2) − u(t − 3)

� Example 1.7

For a signal x(t) shown in Fig. 1.34a, sketch

(a) x(3t + 2)

(b) x

(−t

2
− 1

)

(Anna University, June, 2007)
Solution: To plot x(3t + 2)

1. x(t) is represented in Fig. 1.34a. x(t) is moved to the left by t = 2 and is shown
in Fig. 1.34b.

2. By time compression by a factor 3, from Fig. 1.34b, x(3t + 2) is obtained and
is shown in Fig. 1.34c.
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x(t)

tt 1 1 0

1

2

12
1
2

(a)

x(t 2)

tt 03 2.5 2 1.5 1

2

1

(b)

x(3t 2)

tt 1 0

1

2

5
6

2
3

3
6

1
3

(c)

Fig. 1.34 a Plot of x(t). b Time shifted x(t). c Time compressed x(t). d Folded x(t). e Time shifted
x(−t). f Time expansion of x(−t − 1) to get x(− t

2 − 1)
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x( t)

tt 1 0

1

2

11
2

1
2

(d)

x( t 1)

tt 02 1 1

2

1

1
2

1
2

(e)

x( 1)

tt 04 3

2

1

12

t
2

(f)

Fig. 1.34 (continued)
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Solution: To plot x(−( t
2 ) − 1)

1. By folding x(t) represented in Fig. 1.34a, x(−t) is obtained and is shown in
Fig. 1.34d.

2. x(−t − 1) is obtained by shifting x(−t) by t = 1 to the left. x(−t − 1) is sketched
as shown in Fig. 1.34e.

3. By time expansion, the time of the signal x(−t − 1) is multiplied by the factor 2,
and x(− t

2 − 1) is obtained. This is shown in Fig. 1.34f.

� Example 1.8

The rectangular signal x(t) = rect(t/2) is shown in Fig. 1.35a. Sketch the following
signals:

x(t)

tt 11

1

)b()a(

0

x(t 3)

tt 0 2 4

(a)

2x(t)

tt 11

2

(c)

0 3x(t)

tt 1

3

10

(d)

Fig. 1.35 a x(t) signal and b Representation of x(t − 3). c Representation of 2x(t) and d Repre-
sentation of −3x(t). e Representation of x(t − 2) and f Representation of 3x(t). g Representation
of x(t − 2) + 3x(t)
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x(t 2) 

tt

1

1 30

3x(t) 

tt 1 10

3

(e) (f)

x(t 2) 3x[t]

tt 1

1

0 2 3

3

1

(g)

Fig. 1.35 (continued)

(a) x(t − 3)

(b) 2x(t)

(c) −3x(t)

(d) x(t − 2) + 3x(t)

Solution:

(a) To represent the signal x(t − 3)
x(t − 3) is obtained by time shifting x(t) by 3 unit of time toward right. This is
shown in Fig. 1.35b.

(b) To represent the signal 2x(t)
This is an amplitude scaled signal. The amplitude of x(t) is multiplied by the
factor 2 and is shown in Fig. 1.35c.

(c) To represent the signal −3x(t)
The signal x(t) is amplitude inverted and multiplied by a factor 3. This is shown
in Fig. 1.35d.
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(d) To represent the signal x(t − 2) + 3x(t)
The time delayed x(t − 2) is obtained by shifting x(t) to the right by a factor
2. This is represented in Fig. 1.35e. The signal x(t) is amplitude multiplied by
a factor 3 and 3x(t) is obtained. This is shown in Fig. 1.35f. By adding the
signals shown in Fig. 1.35e and in Fig. 1.35f, x(t − 2) + 3x(t) is obtained and
is represented in Fig. 1.35g.

� Example 1.9

Consider the triangular wave form x(t) shown in Figure 1.36(a). Sketch the following
wave forms:

(a) x(2t + 3)

(b) x

(
t + 3

2

)

(c) x

(
t

2
− 3

)

(d) x(−2t + 3)

(e) x(−2t − 3)

Solution:

(a) To sketch x(2t + 3)
Figure 1.36a shows x(t) = tri(t). By time shifting by t = 3 toward left, x(t + 3)
is obtained and this is sketched in Fig. 1.36b. x(t + 3) is time compressed by a
factor of 2 to get x(2t + 3). This is sketched in Fig. 1.36c.

(b) To sketch x
( t+3

2

)

The signal x
(

t+3
2

)
is written as x

(
t
2 + 1.5

)
. The signal x(t) is time shifted to

the left by 1.5 unit to get x(t + 1.5). This is sketched in Fig. 1.36d. x(t + 1.5)
is time expanded by a factor 2 to get x

(
t
2 + 1.5

)
which is nothing but x

(
t+3
2

)
.

This is sketched in Fig. 1.36e.
(c) To sketch x

( t
2 − 3

)

x(t − 3) is obtained from x(t) by time shifting the signal x(t) to the right by 3
unit and is shown in Fig. 1.36f. By time expansion of x(t − 3) by a factor 2,
x
(

t
2 − 3

)
is obtained and sketched as shown in Fig. 1.36g.

(d) To sketch the signal x(−2t + 3)
Signal x(−t) is obtained by folding x(t) and it is shown in Fig. 1.36h. x(−t) is
time shifted to the right by 3 unit to get x(−t + 3). This is shown in Fig. 1.36i.
The signal x(−t + 3) is time compressed by a factor 2 to get x(−2t + 3). This
is sketched in Fig. 1.36j.

(e) To sketch the signal x(−2t − 3)
x(−t) is shown in Fig. 1.36h. From Fig. 1.36h, x(−t) is time shifted toward
left by 3 units to get x(−t − 3). This is shown in Fig. 1.36k. x(t − 3) is time
compressed by a factor 2 to get x(−2t − 3). This is sketched in Fig. 1.36l.
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� Example 1.10

A continuous time signal x(t) is shown in Figure 1.37(a). Sketch and label carefully
each of the following signals:

(a) x(t − 1)

(b) x(2 − t)

(c) x(t)

[

δ

(

t + 3

2

)

− δ

(

t − 3

2

)]

(d) x(2t + 1)

(Anna University, April, 2008)

x(t) = tri(t)

tt 1 0 1

1
(a)

x(t 3)

t 234 0

)c()b(

1

x(2t 3)

t 1.5 12 0

1

x(t 3)

t 15 3 0

(e)

1
2

(d)
x(t 1.5)

t 1.5 .52.5 0

1

Fig. 1.36 a x(t) = tri(t). b x(t + 3); c x(2t + 3). d x(t + 1.5); e x
( t+3

2

)
. f x(t − 3); g x

( t
2 − 3

)
.

h x(−t); i x(−t + 3); j x(−2t + 3). k x(−t − 3); l x(−2t − 3)
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x(t 3)

t0

x(  3)

t0

11

2 3 4 4 6 8

(f) (g)
2
t

x( t)

t 1 t0

1

1

x( t 3)

t0

1

2 3 4

(i)(h)

x( 2t 3)

t0

1

1.51 2

(j)

(l)
x( 2t 3)

t 1.5 12 0

1

x( t 3)

t 234 0

(k)

1

Fig. 1.36 (continued)

Solution:

(a) To sketch x(t − 1)
x(t − 1) is the time delayed signal of x(t) by one unit. x(t) is shifted to the right
by t = 1 and it is sketched as shown in Fig. 1.37b.
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(b) To sketch x(2 − t)
The folded signal of x(t) is x(−t) and is shown in Fig. 1.37c. x(−t) is right
shifted by 2 unit to get x(2 − t) and is shown in Fig. 1.37d.

(c) To sketch x(t)[δ(t + 3
2 ) − δ(t − 3

2 )]
δ(t + 3

2 ) and δ(t − 3
2 ) are shown inFig. 1.37e,which occur as unit impulses at t =

− 3
2 and t = 3

2 , respectively. At t = − 3
2 , x(t) = − 1

2 and δ(t + 3
2 ) = 1. Using the

property of impulse x(t)δ(t − t0) = x(t0)δ(t − t0), we get x(t)δ(t + 3
2 ) = − 1

2 .
Similarly at t = 3

2 , x(t) = 1
2 and −δ(t − 3

2 ) = −1. Hence, x(t)δ(t − 3
2 ) = − 1

2 .
This is sketched as shown in Fig. 1.37f.

(d) To sketch x(2t + 1)
From Fig. 1.37a, x(t + 1) is derived by shifting x(t) to the left by t = 1. This is
shown in Fig. 1.37g. By time compression of x(t + 1) by a factor 2, x(2t + 1) is
obtained and sketched as shown in Fig. 1.37h.

� Example 1.11

Sketch the signal x(t) = [u(t) − u(t − a)] where a > 0.

Solution:

(1) The unit step signal u(t) is shown in Fig. 1.38a.
(2) The unit step signal with a time delay a and amplitude inverted is shown in

Fig. 1.38b.
(3) If the above two step signals are added, a pulse signal is obtained and is sketched

as shown in Fig. 1.38c which gives u(t) − u(t − a). The above signal is defined
as

x(t) = 1 0 ≤ t ≤ a

x(t) 

tt 1

1

2 0 1

1

2

2

(a)

Fig. 1.37 a x(t) plot. b x(t − 1) plot
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x(t 1) 

tt
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1

0 1

1

2 3

2

(b)

x( t) 

tt 0

(c) (d)
x(2 t) 

t0 1 2

1

2

3 41 2

2

1

2 1

1 1

21

1

(e)

tt

(t 3/2)

(t 3/2)

01

1

2

3/2
3/2

x(t)[ (t 3/2) (t 3/2)]

21

(f)

tt 01

1/2

2

3/23/2

Fig. 1.37 (continued)
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1

1

2

3

x(t 1)
(g)

0

1

2

1 tt 1
1

x(2t 1)
(h)

0

1

2

1/21/2 tt 3
2

Fig. 1.37 (continued)

u(t)

u(t a)t

t

0

0 a
(a) (b)

1

u(t) u(t a)

t0 a

(c)

1

1

Fig. 1.38 Pulse signal from two step signals

(a) (b)
x(t)

2 2

2

t t0

u(1 t)

0 1

1

(c)
x(t)u(1 t)

2 1

2

1

t0

Fig. 1.39 Product of triangular and time delayed step signals

� Example 1.12

Consider the signal x(t) shown in Fig. 1.39a. Sketch the signal x(t)u(1 − t).

Solution:

1. The signal x(t) is shown in Fig. 1.39a. The signal u(1 − t) is shown in Fig. 1.39b.
2. The signal x(t) is multiplied by the factor 1 for the intervals −2 ≤ t ≤ 0 and 0 ≤

t ≤ 1. During these time intervals, the slope of the straight lines of the triangles
are +1 and −1, respectively. Hence, x(t) is retained as it is. At t = 1, x(t) = 1
and u(1 − t) = 1. Hence, x(t)u(1 − t) = 1

3. For t > 1,u(1 − t) = 0 andhence, x(t)u(1 − t) = 0.This is sketched inFig. 1.39c.
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rect( )

0

(a) (b) (c)

1 1

1

t

(t   )

0

1

tt

rect( ) (t   )

0

1

tt
2
1

2
1

2
1

2
t

2
1

2
t

Fig. 1.40 Product of rectangular and time advanced impulse

� Example 1.13

Consider the signal rect( t
2 ). Sketch the signal rect( t

2 ) δ(t + 1
2 ).

Solution:

1. The rectangular pulse rect( t
2 ) is shown in Fig. 1.40a.

2. The time advanced impulse δ(t + 1
2 ) is defined as follows:

δ

(

t + 1

2

)

= 1 if t = −1

2
= 0 otherwise

This is sketched in Fig. 1.40b.
3. At t = − 1

2 , the magnitude of rect(t) = 1. Hence, using the property x(t)
δ(t + t0) = x(t0), we sketch x(t)δ(t + t0) as an impulse at t = − 1

2 which is shown
in Fig. 1.40c.

� Example 1.14

x(t) = 10e−3t+4

Determine x(t + 2), x(−t + 2) and x( t
4 − 5).

Solution:
x(t) = 10e−3t+4

1. For t = t + 2,
x(t + 2) = 10e−3(t+2)+4

x(t + 2) = 10e−3t−2

2. For t = −t + 2,
x(−t + 2) = 10e−3(−t+2)+4
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x(−t + 2) = 10e3t−2

3. For t = ( t
4 − 5),

x

(
t

4
− 5

)

= 10e−3( t
4 −5)+4

x

(
t

4
− 5

)

= 10e− 3
4 t+19

� Example 1.15

Decompose the signal x(t) shown in Fig. 1.41a in terms of basic signals such as delta,
step and ramp.

(Anna University, December, 2007)

u(t)
u(t) u(t 1) 3u(t 2)

u(t) u(t 1) 3u(t 2) r(t 3) r(t 4)

3u(t 2)

r(t 3)

r(t 4)

t

u(t 1)

t

x(t)

t

2

2
3

4

(a) (b)

1

10 0 1 2
1

3

t

(c) (d)
2

0 0
1 2 3 42 1

1

1

x(t)

t

(e)

2

0 2
3 4

1

1

1

r(t 3)

r(t 4)

Fig. 1.41 Composite signal expressed in terms of basic signals
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Solution:

1. The given signal x(t) is shown in Fig. 1.41a.
2. The signals u(t) + u(t − 1) − 3u(t − 2) are shown in Fig. 1.41b and their sum is

shown in Fig. 1.41c.
3. The signals r(t − 3) and r(t − 4) are shown in Fig. 1.41d.
4. Signals in Fig. 1.41c, d are summed up and they are shown in Fig. 1.41e which

is nothing but x(t). Hence,

x(t) = u(t) − u(t − 1) − 3u(t − 2) + r(t − 3) − r(t − 4)

5. For the time 3 ≤ t < 4, the ramp signal is to be generated with a +ve slope of 1.
The equation of this straight line signal is

r(t) = t + c

At t = 3, r(t) = −1

−1 = 3 + c

c = −4

r(t) = (t − 4) 3 ≤ t < 4

= (t − 4)[u(t − 3) − u(t − 4)]

x(t) = u(t) + u(t − 1) − 3u(t − 2) + (t − 4)[u(t − 3) − u(t − 4)]

� Example 1.16

Sketch the signals

(a) x(t) = −4sgn 3t

(b) x(t) = 5sinc 10t

Solution:

(a) x(t) = −4sgn3t
The signal sgn t is shown in Fig. 1.42a. The signum function is inverted and
multiplied by a factor 4. The time compression by a factor 3 does not apply in
this case as the signal remains constant for −∞ < t < ∞. The signal is shown
in Fig. 1.42b.

(b) x(t) = 5sinc10t
The signal sinc t is sketched in Fig. 1.42c. The sinc function amplitude is multi-
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x(t) sgn t

t

1

(a)

1

x(t) 4sgn3t

t

4

(b)

4

x(t) = sinct x(t) = 5sinc10t

1
10

t t

(c) (d)

0
11234

1

2 3 4
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1
10

2
10

3
10

2
10

3
10

4
10

Fig. 1.42 Representation of signum and sinc functions

plied by the factor 5 and the time is compressed by the factor 10. x(t) = 5 sin 10t
is represented in Fig. 1.42d.

� Example 1.17

Consider the signal shown in Figure1.43(a) and sketch the following signals.

1. x(t)u(t − 1)

2. x(t)u(t + 1)

3. x(t)u(−t − 1)

4. x(t)u(−t + 1)

5. x(t − 1)u(t − 1)

6. x(2t + 1)u(t + 1)

7. x(−2t − 1)u(−t − 1)

8. x(−2t + 1)u(−t + 1)

9. x(t)[u(t + 1) − u(t − 2)]

Solution:

1.

u(t − 1) =
{
1 t ≥ 1

0 t < 1

x(t) is sketched in Fig. 1.43a. It will be multiplied by 1 for t ≥ 1 and by 0 for
t < 1. x(t)u(t − 1) is shown in Fig. 1.43b.
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tt
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0 1 2
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3 2 1 tt

x(t)u(t 1)
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tt
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tt
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tt
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tt

x(2t 1)
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2

(h)
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2 3 1
2
1
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x(t)u( t 1)

1

(d)

0 1 23 2 1tt
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1

(c)

0 1 2
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1
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0 1 2 3
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Fig. 1.43 Sketching of signal x(t) for Example 1.17
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tt
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0 1
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2
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x( 2t 1)u( t 1)

1
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(p)

tt

x( 2t 1)

1

2

(l)

0
2
3 1 tt

x( 2t 1)u( t 1)

2

(m)

tt

x(t)[u(t 1) u(t 2)]
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(q)

0 1 2
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Fig. 1.43 (continued)



48 1 Representation of Signals

2.

u(t + 1) =
{
1 t ≥ −1

0 t < −1

x(t) is multiplied by 1 for t ≥ −1 and by 0 for t < −1. x(t)u(t + 1) is shown in
Fig. 1.43c.

3.

u(−t − 1) =
{
1 t ≤ −1

0 t > −1

x(t) is multiplied by 1 for t ≤ −1 and by 0 for t > −1. x(t)u(−t − 1) is shown
in Fig. 1.43d.

4.

u(−t + 1) =
{
1 t ≤ 1

0 t > 1

x(t) is multiplied by 1 for t ≤ 1 and by 0 for t > 1. x(t)u(−t + 1) is shown in
Fig. 1.43e.

5.

u(t − 1) =
{
1 t ≥ 1

0 t < 1

x(t) is right shifted by 1 to get x(t − 1). This is shown in Fig. 1.43e. x(t − 1) for
t > 1 is identified and plotted as x(t − 1)u(t − 1) and shown in Fig. 1.43f.

6.

u(t + 1) =
{
1 t ≥ −1

0 t < −1

x(t) is left shifted by 1 and x(t + 1) is plotted as shown in Fig. 1.43g. x(t + 1)
is time compressed by 2 and is shown in Fig. 1.43h. x(2t + 1) for t ≥ −1 is
multiplied by 1 and for t < −1 by 0 and x(2t + 1)u(t + 1) is plotted as shown
in Fig. 1.43i.

7.

u(−t − 1) =
{
1 t ≤ −1

0 t > −1
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x(−t) is sketched by reflection of x(t) and is shown in Fig. 1.43j. It is left shifted
by 1 to get x(−t − 1) and is shown inFig. 1.43k. x(−t − 1) is time compressed by
2 and is shown as x(−2t − 1) in Fig. 1.43l. For t ≤ −1, x(−2t − 1) is multiplied
by 1 and for t > −1 by 0 and x(−2t − 1)u(−t − 1) is obtained and plotted as
shown in Fig. 1.43m.

8.

u(−t + 1) =
{
1 t ≤ 1

0 t > 1

x(−t) is right shifted by1 andplotted as x(−t + 1) as shown inFig. 1.43n. x(−t +
1) is time compressed by 2 and x(−2t + 1) is plotted as shown in Fig. 1.43o.
For t < 1, x(−2t + 1) is multiplied by 1 and for t ≥ 1, it is multiplied by zero.
Thus, x(−2t + 1)u(−t + 1) is obtained and sketched as shown in Fig. 1.43p.

9.

[u(t + 1) − u(t − 2)] =
{
1 −1 ≤ t < 2

0 otherwise

x(t) is multiplied by 1 for the time interval −1 ≤ t < 2 and by 0 elsewhere.
Thus, x(t)[u(t + 1) − u(t − 2)] is obtained and sketched as shown in Fig. 1.43q.

� Example 1.18

(I) Consider the CT signals shown in Fig. 1.44a–c. For each of these figures give the
mathematical description. Derive the first derivative of these equations in terms
of singularity equations. Sketch the waveform of the derivative signals.

(II) Consider the mathematical description of a certain signal which is given as

x(t) = (2t − 6)[u(t + 1) − u(t − 4)]

Sketch the signal x(t).

Solution:

(I) (a)

x(t) = u(t) − u(t − a)

The above equation represents a rectangular pulse of width a and height
1 and is represented in Fig. 1.44a. The derivative of the above equation is
obtained as

dx(t)

dt
= du(t)

dt
− du(t − a)

dt
= δ(t) − δ(t − a)
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The impulses at t = 0 and t = a are shown in Fig. 1.44d. From Fig. 1.44a, it
is evident that the derivative of a pulse can be obtained just by observation.
For x(t) being constant, the derivative will be zero. At t = 0, there is an
up going pulse of strength 1 and at t = a, there is a down going pulse of
strength −1.

(b)

x(t) =
{

t 0 ≤ t ≤ a

0 otherwise

The above equation represents a triangle with unity slope with a base of a
and is sketched as shown in Fig. 1.44b. Further, the above equation can be
written as follows:

x(t) = t[u(t) − u(t − a)]

Differentiating the two time functions using u − v method, we get

dx(t)

dt
= t

[
du(t)

dt
− du(t − a)

dt

]

+ [u(t) − u(t − a)]
= tδ(t) − tδ(t − a) + [u(t) − u(t − a)]
= 0 − aδ(t − a) + u(t) − u(t − a)

x(t)
(a)

(d)

(c)

ta

1

0

t

x(t) sgnt

t

1

0

dx(t)
dt

(t a) a (t a)

2 (t)
(t)

dx(t)
dt dx(t)

dt

a0

(e)

ta

1

0

x(t)
(b)

ta

a

0

1

1

(f)

t t0

Fig. 1.44 Representation of x(t) and its derivatives of Example 1.18(a). Sketch of x(t) of Exam-
ple 1.18(b)
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(2t 6)

t

8

6

1
4

3

2

x(t)

t

8

6

1
4

3

2

tt

t

u(t 1) u(t 4)
(h)

(i)

(g)

0 4

1

1

Fig. 1.44 (continued)

Thus, the derivative of the triangle is obtained as the sum of a rectangular
pulse of width a and an impulse of strength −a occurring at t = a. This
is represented in Fig. 1.44e. This can be also obtained just by observation.
For the straight line of the triangle, the slope is one, and correspondingly,
the rectangular pulse in the derivative of x(t) will have the height which is
nothing but the slope (which is 1 here) and the width of the rectangular pulse
is “a” which is the base of the triangle. The triangle has a negative going
impulse at t = a. The rectangular pulse together with the impulse is shown
in Fig. 1.44e.

(c)

x(t) = sgn t

= u(t) − u(−t)
dx(t)

dt
= δ(t) − δ(−t)

= δ(t) + δ(t)

= 2δ(t)
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x(t) is shown in Fig. 1.44c and its derivative in Fig. 1.44f. By observation of
Fig. 1.44c, its derivation can be obtained. Since signal is constant at all time
t except t = 0, its derivative is zero. At t = 0, there is an up going impulse
from −1 to 1. This impulse is represented as 2δ(t).

(II) 1. (2t − 6) is a straight line of slope +2 and is passing through t = 3 with
zero magnitude. This is sketched as shown in Fig. 1.44g.

2.

[u(t + 1) − u(t − 4)] =
{
1 −1 ≤ t < 4

0 otherwise

The signal of the equation is sketched in Fig. 1.44h.
3. (2t − 1) will be multiplied by 1 for −1 ≤ t < 4 and by zero elsewhere.

The plot of x(t) is shown in Fig. 1.44i.

� Example 1.19

Sketch the signal x(t) which has the following mathematical description.

x(t) =

⎧
⎪⎨

⎪⎩

3
2 t + 3 −2 ≤ t ≤ 0

3e−3t 0 ≤ t < 4

0 otherwise

Also, sketch the signals x(t/4) and x(5t) and give their mathematical descriptions.

Solution:

1. x(t) = 3
2 t + 3 for−2 ≤ t > 0 is a straight line with a slope 3/2 and x(t) = 3e−3t

for 0 ≤ t < 4 is an exponential decay. These two are combined and shown as
x(t) in Fig. 1.45a.

2. x(t/4) is the time expanded signal. In the signal description of x(t/4), time t in
x(t) is replaced by t/4 and the time axis t is expanded by 4. Thus, the following
mathematical description is written for x(t/4)

x(t/4) =
{

3
8 t + 3 − 2 ≤ t

4 < 0

or − 8 ≤ t > 0

=

⎧
⎪⎪⎨

⎪⎪⎩

3e− 3
4 t 0 ≤ t

4 < 4

or 0 ≤ t < 16

0 otherwise

x(t/4)with the abovemathematical description is sketched as shown inFig. 1.45b.
3. x(5t) is the time compressed signal. To sketch x(5t), time t in x(t) is replaced by

5t and the time axis is compressed by a factor 5. Thus, the followingmathematical
description is given for x(5t)
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(a) x(t)

tt 0 4

3

3e 3t

2

2
3 t 3

(b) x( )

tt 0 16

3

3e t

8

8
3

4
3

4
t

t 3

(c) x(5t)

tt 0

3

3e 15t2
15

5
2

5
4

t 3

Fig. 1.45 Graphical representation x(t), x(t/4) and x(5t) of Example 1.19

x(5t) =
⎧
⎨

⎩

15
2 t + 3 − 2 ≤ 5t < 0

or −2
5 ≤ t < 0

=
⎧
⎨

⎩

3e−15t 0 ≤ 5t < 4

or 0 ≤ t < 4
5

With the above mathematical description x(5t) is sketched and is shown in
Fig. 1.45c.

� Example 1.20

The signal x(t) is given by

x(t) =

⎧
⎪⎨

⎪⎩

(t + 1) −1 ≤ t < 0

1 0 ≤ t < 2

0 otherwise

Find the mathematical and graphical representation for x(−t), x(3 − t) and x(t/2).

(Anna University, 2011)



54 1 Representation of Signals

(a)

0

1

1 2 tt

x(t)

(d)

0

1

2 4 tt

(b)

0

1

2 1 tt

x( t)

x( t 3)(c)

0 1 3 4

15

tt

x( )2
t

Fig. 1.46 Graphical representation of x(t), of Example 1.20

Solution:

1. The graphical representation of x(t) is shown in Fig. 1.46a. x(t) can be mathe-
matically represented by a single equation for all t as

x(t) = (t + 1)[u(t + 1) − u(t)] + [u(t) − u(t − 2)]
= (t + 1)u(t + 1) − tu(t) − u(t − 2)

2. x(−t) is obtained from x(t) by signal reflection and is shown in Fig. 1.46b. x(−t)
is mathematically represented as

x(−t) =

⎧
⎪⎨

⎪⎩

1 −2 ≤ t < 0

(1 − t) 0 ≤ t < 1

0 otherwise

The above equations can also be written as a single equation for all time t as

x(t) = [u(t + 2) − u(t)] + (1 − t)[u(t) − u(t − 1)]
= [u(t + 2) − tu(t) + (t − 1)u(t − 1)]

3. x(−t) is right shifted by 3sec. to get x(3 − t) and is graphically represented in
Fig. 1.46c. The following mathematical equation is written for x(3 − t).
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x(3 − t) =

⎧
⎪⎨

⎪⎩

1 1 ≤ t < 3

4 − t 3 ≤ t < 4

0 otherwise

The following single equation for x(3 − t) for all time t is written.

x(3 − t) = [u(t − 1) − u(t − 3)] + (4 − t)[u(t − 3) − u(t − 4)]
= u(t − 1) − (t − 3)u(t − 3) + (t − 4)u(t − 4)

4. x(t/2) is obtained by time expansion of x(t) and is shown in Fig. 1.46d. The
following mathematical equations are written for x(t/2).

x

(
t

2

)

=

⎧
⎪⎨

⎪⎩

1
2 t + 1 −2 ≤ t < 0

1 0 ≤ t < 4

0 otherwise

The above equations can be written as a single equation as

x

(
t

2

)

=
(
1

2
t + 1

)

[u(t + 2) − u(t)] + [u(t) − u(t − 4)]

=
(
1

2
t + 1

)

u(t + 2) − 1

2
tu(t) − u(t − 4)

� Example 1.21

Carefully sketch the following signals. Express the signals in terms of singularity
functions.

1. x(t) = 5rect

(
t

4

)

2. x(t) = rect
(t + 2)

4
3. x(t) = rect(−4t + 5)

4. x(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 0 ≤ t < 3

0 3 ≤ t < 5

1 5 ≤ t < 8

0 otherwise

Express x(t)as products as well as sum of step functions.

5. x(t) = 2rect
(t − 5)

2
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6. x(t) = rect
(t − 5)

5
+ rect

(t − 6)

2
7. x(t) = r(t) + r(t − 1) + 2r(t − 2) − 2r(t − 3) − 3u(t − 6)

8. x(t) = r(t + 3) − r(t) + r(t − 3)

9. x(t) = u(t)u(5 − t)

10. x(t) = u(t) + δ(t − 3)

11. x(t) = u(t)δ(t − 3)

12. x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

r(t + 5) −5 ≤ t < −3

2 −3 ≤ t < 2

4 2 ≤ t ≤ 4

−r(t − 4) 4 ≤ t < 5

0 otherwise

13. x(t) = u (t + 4) r(−t + 2)

14. x(t) = rect

(
t

4

)

tri(t + 1.5)

15. x(t) = rect

(
t

2

)

tri

(
t

4

)

16. x(t) = r(2t + 1)rect
(t − 2)

4

Solution:

1.

x(t) = 5rect

(
t

4

)

rect(t) is plotted as shown in Fig. 1.47a.

(a)

0

1

tt
22

1 1

5rect(t/4)rect(t) (b)

5

tt 2 20

Fig. 1.47 Rectangular CT signal
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(a)

0

1

tt
2
3

2
1

(b)

0 tt 3 1

Fig. 1.48 Time shifted rectangular CT signal

Its amplitude is multiplied by 5 and time is expanded by 4 to get x(t) = 5rect
(

t
4

)

which is shown in Fig. 1.47b. The mathematical equation for the above signal
is

x(t) = 5[u(t + 2) − u(t − 2)]

or

x(t) = 5u(t + 2)u(−t + 2)

2.

rect
(t + 2)

2
= rect

(
t

2
+ 1

)

x(t) is left shifted by 1sec and plotted as x(t + 1) which is shown in Fig. 1.48a.
rect(t + 1) is time expanded by a factor 2 to get rect( t

2 + 1) which is nothing
butrect (t+2)

2 . This is plotted in Fig. 1.48b. The mathematical equation for this
signal is written as

x(t) = u(t + 3) − u(t + 1)

or

x(t) = u(t + 3)u(−t − 1)

3. The signal x(−t) is sketched in Fig. 1.49a. x(−t) is right shifted by 5 sec to
get x(−t + 5) and is sketched in Fig. 1.49b. x(−t + 5) is time compressed by a
factor 4 to get x(−4t + 5)which is sketched as shown in Fig. 1.49c. The equation
for x(−4t + 5) can be written as
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(b)

0

1

tt
2
9

2
11

(a)

0

1

tt
22

1 1

x( t) rect( t) x( t 5)

(c)

0

1

tt
8
9

8
11

x( 4t 5)

Fig. 1.49 x(t) = rect(−4t + 5) graphical representation

x(t) = u

(

t − 9

8

)

− u

(

t − 11

8

)

= u

(

t − 9

8

)

u

(

−t + 11

8

)

4.

x(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 0 ≤ t < 3

0 3 ≤ t < 5

1 5 ≤ t < 8

0 otherwise

The signal x(t) is sketched as shown in Fig. 1.50. x(t) can be expressed in the
mathematical forms as

x(t) = u(t) − u(t − 3) + u(t − 5) − u(t − 8)

or
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0 3 5 8

1

tt

x(t)

Fig. 1.50 Graphical representation of Example 1.21.4

x(t) = u(t)u(3 − t) + u(t − 5)u(8 − t)

5.

x(t) = 2rect
(t − 5)

2

= 2rect

(
t

2
− 5

2

)

rect(t − 5
2 ) is sketched by right shifting 2rect(t) by 5

2 as shown in Fig. 1.51a
and 2rect(t − 5

2 ) is obtained. This signal is time expanded by a factor of 2 to get
x(t) = 2rect (t−5)

2 and is sketched as shown in Fig. 1.51b.
The mathematical expression for x(t) is written as

x(t) = 2[u(t − 4) − u(t − 6)]

or

2rect(t 5/2)(a)

0 2 3

2

tt

2rect[(t 5)/2](b)

2

Fig. 1.51 Graphical representation of Example 1.21.5
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x(t) = 2u(t − 4)u(6 − t)

6.

x(t) = rect
(t − 5)

(5)
+ rect

(t − 6)

2

rect(t − 1) is plotted by shifting rect(t)by1 to the right and is shown inFig. 1.52a.

rect(t 1)(a)

0

1

tt

rect[(t 5)/5](b)

0

1

tt
2
1

2
3

rect(t 3)(c)

(e)

0

1

tt
2
5

2
7

rect[(t 6)/2](d)

0

1

tt 5 7

2
5

2
15

tt 0 5 7

x(t) rect[(t 5)/5] rect[(t 6)/2]  

1

2

5
2

15
2

Fig. 1.52 Graphical representation of Example 1.21.6
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Fig. 1.53 Graphical
representation of Example
1.21.7

x(t)

3

2

1

rect
(t − 5)

5
= rect

(
t

5
− 1

)

Now rect(t − 1) is time expanded by 5 and rect (t−5)
5 is plotted as shown in

Fig. 1.52b.

rect
(t − 6)

2
= rect

(
t

2
− 3

)

rect(t − 3) is plotted by right shifting rect(t) by 3. rect(t − 3) (Fig. 1.52c) is
time expanded by 2 to get rect (t−3)

2 which is shown in Fig. 1.52(d). Figure 1.52b,
d is added to get Fig. 1.52e which represents

x(t) = rect
(t − 5)

5
+ rect

(t − 6)

2

From Fig. 1.52e, the following equation is derived for x(t).

x(t) = u

(

t − 5

2

)

+ u(t − 5) − u(t − 7) − u

(

t − 15

2

)

7.

x(t) = r(t) − r(t − 1) + 2r(t − 2) − 2r(t − 3) − 3u(t − 6)

For 0 ≤ t < 1, the ramp signal with slope one is drawn. ramp(t − 1) cancels r(t)
and hence, x(t) remains constant at 1. At t = 2, the ramp (t − 2) starts with slope
2 and exits upto t = 3. At t = 3 a negative going ramp with slope −2 makes
x(t) flat with amplitude 3. At t = 6, a negative step function with amplitude
−3 makes x(t) = 0. Thus, x(t) is sketched as shown in Fig. 1.53. x(t) can be
expressed in terms of the singularity step and ramp functions as follows.

For 0 ≤ t < 1,
x(t) = t
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and for 2 ≤ t > 3,

x(t) = 2t − 3

x(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t 0 ≤ t < 1

1 1 ≤ t < 2

(2t − 3) 2 ≤ t < 3

3 3 ≤ t < 6

The above equation can be written as a single equation for all time t.

x(t) = t[u(t) − u(t − 1)] + [u(t − 1) − u(t − 2)]
+ (2t − 3)[u(t − 2) − u(t − 3)] + 3[u(t − 3) − u(t − 6)]

x(t) = tu(t) − (t − 1)u(t − 1) + 2(t − 2)u(t − 2)

−2(t − 3)u(t − 3) − 3u(t − 6)

The above equation can be checked for any time t. For example for t = 2.5,

x(t) = 2.5 − (2.5 − 1) + 2(2.5 − 2)

= 2.5 − 1.5 + 1

= 2

8.

x(t) = r(t + 3) − r(t) − 2r(t − 3)

The above equation can be written as follows.

x1 = t + c

For t = −3,

x1(t) = 0

0 = −3 + c

or c = 3

x1(t) = t + 3

x3(t) = −2t + c

For t = 3,
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x3(t) = 3

3 = −6 + c

or c = 9

x3(t) = −2t + 9

x(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t + 3 −3 ≤ t < 0

3 0 ≤ t < 3

−2t + 9 t ≥ 3

0 otherwise

x(t) = x1(t) + x2(t) + x3(t)

The above equation is represented in Fig. 1.54.

x(t) = (t + 3)[u(t + 3) − u(t)] + 3[u(t) − u(t − 3)] + (9 − 2t)u(t − 3)

x(t) = (t + 3)u(t + 3) − tu(t) − 2(t − 3)u(t − 3)

9.

x(t) = u(t)u(5 − t)

u(t) and u(5 − t) are sketched in Fig. 1.55a and b, respectively. The product
of these two signals exits when they overlap. As seen from these figures the
overlapping occurs for 0 ≤ t < 5 and it forms a pulse as shown in Fig. 1.55c.
From Fig. 1.55c, the following equation is written for x(t).

x(t) = u(t) − u(t − 5)

Fig. 1.54 Graphical
representation of Example
1.21.8

0

3

tt

x(t)

x1(t)

x2(t)

x3(t)

3 3 4.5
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u(t)(a)

0

1

tt

u(5 t)(b)

1

x(t) u(t)u(5 t) u(t) u(t 5)(c)

0 5

1

tt

Fig. 1.55 Graphical representation of Example 1.21.9

Fig. 1.56 Graphical
representation of Example
1.21.10 x(t) u(t) (t 3)

1

2

10.

x(t) = u(t) + δ(t − 3)

The above signal is the summation of a step and impulse at t = 3. The sketch of
x(t) is shown in Fig. 1.56.
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x(t) u(t) (t 3)
(a)

1

2

x(t)
(b)

Fig. 1.57 Graphical representation of Example 1.21.11

11.

x(t) = u(t)δ(t − 3)

= u(3)δ(t − 3)

u(t) and δ(t − 3) are represented in Fig. 1.57a. x(t) = u(t)δ(t − 3) is nothing
but u(t) at t = 3. At t �= 3, x(t) = 0. This is represented in Fig. 1.57b.

12.

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

r(t + 5) −5 ≤ t < −3

2 −3 ≤ t < 2

4 2 ≤ t ≤ 4

−r(t − 4) 4 ≤ t < 5

0 otherwise

The above equations are sketched as x(t) in Fig. 1.58. For−5 ≤ t < −3, x(t) is a
straight line with a slope one and constant c = 5. In other words, x(t) = (t + 5)
for −5 ≤ t < −3. Similarly, for 4 ≤ t < 5, it has a negative slope of 4 and
constant c = 20. Here,

x(t) = −4t + 20 4 ≤ t < 5

The following single equation in terms of step and ramp singularity functions is
written for the signal x(t)
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x(t)

5 3

4

2

t

Fig. 1.58 Graphical representation of Example 1.21.12

x(t) = (t + 5)[u(t + 5) − u(t + 3)] + 2[u(t + 3) − u(t − 2)]
+4[u(t − 2) − u(t − 4)] + (−4t + 20)[u(t − 4) − u(t − 5)]

= (t + 5)u(t + 5) − [(t + 5 − 2)u(t + 3)] + 2u(t − 2)

+[(−4t + 20 − 4)u(t − 4)] + 4(t − 5)u(t − 5)

x(t) = (t + 5)u(t + 5) − (t + 3)u(t + 3) + 2u(t − 2)

−4(t − 4)u(t − 4) + 4(t − 5)u(t − 5)

The validity of the above equation may be checked for any time t. For example,
for t = 3,

x(t)|t=3 = 8 − 6 + 2

= 4

13.

x(t) = u(t + 4)ramp(−t + 2)

The signal ramp(t) is plotted in Fig. 1.59a as r(t). By folding r(t), r(−t) is plotted
in Fig. 1.59b. r(−t) is right shifted by 2 to get r(−t + 2) which is sketched in
Fig. 1.59c. The step signal u(t) is left shifted by 4 to get u(t + 4). This is shown
in Fig. 1.59d. When r(−t + 2) and u(t + 4) are multiplied to get x(t), the signal
x(t) = 0 for t ≤ −4 and also for t > 2. This is shown in Fig. 1.59f.
The equation for x1(t) in Fig. 1.59f is

x1(t) = −mt + c

= −t + c
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r(t)(a)

0

1

1 tt

r( t)(b)

0 tt

u(t 4)(d)

0

1

tt 4

x(t) u(t 4)r( t 2)(e)

0 2

2

6

tt 4

r( t 2)(c)

0 2

2

tt

x(t)

x1(t)

(f)

0 2

2

6

tt 4

Fig. 1.59 Graphical representation of Example 1.21.13

For t = 2,

x1(t) = 0

0 = −2 + c

c = 2

x1(t) = (2 − t)
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(a)

tt 0 22

(b)

tt 0 1

1

1

rect( )4
t

tri(t)

(c)

tt 0

1

1

1

2.5 1.5 0.5

tri(t 1.5)

(e)

tt 0

1

0.5

2 1.5 1 0.5

(d)

tt 0 2

1

2.5 2 1.5 0.5

x(t) tri(t 1.5)

x1(t)

x(t)

x2(t)

rect( )4
t

Fig. 1.60 Graphical representation of Example 1.21.14

For Fig. 1.59f, the following equation is written

x(t) = (2 − t)[u(t + 4) − u(t − 2)]

x(t) = −t[u(t + 4) − u(t − 2)] + 2[u(t + 4) − u(t − 2)]

14.

x(t) = rect

(
t

4

)

tri(t + 1.5)

The signal rect
(

t
4

)
is shown in Fig. 1.60a. The signal tri(t) is shown in Fig. 1.60b.

tri(t) is left shifted by 1.5 to get tri(t + 1.5) which is shown in Fig. 1.60c. The
product of rect( t

4 ) and tri(t + 1.5) is shown in Fig. 1.60d. x(t) is obtained by
multiplying the above two signals when they overlap. This is shown in Fig. 1.60e.
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FromFig. 1.60d, the equations for x1 and x2 (which are straight lines) are obtained
as follows:

x1(t) = mt + c

where m = 1. For t = −1.5

x1(t) = 1

1 = −1.5 + c

c = 2.5

x1(t) = t + 2.5

x2(t) = −t + c

For t = −1.5

x2(t) = 1

1 = 1.5 + c

c = −0.5

x2(t) = −(t + 0.5)

From Fig. 1.60e, the following equation is written

x(t) = (t + 2.5)[u(t + 2) − u(t + 1.5)] − (t + 0.5)[u(t + 1.5) − u(t + 0.5)]

x(t) = [(t + 2.5)u(t + 2) − (2t + 3)u(t + 1.5) + (t + 0.5)u(t + 0.5)]

15.

x(t) = rect

(
t

2

)

tri

(
t

4

)

rect
(

t
4

)
is sketched as shown in Fig. 1.61a. tri

(
t
4

)
is sketched as shown in

Fig. 1.61b. Combined rect
(

t
2

)
tri
(

t
4

)
is shown in Fig. 1.61c. The overlapping of

these two signals takes place during the period −1 ≤ t ≤ 1. In this period tri( t
2 )

is multiplied by 1 which gives x(t). This is shown in Fig. 1.61d. x(t) contains
two straight lines x1(t) and x2(t) and they have slopes of 1

4 and − 1
4 , respectively.

These equations are written as follows:

x1(t) = 1

4
t + c

For t = 0,
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(a)

tt 0 1

1

1

(b)

tt 0 4

1

4

rect(  )
4
t

2
t

rect(  )2
t

tri(  )

4
ttri(  )(c)

tt 0 1 4

1

4 1

(d)

tt 0 0.5

0.75

0.875

1

1

1

x1(t) x2(t)

x(t)

Fig. 1.61 Graphical representation of Example 1.21.15

x1(t) = 1

1 = 0 + c

x1(t) = 1

4
t + 1

x2(t) = −1

4
t + c

For t = 0,

x2(t) = 1

1 = 0 + c

x2(t) = −1

4
t + 1

x(t) = x1(t)[u(t + 1) − u(t)] + x2(t)[u(t) − u(t − 1)]
= (0.25t + 1)[u(t + 1) − u(t)] + (1 − 0.25t)[u(t) − u(t − 1)]

x(t) = 0.25(t + 4)u(t + 1) − 0.5tu(t) + 0.25(t − 4)u(t − 1)

The above equation can be checked as follows. For t = 0.5
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x2(t) = −1

4
× 0.5 + 1

= 0.875

x(t)|t=0.5 = 0.25 × 4.5 − 0.5 × 0.5

= 0.875

16.

x(t) = ramp(2t + 1)rect
(t − 2)

4

rect
(t − 2)

4
= rect

(
t

4
− 1

2

)

The signal rect (t − (1/2)) is shown in Fig. 1.62a. It is time expanded by 4 and
rect (t−2)

4 is shown in Fig. 1.62b. The signal ramp(t) is represented in Fig. 1.62c.
The ramp r(t) is left shifted by 1 to get r(t + 1) which is shown in Fig. 1.62d.
The signal r(t + 1) is time compressed by 2 and r(2t + 1) is shown in Fig. 1.62e.
The combined signal r(2t + 1)rect (t−2)

4 is shown in Fig. 1.62f. These two signals
overlap in the time interval 0 ≤ t < 4 and their product gives x(t) which is
represented in Fig. 1.62g. From Fig. 1.62g, the following equation is written

x(t) = (2t + 1) [u(t) − u(t − 4)]

x(t) = 2t[u(t) − u(t − 4)] + [u(t) − u(t − 4)]

� Example 1.22

Consider the signal y(t) = 2x(−4t − 5) where y(t) is described by

y(t) =

⎧
⎪⎨

⎪⎩

2t 0 ≤ t < 1

2 1 ≤ t < 3

0 otherwise

Find the original signal x(t) and plot with respect to t. Give themathematical descrip-
tion for x(t).

Solution:

1.
y(t) = 2x(−4t − 5)
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(e)

1

1

r(t 1)r(t)

x(t)

(d)

0

1

t

0.5

r(2t 1)(f)

0 4

1

tt

(g)

1

9

t 2
4

rect(       )

(c)

0

1

1 tt

(a)

0

1

1 tt

2
4rect(t   ) (b)

1

Fig. 1.62 Graphical representation of Example 1.21.16

y(t) as per the mathematical description given is plotted as shown in Fig. 1.63a.
The following operations on x(t) are performed in the sequential order to get
y(t).

(a) Signal reflection.
(b) Time shifting.
(c) Time compression and amplitude scaling.

2. To get x(t) from y(t), the reverse process is done in the following sequence.

(a) Amplitude scaling and time expansion.
(b) Time shifting.
(c) Signal reflection.
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y(t)(a)

0

2

1 3 tt

(d)

1

1(b)

1

2
y(t/4)

1
2 y

(c)

0 5

1

9 17 tt

1
2 (t/4 5) (t/4 5)y x(t)

Fig. 1.63 Plot of y(t) of Example 1.22

3. Amplitude scaling and time expansion: The amplitude of y(t) is truncated
by 2 and time expanded by 4. The plot of 1

2y
(

t
4

)
is shown in Fig. 1.63b.

4. x(−4t − 5) is left shifted by 5 sec. Therefore, 1
2y
(

t
4

)
is to be right shifted by 5

sec. Thus, the plot of 1
2y( t

4 − 5) is obtained as given in Fig. 1.63c.
5. Finally time reflection is done to get 1

2y(−t
4 − 5), which gives x(t). This is shown

in Fig. 1.63d.
6. The mathematical description of x(t) is given below. For −9 ≤ t ≤ −5, the

straight line has a slope of −1/4 with a constant −5/4. Thus, we write

x(t) =

⎧
⎪⎨

⎪⎩

− 1
4 t − 5

4 −9 ≤ t < −5

1 −17 ≤ t < −9

0 otherwise

� Example 1.23

Consider the signal

y(t) = 1

4
x(−3t + 4)

shown in Fig. 1.64a. Find the original signal and give its mathematical description
by a single equation for all time t.
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(c)

tt 0

1

4

(a)

tt 0 0.5

1

0.5

y(t) x( 3t 4)4
1 (b)

tt 0

4
4y( )3

t

2
11

2
5

2
3

2
3

4y( 4)3
t (d)

tt 0

4

4
2

11
2
5

4y( 4)3
t x(t)

Fig. 1.64 Sketch of signals of Example 1.23

Solution:

1. The multiple transformation of the signal x(t) to get y(t) takes place in the
following sequence.

(a) Time reversal.
(b) Time shifting.
(c) Amplitude and time scaling.

From the transformed signal y(t), the original signal x(t) is obtained in the reverse
order.

(a) Amplitude and time scaling.
(b) Time shifting.
(c) Time reversal.

2. The signal y(t) = 1
4x(−3t + 4) is shown in Fig. 1.64a. Here, the amplitude of

x(t) is truncated by 4 and time is compressed by 3. In the transformation the
amplitude of y(t) is amplified by a factor of 4 and time should be expanded. The
first transformation of y(t) becomes 4y(t/3) and is shown in Fig. 1.64b.

3. y(t) is right shifted by 4 sec. It should be left shifted by 4 sec to get 4y( t
3 + 4)

which is sketched in Fig. 1.64c.
4. Finally to get x(t), 4y( t

3 + 4) is time reversed as 4y(−t/3 + 4). This is sketched
in Fig. 1.64d.

5. To get the mathematical description of x(t), the following equations are written
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Fig. 1.65 Signal x(t) of
Example 1.24

tt 0 2 3

5

2

x(t)

x1(t)
x2(t)

x(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

8
3 t − 20

3
5
2 ≤ t < 4

−8
3 t + 44

3 4 ≤ t < 11
2

0 otherwise

6. As a single equation for all time t, the following equation is written

x(t) =
[
8

3
t − 20

3

] [

u

(

t − 5

2

)

− u(t − 4)

]

+
[

−8

3
t + 44

3

] [

u(t − 4) − u

(

t − 11

2

)]

x(t) = 1

3
[(8t − 20)u(t − 2.5) + (−16t + 64)u(t − 4) + (8t − 44)u(t − 5.5)]

� Example 1.24

Consider the signal shown in Fig. 1.65.

(a) Give mathematical description for x(t).
(b) Express x(t) by a single expression for all t.

Solution:

(a) x(t) can be decomposed as x1(t) and x2(t) where

x1(t) = m1t + c1 −2 ≤ t > 2

x2(t) = −m2t + c2 2 ≤ t > 3

x(t) = 0 otherwise

x(t) = x1(t) + x2(t)
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From Fig. 1.65, the slope m1 = 5
4

x1(t) = 5

4
t + c1

For t = −2, x1(t) = 0

0 = −5

2
+ c1

c1 = 5

2
= 2.5

From Fig. 1.65, the slope m2 = 5

x2 = −5t + c2

For t = 3, x2(t) = 0

0 = −5 × 3 + c2
c2 = 15

x2(t) = −5t + 15

(b) x1(t) can be written by a single equation for all t as follows:

x1(t) =
[
5

4
t + 2.5

]

[u(t + 2) − u(t − 2)]

x2(t) can be written by a single equation for all t as

x2 = [−5t + 15][u(t − 2) − u(t − 3)]
x(t) = x1(t) + x2(t)

= 5

4
tu(t + 2) + 2.5u(t + 2) − 5

4
tu(t − 2) − 2.5u(t − 2) − 5tu(t − 2)

+15u(t − 2) + 5t(t − 3) − 15u(t − 3)

x(t) =
(
5

4
t + 2.5

)

u(t + 2) +
(−25

4
t + 12.5

)

u(t − 2)

+(5t − 15)u(t − 3)
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Fig. 1.66 Addition of DT signals

1.7 Basic Operations on Discrete Time Signals

The basic operations that are applied to continuous time signals are also applicable
to discrete time signals. The time t in CT signal is replaced by n in DT signals. The
basic operations as applied to DT signals are explained below.

1.7.1 Addition of Discrete Time Sequence

Addition of discrete time sequence is done by adding the signals at every instant of
time. Consider the signals x1[n] and x2[n] shown in Fig. 1.66a and b, respectively. The
addition of these signals at every n is done and represented as y[n] = x1[n] + x2[n].
This is shown in Fig. 1.66c.

1.7.2 Multiplication of DT Signals

The multiplication of two DT signals x1[n] and x2[n] is obtained by multiplying the
signal values at each instant of time n. Consider the signal x1[n] and x2[n] represented
in Fig. 1.67a and b. At each instant of time n, the samples of x1[n] and x2[n] are
multiplied and represented as shown in Fig. 1.67c.
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1.7.3 Amplitude Scaling of DT Signal

Let x[n] be a discrete time signal. The signal Ax[n] is represented by multiply-
ing the amplitude of the sequence by A at each instant of time n. Consider the
signal x[n] shown in Fig. 1.67d. The signal 2x[n] is represented and shown in
Fig. 1.67e.

1.7.4 Time Scaling of DT Signal

The time compression or expansion of a DT signal in time is known as time scaling.
Consider the signal x[n] shown in Fig. 1.68a. The time compressed signal x[2n] and
time expanded signal x[ n

2 ] are shown in Fig. 1.68b and c, respectively. One should
note that while doing compression and expansion of DT signal, only for integer
value of n the samples exist. For non-integer value of n, the samples do not
exist.

x[n]

.5

2 14 3

2 2 4 6 8468

0 1 2 3 4

1 1 1

1 111

1

.5

.5.5

.5
.5

.5
.5

.5

.5

.5
.5

.5

(a)

(c)

n

x[  ]

0 n

x[2n]

2 1 0 1 2

11

(b)

n

n
2

Fig. 1.68 Time scaling of DT signal
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Time Compression

Let

y[n] = x[2n]
y[−2] = x[−4] = −0.5

y[−1] = x[−2] = 0.5

y[0] = x[0] = 0.5

y[1] = x[2] = 1

y[2] = x[4] = 1.

The plot of x[2n] is shown in Fig. 1.68b.

Time Expansion

Let

y[n] = x
[n

2

]

y[−8] = x[−4] = −0.5

y[−6] = x[−3] = 1

y[−4] = x[−2] = 0.5

y[−2] = x[−1] = 1

y[0] = x[0] = 0.5

y[2] = x[1] = −0.5

y[4] = x[2] = 1

y[6] = x[3] = 0.5

y[8] = x[4] = 1.

The plot of x[ n
2 ] is shown in Fig. 1.68c.

1.7.5 Time Shifting of DT Signal

As in the case of CT signal, time shifting property is applied to DT signal also. Let
x[n] be the DT signal. Let n0 be the time by which x[n] is time shifted. Since n is an
integer, n0 is also an integer. The following points are applicable while DT signal is
time shifted.

• For the DT signals x[−n − n0] and x[n + n0], the signals x[−n] and x[n] are to
be left shifted by n0.
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Fig. 1.69 Time shifting of DT signal

• For the DT signals x[n − n0] and x[−n + n0], the signals x[n] and x[−n] are to
be right shifted by n0.

Figure 1.69 shows time shifting of DT signal.
In Fig. 1.69a, the sequence x[n] is shown. The sequence x[n − 2] which is right

shifted by 2 samples is shown in Fig. 1.69b. x[−n] which is the folded signal is
shown in Fig. 1.69c. x[−n + 2] which is left shifted of x[−n] is shown in Fig. 1.69d.
x[n + 2] which is right shifted of x[n] is shown in Fig. 1.69e. x[−n − 2] which is
left shifted of x[−n] is shown in Fig. 1.69f.

1.7.6 Multiple Transformation

The transformations namely amplitude scaling, time reversal, time shifting, time
scaling, etc. are applied to represent DT sequence. The sequence of operation of
these transformations is important and followed as described below.

Consider the following DT signal:

y[n] = Ax
[
−n

a
+ n0
]

1. Plot x[n] sequence and obtain Ax[n] by amplitude scaling.
2. Using time reversal (folding), plot Ax[−n].
3. Using time shifting, plot Ax[−n + n0]where n0 > 0. The time shift is to be right

of x[−n] by n0 samples.
4. Using time scaling, plot Ax[− n

a + n0] where a is in integer. In the above case,
keeping amplitude constant, time is expanded by a.

The following examples illustrate the above operations.
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� Example 1.25

Let x[n] and y[n] be as given in Fig. 1.70a and b, respectively. Plot

(a) x[2n]
(b) x[3n − 1]
(c) x[n − 2] + y[n − 2]
(d) y[1 − n]

(Anna University, December, 2006)
Solution: The DT signals x[n] and y[n] are plotted as shown in Fig. 1.70a and b,
respectively.

(a) To plot x[2n]
Here, the DT sequence is time compressed by a factor 2. Hence, the samples only
with even numbers are divided by a factor 2 and the corresponding amplitudes
marked and shown in Fig. 1.70c. When odd values of n are divided by the factor
2, it becomes a fraction and they are skipped.

(b) To plot x[3n − 1]
The plot of x[n − 1] is obtained by right shifting of x[n] by n0 = 1. This is
shown in Fig. 1.70d. When x[n − 1] is time compressed by a factor 3, x[3n − 1]
is obtained. Only integers which are divisible by 3 in the sequence x[n − 1] are
to be taken to plot x[3n − 1]. Thus, samples for n = 0 and n = 3 will be plotted
as shown in Fig. 1.70e.

(c) To plot x[n − 2] + y[n − 2]
The sequence x[n − 2] is obtained by right shifting of x[n] by 2 and is shown in
Fig. 1.70f. Similarly, the sequence y[n − 2] is obtained by right shifting of y[n]
by 2 and is shown in Fig. 1.70g. The sequence x[n − 2] + y[n − 2] is obtained by
summing up the sequences in Fig. 1.70f, g for all
n and is shown in Fig. 1.70h.

(d) To plot y[1 − n]
The sequence y[−n] is obtained by folding y[n] and is shown in Fig. 1.70i.
y[−n] is right shifted by 1 sample to get the sequence y[1 − n]. This is shown
in Fig. 1.70j.

� Example 1.26

Consider the sequence shown in Fig. 1.71a. Express the sequence in terms of step
function.

Solution: The unit step sequence u[n] is shown in Fig. 1.71b. The unit negative
step sequence with a time delay of n0 = 4 is shown in Fig. 1.71b. It is evident from
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Fig. 1.70 Two discrete sequences
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Fig. 1.71 Sequences expressed in terms of step sequences
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Fig. 1.72 DT sequences expressed in terms of step sequences

Fig. 1.71 that {u[n] − u[n − 4]} gives the required x[n] sequencewhich is represented
in Fig. 1.71a. Thus, x[n] = {u[n] − u[n − 4]}.

� Example 1.27

Consider the sequence shown in Fig. 1.72a. Express the sequence in terms of step
function.

Solution:

1. Figure 1.72a represents the sequence x[n] in the interval −3 ≤ n ≤ 4.
2. Consider u[n + 3] which is represented in Fig. 1.72b. The sequence interval is

−3 ≤ n < ∞.
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Fig. 1.73 Multiplication of DT sequences

3. Consider the step sequence with a time delay of n0 = 5 and inverted. This can be
written as−u[n − 5] for the interval 5 ≤ n < ∞. This is represented in Fig. 1.72c.

4. Now consider the sum of the sequences u[n + 3] and −u[n − 5]. This is nothing
but x[n]. Thus,

x[n] = u[n + 3] − u[n − 5]

� Example 1.28

A discrete time sequence x[n] is shown in Fig. 1.73a. Find

x[n]{u[n + 1] − u[n − 3]}

Solution:

1. x[n] sequence is represented in Fig. 1.73a.
2. {u[n + 1] − u[n − 3]} sequence is nothingbut the timedelayedunit step sequence

with n0 = 3 being subtracted from the time advanced unit step sequence with
n0 = 1. This sequence is represented in Fig. 1.73b.

3. Multiplying sample wise of Fig. 1.73a, b, the required sequence x[n]{u[n + 1] −
u[n − 3]} is obtained and represented in Fig. 1.73c.

� Example 1.29

Sketch x[n] = an where −2 ≤ n ≤ 2 for the two cases shown below:

(1) a =
(

−1

4

)

(2) a = −4

(Anna University, May, 2007)
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Fig. 1.74 DT sequences of Example 1.29

Solution:
For x[n] = (− 1

4 )
n and x[n] = (−4)n where −2 ≤ n ≤ 2, x[n] is found and tabulated

below:

n −2 −1 0 1 2
x[n] = (− 1

4 )
n 16 −4 1 − 1

4
1
16

x[n] = (−4)n 1
16 − 1

4 1 −4 16

The samples of x[n] are plotted and shown in Fig. 1.74. x[n] = (− 1
4 )

n is represented
in Fig. 1.74a and x[n] = (−4)n is represented in Fig. 1.74b.

� Example 1.30

Given

x[n] = {2, 3, 4, 1, 6, 7, 5, 2, 4}
↑

sketch the following signals.

1. x[n]
2. x[n]u[n]
3. x[n]u[−n]
4. x[n − 2]u[n]
5. x[n − 2]u[n − 2]
6. x[n − 2]u[n + 2]
7. x[n]u[−n − 3]
8. x[2n]
9. x[2n + 3]u[n + 3]
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10. x[−n]u[−n]
11. x[ n

2 − 1]u[n + 4]
12. x[n]u[3 − n]
13. x[n](u[n + 2] − u[n − 3])

Solution:

1. The given sequence x[n] is plotted as shown in Fig. 1.75a.
2.

u[n] =
{
1 n ≥ 0 for all n

0 n < 0

x[n] is multiplied by 1 for all n when n ≥ 0 and by 0 when n < 0. x[n]u[n] is
sketched in Fig. 1.75b.

3.

u[−n] =
{
1 n ≤ 0 for all n

0 n > 0

x[n] is multiplied by 1 for all n when n ≤ 0 and by 0 when n > 0. x[n]u[−n] is
sketched in Fig. 1.75c.

4.

u[n] =
{
1 n ≥ 0 for all n

0 n < 0

x[n] is right shifted by 2 samples to get x[n − 2]. For n ≥ 0, x[n − 2] ismultiplied
by 1 and for n < 0, it is multiplied by 0. x[n − 2]u[n] is sketched in Fig. 1.75d.

5.

u[n − 2] =
{
1 n ≥ 2 for all n

0 n < 2

x[n − 2] is right shifted by 2 samples to get x[n − 2]. For n ≥ 2, x[n − 2] is
multiplied by 1 and for n < 2, it is multiplied by 0. x[n − 2]u[n − 2] is sketched
in Fig. 1.75e.

6.

u[n + 2] =
{
1 n ≥ −2 for all n

0 n < −2
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x[n]

3 25 4 1 0 1 2 3 4 5

3
4

6
4

5
7

2

0

2

0
1

(a)

nn

3 24 1 0 1 2 3 4 5 6 7

3

4

6

4
5

7

2

0

2

0 0
1

(f)

nn

x[n 2]u[n]

0 1 542 3 6 7

6

4
5

7

2

0
1

3

(d)

nn

x[n 2]u[n 2]

0 1 542 3 6 7

6

4
5

7

2

0

(e)

nn

x[n]u[ n]

3 25 4 1 0

3
4

6

2

0
1

(c)

nn

x[n]u[n]

0 1 2 3 4 5

6
4

5
7

2

0

(b)

nn

x[n 2]u[n 2]

Fig. 1.75 DT signal x[n] when scaled and time shifted
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26 4 0 2 4 6 8 10

3
4

6
4

5
7

0

2

1

(k)

nn

x[2n]

3 2 1 0 1 2 3

3

6
4

5

5

2

0 0

(h)

nn

(l)

3 25 4 1 0

4

2

0 0 0

(g)

nn

x[n]u[ n 3]

3 24 1 0 1

4

7 7
6

2

0 0
1

(i)

nn

x[(n/2) 1]u[n 4]

x[(2n 3)]u[n 3]

x[n]u[3 n]

3 245 1 0 1

4

2

0 0

(j)

nn

x[ n]u[ n]

3 25 4 1 0 1 2 3 4

3
4

6 5
7

2

0

2

0
1

nn

(m) x[n][u(n 2) u(n 3)]

2 1 0 1 2 3

3

6 5
7

2
1

nn

Fig. 1.75 (continued)
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x[n] is right shifted by 2 samples to get x[n − 2]. For n ≥ −2, for all n, x[n − 2] is
multiplied by 1 and elsewhere it is multiplied by 0. The sketch of x[n − 2]u[n +
2] is shown in Fig. 1.75f.

7.

u[−n − 3] =
{
1 n ≤ −3 for all n

0 n > −3

x[n] is multiplied by 1 for all n and n ≤ −3. For n > −3, x[n] is multiplied by
0. The sketch of x[n]u[−n − 3] is shown in Fig. 1.75g.

8. x[n] is time compressed by 2 and x[2n] is obtained. x[2n] is sketched as shown
in Fig. 1.75h.

9.

u[n + 3] =
{
1 n ≥ −3 for all n

0 n < −3

x[n] is left shifted by 3 samples to get x[n + 3]. x[n + 3] is time compressed by 2
to get x[2n + 3]. x[2n + 3] is multiplied by 1 for n ≥ −3 for all n and elsewhere
it is multiplied by 0. The sketch of x[2n + 3]u[n + 3] is shown in Fig. 1.75i.

10.

u[−n] =
{
1 n ≤ 0 for all n

0 n > 0

x[−n] is sketched by reflecting x[n]. For n ≤ 0, x[−n] is multiplied by 1 for
all n. For n > 0, x[−n] is multiplied by 0. The plot of x[−n]u[−n] is shown in
Fig. 1.75j.

11.

u[n + 4] =
{
1 n ≥ −4 for all n

0 n < −4

x[n] is right shifted by one sample to get x[n − 1]. It is time expanded by mul-
tiplying every n by 2 and thus x[ n

2 − 1] is obtained. x[ n
2 − 1] is multiplied by 1

for n ≥ −4 for all n. Elsewhere x[ n
2 − 1] is zero. The plot for x[ n

2 − 1]u[n + 4]
is shown in Fig. 1.75k.

12.

u[3 − n] =
{
1 n ≤ 3 for all n

0 n > 3



1.7 Basic Operations on Discrete Time Signals 91

x[n] is multiplied by 1 for n ≤ 3 for all n and elsewhere by zero. The sketch of
x[n]u[3 − n] is shown in Fig. 1.75l.

13.

u[n + 2] − u[n − 3] =
{
1 −2 ≤ n ≤ 3 for all n

0 otherwise

x[n] is multiplied by 1 for −2 ≤ n ≤ 3 for all n and elsewhere by zero. The plot
of x[n][u(n + 2) − u(n − 3)] is shown in Fig. 1.75m.

� Example 1.31

Carefully sketch the following discrete time functions.

1. (a) x[n] = rect4[n]
(b) x[n] = rect4[n + 2]

2. (a) x[n] = ramp[−n]
(b) x[n] = ramp[ n

2 ]
3. (a) x[n] = δ[3n]

(b) x[n] = δ[ 23n]
4. x(n) = u[3n − 2]
5. x(n) = tri4[n]
6. x(n) = ramp[n + 2] − 2ramp[n] − ramp[n − 2]
7. x(n) = 4 sin

[
π
3 n
]
rect4[n]

8. x(n) = 2 sin
[

π
2 n
]
rect3[n − 2]

9. x(n) = n(u[n] − u[n − 5])
10. x(n) = (n − 2)(u[n − 2] − u[n − 5])
11. x(n) = (8 − n)(u[n − 6] − u[n − 10])

Solution:

1.
x[n] = rect4[n]

Suffix four in rect4[n] indicates the width of the rectangular pulse on either side
of n. x[n] = rect4[n] is sketched as shown in Fig. 1.76a. rect4[n] is left shifted
by two samples to get x[n] = rect4[n + 2] which is sketched in Fig. 1.76b.
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x[n] rect4[n]

3 25 4 1 0 1 2 3 4 5

1

(a)

nn

x[n] rect4[n 2]

4 36 5 2 1 0 1 2

1

(b)

nn

Fig. 1.76 Graphical representation of a x[n] = rect4[n] and b x[n] = rect4[n + 2]

x[n] ramp[ n]

3 24 1 0

4
3

2
1

(a)

nn

x[n] ramp[n/2]

2 4 6 80

4
3

2
1

(b)

nn

Fig. 1.77 Graphical representation of a x[n] = ramp[−n] and b x[n] = ramp[ n
2 ]

2. (a)

ramp[n] =
{

n 0 ≤ n < ∞
0 n < 0

ramp[−n] =
{

−n −∞ ≤ n ≤ 0

0 n > 0

x[n] = ramp[−n] is represented in Fig. 1.77a.
(b) x[n] = ramp[n] is time expanded and is sketched as x[n] = ramp[ n

2 ] as
shown in Fig. 1.77b.

3. (a)

δ[3n] =
{
1 n = 0

0 n �= 0

δ[an] = 1 for all integer values of a at n = 0. For n �= 0, δ[an] = 0. This is
represented in Fig. 1.78a.

(b) In δ[ 23n], 2
3 is not an integer. Hence, for all n, δ[ 23n] = 0 as represented in

Fig. 1.78b.
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x[n] [3n]

[3n]

0

1

0

(a)

nn

x[n] [(2/3)n](b)

nn

Fig. 1.78 Graphical representation of a x[n] = δ[3n] and b x[n] = δ[ 23n]

u[n 2]

21

1

3 4 5 60

(a)

nn

x[n] u[3n 2]

2 1

1

3 40

(b)

nn

Fig. 1.79 Graphical representation of a u[n − 2] and b x[n] = u[3n − 2]

4. The step sequence u[n] is right shifted by two samples to get u[n − 2]. This
is represented in Fig. 1.79a. u[n − 2] is time compressed by 3 to get x[n] =
u[3n − 2] and this shown in Fig. 1.79b.

5. (Fig. 1.80)
6.

x[n] = ramp[n + 2] − 2ramp[n] + ramp[n − 2]

The components of x[n] namely ramp[n + 2], −2ramp[n] and ramp[n − 2] are
sketched as shown in Fig. 1.81a–c, respectively. The sum of these components
at n is represented as x[n] in Fig. 1.81d.

7.
x[n] = 4 sin

[π

3
n
]
rect4[n]

Rectangular pulse ofwidth four onboth sides is shown inFig. 1.82a. Its amplitude
is four. sin π

3 n is shown in Fig. 1.82b. The sinusoid has a radian frequency of
	0 = π

3 radians. The periodicity of the sinusoid is given by
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x[n] tri4[n]

3 24 1 0 1 2 3 4

1

nn

Fig. 1.80 Graphical representation of x[n] = tri4[n]

3

2ramp[n]

2

4
6

1 2 30

(b)

nn

1 1 202

1

0

1 1

1 1

(a)

nn

ramp[n 2]

4

1

2

3

1 3 4 50

2

(c)

nn

ramp[n 2]

2

x[n]

2

0

(d)

nn

Fig. 1.81 Graphical representation of x[n] of Example 1.31.6

N0 = 2π

	0

= 2π

π
× 3

= 6 samples per cycle

Thus, each sample is separated by π
3 radians or 60◦. The product of 4

sin[π
3 n]rect4[n] is obtained by multiplying the sample strength of 4 sin[(π/3)n]

with the corresponding sample of rect4[n] both of which have the same n. Thus,
x[n] is obtained and is shown in Fig. 1.82c. x[n] is limited to the width of ±4
which is the width of rect4[n]. In Fig. 1.82b, c, the dotted line graph represents
the sinusoid of the CT signal corresponding to sin[πn

3 ].



1.7 Basic Operations on Discrete Time Signals 95

4rect4[n]

3 25 4 1 0 1 2 3 4 5

4

(a)

nn

sin[ 3]n

x[n]=4rect4[n]sin[ 3]n

4 3
2 1

0.866

0.866
1

1

0 1 2 3
5

6
4

(b)

nn

4 3
2 1

3.464

3.464

0 1 2 3
5

6
4

(c)

nn

Fig. 1.82 Graphical representation of x[n] = 4 sin[ π
3 n]rect4[n]

8.
x[n] = 2 sin

[π

2
n
]
rect3[n − 2]

rect3[n − 2] is sketchedwith right shifted rect3[n] by two samples with its ampli-
tude 2. This is represented in Fig. 1.83a. sin[π

2 n] has a radian frequency	0 = π
2 .

The number of samples in one cycle (2π radians) is
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2rect3[n 2]

2 1 0 1 2 3 4 5

2

(a)

nn

sin[( 2)n]

3 2
1

1

1

0 1 2
3

5
4

(b)

nn

2

2
1

2

2

0 1 2
3

5 6
4

(b)

nn

x[n]=2sin[ 2]n rect3[n 2]

Fig. 1.83 Graphical representation of x[n] = 2 sin[ π
2 n]rect3[n − 2]

N0 = 2π

	0

= 2π

π
× 2

= 4 samples/cycle

For odd values of n, peak occurs and for even value of n, the pulse strength is
zero. The periodic sin nπ

2 DT signal is represented in Fig. 1.83b. x[n] is obtained
by multiplying a sample at n = n1 in 2rect3[n − 2]with a corresponding sample
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1

3 41 20 nn

u[n] u[n 5]

x[n] n[u(n) u(n 5)]

3 41 20 nn

n

1

(b)

(a)

4
3

2

n 0

3 41 20 nn

1

(c)

4
3

2

Fig. 1.84 Graphical representation of signal of Example 1.31.9

at n = n1 in sin[π
2 n] signal. x[n] exists only in the sample interval −1 ≤ n ≤ 5.

For the values of n, x[n] = 0. x[n] is sketched as shown in Fig. 1.83c.
9.

x[n] = n(u[n] − u[n − 5])

u[n] is a unit step sequence and u[n − 5] is the time shifted (right shift) by 5 sam-
ples. u[n] − u[n − 5] exists only during 0 ≤ n ≤ 4. For n ≥ 5, the negative going
−u[n − 5] will cancel out with the positive going pulses of u[n]. Figure 1.84a
represents u[n] − u[n − 5]. The ramp signal n is represented in Fig. 1.84b. The
product of these two signals is represented in Fig. 1.84c. x[n] exists only during
the sample interval 0 ≤ n ≤ 4. For any other value x[n] = 0.

10.
x[n] = [n − 2](u[n − 2] − u[n − 5])

u[n − 2] − u[n − 5] =
{
1 2 ≤ n < 5

0 otherwise

The above function is represented in Fig. 1.85a. [n − 2] is a ramp function that
is right shifted by two samples from the origin. This is represented in Fig. 1.85b.
Each sample of Fig. 1.85a is multiplied by the corresponding sample occurring
at the same instant in Fig. 1.85b and the product is obtained as x[n] which is
represented in Fig. 1.85c.
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1

3 41 20 nn

u[n 2] n[n 5]

[n 2]

3 4 5 6 71 20 nn

1

(b)

(a)

4
3

2

5
x[n] [n 2](u[n 2] u[n 5])

3 4 5 61 20 nn

1

(c)

2

Fig. 1.85 Graphical representation of x[n] = [n − 2](u[n − 2] − u[n − 5])

11.

x[n] = [8 − n](u[n − 6] − u[n − 10])

u[n − 6] − u[n − 10] =
{
1 6 ≤ n < 10

0 otherwise

The above function is represented in Fig. 1.86a. [−n] is the folded version of
[n] and is shown in Fig. 1.86b. [−n] is right shifted by eight samples to get
[8 − n] which is represented in Fig. 1.86c. [8 − n] and u[n − 6] − u[n − 10]
overlap each other for n = 6 and n = 7 only. For n = 6, the product of these
two functions is 2. For n = 7, the product is 1. Thus, x[n] is plotted as shown in
Fig. 1.86d.

� Example 1.32

Sketch the following signals. Find the radian and cyclic frequencies and the period
in each case.

1. x[n] = sin( π
8 n)

2. x[n] = cos( π
12n)

3. x[n] = cos( π
12n − π

3 )

4. x[n] = cos( π
12n + π

3 )
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1

3 41 2 5 76 8 0190

0

nn

u[n 6] u[n 10]

[ n]

1234567891011 nn

1234
567891011

(b)

1 2 3 4 5 6 7 8 90

[8 n]

1 nn

1234
567

9
8

(c)

1 2 3 4 5 6 7 8 90 nn

12

(d)

(a)

x[n] [8 n](u[n 6] u[n 10])

Fig. 1.86 Graphical representation of x[n] = [8 − n](u[n − 6] − u[n − 10])

Solution:

1.
x[n] = sin

π

8
n

The radian frequency is given by

	0 = π

8
radian per sample

The number of samples per cycle is given by

N0 = 2π

	0

= 2π

π
× 8

= 16 samples per cycle

The cyclic frequency is given by
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f0 = 1

N0

= 1

16
cycles per sample

The plot of x[n] is shown in Fig. 1.87a for two cycles.
2.

x[n] = cos
( π

12
n
)

The radian frequency is given by

	0 = π

12
radians/samples

The cosine wave repeats itself for every 2π radians. The number of samples per
cycle is given by

N0 = 2π

	0

= 2π

π
× 12

= 24 samples per cycle.

The cyclic frequency is given by

f0 = 1

N0

= 1

24
cycles per sample

For n = 0,
cos

π

12
n = 1

and is maximum. For n = 12,

cos
π

12
× 12 = −1

For n = ±6,
cos

π

12
× 6 = 0

For n = −12,
cos

π

12
× 12 = −1
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246
810121416 n

n

n

(a)

0 2 4 6 8
10

1

1

N0 16 samples per cycle

12 14 16

x[n] sin[( 8)n]

1 0 1 2 3 4 5 6
7 8 9 10 11 12

23456
789101112

n

(b) x[n] cos[( 12)n]

n1 0 2 4 6 8 10
12 142468101214

n

(c) x[n] cos[( 12)n ( 3)]

n0 2
4 6 8 10 12 14

4 268
101214

n

(d) x[n] cos[( 12) ( 3)]

3rad 4
samples

3rad 4
samples

1

1

Fig. 1.87 Graphical representation of x[n] of Example 1.32
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The complete wave of cos( π
12n) is sketched in Fig. 1.87b for one cycle.

3.

x[n] = cos
( π

12
n − π

3

)

This cosine wave is the same as the one given in Example 1.32.2 but it lags behind
by π

3 radians. Since 2π corresponds to 24 samples, π
3 corresponds to

24

2π
× π

3
= 4 samples

The original cos( π
12n)wave is right shifted by 4 samples and is sketched as shown

in Fig. 1.87c.
4.

x[n] = cos
( π

12
n + π

3

)

Here, cos( π
12n + π

3 ) leads cos( π
12n) by π

3 radians. π
3 , as stated in the previous

problem, corresponds to 4 samples. Here, cos( π
12n) is left shifted by 4 samples to

get cos( π
12n + π

3 ) and this is sketched in Fig. 1.87d.

� Example 1.33

Given

x[n] = {1, 2, 3, −4, 6}
↑

Plot the signal x[−n − 1].
(Anna University, May, 2007)

(a) x[n]

4

12 nn 0 1 2

2 3

1

6
(b)

12

x[ n]

nn 0 1 2

3

1
2

6

4

(c)

3
2

1

x[ n 1]

nn 0 1

12

6

3

4

Fig. 1.88 DT sequences of Example 1.33
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Solution:

1. The sequence x[n] is represented in Fig. 1.88a.
2. By folding x[n], x[−n] is obtained and represented in Fig. 1.88b.
3. x[−n] is shifted to the left by one sample and x[−n − 1] is obtained. This is

represented in Fig. 1.88c.

1.8 Classification of Signals

Signals which are classified in the broad category of continuous and discrete time
signals are further classified as follows.

1. Deterministic and non-deterministic (random) signals.
2. Periodic and non-periodic (aperiodic) signals.
3. Odd and even signals.
4. Power and energy signals.

1.8.1 Deterministic and Non-deterministic Continuous
Signals

Deterministic signals are signals which are characterizedmathematically. The ampli-
tude of such signals at any time interval t can be determined at all time t. Consider
the signals described by the following equations:

x(t) = A

x(t) = A sinωt

The above signals represent a step signal and a sinusoidal signal, respectively, and
they are shown in Fig. 1.89a, b. At any instant of time t, the amplitude of the step
signal which is deterministic can be easily determined. On the other hand, consider
the sinusoidal signal polluted with noise shown in Fig. 1.89b. The magnitude of such
a signal cannot be easily determined since the noise variation is random.

1.8.2 Periodic and Non-periodic Continuous Signals

Consider the continuous time signal described by the following equation:

x(t + nT0) = x(t) for all t (1.26)

where n is any integer value. A continuous time signal x(t) is said to be periodic
with period T0 if it repeats itself in a minimum positive interval. The minimum
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x(t) x(t)

t

t

0

(a) (b)

A

Fig. 1.89 Continuous. a Deterministic signal; b Random signal

x(t)

t

(a) (b)

A

A

T0T0

Fig. 1.90 Examples of periodic signals. a Rectangular wave; b Sine wave

positive interval over which a function repeats is called fundamental period T0.
The fundamental frequency f is expressed as

f0 = 1

T0
(1.27)

where f0 is expressed in cycles per sec. The fundamental radian frequency is expressed
as

ω0 = 2π f0

= 2π

T0
(1.28)

Here ω is expressed in rad./sec. The periodic rectangular wave and sine wave are
shown in Fig. 1.90a and b, respectively.
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x(t) x(t)

0

A

Ae at

t tt

(a) (b)

T0

Fig. 1.91 Non-periodic signals. a Rectangular; b Exponential decay

Any continuous time signal which is not periodic is said to be non-periodic or ape-
riodic signal. Figure 1.91a represents a non-periodic rectangular wave and Fig. 1.91b
represents an exponential decay. The non-periodic signal does not repeat itself with
respect to time.

1.8.3 Fundamental Period of Two Periodic Signals

Consider the periodic signal of two periodic functionswith two different fundamental
periods as given below.

x(t) = A1 sin

(

2π
t

T1

)

+ A2 sin

(

2π
t

T2

)

(1.29)

where T1 and T2 are the fundamental periods of two sine waves. The fundamental
period of the composite signal x(t) is given by the shortest time by which these
signals have an integer number. If each of these two signals repeat exactly an integer
number of times in some minimum time interval, then they will repeat exactly an
integer number of times again in the next time interval. This is calculated as the Least
Common Multiple (LCM) of the two fundamental periods. Thus, the fundamental
period of a periodic signal, which is composed of more than one periodic signal, is
obtained by taking the least common multiple of the fundamental periods of all the
signals. The fundamental frequency of the sum of the signals is the greatest common
divisor of the two frequencies. It is to be remembered that if any of the composite
signal is non-periodic, then the overall function is also non-periodic.

Instead of sum of two functions, if a signal is a product of two functions, the
method of finding the fundamental period remains the same. Consider the following
composite signal:
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x(t) = A sin

(

2π
t

T1

)

sin

(

2π
t

T2

)

(1.30)

The fundamental period of the two sine functions are T1 and T2. The fundamental
period of x(t) is calculated as the least common multiple of T1 and T2. The sum
of the product of two or more periodic signals is periodic iff (if and only if) their
ratio of their fundamental periods is rational. The following steps are followed to
determine this:

1. Determine the fundamental period of the individual signal in the sum or product.
2. Find the ratio of the fundamental period of the first signal with the fundamental

period of every other signal.
3. If these ratios are rational, then the sum or the product of the composite signal is

periodic.
4. The fundamental period of the composite signal is determined by taking the least

common multiple of the fundamental period. Alternatively, the greatest common
divisor of the fundamental frequency of each signal gives the fundamental fre-
quency of the composite signal.

For example if T1, T2 and T3 are the fundamental periods of three signals which
are the sums of the composite signal, then the ratios T1

T2
and T1

T3
should be an integer

multiple or rational. T1
T2

= 5
3 is an integer or rational number. On the other hand,

T1
T2

= 5
3.17 is not an integer number and it is not rational.

Sinusoidal and complex exponentials are examples of continuous time periodic
signals. Consider the following sinusoidal signal.

x(t) = A sin(ω0t + θ) (1.31)

x(t + T0) = A sin(ω0(t + T0) + θ)

= A sin(ω0t + ω0T0 + θ) (1.32)

A sine function repeats itself when its total argument is increased or decreased by
any integer multiple of 2π radians. Thus, in Eq. (1.32), if we put ω0T0 = 2π ,

x(t + T0) = A sin(ω0t + θ) = x(t)

In other words, the fundamental period of a sine function is

T0 = 2π

ω0
(1.33)

Now consider the complex exponential.
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x(t) = ejω0t

x(t + T0) = ejω0(t+T0) (1.34)

= ejω0tejω0T0 (1.35)

If we put ejω0T0 = 1, Eq. (1.35) becomes

x(t + T0) = ejω0t = x(t)

Thus, the condition for the complex exponential to be periodic is that

ejω0T0 = 1

or ω0T0 = 2π [ej2π = cos 2π + j sin 2π = 1]

T0 = 2π

ω0
(1.36)

� Example 1.34

Test the periodicity of the following signals:

(a) x(t) = 3 cos
(
5t + π

6

)

(b) x(t) = ej10t

(c) x(t) = tan(5t + θ)

(d) x(t) = 1

(Anna University, May, 2006)
Solution:

(a) x(t) = 3 cos
(
5t + π

6

)

ω0 = 5 rad./sec.

Using Eq. (1.33), we get

T0 = 2π

ω0
= 2π

5
sec.

The given signal is periodic with the fundamental period T0 = 2π
5 sec.
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(b) x(t) = e j10t

ω0 = 10 rad./sec.

Using Eq. (1.36), we get

T0 = 2π

ω0

= 2π

10
= 0.2π sec.

The given signal is periodic with the fundamental period

T0 = 0.2π sec.

(c) x(t) = tan(5t + θ)

x(t + T0) = tan(5(t + T0) + θ)

= tan(5t + 5T0 + θ)

The tangent function repeats itself for every π rad. of its total argument. Thus,
if 5T0 = π ,

x(t + T0) = tan(5t + θ)

= x(t)

Hence,

T0 = π

5
sec.

(d) x(t) is a d.c. signal and it does not repeat itself. Hence, it is not periodic.

� Example 1.35

If x1(t) and x2(t) are periodic signals of period T1 and T2, show that the sum x(t) =
x1(t) + x2(t) is a periodic signal if T1/T2 = n/m which is a rational number.

Solution: For the signals x1(t) and x2(t) to be periodic, the following equations hold
good.

x1(t) = x1(t + mT1)

x2(t) = x2(t + nT2)
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Now,

x(t) = x1(t) + x2(t)

x(t + T) = x1(t + T) + x2(t + T)

= x1(t + mT1) + x2(t + nT2)

From the above equations, we get

T = mT1 = nT2

T1

T2
= n

m
= a rational number.

� Example 1.36

If x1(t) and x2(t) are the periodic signals with fundamental periods T1 and T2, respec-
tively, show that the product x(t) = x1(t)x2(t) will be periodic if T1

T2
is a rational

number.

Solution:For the periodic signals x1(t) and x2(t), the following equations arewritten:

x1(t) = x1(t + T1) = x1(t + mT1)

x2(t) = x2(t + T2) = x2(t + nT2)

x(t) = x1(t + mT1)x2(t + nT2)

Also
x(t + T) = x1(t + T)x2(t + T)

From the above two equations, we get

T = mT1 = nT2

T1

T2
= n

m
= a rational number.

� Example 1.37

Testwhether the following signals are periodic. If periodic determine the fundamental
period and frequency.

(a) x(t) = ej(π t−2)

(b) x(t) = cos2 t

(c) x(t) = Ev cos 4π t

(d) x(t) = e(jπ−2)t
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Solution:

(a) x(t) = e j(π t−2)

x(t) = ej(π t−2)

= e−j2ejπ t

The signal is a complex exponential with e−j2 being a constant. Comparing this
with standard complex exponential, we get

ejπ t = ejω0t

ω0 = π

T0 = 2π

ω0
= 2π

π

T0 = 2 sec.

f0 = 1

T0
= 1

2
f0 = 0.5Hertz.

The signal is a periodic onewith fundamental periodT0 = 2 sec. and fundamental
frequency f0 = 0.5 Hertz.

(b) x(t) = cos2 t

cos2 t = 1

2
[1 + cos 2t]

= 1

2
+ 1

2
cos 2t

= x1(t) + x2(t)

where

x1(t) = 1

2
which is a d.c. signal

and

x2(t) = 1

2
cos 2t

For x1(t), the fundamental radian frequency

ω0 = 2

T0 = 2π

ω0
= 2π

2
= π sec.

The fundamental frequency f0 = 1
T0

= 1
π
Hz.
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(c) x(t) = Ev cos 4π t
The even function of x(t) is

Evx(t) = 1

2
[x(t) + x(−t)]

= 1

2
[cos 4π t + cos(−4π t)]

= cos 4π t

ω0 = 4π

T0 = 2π

ω0
= 2π

4π
= 0.5 sec.

f0 = 1

T0
= 1

0.5
= 2Hz

(d) x(t) = e( jπ−2)t

x(t) = e(jπ−2)t

= e−2tejπ t

The function ejπ t is periodic with fundamental period 2sec. as seen in problem
(a). However, the function e−2t is non-periodic and becomes zero at t → ∞.
Hence, the composite signal x(t) is aperiodic.

� Example 1.38

Consider the following continuous time signal:

x(t) = 2 cos 3π t + 7 cos 9t

Find the periodicity of the signal.

(Anna University, May, 2005)
Solution:

x(t) = x1(t) + x2(t)

where

x1(t) = 2 cos 3π t

x2(t) = 7 cos 9t

If T1 is the fundamental period of x1(t),
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ω1 = 3π

T1 = 2π

ω1
= 2π

3π
= 2

3
(rational)

x2(t) = 7 cos 9t

ω2 = 9

T2 = 2π

ω2
= 2π

9
(not rational)

T1

T2
= 2

3

9

2π
= 3

π
(not rational)

The signal x(t) is not periodic.

� Example 1.39

Find the fundamental period and frequency of the following signals:

(a) x(t) = 5 sin 24π t + 7 sin 36π t

(b) x(t) = 5 cosπ t sin 3π t

Solution:

(a) Method 1:

x(t) = 5 sin 24π t + 7 sin 36π t

= x1(t) + x2(t)

where

x1(t) = 5 sin 24π t

x2(t) = 7 sin 36π t

Let T1 and T2 be the fundamental periods of x1(t) and x2(t), respectively.

ω1 = 24π

T1 = 2π

ω1
= 2π

24π
= 1

12
(rational)

ω2 = 36π

T2 = 2π

ω2
= 2π

36π
= 1

18
(rational)

T1

T2
= 1

12
× 18 = 3

2
(rational)
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The composite signal is a periodic signal. Since T1 and T2 are rational, x(t) is
periodic. The fundamental period is obtained as follows. From the ratio of T1

T2
,

2T1 = 3T2 = T0

T0 = 2

12
= 1

6
sec.

or

T0 = 3

18
= 1

6
sec.

f0 = 1

T0
= 6 Hz.

T0 = 1

6
sec.

f0 = 6 Hz.

Method 2:
In this method, the Least Common Multiple (LCM) for T1 and T2 is obtained
which gives T0. In case, T1 and T2 are fractions, they are made integers by
multiplying by a least number. For T1 and T2 thus obtained, LCM is found. T0

is obtained by dividing by the same number which was chosen to make T1 and
T2 as integers. In the above example,

(1)

T1 = 1

12
and T2 = 1

18

By multiplying T1 and T2 by 36, T1 = 3 and T2 = 2.
(2) The LCM for the new T1 and T2 is easily obtained as 6.
(3) T0 is obtained by dividing LCM by 36.

T0 = LCM

36
= 6

36
= 1

6
sec.

T0 = 1

6
sec.

f0 = 6Hz.

(b)

x(t) = 5 cosπ t sin 3π t

= x1(t)x2(t)
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where

x1(t) = 5 cosπ t

x2(t) = sin 3π t

The product of two functions is expressed as the sum of the two functions using
the following formula.

sin(A+B)− sin(A−B)=[sinA cosB+ cosA sinB− sinA cosB+ cosA sinB]
= 2 cosA sinB

cosA sinB = 1

2
[sin(A + B) − sin(A − B)]

The given function can, therefore, be written as

5 cosπ t sin 3π t = 5

2
(sin 4π t − sin 2π t)

Let

x1(t) = 5

2
sin 4π t

ω01 = 4π

T01 = 2π

ω01

= 1

2

x2(t) = 5

2
sin 2π t

ω02 = 2π

T02 = 2π

ω02

= 1
T01

T02
= 1

2
T0 = 2T01 = T02

T0 = 1 sec.

f0 = 1

T0
= 1Hz
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� Example 1.40

Find whether the following signal is periodic. If periodic, determine the fundamental
period and frequency. Also determine the fundamental period of each function in the
composite signal in the time of the fundamental period.

x(t) = sin(2π t − π) − 5 cos
(
3π t + π

4

)
− 8 cos

(
5π t − π

8

)

Solution:
x(t) = x1(t) + x2(t) + x3(t)

where

x1(t) = sin(2π t − π)

x2(t) = −5 cos
(
3π t + π

4

)

x3(t) = −8 cos
(
5π t + π

8

)

Let T1, T2 and T3 be the fundamental periods of x1(t), x2(t) and x3(t), respectively.

ω1 = 2π

T1 = 2π

ω1

= 2π

2π
= 1 sec. (rational)

ω2 = 3π

T2 = 2π

ω2

= 2π

3π
= 2

3
sec. (rational)

ω3 = 5π

T3 = 2π

ω3

= 2π

5π
= 2

5
sec. (rational)

T1

T2
= 1 × 3

2

= 3

2
sec. (rational)

T1

T3
= 1 × 5

2
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= 5

2
sec. (rational)

Hence, the composite signal x(t) is periodic. The fundamental periods are obtained
by taking LCM of T1, T2 and T3 as explained below.

(1)

T1 = 1; T2 = 2

3
; T3 = 2

5

Multiply by 15 to make them integers. The new periods are obtained as T1 =
15, T2 = 10 and T3 = 6.

(2) The LCM is obtained as
5 15, 10, 6
3 3, 2, 6
2 1, 2, 2

1, 1, 1

The LCM = 5 × 3 × 2 = 30.
(3)

T0 = LCM

15

= 30

15
= 2 sec.

T0 = 2 sec.

f0 = 1

T0
= 0.5Hz.

The fundamental period of x1(t) during T0 = 2 sec. is

T01 = T0

T1
= 2

1
= 2

The fundamental period of x2(t) during T0 = 2 sec. is

T02 = T0

T2
= 2

2
× 3 = 3

The fundamental period of x3(t) during T0 = 2 sec. is

T03 = T0

T3
= 2

2
× 5 = 5
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� Example 1.41

Determine whether the following signals are periodic. If periodic, find the period

1. x1(t) = sin 4π t
2. x2(t) = sin 23t
3. x3(t) = sin 4π t + sin 23t

Solution:

1.

x1(t) = sin 4π t

ω01 = 4π

T01 = 2π

ω01

= 2π

4π
= 0.5 sec.

The signal is periodic and the period T0 = 0.5 sec.
2.

x2(t) = sin 23t

ω02 = 23

T02 = 2π

ω02

= 2π

23
sec.

The signal is periodic. The fundamental period T0 = 2π
23 sec.

3.

x3(t) = sin 4π t + sin 23t

= x1(t) + x2(t)

T01 = 1

2

T02 = 2π

23
T01

T02
= 1

2
× 23

2π

= 23

4π
(irrational)
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Since T01
T02

is irrational, the signal x3(t) is not periodic.

� Example 1.42

For the following signals

1. Sketch the signals.
2. Determine analytically which are periodic (if periodic) and give the period.

(a) x(t) = 4 cos 5π t
(b) x(t) = 4 cos(5π t − 0.25π)

(c) x(t) = 4u(t) + 2 sin(3t)
(d) x(t) = u(t) − 0.5

Solution:

1. (a)

x(t) = 4 cos 5π t

This is a cosine wave with ω0 = 5π and T0 = 2π
ω0

= 0.4 sec. At t = 0, the

maximum value of 4 is reached, it becomes zero at t = 0.1 sec( 14T0), reaches
negative maximum at t = 0.2 sec( 12T0), becomes zero at t = 0.3sec(3/4T0)

and reaches maximum at t = 0.4 sec(T0) and thus completes one cycle. The
same wave is repeated for negative time. The signal is sketched as shown in
Fig. 1.92a.

(b)

x(t) = 4 cos(5π t − 0.25π)

= 4 cos(5π t − 45◦)

The signal 4 cos(5π t − 45◦) lags behind the signal 4 cos(5π t)by0.2π radians
or 45◦. This is sketched as shown in Fig. 1.92a.

(c)

x(t) = 4u(t) + 2 sin 3t

4u(t) =
{
4 + 2 sin 3t 0 < t < ∞
2 sin 3t t < 0

x(t) = 2 sin 3t

This is a sinusoidal signal of maximum amplitude 2 with ω0 = 3. The fun-
damental period T0 = 2π

ω0
= 2

3π
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tt

90

45
4cos5 t

4cos(5 t 0.25 )

(a)

0.40 0.1
0.2 0.3

x(t)

tt 2 2
3

4u(t) 2sin(3t)

x(t) u(t) 0.5

0.2

(b)

0

2

6

x(t)

4u(t)
2 2

3

3

3

tt

0.5

(c)

0

0.5

Fig. 1.92 Representation of signals of Example 1.42
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x(t) =
{
4u(t) + 2 sin(3t) 0 ≤ t < ∞
2 sin(3t) −∞ ≤ t < 0

2 sin(3t) is superimposed with 4 for t > 0. For t < 0, 2 sin 3t is sketched as
shown in Fig. 1.92b.

(d)

x(t) = u(t) − 0.5

x(t) =
{
0.5 0 ≤ t < ∞
−0.5 −∞ ≤ t < 0

The signal is sketched as shown in Fig. 1.92c.
2. (a)

x(t) = 4 cos 5π t

Let T0 be the periodicity of the signal.

x(t + T0) = 4 cos 5π(t + T0)

= 4 cos(5π t + 5πT0)

If 5πT0 = 2π

x(t + T0) = 4 cos(5π t + 2π)

= 4 cos(5π t)

= x(t)

x(t) is periodic with period T0 = 2
5 = 0.4 sec.

T0 = 0.4 sec.

(b)

x(t) = 4 cos(5π t − 0.25π)

x(t + T0) = 4 cos(5π(t + T0) − 0.25π)

= 4 cos(5π t − 0.25π + 5πT0)

= 4 cos(5π t − 0.25π)

if 5πT0 = 2π

x(t + T0) = x(t)
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The signal x(t) is periodic with period T0 = 0.4 sec.

T0 = 0.4 sec.

(c)

x(t) = 4u(t) + 2 sin 3t

2 sin 3t is a periodic signal for t > 0 with period T0 = 2π
ω0

where ω0 = 3. For
t < 0,

x(t) = 2 sin 3t

This is also periodic with period T0 = 2π
3 sec. However, at t = 0, x(t) has

discontinuity and it does not recur at any other time. Hence, the signal x(t)
is non-periodic. This can be analytically proved as follows:

x(t + T0) = 4u(t + T0) + 2 sin 3(t + T0)

For T0 = 2
3π

x(t + T0) = 4u

(

t + 2

3
π

)

+ 2 sin 3t

�= x(t)

The Signal is Non-periodic.

(d)

x(t) = u(t) − 0.5

x(t + T0) = u(t + T0) − 0.5

�= x(t)

for any T0

The Signal is Non-periodic.

1.8.4 Odd and Even Functions of Continuous Time Signals

One of the properties of signals is their symmetry when the time is reversed. They
are classified as even and odd signals. A continuous time signal x(t) is said to be an
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x(t) = Acos (t) 

t

A

A

Fig. 1.93 Representation of an even (symmetric) function

even signal if it satisfies the following condition:

x(−t) = x(t) for all t (1.37)

It is identical under folding about the origin. A signal x(t) is said to be an odd signal
if it satisfies the condition

x(−t) = −x(t) for all t (1.38)

An odd signal must necessarily be zero at t = 0. While even signals are symmetric
about the vertical axis odd signals are anti-symmetric (asymmetric) about the time
origin. Consider the following signal:

x(t) = A cosωt

x(−t) = A cos(−ωt)

= A cosωt

= x(t)

The above even signal is shown in Fig. 1.93. Consider the following signal:

x(t) = A sinωt

x(−t) = A sin(−ωt)

= −A sinωt

= −x(t)

The above odd signal is shown in Fig. 1.94. The odd function is zero at t = 0 as seen
in Fig. 1.94.
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x(t) = Asin (t) 

A

A

0 t

Fig. 1.94 Representing of an odd (anti-symmetric) function

1.8.4.1 Even and Odd Components of a Signal

A continuous time signal x(t) can be expressed in terms of odd and even components.
Let xe(t) and x0(t) represent the even and odd components of x(t). We may write
x(t) as

x(t) = xe(t) + x0(t) (1.39)

Putting t = −t in Eq. (1.39), we get

x(−t) = xe(−t) + x0(−t) (1.40)

For an even function xe(−t) = xe(t) and for an odd function x0(−t) = −x0(t). Equa-
tion (1.40) is written as

x(−t) = xe(t) − x0(t) (1.41)

Adding Eqs. (1.39) and (1.41) the following equation is obtained:

xe(t) = 1

2
[x(t) + x(−t)] (1.42)

Subtracting Eq. (1.41) from Eq. (1.39), we get

x0(t) = 1

2
[x(t) − x(−t)] (1.43)
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� Example 1.43

Show that the even function has its odd part zero.

Solution: From Eq. (1.42) the even function of x(t) can be written as

xe(t) = 1

2
[x(t) + x(−t)]

For an even function x(−t) = x(t). Hence, the above equation can be written as

xe(t) = 1

2
[x(t) + x(t)] = x(t)

From Eq. (1.43) the odd function of x(t) can be written as

x0(t) = 1

2
[x(t) − x(−t)]

= 1

2
[x(t) − x(t)]

= 0

Thus, it is proved that for an even function the odd part is zero.

� Example 1.44

Show that the odd function has its even part zero.

Solution: Let x(t) be an odd function. For an odd function, x(−t) = −x(t). The even
function of x(t) can be written as

xe(t) = 1

2
[x(t) + x(−t)]

= 1

2
[x(t) − x(t)]

= 0

x0(t) = 1

2
[x(t) − x(−t)]

= 1

2
[x(t) + x(t)]

= x(t)
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Thus, for an odd function x(t), the even part of x(t) = 0.

� Example 1.45

Show that the product of two even signals is an even signal.

Solution: Let x1(t) and x2(t) be the two even signals. Let x(t) be the product of these
two signals.

x(t) = x1(t)x2(t)

For an even function, x(−t) = x(t) and x1(−t) = x1(t) and x2(−t) = x2(t). The
above equation is written as follows. Substituting t = −t, we get

x(−t) = x1(−t)x2(−t)

= x1(t)x2(t) = x(t)

Thus, x(t) = x(−t) which is even.

� Example 1.46

Show that the product of two odd signals is an even signal.

Solution: Let x1(t) and x2(t) be two odd signals.
For the odd signals, x1(−t) = −x1(t) and x2(t) = −x2(t). Let x(t) be the

product of x1(t) and x2(t).
x(t) = x1(t)x2(t)

Putting t = −t in the above equation, we get

x(−t) = x1(−t)x2(−t)

= x1(t)x2(t)

= x(t)

Thus, it is proved that x(t) = x(−t). The product of two odd signals is an even signal.

� Example 1.47

Prove that the product of an odd and an even signal is an odd signal.

Solution: Let x1(t) be an odd signal and x2(t) be an even signal.
Then x1(−t) = −x1(t) and x2(−t) = x2(t). Let x(t) be the product of x1(t)

and x2(t).
x(t) = x1(t)x2(t)

Putting t = −t in the above equation, we get
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x(−t) = x1(−t)x2(−t)

= −x1(t)x2(t)

= −x(t)

Thus, x(t) = −x(−t) which is odd. The product of an odd and an even signal is an
odd signal.

� Example 1.48

Show that the sum of the two even functions is an even function and the sum of the
two odd functions is an odd function.

Solution: Let x(t) be expressed as the sum of two functions x1(t) and x2(t).

x(t) = x1(t) + x2(t)

Substituting t = −t in the above equation, we get

x(−t) = x1(−t) + x2(−t) (a)

If x1(t) and x2(t) are even functions, the above equation is written as

x(−t) = x1(t) + x2(t)

= x(t)

This shows that x(t) which is the sum of two even functions is an even function. If
x1(t) and x2(t) are odd functions, equation (a) can be written as

x(−t) = x1(−t) + x2(−t)

= −(x1(t) + x2(t))

= −x(t)

Thus, x(t) which is the sum of two odd functions is an odd function.

� Example 1.49

Find whether the following signals are odd or even. Find the odd and even compo-
nents.

(a) x(t) = t2 − 5t + 10

(b) x(t) = t4 + 4t2 + 6

(c) x(t) = t3 + 3t

(d) x(t) = 10 sin
(
10π t + π

4

)

(e) x(t) = ej10t
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Solution:

(a) x(t) = t2 − 5t + 10
Put t = −t

x(−t) = t2 + 5t + 10

�= x(t)

�= −x(t)

The function is neither even nor odd.

xe(t) = 1

2
[x(t) + x(−t)]

= 1

2
[t2 − 5t + 10 + t2 + 5t + 10]

xe(t) = (t2 + 10)

x0(t) = 1

2
[x(t) − x(−t)]

= 1

2
[t2 − 5t + 10 − t2 − 5t − 10]

x0(t) = −5t

(b) x(t) = t4 + 4t2 + 6
Put t = −t

x(−t) = t4 + 4t2 + 6 = x(t)

x(t) = x(−t)

The function is even. The odd part should be zero which can be verified as

x0(t) = 1

2
[x(t) − x(−t)]

= 1

2
[t4 + 4t2 + 6 − t4 − 4t2 − 6]

= 0



128 1 Representation of Signals

xe(t) = x(t) = t4 + 4t2 + 6

(c) x(t) = t3 + 3t
Put t = −t

x(−t) = −(t3 + 3t) = −x(t)

The function is odd. The even component is zero.

x0(t) = t3 + 3t

xe(t) = 0

(d) x(t) = 10 sin
(
10π t + π

4

)

Put t = −t

x(−t) = 10 sin
(
−10π t + π

4

)

= −10 sin
(
10π t − π

4

)

= −10
[
sin 10π t cos

π

4
− cos 10π t sin

π

4

]

= −10√
2

[sin 10π t − cos 10π t]
�= x(t)

�= −x(t)

The above signal is neither even nor odd.

x(t) = 10
[
sin 10π t cos

π

4
+ cos 10π t sin

π

4

]

= 10√
2
[sin 10π t + cos 10π t]

xe(t) = 1

2
[x(t) + x(−t)]

= 10

2
√
2
[sin 10π t + cos 10π t − sin 10π t + cos 10π t]

xe(t) = 10√
2
cos 10π t
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x0(t) = 1

2
[x(t) − x(−t)]

= 10

2
√
2
[sin 10π t + cos 10π t + sin 10π t − cos 10π t]

x0(t) = 10√
2
sin 10π t

(e) x(t) = e j10t

x(−t) = e−j10t

x(t) �= x(−t)

x(t) �= −x(−t)

The signal is neither odd nor even.

xe(t) = 1

2
[x(t) − x(−t)]

= 1

2
[ej10t + e−j10t]

xe(t) = cos 10t

x0(t) = 1

2
[x(t) − x(−t)]

= 1

2
[ej10t − e−j10t]

x0(t) = j sin 10t

Note: In all the above cases, x0(t) passes through the origin at t = 0.

� Example 1.50

Sketch the even and odd components of a step signal shown in Fig. 1.95a.

Solution:
The step function is shown in Fig. 1.95a. x(−t) is shown in Fig. 1.95b. In Fig. 1.95c,
the sum of x(t) and x(−t) is represented. The even function xe(t) = 1

2 [x(t) + x(−t)]
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x(t)

tt

tt

0

x(t) x( t)

0

10

10

(a)

(c) (d)

(b)

tt 0

5

x( t)

t 0

10

(x(t) x( t))1
2xe(t)

t t

x( t)

0

10

(e) (f)

t t

x0(t)

0

5

5

(x(t) x( t))1
2

Fig. 1.95 Even and odd components of a step function

is shown in Fig. 1.95d. In Fig. 1.95e, −x(−t) is represented. The odd function
x0(t) = 1

2 [x(t) − x(−t)] is represented in Fig. 1.95f.

� Example 1.51

Sketch the even and odd components of the pulse signal shown in Fig. 1.96a.

Solution:
x(t) is shown in Fig. 1.96a. In Fig. 1.96b, x(−t) is represented. The sum of x(t) +
x(−t) is shown in Fig. 1.96c. The even component of x(t) which is xe(t) = 1

2 [x(t) +
x(−t)] is shown in Fig. 1.96d. In Fig. 1.96e, −x(−t) is shown. The odd component
of x(t) which is x0(t) = 1

2 [x(t) − x(−t)] is represented in Fig. 1.96f.

� Example 1.52

Sketch the even and odd components of the triangular wave shown in Fig. 1.97a.

Solution:
Figure 1.97a represents the x(t) which is a triangular wave. x(−t) is represented
in Fig. 1.97b. x(t) + x(−t) is represented in Fig. 1.97c. From this figure, the even
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(a) (b)

(c) (d)

x(t)

tt 0 3

2

x( t)

3 0

2

1

tt

x(t) x( t)

3 30

2

t t t

xe(t)

3 30t

(f)(e)

x( t)

t t03

2 t

x0(t)

1

3

1

30t

Fig. 1.96 Even and odd components of a pulse signal

component is obtained by dividing the amplitude by 2 and xe(t) is shown inFig. 1.97d.
InFig. 1.97e,−x(−t) is representedwhich is obtained by invertingFig. 1.97b.Adding
Fig. 1.97a, e, [x(t) − x(−t)] is obtained and represented in Fig. 1.97f. By dividing the
amplitude of Fig. 1.97f by 2, x0(t)which is 1

2 [x(t) − x(−t)] is obtained and sketched
as shown in Fig. 1.97g.

� Example 1.53

Sketch the even and odd components of exponential signal x(t) = 10e−2t .

Method (a):
Solution:
x(t) = 10e−2t is sketched and shown in Fig. 1.98a. Figure 1.98a is time reversed to
get x(−t) and is sketched in Fig. 1.98b. The sum of x(t) and x(−t) is sketched as
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(a) x(t)

tt 0 3

2

(b) x( t)

tt 3 0

2

(c) x(t) x( t)

tt 3 30

2

(e)

x( t)

tt 0

2

xe(t)

tt 3 30

1

(f)

(d)

x(t) x( t)

tt
3

2

30

2

(g) x0(t)

3

1

30

1

Fig. 1.97 Even and odd components of a triangular wave

shown in Fig. 1.98c. The amplitude of Fig. 1.98c is reduced by a factor 2. This gives
xe(t) = 1

2 [x(t) + x(−t)] and is shown in Fig. 1.98d. Figure 1.98a is inverted and time
reversed to get −x(−t) which is sketched in Fig. 1.98e. The sum of Fig. 1.98a, e
gives [x(t) − x(−t)] and this is sketched and shown in Fig. 1.98f. The amplitude of
Fig. 1.98f is reduced by a factor 2 which gives odd signal x0(t) = 1

2 [x(t) − x(−t)].
This is shown in Fig. 1.98g.

� Example 1.54

Sketch the even and odd parts of the signal shown in Figs. 1.99a and 1.100a.

(Anna University, May, 2009)
Solution:
x(t) is graphically represented in Fig. 1.99a. By time folding of Fig. 1.99a, x(−t) is
obtained and is shown in Fig. 1.99b. These figures are graphically added to get x(t) +
x(−t) and represented in Fig. 1.99c. To get the even signal of x(t), the amplitude of the
signal is divided by a factor 2 and is represented in Fig. 1.99d. The signal x(t) is time
folded and inverted to get −x(−t). This is represented in Fig. 1.99e. Figure 1.99a,
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(a) (b)

(c)

(e)

(d)

(f)

x(t)=10e 2t

x(t)

tt 0

10

x(t) x( t)

tt 0

10

x( t)

tt 0

10

x( t)

tt 0

10

10

x(t) x( t)

tt 0

10

xe(t)

tt 0

5

(g)
x0(t)

tt 0

5

5

Fig. 1.98 Representation of even and odd function of exponential decay

e is graphically added to get x(t) − x(−t) which is represented in Fig. 1.99f. The
amplitude of the signal in Fig. 1.99f is divided by a factor 2 which gives x0(t) of x(t).
This is represented in Fig. 1.99g.
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Note the even component xe(t) in Fig. 1.99d. It is symmetrical with respect to the
vertical axis and when time folded identical mirror images are obtained. Similarly,
the odd component x0(t) represented in Fig. 1.99g passes through the origin at t = 0
and it is also anti-symmetry.

Consider Fig. 1.100a where x(t) is represented. By folding x(t), we get x(−t) and
is shown in Fig. 1.100b. x(−t) when inverted, we get −x(−t) and is represented in
Fig. 1.100c.

x0(−t) = 1

2
(x1(t) − x(−t))

This is obtained by combining Fig. 1.100a and c after dividing the amplitude by a
factor 2. x0(t) is shown in Fig. 1.100d. The even component is expressed as

xe(t) = 1

2
(x(t) + x(−t))

By combining Fig. 1.100a, b and by dividing the amplitude by a factor 2, the even
component is obtained. The even component is represented in Fig. 1.100e.

� Example 1.55

Find the even and odd component of the following signal:

x(t) = cos t + sin t + cos t sin t

(Anna University, May, 2007)
Solution:

x(t) = cos t + sin t + cos t sin t

(a) (b)x(t)

0 1 2

2

4t 2

2

t

x( t)

0 2

2

t 2 14

2

t

Fig. 1.99 Representation of even and odd signals of Example 1.54(a)
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(d) xe(t)

0 2 4

1

t 24

2

t

(e) x( t)

0 2

2

t
2

1
4

2

t

(c) x(t) x( t)

0 2 4

2

t 2

3
4

4

4

t

3
4

3
4

(f) x(t) x( t)

0 2 4

2

t
24

2

t

(g) x0(t)

0 2 4

1

t
24

1

t

3
4

Fig. 1.99 (continued)

Put t = −t

x(−t) = cos(−t) + sin(−t) + cos(−t) sin(−t)

= cos t − sin t − cos t sin t

xe(t) = 1

2
[x(t) + x(−t)]

= 1

2
[cos t + sin t + cos t sin t + cos t − sin t − cos t sin t]
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(b)

(c)

(a)
x(t)

0 2

1

t

t

1 t

x( t)

0 1

1

t 2 t

(d)
x0(t)

0 1 2

1/2

t
12

1/2

t

(e) xe(t)

0 1 2

1/2

t 12 t

x( t)

0 12 t

Fig. 1.100 Representation of odd and even components of Example 1.54(b)

xe(t) = cos t

The odd component of x(t) is obtained as follows:

x0(t) = 1

2
[x(t) − x(−t)]

= 1

2
[cos t + sin t + cos t sin t − cos t + sin t + cos t sin t]

x0(t) = sin t[1 + cos t]
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� Example 1.56

Find the odd and ever components of the following signals and sketch the same.

1. x(t) = sinω0t
2. x(t) = sinω0tu(t)
3. x(t) = cosω0t
4. x(t) = cosω0tu(t)

Solution:

1.

x(t) = sinω0t

x(−t) = − sinω0t

x0(t) = 1

2
[x(t) − x(−t)]

tt 2 2 0

0

1

(a)

0

x(t) sin 0t

tt 2 2

1

1

(b)

0

x( t)

Fig. 1.101 Representation of x(t) = sinω0t and its odd and even components for Example 1.56.
Representation of x(t) = sinω0tu(t) and its odd and even components for Example 1.56. Repre-
sentation of x(t) = cosω0t. Representation of x0(t) = 1

2 cosω0t[u(t) − u(−t)]
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t 2

1

1

(c)

0

x(t) sin 0t u(t)

(e)

t 2 2

0.5

0.5

(d)

0

x0(t) 0.5sin 0t 

t 2 2

0.5

0.5

0

xe(t) 0.5sin 0t[u(t) u( t)] 

0

0t 0t

0t

t 2 2

1

1

(f)

0

x(t) cos 0t 

0t 

Fig. 1.101 (continued)

= 1

2
[sinω0t + sinω0t]

= sinω0t

= x(t)
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t
2

2
2

0.5

0.5

(g)

0

x0(t) 0.5cos 0t[u(t) u( t)] 

0t 

Fig. 1.101 (continued)

xe(t) = 1

2
[x(t) + x(−t)]

= 1

2
[sinω0t − sinω0t]

= 0

x(t) and x(−t) are sketched as shown in Fig. 1.101a and b, respectively. From
Fig. 1.101b, we easily get −x(−t) by inverting x(−t). By adding 1

2 of x(t) and
−x(−t) we will get x(t) itself. Similarly, by adding 1

2 of x(t) and x(−t) point by
point, it becomes zero.

2.

x(t) = sinω0tu(t)

x(−t) = − sinω0tu(−t)

−x(−t) = sinω0tu(−t)

x0(t) = 1

2
[x(t) − x(−t)]

= 1

2
[sinω0tu(t) + sinω0tu(−t)]

x0(t) = 1

2
sinω0t[u(t) + u(−t)]

= 1

2
sinω0t

xe(t) = 1

2
[x(t) + x(−t)]

= 1

2
[sinω0tu(t) − sinω0tu(−t)]

= 1

2
sinω0t[u(t) − u(−t)]
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The signals x(t), x0(t) and xe(t) are sketched as shown in Fig. 1.101c–e, respec-
tively.

3.

x(t) = cosω0t

x(−t) = cosω0t

x0(t) = 1

2
[x(t) − x(−t)]

= 1

2
[cosω0t − cosω0t] = 0

xe(t) = 1

2
[x(t) + x(−t)]

= 1

2
[cosω0t + cosω0t]

= cosω0t

= x(t)

The signal x(t) is represented in Fig. 1.101f.
4.

x(t) = cosω0tu(t)

x(−t) = cosω0tu(−t)

−x(−t) = − cosω0tu(−t)

x0(t) = 1

2
[x(t) − x(−t)]

= 1

2
cosω0t[u(t) − u(−t)]

xe(t) = 1

2
[x(t) + x(−t)]

xe(t) = 1

2
cosω0t[u(t) + u(−t)]

= 1

2
cosω0t

= 1

2
x(t)

The odd component is represented in Fig. 1.101g. The even component is
nothing but 1

2x(t) represented in Fig. 1.101f with maximum amplitude being
reduced to1/2.
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(e)

tt 0 2
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x( t)
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0 2

8

4 

2

tt

xe(t)
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0

4 

Fig. 1.102 Odd and even components of x(t) of Example 1.57

� Example 1.57

A certain CT signal is described by the following mathematical equations.

x(t) =

⎧
⎪⎨

⎪⎩

(2t + 4) −2 ≤ t < 2

8 t ≥ 2

0 t ≤ −2

Sketch the signal x(t). Sketch the odd and even components of x(t) and give the
mathematical description of these components.



142 1 Representation of Signals

Solution:

x(t) =

⎧
⎪⎨

⎪⎩

2t + 4 −2 ≤ t ≤ 2

8 t ≥ 2

0 t ≤ −2

To satisfy the abovemathematical equations, x(t) is sketched as shown in Fig. 1.102a.
x(−t) is sketched by signal reflection (folding) and is shown in Fig. 1.102b. By signal
inversion of x(−t), −x(−t) is obtained and is shown in Fig. 1.102c. The odd and
even components of x(t) are obtained as given below.

xe(t) = 1

2
[x(t) + x(−t)]

For −∞ ≤ t ≤ −2,

x(t) = 0

x(−t) = 8

Hence,

xe(t) = 1

2
[0 + 8]

= 4

For −2 ≤ t ≤ 2,

x(t) = 2t + 4

x(−t) = −2t + 4

xe(t) = 1

2
[2t + 4 − 2t + 4]

= 4

For t ≥ 2,

x(t) = 8

x(−t) = 0

xe(t) = 1

2
[8 + 0]

= 4

Thus,
xe(t) = 4

for all t. The even component of x(t) is sketched and shown in Fig. 1.102d.
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x0(t) = 1

2
[x(t) − x(−t)]

For t ≤ −2,

x(t) = 0

−x(t) = −8

x0(t) = 1

2
[0 − 8]

= −4

For −2 ≤ t ≤ 2,

x(t) = 2t + 4

−x(t) = 2t − 4

x0(t) = 1

2
[2t + 4 + 2t − 4]

= 2t

This is the equation of a straight line with slope 2 and passing through the origin.
For t ≥ 2,

x(t) = 8

−x(−t) = 0

x0(t) = 1

2
[8 + 0]

= 4

The odd component of x(t) is sketched as shown in Fig. 1.102e.

1.8.5 Energy and Power of Continuous Time Signals

Consider the electric circuit shown in Fig. 1.103 in which a resistor R is connected
across the voltage source v(t). The current flowing through the resistor is i(t). The
instantaneous power consumed by the resistor is given by

Fig. 1.103 Electric circuit
with a resistor

v(t)

i(t)

R
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P = i2(t)R

= v2(t)

R
(1.44)

If we assume R = 1 ohm, the power is expressed as normalized power which is given
by

P = v2(t) (1.45)

The average power consumption by the circuit over the time t1 ≤ t ≤ t2 is given by
the following equation:

P = 1

(t2 − t1)

∫

t1

t2

v2(t) dt (1.46)

The average energy consumption which is the product of power and time is given as

E =
∫

t1

t2

P dt =
∫

t1

t2

v2(t) dt (1.47)

Similar to voltages and currents, many other physical variables such as force, temper-
ature, pressure, charge, etc. are available for other types of systems. As a convention,
similar terminologies for power and energy of continuous signal x(t) and discrete
signal x[n] are defined and used. However, the “power” and “energy” defined here
are not related to physical power and energy. Thus, if x(t) represents a continuous
time signal, then the average power over an infinite time interval T is defined as

P = Lt
T→∞

1

2T

∫

−T

T

|x(t)|2 dt (1.48)

The expression for the total energy is expressed as

E = Lt
T→∞

∫

−T

T

|x(t)|2 dt (1.49)

If the energy signal does not converge, such signals have infinite energy. On the other
hand, if E converges, then the signal has finite energy. From Eqs. (1.48) and (1.49),
the following inferences are drawn and given in Table 1.3.

Signals may be neither energy nor power signals. But they cannot be both an
energy signal and a power signal. If it is one, it cannot be the other.
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Table 1.3 Properties of power and energy signal

Energy signal Power signal

1. The total energy is obtained using
E = Lt

T→∞
∫

−T

T |x(t)|2 dt
1. The average power is obtained using

P = Lt
T→∞

1
2T

∫

−T

T |x(t)|2 dt

2. For the energy signal 0 < E < ∞,
the average power P = 0

2. For the power signal 0 < P < ∞,
the energy E should be ∞

3. Non-periodic signals are
energy signals

3. Periodic signals are power signals. However,
all power signals need not be periodic

4. Energy signals are not time limited 4. Power signals exist over infinite time

� Example 1.58

Find the power, RMS value and energy of the following signals:

(a) x(t) = A u(t)

(b) x(t) = e−3tu(t)

Solution:

(a) x(t) = A u(t)

P = Lt
T→∞

1

2T

∫

−T

T

A2dt

For x(t) = A u(t), the signal starts at t = 0.

P = Lt
T→∞

1

2T
A2
∫

0

T

dt = A2

2T

[
t
]T
0

= Lt
T→∞A2 T

2T
= A2

2

P = A2

2
watts

RMS value of power is

PRMS = √
P = A√

2
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PRMS = A√
2

Since power is finite, energy E is infinite.
(b) x(t) = e−3t u(t)

For this signal, t varies from 0 to ∞.

E = Lt
T→∞

∫ T

0

(e−3t)2dt

= Lt
T→∞

∫ T

0

e−6tdt

= Lt
T→∞

(−1)

6

[
e−6t
]T
0

= 1

6
Lt

T→∞
[
1 − e−6T

]

E = 1

6
Joules

Since E is finite, power P = 0.

� Example 1.59

Find the power and energy of the following signals:

(a) x(t) = A cos(ω0t + φ)

(b) x(t) = A sin(ω0t + φ)

Solution:

(a) x(t) = A cos(ω0 t + φ)

Since the signal is periodic, it is necessarily a power signal and its energyE = ∞.
The power of the signal is determined as follows:

P = Lt
T→∞

1

2T

∫

−T

T

A2 cos2(ω0t + φ)dt

But,

cos2(ω0t + φ) = 1 + cos 2(ω0t + φ)

2
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P = Lt
T→∞

A2

4T

∫ T

−T

[1 + cos 2(ω0t + φ)]dt

Now consider the integral

∫ T

−T

cos 2(ω0t + φ)dt

= 1

2ω0
[sin 2(ω0t + φ)]T

−T

= 1

2ω0
[sin 2(ω0T + φ) − sin 2(−ω0T + φ)]

= 1

2ω0
[sin 2φ − sin 2φ] [∵ ω0T = 2π ]

= 0

P = A2

4
Lt

T→∞
1

T

[
t
]T
−T

= A2

4
Lt

T→∞
1

T
2T

P = A2

2

(b) x(t) = A sin(ω0 t + φ)

P = Lt
T→∞

1

2T

∫ T

−T

A2 sin2(ω0t + φ)dt

= Lt
T→∞

A2

2T

∫ T

−T

[1 − cos 2(ω0t + φ)]
2

dt

= Lt
T→∞

A2

4T

⎡

⎣
∫

−T

T

dt −
∫

−T

T

cos 2(ω0t + φ)

⎤

⎦ dt
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Since
∫ T

−T
cos 2(ω0t + φ)dt = 0,

P = Lt
T→∞

A2

4T

[
t
]T
−T

P = A2

2

Since P is finite, E = ∞.

� Example 1.60

Find the power and energy of the following signals:

x(t) = 5 cos(10t + φ) + 10 sin(5t + φ)

Solution:

x(t) = 5 cos(10t + φ) + 10 sin(5t + φ)

= x1(t) + x2(t)

where

x1(t) = 5 cos(10t + φ)

x2(t) = 10 sin(5t + φ)

Let P1 and P2 be the powers of x1(t) and x2(t), respectively.

P1 = A2

2
= 25

2
= 12.5

P2 = A2

2
= 100

2
= 50

The average power

P = P1 + P2

= 12.5 + 50

P = 62.5 watts

Since the power is finite, energy E = ∞.
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(a) (b)x(t)

u(t)

u(10 t)

0

1

10
t

1

t

x(t) = u(t) u(10 t)

0

1

10t

1

t

Fig. 1.104 Representation of x(t) = u(t) − u(10 − t)

� Example 1.61

Find the power and energy of the following signal:

x(t) = 5t − 10 < t < 10

Solution:
Energy of the signal E is

E =
∫ 10

−10
(5t)2dt = 25

[
t3

3

]10

−10

= 25

3
× 2000

E = 50000

3
Joules

Power of the signal P is zero.

� Example 1.62

Find the energy and power of the following signal:

x(t) = u(t) − u(10 − t)

Solution:
The signal u(t) and−u(10 − t) are represented in Fig. 1.104a. In Fig. 1.104b, x(t) =
u(t) − u(10 − t) is sketched. From Fig. 1.104b, the following equation for power is
written:
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P = Lt
T→∞

1

2T

⎡

⎣
∫

−T

0

(−1)2dt +
∫

10

T

(1)2dt

⎤

⎦

= Lt
T→∞

1

2T

{[
t
]0
−T + [t]T10

}

= 1

2
Lt

T→∞
1

T
[T + T − 10]

= 1

2
Lt

T→∞

[

2 − 10

T

]

= 1

P = 1 watt

If the power is finite, the energy E = ∞.

� Example 1.63

Determine the power and RMS value of the following signal.

x(t) = ejat cosω0t

(Anna University, 2007)
Solution:

P = Lt
T→∞

1

2T

∫

−T

T

|ejat cosω0t|2dt

ejat = cos at + j sin at

|ejat| =
√
cos2 at + sin2 at = 1

P = Lt
T→∞

1

2T

∫

−T

T

cos2 ω0tdt

= Lt
T→∞

1

4T

∫

−T

T

(1 + cos 2ω0t)dt

Since
∫

−T

T cos 2ω0tdt = 0, using Eq. (1.33),

P = Lt
T→∞

1

4T

∫

−T

T

dt = 1

4T
2T
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P = 0.5 watt

RMS value of power is

PRMS = 1√
2

= 0.707

� Example 1.64

Find the power and energy of the following signals:

(a) x(t) = 10ej2π tu(t)

(b) x(t) = ej(2t+π/4)

(Anna University, April, 2007)
Solution:

(a) x(t) = 10e j2π t u(t)

P = Lt
T→∞

1

2T

∫

0

T

|10ej2π t|2dt [x(t) = 0 for t < 0]

= 100

2
Lt

T→∞
1

T

∫

0

T

dt |ej2π t| = 1

= 50
1

T
[T ] = 50

P = 50 watts

Since power is finite, E = ∞.
(b) x(t) = e j(2t+π/4)

|x(t)| = ∣∣ej(2t+π/4)
∣
∣ = 1

P = Lt
T→∞

1

2T

∫

−T

T

dt = 1

2T
2T = 1



152 1 Representation of Signals

(a) x(t) tri(t)

tt 1 10

1
(b) x(t) 5tri(  )

tt 2 20

5
2
t

Fig. 1.105 Representation of triangular signals of Example 1.65

P = 1

Since power is finite, E = ∞.

� Example 1.65

Find the energy of the following signal:

x(t) = 5 tri

(
t

2

)

Solution:
The triangular signal x(t) = tri(t) is shown in Fig. 1.105a. By amplitude multiplica-
tion and time expansion, x(t) = 5 tri

(
t
2

)
is obtained and shown in Fig. 1.105b. For

Fig. 1.105b, the following equation is written:

x(t) = 5

2
t + c − 2 ≤ t ≤ 0

c is obtained as 5.

x(t) = −5

2
t + c 0 ≤ t ≤ 2

c is obtained as 5.
Let E1 be the energy for the time interval −2 ≤ t ≤ 0 and E2 energy for the

time interval 0 ≤ t ≤ 2.

E1 =
∫

−2

0 (5

2
t + 5

)2
dt

=
[
25

12
t3 + 25t + 25

2
t2
]0

−2

= 50

3
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(a) x(t)  tri(t)

tt 1 10

1
(b) x(t)  tri(t .2)

tt .8 2. 2.10

1
(c)

tt .8 2 210

1
x(t)  tri(   .2)10

t

Fig. 1.106 Representation of x(t) = tri( t
10 − 0.2)

E2 =
∫

0

2 (

−5

2
t + 5

)2
dt

=
∫

0

2 (25

4
t2 + 25t − 25t

)

dt

=
[
25

4

t3

3
+ 25t − 25

2
t2
]2

0

= 50

3

E = E1 + E2 = 50

3
+ 50

3

E = 100

3
Joules

Since energy is finite, the average power P = 0.

� Example 1.66

Find the energy of the following signal:

x(t) = tri

(
t − 2

10

)

Solution:

x(t) = tri

(
t − 2

10

)

= tri(0.1t − .2)

Figure 1.106a shows x(t) = tri(t). The time shifted signal x(t) = tri(t − 0.2) is
shown in Fig. 1.106b. The time shift is 0.2 toward right. By time elongation by factor
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10, x(t) = tri( t
10 − .2) is obtained and is shown in Fig. 1.106c. For Fig. 1.106c, the

following equations are written:

x(t) = 1

10
t + c − 8 ≤ t ≤ 2

For t = 2, x(t) = 1

1 = 2

10
+ c

c = 0.8

x(t) = 0.1t + 0.8

x(t) = − 1

10
t + c 2 ≤ t ≤ 12

For t = 2, x(t) = 1

1 = −2

10
+ c

c = 1.2

x(t) = −0.1t + 1.2.

Energy of the signal is given as

E =
∫

−8

2

(0.1t + 0.8)2dt +
∫

2

12

(−0.1t + 1.2)2dt

= E1 + E2

where

E1 =
∫

−8

2

(0.1t + 0.8)2dt

and

E2 =
∫

2

12

(−0.1t + 1.2)2dt

E1 = 1

100

∫

−8

2

(t + 8)2dt

= 1

100

∫

−8

2

(t2 + 16t + 64)dt
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(a) x(t) rect(t)

tt 0

1

1
2

(b) x(t) 2rect(   )

tt 0

2

11

t
2

1
2

Fig. 1.107 Representation of rectangular function

= 1

100

[
t3

3
+ 8t2 + 64t

]2

−8

= 10

3

E2 =
∫ 12

2

1

100
(12 − t)2dt

= 1

100

∫ 12

2
(t2 − 24t + 144)dt

= 1

100

[
t3

3
− 12t2 + 144t

]12

2

= 10

3

E = E1 + E2 = 10

3
+ 10

3
= 20

3

E = 20

3
Joules

Since the energy is finite, the average power is zero.

� Example 1.67

Find the energy of the following signal:

x(t) = 2 rect

(
t

2

)

.

Solution: The rectangular or unit gate function is represented in Fig. 1.107a. It is
defined as
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Fig. 1.108 Representation
of x(t) = 2 rect( t

2 ) cosω0t

tt

2

1 10

2
2rect (t/2)

cos 0t

x(t)

x(t) = 1 − 1

2
≤ t ≤ 1

2
= 0 otherwise

The rectangular signal with amplitude scaling and time elongation is shown in
Fig. 1.107b. From Fig. 1.107b, the following equation for energy is written:

E =
∫ 1

−1
(2)2dt = 4

[
t
]1
−1 = 8

E = 8 Joules

Since the energy is finite, the average power = 0.

� Example 1.68

Find the energy of the following signal:

x(t) = 2 rect

(
t

2

)

cosω0t

Solution:

x(t) = 2 rect

(
t

2

)

cosω0t − 1 ≤ t ≤ 1

The above function is represented in Fig. 1.108. Here T0 = 2 sec. Hence, ω0 =
(2π/T0) = π rad/sec.

E =
∫ 1

−1
(2 cosω0t)2dt

= 4
∫ 1

−1

(
1

2
+ 1

2
cos 2ω0t

)

dt
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Since

∫ 1

−1
cos 2ω0tdt = 0 (see Example 1.43)

therefore, E = 2
∫ 1

−1
dt = 2

[
t
]1
−1 = 4

E = 4 Joules

Since the energy is finite, the average power P = 0.

� Example 1.69

A trapezoidal pulse x(t) is defined by

x(t) =

⎧
⎪⎨

⎪⎩

(5 − t) 4 ≤ t ≤ 5

1 − 4 ≤ t ≤ 4

(t + 5) − 5 ≤ t ≤ −4
(a) Determine total energy of x(t).
(b) Sketch x(2t − 3).
(c) If y(t) = dx(t)

dt , determine the total energy of y(t).

(Anna University, December, 2007)
Solution:

(a) To determine the total energy of x(t).
The given trapezoid pulse x(t) is represented in Fig. 1.109a. The total energy of
the signal is determined as described below:

E =
∫ −4

−5
(t + 5)2dt +

∫ 4

−4
(1)2dt +

∫ 5

4
(5 − t)2dt

=
∫ −4

−5
(t2 + 10t + 25)dt +

∫ 4

−4
dt +
∫ 5

4
(t2 − 10t + 25)dt

=
[

t3

3
+ 5t2 + 25t

]−4

−5

+
[

t

]4

−4

+
[

t3

3
− 5t2 + 25t

]5

4

= −64

3
+ 80 − 100 + 125

3
− 125 + 125 + 8 + 125

3
− 125

+125 − 64

3
+ 80 − 100

= 1

3
+ 8 + 1

3
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(a) x(t)

t45 4 50

1

(b) x(2t 3)

t1 401
2

7
2

(c) y(t) = 

t45

1

4 5

1

dx(t)
dt

Fig. 1.109 Example 1.69

E = 26

3
Joules

(b) To sketch x(2t − 3)
x(t) in Fig. 1.109a is right shifted by t0 = 3 and time compressed by a factor 2.
x(2t − 3) is shown in Fig. 1.109b.

(c) To determine the total energy for y(t) = dx
dt .

x(t) = 5 + t −5 ≤ t ≤ −4

y(t) = dx(t)

dt
= 1 −5 ≤ t ≤ −4

x(t) = 1 −4 ≤ t ≤ 4

y(t) = dx(t)

dt
= 0 −4 ≤ t ≤ 4

x(t) = 5 − t 4 ≤ t ≤ 5

y(t) = dx(t)

dt
= −1 4 ≤ t ≤ 5
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The sketch of the above equations is shown in Fig. 1.109c. From this figure, the
total energy is calculated as follows.

E =
∫ −4

−5
(1)2dt +

∫ 5

4
(−1)2dt

= [t]−4
−5 + [t]54 = 1 + 1

E = 2 Joules

� Example 1.70

Consider the following CT signal.

x(t) = 2δ(t + 5) − 2δ(t − 6)

Calculate the energy of the signal

y(t) =
∫ t

−∞
x(τ )dτ

Solution:

y(t) =
∫ t

−∞
x(τ )dτ

=
∫ t

−∞
2δ(τ + 5)dτ −

∫ t

−∞
2δ(τ − 6)dτ

= 2u(t + 5) − 2u(t − 6)

y(t) is represented in Fig. 1.110. The energy of the signal y(t) is calculated as

Fig. 1.110 Representation
of signal of Example 1.70

05 6

2

tt

y(t)
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Fig. 1.111 Sketch of x(t) of
Example 1.71

x(t)

0 1

1

2

2

3

3

41.5 t

(2 sin2 t)

(4 t)

2t

E =
∫ 6

−5
|y(t)|2dt

=
∫ 6

−5
(2)2dt

= 4
[
t
]6

−5

E = 44

� Example 1.71

A certain signal is described by the following mathematical equations (Fig. 1.111).

x(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2t 0 ≤ t < 1

2 + sin 2π t 1 ≤ t < 2

4 − t 2 ≤ t < 4

0 otherwise

Sketch the signal x(t). What is the energy of the signal?

Solution: x(t) is split up as

x(t) = x1(t) + x2(t) + x3(t)

where
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x1(t) = 2t 0 ≤ t < 1

x2(t) = 2 + sin 2π t 1 ≤ t < 2

x3(t) = 4 − t 2 ≤ t < 4

E1,E2 and E3 are the corresponding energies for x1(t), x2(t) and x3(t), respectively

E1 =
∫ 1

0
|x1(t)|2dt

=
∫ 1

0
4t2dt

= 4

3

[
t3
]1

0

= 4

3

E2 =
∫ 2

1
|x2(t)|2dt

=
∫ 2

1
(2 + sin 2π t)2dt

=
∫ 2

1
(4 + sin2 2π t + 4 sin 2π t)dt

=
∫ 2

1
(4 + 0.5(1 − cos 4π t) + 4 sin 2π t)dt

=
∫ 2

1

(
9

2
− 1

2
cos 4π t + 4 sin 2π t

)

dt

=
[
9

2
t − 1

2

sin 4π t

4π
− 4

2π
cos 2π t

]2

1

=
[

9 − 0 − 2

π

]

−
[
9

2
− 0 − 2

π

]

= 9

2

E3 =
∫ 4

2
(4 − t)2dt

=
∫ 4

2
(t2 − 8t + 16)dt



162 1 Representation of Signals

=
[

t3

3
− 4t2 + 16t

]4

2

=
[
64

3
− 64 + 64

]

−
[
8

3
− 16 + 32

]

= 64

3
− 8

3
− 16

= 8

3

E = E1 + E2 + E3

= 4

3
+ 9

2
+ 8

3

E = 8.5

1.9 Classification of Discrete Time Signals

Like continuous time signals, discrete time signals are also classified as

1. Periodic and non-periodic signals.
2. Odd and even signals.
3. Power and energy signals.

They are discussed below with suitable examples.

1.9.1 Periodic and Non-Periodic DT Signals

A discrete time signal (sequence) x[n] is said to be periodic with period N which is
a positive integer if

x[n + N] = x[n] for all n (1.50)

Consider the DT sequence shown in Fig. 1.112. The signal gets repeated for every
N . For Fig. 1.112, the following equation is written:

x[n + mN] = x[n] for all n (1.51)

where m is any integer. The smallest positive integer N in Eq. (1.51) is called the
fundamental periodN0. Any sequence which is not periodic is said to be non-periodic
or aperiodic.
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x[n]

n03N 2N N N 2N 3N

Fig. 1.112 Periodic sequence

� Example 1.72

Show that complex exponential sequence x[n] = ejω0n is periodic and find the fun-
damental period.

Solution:

x[n] = ejω0n

x[n + N] = ejω0(n+N)

= ejω0nejω0N

= ejω0n if ejω0N = 1

ω0N = m2π where m is any integer.

N = m
2π

ω0

or
ω0

2π
= m

N
= rational number.

Thus, ejω0n is periodic if m
N is rational. For m = 1, N = N0. The corresponding fre-

quency F0 = 1
N0

is the fundamental frequency. F0 is expressed in cycles and not Hz.
Similarly ω0 is expressed in radians and not in radians per second.

� Example 1.73

Consider the following DT Signal.

x[n] = sin(ω0n + φ)

Under what condition, the above signal is periodic.
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Solution:

x[n] = sin(ω0n + φ)

x[n + N] = sin(ω0(n + N) + φ)

= sin(ω0n + ω0N + φ)

= sin(ω0n + φ) if ω0N = 2πm

= x[n]

ω0

2π
= m

N
= rational

� Example 1.74

If x1[n] and x2[n] are periodic, then show that the sum of the composite signal
x[n] = x1[n] + x2[n] is also periodic with the Least CommonMultiple (LCM) of the
fundamental period of individual signal.

Solution: Let N1 and N2 be the fundamental periods of x1[n] and x2[n], respectively.
Since both x1[n] and x2[n] are periodic,

x1[n] = x1[n + mN1]
x2[n] = x2[n + kN2]
x[n] = x1[n] + x2[n]

= x1[n + mN1] + x2[n + kN2]

For x[n] to be periodic with period N ,

x[n + N] = x1[n + N] + x2[n + N]
x[n] = x[n + N]

x1[n + mN1] + x2[n + kN2] = x1[n + N] + x2[n + N]

The above equation is satisfied if

mN1 = kN2 = N

m and k which are integers are chosen to satisfy the above equation. It implies that
N is the LCM of N1 and N2.

On similar line, it can be proved that if x1[n] and x2[n] are periodic signals with
fundamental period N1 and N2, respectively, then x[n] = x1[n]x2[n] is periodic if

mN1 = kN2 = N
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� Example 1.75

Find whether the following signals are periodic. If periodic, determine the funda-
mental period.

(a) x[n] = ejπn

(b) x[n] = cos
[n

8
− π
]

(c) x[n] = sin2
π

4
n

Solution:

(a) x[n] = e jπn

ω0 = π

N = 2π

ω0
m

N = 2π

π
= 2 if m = 1

x[n] is periodic with fundamental period 2.
(b) x[n] = cos

[ n
8 − π

]

ω0 = 1

8

N = 2π

ω0
m = 16πm

For any integer value of m,N is not integer. Hence, x[n] is not periodic.

x[n] is not periodic

(c) x[n] = sin2 π
4 n
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x[n] = sin2
π

4
n

= 1

2
− 1

2
cos

2π

4
n

= x1[n] + x2[n]
x1[n] = 1

2
= 1

2
(1)n is periodic with N1 = 1

x2[n] = −1

2
cos

π

2
n

ω0 = π

2

N2 = 2π

ω0
m = 4m = 4 for m = 1

N1

N2
= 1

4
or 4N1 = N2 = N

N = 4

� Example 1.76

Find the periodicity of the following DT signal

x[n] = sin
2π

3
n + cos

π

2
n

(Anna University, December, 2007)
Solution:

x[n] = sin
2π

3
n + cos

π

2
n

= x1[n] + x2[n]
x1[n] = sin

2

3
πn

ω1 = 2

3
π

N1 = 2π

ω1
m1 = 2π

2π
3m1 = 3 for m1 = 1

x2[n] = cos
π

2
n

ω2 = π

2

N2 = 2π

ω2
m2 = 2π

π
2m2 = 4 for m2 = 1
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N1

N2
= 3

4
or 4N1 = 3N2 = N

N = 12

� Example 1.77

Determine whether the following signal is periodic. If periodic, find its fundamental
period.

x[n] = cos
(nπ

2

)
cos
(nπ

4

)

(Anna University, December, 2006)
Solution: Method 1:

x[n] = cos
(nπ

2

)
cos
(nπ

4

)

= x1[n]x2[n]
x1[n] = cos

nπ

2

ω1 = π

2

N1 = 2π

ω1
m1 = 2π

π
2m1 = 4 for m1 = 1

x2[n] = cos
nπ

4

ω2 = π

4

N2 = 2π

ω2
m2 = 2π

π
4m2 = 8 for m2 = 1

N1

N2
= 4

8
= 1

2
or

2N1 = N2 = N

N = 8

The signal is periodic and the fundamental period N = 8.

Method 2:

x[n] = cos
(nπ

2

)
cos
(nπ

4

)
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Using the following formula, we get

cos(A + B) + cos(A − B) = cosA cosB − sinA sinB + cosA cosB + sinA sinB

= 2 cosA sinB

cosA cosB = 1

2
cos(A + B) + 1

2
cos(A − B)

Substituting A = nπ/2 and B = nπ/2, we get

x[n] = 1

2
cosπn

(
1

2
+ 1

4

)

+ 1

2
cosπn

(
1

2
− 1

4

)

= 1

2
cos

3

4
πn + 1

2
cos

1

4
πn

Choosing

x1[n] = 1

2
cos

3

4
πn

and

x2[n] = 1

2
cos

1

4
πn

we get

ω1 = 3

4
π

N1 = 2π

ω1
m1 = 2π4

3π
m1 = 8 for m1 = 3

ω2 = 1

4
π

N2 = 2π

ω2
m2 = 2π4

π
m2 = 8 for m2 = 1

N1

N2
= 8

8
= 1

N1 = N2 = N = 8

N = 8 sec.
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� Example 1.78

Test whether the following signals are periodic or not and if periodic, calculate the
fundamental period.

(a) x[n] = cos
(π

2
n
)

+ sin
(π

8
n
)

+ 3 cos
(π

4
n + π

3

)

(b) x[n] = ej 2π3 n + ej 3π4 n

(Anna University, December, 2007)
Solution:

(a)

x[n] = cos
(π

2
n
)

+ sin
(π

8
n
)

+ 3 cos
(π

4
n + π

3

)

= x1[n] + x2[n] + x3[n]
x1[n] = cos

π

2
n

ω1 = π

2
; N1 = 2π

ω1
= 2π 2

π
for m1 = 1

N1 = 4

x2[n] = sin
(π

8
n
)

ω2 = π

8
; N2 = 2π

ω2
m2 = 2π 8

π
for m2 = 1

N2 = 16

x3[n] = 3 cos
(π

4
n + π

3

)

ω3 = π

4
; N3 = 2π

ω3
m3 = 2π 4

π
for m3 = 1

N3 = 8

To find the LCM of N1, N2 and N3.

4 4, 8, 16
2 1, 2, 4
1, 1, 2

LCM = 4 × 2 × 2 = 16

N = 16
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The signal is periodic.
(b)

x[n] = ej 2π
3 n + ej 3π

4 n

= x1[n] + x2[n]
x1[n] = ej 2π

3 n

ω1 = 2π

3
; N1 = 2π

ω1
m1 = 2π

2π
3 for m1 = 1

N1 = 3

x2[n] = ej 3π
4 n

ω2 = 3π

4
; N2 = 2π

ω2
m2 = 2π

3π
4m2

N2 = 8 for m2 = 3
N1

N2
= 3

8
8N1 = 3N2 = N = 24

N = 24

The signal is periodic with fundamental period N = 24.

1.9.2 Odd and Even DT Signals

Similar to continuous time signals, DT signals are also classified as odd and even
signals. The relationships are analogous to CT signals.

A discrete time signal x[n] is said to be an even signal if

x[−n] = x[n] (1.52)

A discrete time signal x[n] is said to be an odd signal if

x[−n] = −x[n] (1.53)

The signal x[n] can be expressed as the sum of odd and even signals as

x[n] = xe[n] + x0[n] (1.54)

The even and odd components of x[n] can be expressed as
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(b)

1
234 1

2
3 3

x[n]

n0 1 2 3 4

33

1
2

(a)
x[n]

4

4 3 2 1

4

n

66

10 2 3 4

33

5
5

5

Fig. 1.113 a Even function and b Odd function

xe[n] = 1

2
[x[n] + x[−n]] (1.55)

x0[n] = 1

2
[x[n] − x[−n]] (1.56)

It is to be noted that

• An even function has an odd part which is zero.
• An odd function has an even part which is zero.
• The product of two even signals or of two odd signals is an even signal.
• The product of an odd and an even signal is an odd signal.
• At n = 0, the odd signal is zero.

The even and odd signals are represented in Fig. 1.113a and b, respectively.

� Example 1.79

Determine whether the following functions are odd or even:

(a) x[n] = sin 2πn

(b) x[n] = cos 2πn

Solution:

(a) x[n] = sin 2πn

x[−n] = sin(−2πn) = − sin 2πn

= −x[n]

This is an odd signal.
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(b) x[n] = cos 2πn

x[−n] = cos(−2πn) = cos 2πn

= x[n]

This is an even signal.

� Example 1.80

Find the even and odd components of DT signal given below. Verify the same by
graphical method.

x[n] = {−2, 1, 3, −5, 4}
↑

Solution: x[−n] is obtained by folding x[n]. Thus,

x[−n] = {4, −5, 3, 1, −2}
↑

−x[−n] = {−4, 5, −3, −1, 2}
↑

xe[n] = 1

2
[x[n] + x[−n]]

= 1

2
[{−2, 1, 3, −5, 4} + {4, −5, 3, 1, −2}]↑ ↑

= 1

2
[(−2 + 4), (1 − 5), (3 + 3), (−5 + 1), (4 − 2)]↑

xe[n] = {1, −2, 3, −2, 1}↑

x0[n] = 1

2
[x[n] − x[−n]]

= 1

2
[{−2, 1, 3, −5, 4} + {−4, 5, −3, −1, 2}]↑ ↑

= 1

2
[(−2 − 4), (1 + 5), (3 − 3), (−5 − 1), (4 + 2)]↑
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(a) x[n]

5

2

2 1 n0 1 2

4

3
1

(d) xe[n]

22

2 1 n0 1 2

1
3

1

(e) x0[n]

2

3 3

1 n0 1 2

3 3

(b) x[ n]

5

2 1 n0

4

3

2

1

1 2 n

(c) x[n]

2
2 1

4

0
1

2
1

3

2

5

xe[n]=    [x(n)+x( n)]1
2 x0[n]=    [x(n) x( n)]1

2

Fig. 1.114 Graphical determination of even and odd function from x[n]

x0[n] = {−3, 3, 0, −3, 3}↑

Odd and even components by graphical method.
Solution:

1. x[n] is represented in Fig. 1.114a.
2. x[−n] is obtained by folding x[n] which is represented in Fig. 1.114b.
3. −x[n] is obtained by inverting x[−n] of Fig. 1.114b. This is represented in

Fig. 1.114c.
4. xe[n] = 1

2 [x[n] + x[−n]]. Figure 1.114a, b samplewise are added and their ampli-
tudes are divided by the factor 2. This gives xe[n] and is represented in Fig. 1.114d.

5. x0[n] = 1
2 [x[n] − x[−n]]. Figure 1.114a, c samplewise are added and their ampli-

tudes are divided by a factor 2 to get x0[n]. This is represented in Fig. 1.114e.
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Fig. 1.115 a Even function
and b Odd function

n

(a) xe[n]

.5
n0

.5

2

1.5 1.5

.5 .5

0

1.5

1.5
1

.5 .5

1

(b) x0[n]

1 1
.5 .5

� Example 1.81

Find the even and odd components of the following DT signal and sketch the same.

x[n] = {−2, 1, 2, −1, 3}

(Anna University, December, 2007)
Solution:

x[n] = {−2, 1, 2, −1, 3}
x[−n] = {3, −1, 2, 1, −2}↑
xe[n] = 1

2
{x[n] + x[−n]}

= 1

2
[{−2, 1, 2, −1, 3} + {3, −1, 2, 1, −2}]↑ ↑

= {1.5, −.5, 1, .5, −2, .5, 1, −.5, 1.5}↑
x0[n] = 1

2
[x[n] − x[−n]]

= 1

2
[{−2, 1, 2, −1, 3} − {3, −1, 2, 1, −2}]↑ ↑

x0[n] = {−1.5, .5, −1, −.5, 0, .5, 1, −.5, 1.5}
↑

Even and odd components of x[n] are represented in Fig. 1.115a and b, respectively.
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� Example 1.82

Given x[n] and y[n]

x[−1] = 2

x[n] = 1 0 ≤ n ≤ 5

x[6] = 0.5

= 0 otherwise

y[n] = 2u[n]

Plot

1. x[n/2]
2. x[n]y[n/2]
3. Even part of x[n]
4. x[n] + y[n/2]δ[n − 1]

(Anna University, December, 2011)
Solution:

1. For the given equation, x[n] is represented as shown in Fig. 1.116a. x[n/2] is
obtained by time expansion and is shown in Fig. 1.116b.

2.

y[n] = 2u[n]
y
[n

2

]
= 2u

[n

2

]

The step sequence is time expanded by 2 and amplitude multiplied by 2. y[ n
2 ] is

sketched as shown in Fig. 1.116c.
3. The even part of a function is given by

xev[n] = 1

2
[x[n] + x[−n]]

x[n] shown in Fig. 1.116a and x[−n] shown in Fig. 1.116f are added and divided
by a factor 2 to get xev[n] and are shown in Fig. 1.116g.

4. y[n/2] is shown in Fig. 1.116c. Now

y
[n

2

]
δ[n − 1] = y

[n

2

] ∣∣
∣
n=1
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x[n]

1 0 1 2 3 4 5 6

2

0.5
1

(a)

nn

x[n/2]

2 0 2 4 6 8 10 12

2

0.5
1

(b)

nn

y[n/2]

y[n/2] at n 1

0 21 4 6 8 10

2

(c)

nn

x[n]

12 0 1 2 3 4 5 6 7

2

0.51

(d)

nn

Fig. 1.116 Plot of x[n] of Example 1.82. Figure of Example 1.82
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x[ n]

6 5 4 3 2 1 0 1

0.5

2

1 1 1 1 1 1

(f)

nn

xev[n]

6 13 245 0 1 2 3 4 5 6

1/4
1/21/2 1/21/21/21/2 1/2 1/2

1.5

1

1.5

1/4

(g)

nn

x[n]y[n/2]

2 1 0 2 4 6 8 10 12

1

2 2
2

(e)

nn

Fig. 1.116 (continued)

where n = 1

x[n] + y
[n

2

]
δ[n − 1] = x[n]

x[n] is shown in Fig. 1.116a.
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1.9.3 Energy and Power of DT Signals

For a discrete time signal x[n], the total energy is defined as

E =
∞∑

n=−∞
|x[n]|2 (1.57)

The average power is defined as

P = Lt
N→∞

1

(2N + 1)

N∑

n=−N

|x[n]|2 (1.58)

From the definitions of energy and power, the following inferences are derived:

1. x[n] is an energy sequence iff 0 < E < ∞. For finite energy signal, the average
power P = 0.

2. x[n] is a power sequence iff 0 < P < ∞. For a sequence with average power
P being finite, the total energy E = ∞.

3. Periodic signal is a power signal and vice versa is not true. Here the energy of
the signal per period is finite.

4. Signals which do not satisfy the definitions of total energy and average power
are neither termed as power signal nor energy signal. The following summation
formulae are very often usedwhile evaluating the average power and total energy
of DT sequence.

1.

N−1∑

n=0

an = (1 − an)

(1 − a)
a �= 1 (1.59)

= N a = 1

2. ∞∑

n=0

an = 1

(1 − a)
a < 1 (1.60)

3. ∞∑

n=m

an = am

(1 − a)
a < 1 (1.61)

4.

∞∑

n=0

nan = a

(1 − a)2
a < 1 (1.62)
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� Example 1.83

Determine whether the following signals are energy signals or power signals:

(a) x[n] = Aδ[n]
(b) x[n] = u[n]
(c) x[n] = ramp n

(d) x[n] = A

(e) x[n] = 2ej(πn+θ)

(f) x[n] = cos
π

2
n

Solution:

(a) x[n] = Aδ[n]

x[n] = Aδ[n]
= A n = 0

= 0 n �= 0

Energy E =
0∑

n=0

(A)2

E = A2

For unit impulse, A = 1 and E = 1.
(b) x[n] = u[n]; n ≥ 0

P = Lt
N→∞

1

(2N + 1)

N∑

n=0

|x(n)|2

= Lt
N→∞

1

(2N + 1)

N∑

n=0

1

But
∑N

n=0 1 = (N + 1)

P = Lt
N→∞

(N + 1)

(2N + 1)

= Lt
N→∞

N(1 + 1
N )

N(2 + 1
N )

= 1

2
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P = 1

2
E = ∞

(c) x[n] = ramp n; n ≥ 0

P = Lt
N→∞

1

(2N + 1)

N∑

n=0

|x[n]|2

P = Lt
N→∞

1

(2N + 1)

N∑

n=0

n2

But
∑N

n=0 n2 = N(N+1)(2N+1)
6

P = Lt
N→∞

N(N + 1)(2N + 1)

(2N + 1)6

P = ∞

E = Lt
N→∞

N∑

n=0

n2

= Lt
N→∞

N(N + 1)(2N + 1)

6
= ∞

E = ∞

The signal x[n] = n is neither power signal nor energy signal.
(d) x[n] = A

P = Lt
N→∞

1

(2N + 1)

∞∑

n=−∞
A2

= Lt
N→∞

A2

(2N + 1)
(2N + 1)

[ ∞∑

n=−∞
1 = (2N + 1)

]

P = A2

E = ∞
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(e) x[n] = 2e j(πn+θ)

P = Lt
N→∞

1

(2N + 1)

N∑

−N

|2ej(nπ+θ)|2

P = Lt
N→∞

1

2N + 1
4

N∑

−N

|ej(nπ+θ)|2

But |ej(nπ+θ)| = 1 and
∑N

−N 1 = (2N + 1)

P = Lt
N→∞ 4

(2N + 1)

(2N + 1)
= 4

P = 4

E = ∞

(f) x[n] = cos π
2 n

P = 1

(2N + 1)

N∑

−N

cos2
π

2
n

Since
∑N

−N cosπn = 0,

P = Lt
N→∞

1

(2N + 1)

N∑

−N

(1 + cosπn)

2

= 1

2
Lt

N→∞
(2N + 1)

(2N + 1)

= 1

2

P = 1

2
E = ∞

� Example 1.84

Determine the energy of the signal shown in Fig. 1.117 whose

x[n] =
(
1

3

)n

u[n]

(Anna University, December, 2007)
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Fig. 1.117 x[n] = ( 13
)2

u[n] x[n]

n0

1

Solution:

E = Lt
N→∞

N∑

n=0

(
1

3

)2n

= Lt
N→∞

N∑

n=0

(
1

9

)n

= 1 + 1

9
+
(
1

9

)2
+ . . .

= 1

1 − 1
9

E = 9

8
P = 0

� Example 1.85

Find the energy of the following sequence:

x[n] = n 0 ≤ n ≤ 4

Solution:
x[n] = n

= {0, 1, 2, 3, 4}

E =
4∑

n=0

n2

= 0 + 1 + 4 + 9 + 16

E = 30
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x[n]

12345 0 1

1
2

3

4 4

1
0

2
3

4

1
2

3

4

2 3 4 5 6 7 8 9

Fig. 1.118 x[n] of Example 1.86

� Example 1.86

Determine the average power and the energy per period of the sequence shown in
Fig. 1.118.

Solution: The fundamental period N of the signal is 5. Hence, the average power per
period is

P = 1

5

4∑

n=0

n2

= 1

5
[0 + 1 + 4 + 9 + 16]

P = 6

Average energy per period is

E =
4∑

n=0

n2

= [0 + 1 + 4 + 9 + 16]

E = 30

Total Energy = ∞

� Example 1.87

Find the energy and power of the following signal:

x[n] = anu[n]
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for the following cases:
(a) |a| < 1

(b) |a| = 1

(c) |a| > 1

Solution:

(a) x[n] = anu[n] where |a| < 1 and n ≥ 0

E =
∞∑

n=0

(an)2

= 1 + a2 + a4 + . . .

E = 1

1 − |a|2

P = 0

(b) x[n] = anu[n] where |a| = 1

E = Lt
N→∞

N∑

0

1n = Lt
N→∞(N + 1)

E = ∞

P = Lt
N→∞

1

(2N + 1)

N∑

0

(1)n

P = = Lt
N→∞

(N + 1)

(2N + 1)

= Lt
N→∞

N(1 + 1
N )

N(2 + 1
N )

P = 1

2
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(c) x[n] = anu[n] where a > 1

E = Lt
N→∞

N∑

0

an

= 1 + a + a2 + · · · + aN

E = ∞

P = Lt
N→∞

1

(2N + 1)

N∑

n=0

an

= Lt
N→∞

1

(N + 1)

(1 − aN+1)

(1 − a)

P = ∞

The signal is neither energy nor power signal.

� Example 1.88

Find the energy of the following signal:

x[n] = nu[n] − 2nu[n − 4] + nu[n − 8]

Solution:
x[n] = nu[n] − 2nu[n − 4] + nu[n − 8]

= x1[n] + x2[n] + x3[n]

x1[n], x2[n] and x3[n] are shown in Fig. 1.119a–c, respectively. Figure 1.119d repre-
sents x[n]. From Fig. 1.119d, the energy of the signal x[n] is obtained as

E = 12 + 22 + 32 + 42 + 32 + 22 + 12

E = 44
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(a) (b)

(c)

0

0
1 2 3 4 5 6 7 8 9

1 2 3 4

2
4

6
8
10

1
2

3
4

x1[n] x2[n]

n

(d)

0

x[n]

n0 1 2 3 4 5 6 7 8 9101112

x3[n]

n

n

1
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3

4
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5
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8 9

1
2

3
4

Fig. 1.119 DT energy signal of Example 1.88

� Example 1.89

Determine the value of power and energy of each of the following signals:

(a) x[n] = ej( πn
2 + π

8 )

(b) x[n] =
(
1

2

)n

u[n]

(Anna University, April, 2008)Solution:

(a) x[n] = e j( πn
2 + π

8 )

P = Lt
N→∞

1

2N + 1

N∑

−N

|ej( πn
2 + π

8 )|2

= Lt
N→∞

1

(2N + 1)

N∑

−N

1

P = (2N + 1)

(2N + 1)
= 1

P = 1 and E = ∞
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(b) x[n] = [ 1
2

]n
u[n]

E = Lt
N→∞

N∑

0

(
1

2

)2n

= Lt
N→∞

N∑

0

(
1

4

)n

= 1

1 − 1
4

= 4

3

E = 4

3
and P = 0

� Example 1.90

Find the energy of the following DT signal

x[n] =
(
1

2

)n

n ≥ 0

= 3n n < 0

(Anna University, April, 2005)
Solution:

E =
[ −1∑

−∞
(3)2n +

∞∑

0

(
1

2

)2n
]

=
[ −1∑

−∞
(9)n +

∞∑

0

(
1

4

)n
]

=
[ ∞∑

1

(9)−n + 1
(
1 − 1

4

)

]

=
[ ∞∑

1

(
1

9

)n

+ 4

3

]

=
[
1

9
+ 1

92
+ 1

93
+ · · ·

]

+ 4

3

= 1

9

[

1 + 1

9
+ 1

92
+ 1

93
+ · · ·

]

+ 4

3
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= 1

9

1

[1 − 1
9 ]

+ 4

3

= 1

8
+ 4

3

E = 35

24

Summary

1. Signals are broadly classified as Continuous Time (CT) and Discrete Time
(DT) signals. They are further classified as deterministic and stochastic,
periodic and non-periodic, odd and even and energy and power signals.

2. BasicCTandDT signals include impulse, step, ramp, parabolic, rectangular
pulse, triangular pulse, signum function, sinc function, sinusoid, real and
complex exponentials.

3. Basic operations on CT and DT signals include addition, multiplication,
amplitude scaling, time scaling , time shifting, reflection or folding and
amplitude inverted signals.

4. In time shifting of CT signal, for x(t + t0) and x(−t − t0), the time shift
is made to the left of x(t) and x(−t), respectively, by t0. For x(t − t0)
and x(−t + t0), the time shift is made to the right of the x(t) and x(−t),
respectively, by t0. Similar operation holds good for DT signals x[n + n0],
x[−n − n0], x[n − n0] and x[−n + n0] when shifted by n0.

5. To plot CT and DT signals, the operation performed is in the following
sequence. The signal is folded (if necessary), time shifted, time scaled,
amplitude scaled and inverted.

6. Signals are classified as even signals and odd signals. Even signals are
symmetric about the vertical axis whereas odd signals are anti-symmetric
about the time origin. Odd signals pass through the origin. The product of
two even signals or two odd signals is an even signal. The product of an
even and an odd signal is an odd signal.

7. A CT signal which repeats itself for every T seconds or a DT signal for
every N sequence is called a periodic signal. If the signal is not periodic, it
is called an aperiodic or non-periodic signal. The necessary condition for
the composite of two or more signals to be periodic is that the individual
signal should be periodic.

8. A signal is an energy signal iff the total energy of the signal satisfies the con-
dition 0 < E < ∞. A signal is called a power signal iff the average power
of the signal satisfies the condition 0 < P < ∞. If the energy of a signal
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is finite, the average power is zero. If the power of the signal is finite, the
signal has infinite energy. All periodic signals are power signals. However,
all power signals need not be periodic. Signals which are deterministic and
non-periodic are usually energy signals. Some signals are neither energy
signal nor power signal.

Exercises
I. Short Answer Type Questions

1. How are signals classified?
Signals are generally classified as CT and DT signal. They are further
classified as deterministic and non-deterministic, odd and even, periodic
and non-periodic and power and energy signals.

2. What are odd and even signals?
AcontinuousCT signal is said to be an even signal if it satisfies the condition
x(−t) = x(t) for all t. It is said to be an odd signal if x(−t) = −x(t) for
all t. For a DT signal, if x[−n] = x[n] condition is satisfied, it is an even
sequence (signal). If x[−n] = −x[n], the sequence is called odd sequence.

3. Howevenandoddcomponents of a signal aremathematically expressed
for CT and DT signals?

xe(t) = 1

2
[x(t) + x(−t)]

x0(t) = 1

2
[x(t) − x(−t)]

xe[n] = 1

2
{x[n] + x[−n]}

x0[n] = 1

2
{x[n] − x[−n]}

4. What are periodic and non-periodic signals?
A continuous time signal is said to be a periodic signal if it repeats itself for
every T sec. It satisfies the condition x(t) = x(t + T) for all t. A discrete
time signal is said to be a period signal if it satisfies the condition x[n] =
x[n + N] for all n. A signal which is not periodic is said to be non-periodic.

5. What is the fundamental period of a periodic signal? What is funda-
mental frequency?
A CT signal is said to be periodic if it satisfies the condition x(t) =
x(t + T). If this condition is satisfied for T = T0, it is also satisfied for
T = 2T0, 3T0, . . .. The smallest value of T that satisfies the above condi-
tion is called fundamental period. The fundamental frequency f0 = 1

T0
Hz.

It is also expressed as ω0 = 2π
T0

rad/sec.
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6. What are power and energy signals?
For a CT signal, the total energy is defined as

E = Lt
T→∞

∫ T

−T
|x(t)|2dt

and the average power is defined as

P = Lt
T→∞

1

2T

∫ T

−T
|x(t)|2dt

The square root of P is called Root Mean Square (RMS) value of x(t). For
a DT signal x[n], the total energy is defined as

E =
∞∑

n=−∞
x2[n]

The average power is defined as

P = Lt
T→∞

1

2N + 1

N∑

n=−N

x2[n]

7. Determine whether the signal x[n] = cos[0.1πn] is periodic.
The signal x[n] is periodic with fundamental period N0 = 20.

8. Find whether the signal x[n] = 5 cos[6πn] is periodic.
The signal is periodic with fundamental period N0 = 1.

9. What is the condition that the signal x(t) = eat u(t) to be energy signal?
For the signal x(t) = eatu(t) to be energy signal, a < 0.

10. Is the unit step signal an energy signal?
The unit step has an average power P = 1

2 . It is a power signal.
11. Determine the power and RMS value of the signal x(t) = e jat cosω0 t .

Average power P = 1
2 and RMS power PRMS = 1√

2
.

12. What is the periodicity of x(t) = e j100π t+30◦
?

The periodicity of the signal x(t) is T = 1
50 sec.

13. Find the average power of the signal.

x[n] = u[n] − u[n − N]

The average power P = 1.
14. Find the total energy of
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x[n] = {1, 1, 1}
↑

The total energy E = 3.
15. If the discrete time signal x[n] = {0, 0, 0, 3, 2, 1, −1, −7, 6} , then find

y[n] = x[2n − 3].
y[n] = {0, 0, 0, 3, 1, −7}

16. What is the energy of the signal x[n] = u[n] − u[n − 6]?

E = 6

17. Find the equivalence of the following functions (a) δ(at); (b) δ(−t); (c)
tδ(t); (d) sin tδ(t); (e) cos δ(t) and (f) x(t)δ(t − t0).

(a) δ(at) = 1

a
δ(t)

(b) δ(−t) = δ(t)

(c) tδ(t) = 0

(d) sin tδ(t) = 0

(e) cos tδ(t) = δ(t)

(f) x(t)δ(t − t0) = x(t0)

18. How do you represent an exponential e−at for t ≥ 0 and t < 0?
The everlasting exponential e−at is expressed as e−atu(t) for t ≥ 0 and
e−atu(−t) for t < 0.

19. Find the value of t2+5
t2+6δ(t − 2).

(t2 + 5)

(t2 + 6)
δ(t − 2) = 0.9 δ(t − 2)

20. Find the odd and even components of e j2t .

xe(t) = cos 2t

x0(t) = sin 2t

II. Long Answer Type Questions

1. A triangular pulse signal x(t) is shown in Fig. 1.120a. Sketch the following
signals. (a) x(4t); (b) x(4t + 3); (c) x(−3t + 2); (d) x( t

3 + 2); (e) x(3t − 2) and
(f) x(4t + 3) + x(2t).

2. Sketch the following CT functions. (a) x(t) = 8u(5 − t); (b) x(t) = 3δ(t + 2);
(c) x(t) = ramp(t + 1); (d) x(t) = 5rect (t+1)

4 ; (e) x(t) = −tri t−1
4 ; (f) x(t) =
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(a) x(t)

t1 110

1

(b) x(4t)

t1
4

0

1

1
4

(c) x(4t 3)

t3
4

0

1

1
2

t
3

9 6 3

(e) x(  2)

t0

1

1

(d) x( 3t 2)

t1
3

0 2
3

1

(g) x(4t 3) x(2t)

t1
2

01
2

3
4

1

1

(f) x(3t 2)

t1
3

0 2
3

Fig. 1.120 Operations of CT signals

u(t) − u(t − 5); (g) x(t) = u(t) − u(t + 5); (h) x(t) = −ramp(t)u(t − 3); (i)
x(t) = u(t)(t + 1

3 )ramp( 13 − t) and (j) x(t) = rect(t + 2) − rect(t − 2).
3. Determine whether each of the following CT signals are periodic. If periodic,

determine the fundamental period (Fig. 1.121).

(a) x(t) = ej2t

(b) x(t) = e(−2+j3)t

(c) x(t) = sin
(
60π t + π

4

)

(d) x(t) = cos
(
60π t − π

4

)
− sin 20π t

(e) x(t) = sin
(
8π t + π

3

)
+ 5 cos

(
π t

3
+ π

2

)

+ 6 cos
(
7π t − π

2

)

(f) x(t) = 30 sin
(
8π t + π

3

)
cos
(
2π t + π

2

)
sin
(
5π t − π

2

)

(a) Periodic with period T0 = π sec. (b) Not periodic. (c) Periodic. T0 = 1
30 sec.

(d) Periodic T0 = 1
10 sec. (e) Periodic T0 = 6sec. (f) Periodic T0 = 2 sec.

4. Sketch the even and odd parts of the following signals shown in Fig. 1.122a, b.
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8u(5 t)

t0 5

8

(a) (b) 3 (t 2)

tt 02

3

(c) ramp(t 1)

t0

1

1

5rect(     )

t0 35

1

1

5

(d)

4
t 1

u(t ) ramp (  t)

t0

(i)

u(t) u(t 5)

t0 5

1

(f)

rect(t 2) rect(t 2)

t1

1

1

1

3
3

(j)

ramp(t)u(t 3)

t
4 3

(h)

u(t) u(t 5)

t

(g)

tri(     )

t
53 0 1

(e) 4
t 1

5

1

1
3

1
3

1
3

1
3

1
3

Fig. 1.121 Operations of CT signals
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x(t)

t0 2

2

xe(t)

t0 22

1

x0(t)

t2
2

1

1

x(t)

t0 1 2

1

(a)

(c)
(d)

(f)
(e)

(b)

2

xe(t)

t

1
2

0 1 21

2

x0(t)

1
2

0 1 2
1

1
2

Fig. 1.122 Even and odd signals of CT signals

t0 4

1

4

[ (t 4) (t 4)]dt

Fig. 1.123 Representationof x(t) = ∫ [δ(t + 4) − δ(t − 4)]dt

t

x(t)

0

1

21 3 4 5 6

Fig. 1.124 Triangular wave
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5. Consider the CT signal x(t) = δ(t + 4) − δ(t − 4). Sketch
∫

x(t)dt and find the
energy of the signal (Fig. 1.123).
Energy E = 8.

6. Find the energy of the following CT signal. (a) x(t) = tri3t; (b) x(t) = 2tri( t
2 );

(c) x(t) = rect10t; (d) 2 rect( t
10 ); (e) sin(2π t).

(a) E = 2
9 ; (b) E = 16

3 ; (c) E = 1
5 ; (d) E = 80 and (e) E = 1

2 .
7. What is the average power of the triangular wave shown in Fig. 1.124.

Average power P = 1
3 watts.

8. For the following DT signal, find even and odd components

x[n] = {1, −3, 2, 5, 4}
xe[n] = {2, 2.5, 1, −1.5, 1, −1.5, 1, 2.5, 2}

↑
x0[n] = {−2, −2.5, −1, 1.5, 0, −1.5, 1, 2.5, 2}

↑

9. Find whether the following signals are periodic. If periodic, find the funda-
mental period. (a) x[n] = cos( n

8 − π); (b) x[n] = cos( π
8 + π

2 ) + cos( π
6 − π

2 );
(c) x[n] = cos( 5πN

12 + π
2 ) + sin 10πn

8 and (d)x[n] = ej3n + ej4πn.
(a) Not periodic. (b) Periodic with fundamental period N0 = 48 samples/sec. (c)
Periodic with fundamental period N0 = 24 samples/sec. (d) Non-periodic.

10. Given x[n] and y[n]

x[−1] = 2

x[n] = 1 1 ≤ n ≤ 5

x[6] = 1

2
= 0 for other n

Plot (a) x[ n
2 ] and (b) Evx[n]. (Anna University, 2007).

(a)

x[n] = {2, 1, 1, 1, 1, 1, 1, 0.5}
↑

x
[n

2

]
= {2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0.5}

↑

(b)

xe[n] = {0.25, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.25}
↑
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11. Find whether the following signal is periodic. If periodic, find the fundamental
period.

x[n] = cos
(
2πn + π

2

)
+ sin

(
5πn − π

4

)
+ sin

(
8πn + π

2

)

The signal is periodic. Their fundamental period N0 = 2 samples/sec.
12. Determine whether the signal x(t) = 3 cos t + 4 cos(t/3) is periodic. If periodic,

find the period.
The fundamental periodT = 6π is irrational and hence, the signal is not periodic.

13. Find the odd and even components of x[n] = δ[n].

x0[n] = 0; xe[n] = δ[n]

14. Find the odd and even components of x(t) = u(t).

xe(t) = 1

2
; x0(t) = 1

2
sgnt

15. Evaluate x(t) = cos
(

π
8 t
)
δ(t − 4).

x(t) = 0



Chapter 2
Continuous and Discrete Time Systems

Learning Objectives

Under broader category, systems are classified as continuous and discrete time sys-
tems. The objectives of the chapters are to further classify them as

� Linear and non-linear systems.
� Time invariant and time varying systems.
� Static and dynamic systems.
� Causal and non-causal systems.
� Stable and unstable systems.
� Invertible and non-invertible systems.
� To define the above properties of the system.
� To illustrate these properties with numerical examples.

2.1 Introduction

A system is an interconnection of objects with a definite relationship with the objects
and attributes. Consider a simple R, L, C series electric circuit. The components
(objects) R, L and C when connected together form the system. The current flow in
the series circuit and the voltages across the elements R, L and C are the attributes. If
i is the current flowing in the circuit, the voltage across the resistor R is iR. Thus, the
object R and the attribute i have a definite relationship between them. The voltages
across any of these objects R, L and C can be taken as the output. Thus, the system
when excited by a signal, processes and produces signals as outputs in the same
form or in a modified form. Electrical motors, communication systems, automotive
vehicles, human body, government, stock markets etc. are examples of systems. The
block diagram representation of a system is shown in Fig. 2.1.
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x(t) or x[n]

Excitation
or Input

y(t) or y[n]

Response
or Output

SYSTEM
with

Functional relationship

Fig. 2.1 Block diagram representation of system

InFig. 2.1 the system is excited by the input signal x(t)or x[n]. It is being processed
by the functional relationship of the system and the response is obtained as y(t) or
y[n]. The functional relationship includes differential equation or difference equation
or the system transfer function which isH(s) for CT system andH(z) for DT system.

2.2 Linear Time Invariant Continuous (LTIC) Time System

The block diagram of a continuous time system is shown in Fig. 2.2a. x(t) is the
input signal which is continuous. The system with the functional relationship H(s)
produces the output y(t) which is also continuous. The system dynamics or the
functional relationship is written in the form of differential equation connecting x(t)
and y(t). If the Laplace transform of x(t) and y(t) are X(s) and Y(s) respectively, the
system functional relationship is written as

Y(s)

X(s)
= H(s) (2.1)

x(t)

X(s)

y(t)

Y(s)
H(s)

i(t) R

(a)

(b)

Cx(t) = e(t) e0(t) = y(t)

Fig. 2.2 a Block diagram of CT system. b R-L-C series electric circuit
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H(s) is called system function or system transfer function.
Consider the electric network shown in Fig. 2.2b. The following dynamic equation

is written for Fig. 2.2b:

e(t) = Ri(t) + L
di(t)

dt
+ 1

C

∫
i(t)dt (2.2)

e0(t) = 1

C

∫
i(t)dt (2.3)

In the continuous time system shown in Fig. 2.2b. e(t) is represented by x(t) and
e0(t) is represented by y(t). The system dynamic equations are given in Equations
(2.2) and (2.3).

2.3 Linear Time Invariant Discrete (LTID) Time System

Consider the discrete time system represented in block diagram as shown in Fig. 2.3.
Here H[z] represents the functional relationship of x[n] and y[n]. The input and
output sequences x[n] and y[n] occur at only discrete interval of time n where n is
an integer. In DT system, the input and output are related by the difference equation
which is given below:

y[n − 2] + a1y[n − 1] + a2y[n] = bx[n] (2.4)

In Equation (2.4), y[n] is the output sequence. y[n − 1] and y[n − 2] are the delayed
output at n = 1 and n = 2 respectively.

2.4 Properties (Classification) of Continuous Time System

The continuous time system possesses the following properties and it is classified
accordingly.

1. Linear and non-linear systems.
2. Time invariant and time varying systems.

x[n] y[n]
H[z]

Fig. 2.3 Block diagram of DT system
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3. Causal and non-causal systems.
4. Static and dynamic systems (Systems without and with memory).
5. Stable and unstable systems.
6. Invertible and non-invertible systems.

The above properties of LTIC time system are defined, described and illustrated with
examples below.

2.4.1 Linear and Non-linear Systems

For a linear system if an input x1(t) produces an output y1(t) and another input x2(t)
when applied separately produces an output y2(t), then when both inputs x(t) =
[x1(t) + x2(t)] are applied to the system simultaneouslywill produce an output y(t) =
y1(t) + y2(t). Thus

x1(t) = y1(t)

x2(t) = y2(t)

[x1(t) + x2(t)] = [y1(t) + y2(t)] (2.5)

Equation (2.5) obeys the Additivity property of superposition theorem. Further, the
linear system should also satisfy the homogeneity or scaling property of superposi-
tion theorem. According to this property, if

a1x1(t) = a1y1(t)

a2x2(t) = a2y2(t)

then,

[a1x1(t) + a2x2(t)] = [a1y1(t) + a2y2(t)] (2.6)

Thus, for a continuous system to be linear, the weighted sum of several inputs
produces the weighted sum of outputs. In other words, it should satisfy the
homogeneity and additivity properties of superposition theorem. If the above
conditions are not satisfied the system is said to be non-linear.

Further it is necessary that for zero input, the output should also be zero for the
system to be linear.

Step By Step Procedure to Test Linearity



2.4 Properties (Classification) of Continuous Time System 201

1. Let

y1(t) = f (x1(t))

y2(t) = f (x2(t))

Find the weighted sum of the output

y3(t) = a1y1(t) + a2y2(t)

y3(t) = a1 f (x1(t)) + a2 f (x2(t))

where a1 and a2 are called the weights.
2. For the linear combination of input [a1x1(t) + a2x2(t)] find the output for the

weighted sum of the input.

y4(t) = f [a1x1(t) + a2x2(t)]

3. If
y3(t) = y4(t)

the system is linear. Otherwise the system is non-linear. The following examples,
illustrate the method of testing the linearity of continuous time systems.

4. If the output is not zero for zero input, the system will be non-linear.

� Example 2.1

Consider the following input-output equation of a certain system.

y(t) = [2x(t)]2

Determine whether the system is linear or non-linear.

Solution: y(t) = [2x(t)]2
= 4x2(t)

y1(t) = 4x21(t)

y2(t) = 4x22(t)

The weighted sum of the output is,

y3(t) = a1y1(t) + a2y2(t)

= 4a1x
2
1(t) + 4a2x

2
2(t)

The output due to the weighted sum of the input [a1x1 + a2x2] is,
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y4(t) = 4[a1x1(t) + a2x2(t)]2
= 4[a21x21(t) + a22x

2
2(t) + 2a1a2x1(t)x2(t)]

y3(t) �= y4(t)

Hence, the system is non-linear.

� Example 2.2

Consider the following systems. Determine whether each of them is linear.

(a) y(t) = 5x(t) sin 10t

(b) y(t) = 3x(t) + 5

(c) y(t) = t2x(t + 1)

(d) y(t) = Evx(t)

(e) y(t) = x(t2)

(f) y(t) =
∫ t

−∞
10x(τ )dτ

(g) y(t) = e−2x(t)

(h) y(t) = x(t − 7) − x(5 − t)

Solution:

(a) y(t) = 5x(t) sin 10t

y1(t) = 5x1(t) sin 10t

y2(t) = 5x2(t) sin 10t

The weighted sum of the output is,

y3(t) = a1y1(t) + a2y2(t) = 5 sin 10t(a1x1(t) + a2x2(t))

The output due to the weighted sum of the input is,

y4(t) = 5 sin 10t(a1x1(t) + a2x2(t))

y3(t) = y4(t)

The system is Linear.
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(b) y(t) = 3x(t) + 5

y1(t) = 3x1(t) + 5

y2(t) = 3x2(t) + 5

y3(t) = a1y1(t) + a2y2(t)

= 3(a1x1(t) + a2x2(t)) + 5(a1 + a2)

y4(t) = 3(a1x1(t) + a2x2(t)) + 5

y3(t) �= y4(t)

Further, if x(t) = 0, y(t) = 5 and not zero.

The system is Non-linear.

(c) y(t) = t2x(t + 1)

y1(t) = t2x1(t + 1)

y2(t) = t2x2(t + 1)

y3(t) = a1y1(t) + a2y2(t)

= t2[a1x1(t + 1) + a2x2(t + 1)]
y4(t) = t2[a1x1(t + 1) + a2x2(t + 1)]
y3(t) = y4(t)

The system is Linear.

(d) y(t) = Evx(t)

y(t) = 1

2
[x(t) + x(−t)]

y1(t) = 1

2
[x1(t) + x1(−t)]

y2(t) = 1

2
[x2(t) + x2(−t)]

The weighted sum of the output is,

y3(t) = a1y1(t) + a2y2(t)

= 1

2
[a1x1(t) + a2x2(t) + a1x1(−t) + a2x2(−t)]

The output due to the weighted sum of the input is,
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y4(t) = 1

2
[a1(x1(t) + x1(−t)) + a2(x2(t) + x2(−t))]

= 1

2
[a1x1(t) + a2x2(t) + a1x1(−t) + a2x2(−t)]

y3(t) = y4(t)

The system is Linear.

(e) y(t) = x(t2)

y1(t) = x1(t
2)

y2(t) = x2(t
2)

The weighted sum of the output is,

y3(t) = a1y1(t) + a2y2(t)

= a1x1(t
2) + a2x2(t

2)

The output due to the weighted sum of the input is,

y4(t) = a1x1(t
2) + a2x2(t

2)

y3(t) = y4(t)

The system is Linear.

(f) y(t) = 10
∫ t

−∞ x(τ)dτ

y1(t) = 10
∫ t

−∞
x1(τ )dτ

y2(t) = 10
∫ t

−∞
x2(τ )dτ

The weighted sum of the output is,

y3(t) = a1y1(t) + a2y2(t)

= 10

[
a1

∫ t

−∞
x1(τ )dτ + a2

∫ t

−∞
x2(τ )dτ

]

The output due to the weighted sum of the input is,
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y4(t) = 10

[∫ t

−∞
{a1x1(τ ) + a2x2(τ )} dτ

]

= 10

[{∫ t

−∞
a1x1(τ )dτ +

∫ t

−∞
a2x2(τ )dτ

}]

y3(t) = y4(t)

The system is Linear.

(g) y(t) = e−2x(t)

For x(t) = 0, y(t) = 1 and not zero. Hence the system is non-linear. Also

y1(t) = e−2x1(t)

y2(t) = e−2x2(t)

y3(t) = a1y1(t) + a2y2(t) = a1e
−2x1(t) + a2e

−2x2(t)

y4(t) = e−2(a1x1(t)+a2x2(t)) = e−2a1x1(t)e−2a2x2(t)

y3(t) �= y4(t)

The system is Non-linear.

(h) y(t) = x(t − 7) − x(5 − t)

y1(t) = x1(t − 7) − x1(5 − t)

y2(t) = x2(t − 7) − x2(5 − t)

The weighted sum of the output is,

y3(t) = a1y1(t) + a2y2(t)

= a1[x1(t − 7) − x1(5 − t)] + a2[x2(t − 7) − x2(5 − t)]

The output due to the weighted sum of the input is,

y4(t) = a1[x1(t − 7) − x1(5 − t)] + a2[x2(t − 7) − x2(5 − t)]
y3(t) = y4(t)

The system is Linear.
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Linearity Test for the System Described by Differential Equation

Step 1. Write down the system differential equation with responses y1(t) and y2(t)
for the inputs x1(t) and x2(t) respectively.

Step 2. Multiply the y1(t) response equation with a1 and y2(t) response equation
with a2 and add them.

Step 3. Write down the differential equation for the sum of the inputs x(t) = a1x1(t)
+a2x2(t).

Step 4. If y(t) = a1y1(t) + a2y2(t) obtained in Steps 2 and 3 are same, the given
differential equation is linear. Otherwise the differential equation is non-
linear.

The following examples illustrate the above method.

� Example 2.3

Determine whether the following differential equations are linear or non-linear:

(a)
dy(t)

dt
+ 10y(t) = x(t)

(b)
dy(t)

dt
+ 10 sin y(t) = 2x(t)

(c) y(t)
dy(t)

dt
+ 10y(t) = 2x(t)

(d)
dy(t)

dt
+ 5y(t) = x(t)

dx(t)

dt

(e)
dy(t)

dt
+ 5y(t) = x2(t)

(f)
5dy(t)

dt
+ 7y(t) + 15 = x(t)

Solution:

(a)

dy(t)

dt
+ 10y(t) = x(t)

Let y1 be the output response due to the input x1 and y2 be the response due to
the input x2. Thus we may write the output responses due to the weights a1 and
a2 as

y1 → x1
a1y1 → a1x1
y2 → x2

a2y2 → a2x2
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The output response due to the weight a1 is

d(a1y1)

dt
+ 10a1y1 = a1x1

The output response due to the weight a2 is

d(a2y2)

dt
+ 10a2y2 = a2x2

The weighted sum of the response due to each input signal is,

d

dt
[a1y1(t)] + 10a1y1(t) = a1x1(t)

d

dt
[a2y2(t)] + 10a2y2(t) = a2x2(t)

Adding the above two equations we get the weighted sum of the output as

d

dt
[a1y1(t) + a2y2(t)] + 10[a1y1(t) + a2y2(t)] = [a1x1(t) + a2x2(t)] (a)

The response of the system due to weighted sum of input is given as,

a1
dy1(t)

dt
+ a2

dy2(t)

dt
+ 10[a1y1(t) + a2y2(t)] = [a1x1(t) + a2x2(t)]

d

dt
[a1y1(t) + a2y2(t)] + 10[a1y1(t) + a2y2(t)] = [a1x1(t) + a2x2(t)] (b)

Equations (a) and (b) are same. Also Eq. (a) or (b) is identical to the system
equation

dy(t)

dt
+ 10y(t) = x(t)

with the input
x(t) = a1x1(t) + a2x2(t)

and the output
y(t) = a1y1(t) + a2y2(t)

Therefore, when the input [a1x1(t) + a2x2(t)] is applied, the system output
response is [a1y1(t) + a2y2(t)]. Hence the system is linear. Also, when the input
is zero, the system response is obtained from

dy(t)

dt
+ 10y(t) = 0
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The above equation, when solved with zero initial conditions, y(t) = 0. For zero
input, the output is also zero.

The system is Linear.

(b) d y(t)
dt + 10 sin y(t) = 2x(t)

dy(t)

dt
+ 10 sin y(t) = 2x(t)

The weighted sum of responses due to a1x1(t) and a2x2(t) are,

d

dt
[a1y1(t)] + 10 sin a1y(t) = 2a1x1(t)

d

dt
[a2y2(t)] + 10 sin a2y2(t) = 2a2x2(t)

The weighted sum of the responses is obtained by adding the above two equa-
tions.

d

dt
[a1y1(t) + a2y2(t)] + 10 sin a1y1(t) + 10 sin a2y2(t) = 2[a1x1(t) + a2x2(t)]

(a)
The output response due to weighted sum of inputs x(t) = a1x1(t) + a2x2(t) is,

a1
d

dt
y1(t) + a2

d

dt
y2(t) + 10a1 sin y1(t) + 10a2 sin y2(t) = 2[a1x1(t) + a2x2(t)]

d

dt
[a1y1(t) + a2y2(t) + 10[a1 sin y1(t) + a2 sin y2(t)] = 2[a1x1(t) + a2x2(t)]

(b)
Equations (a) and (b) are not the same. Hence, it is not linear.

The system is Non-linear.

(c) y(t) d y(t)
dt + 10 y(t) = 2x(t)

y(t)
dy(t)

dt
+ 10y(t) = 2x(t)

The weighted output responses due to inputs a1x1(t) and a2x2(t) are,
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a1y1(t)
d

dt
[a1y1(t)] + 10a1y1(t) = 2a1x1(t)

a2y2(t)
d

dt
[a2y2(t)] + 10a2y2(t) = 2a2x2(t)

The sum of the weighted response is due to x(t) = a1x1(t) + a2x2(t) is obtained
by adding the above two equations.

a21y1(t)
d

dt
[y1(t)] + a22y2(t)

d

dt
[y2(t)] + 10[a1y1(t) + a2y2(t)]=2[a1x1(t) + a2x2(t)] (a)

The response due to weighted sum of inputs x(t) = a1x1(t) + a2x2(t) is,

a1y1(t)
d

dt
y1(t) + 10a1y1(t) + a2y2(t)

d

dt
y2(t) + 10a2y2(t) = 2[a1x1(t) + a2x2(t)]

a1y1(t)
d

dt
y1(t) + a2y2(t)

d

dt
y2(t) + 10[a1y1(t) + a2y2(t)] = 2[a1x1(t) + a2x2(t)] (b)

Equations (a) and (b) are not equal. Hence, the system is not linear.

The system is Non-linear.

(d) d y(t)
dt + 5 y(t) = x(t) dx(t)

dt .
The output response of the system due to the weight a1 is

d(a1y1)

dt
+ 5a1y1 = a1x1

dx1
dt

The output response of the system due to the weight a2 is

d(a2y2)

dt
+ 5a2y2 = a2x2

dx2
dt

The weighted sum of the responses due to the above weight is obtained adding
the above two equations and is given below as,

d

dt
(a1y1 + a2y2) + 5(a1y1 + a2y2) = a1x1

dx1
dt

+ a2x2
dx2
dt

(a)

The output of the system due to the input with weight a1 is

a1
dy1
dt

+ 5a1y1 = a1x1
dx1
dt

The output of the system due to the input with weight a2 is
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a2
dy2
dt

+ 5a2y2 = a2x2
dx2
dt

The output due to the sum of the weighted input is obtained by adding the above
two equations

d

dt
(a1y1 + a2y2) + 5(a1y1 + a2y2) = a1x1

dx1
dt

+ a2x2
dx2
dt

(b)

Equation (a)=Equation (b)

The output response due to the weights a1 and a2 is the same when the input is
given the same weights. Further for x(t) = 0, y(t) = 0 which can be obtained by
solving the equation

dy(t)

dt
+ 5y(t) = 0

with zero initial conditions.

The system is Linear.

It is to be noted that when the system is described by the differential equation, the
system linearity is decided by the differential equation describing the dynamics
of the system and it is independent of the input.

(e) d y(t)
dt + 5 y(t) = x2(t).

The output response of the system due to the weights a1 and a2 are written as

d(a1y1)

dt
+ 5a1y1 = a1x

2
1 and

d(a2y2)

dt
+ 5a2y2 = a2x

2
2

Adding the above two equations we get,

d

dx
(a1y1 + a2y2) + 5(a1y1 + a2y2) = a1x

2
1 + a2x

2
2 (a)

The outputs of the system due to the input with weights a1 and a2 are given by

a1
dy1
dt

+ 5a1y1 = a1x
2
1 and a2

dy2
dt

+ 5a2y2 = a2x
2
2

The output due to the sum of the weighted inputs is obtained by adding the above
two equations

d

dx
(a1y1 + a2y2) + 5(a1y1 + a2y2) = a1x

2
1 + a2x

2
2 (b)

Equation (a)=Equations (b)
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Further for x(t) = 0, y(t) = 0 which can be obtained by solving the equation

dy(t)

dt
+ 5y(t) = 0

with zero initial conditions.

The system is Linear.

(f) 5d y
dt + 7 y + 15 = x.
Let y1 be the response due to x1 and y2 be the response due to x2

y1 → x1 and y2 → x2

The output response y1 due to the weight a1 is

5
d(a1y1)

dx
+ 7a1y1 + 15 = a1x1

The output response y2 due to the weight a2 is

5
d(a2y2)

dx
+ 7a2y2 + 15 = a2x2

Adding the above two equations we get

5
d(a1y1 + a2y2)

dx
+ 7(a1y1 + a2y2) + 15 = (a1x1 + a2y2) (a)

Let a1 weight be given to the input x1. The response y1 due to this weight is
obtained from

5a1
dy1
dx

+ 7a1y1 + 15a1 = a1x1

Let a2 weight be given to the input x2. The response y2 due to this weight is
obtained from

5a2
dy2
dx

+ 7a2y2 + 15a2 = a2x2

The output response equation due to the weighted sum of the inputs is obtained
by adding the above two equations.

5
d

dx
(a1y1 + a2y2) + 7(a1y1 + a2y2) + 15(a1 + a2) = (a1x1 + a2y2) (b)
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Equation (a) is not equal to Eq. (b). Thus the weighted sum of the output is not
equal to the output due to the weighted sum of the input. Equation (b) is not the
same as the original equation.

The system is Non-linear.

2.4.2 Time Invariant and Time Varying Systems

Acontinuous time system is said to be time invariant if the parameters of the sys-
tem do not change with time. The characteristics of such system are fixed over a
time. The input-output of a certain continuous time system is shown in (2.4) a and
b respectively. If the input is delayed by t0 seconds, the characteristic of the output
response remains the same but delayed by t0 seconds. This is illustrated in Fig. 2.4c
and d respectively. This property is also illustrated in Fig. 2.4e and f in block dia-

x(t)

R

0 t

x(t t0)

R

0 t

y(t)

R

0 t

t0

y(t t0)

R

0 tt0

x(t)
H

y(t)

(a)

(c)

(b)

(d)

(e)

(f)

Delay
y(t t0)

x(t)
Delay

x(t t0)
H

y(t,t0)

Fig. 2.4 Time invariancy property
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gram form. In Fig. 2.4e the output y(t) of the systemH is delayed by t0 seconds to get
y(t − t0) as the delayed output. The delayed output y(t − t0) of systemH can also be
obtained by delaying the input x(t) as x(t − t0). This is illustrated in Fig. 2.4f. This
time delay of the system commutes only if the system is time invariant. The above
property will not apply if the system is time varying which can be easily proved.
Thus, to identify the time invariant system, the following steps are followed:

Step 1. For the delayed input x(t − t0) obtain the output y(t, t0).
Step 2. Obtain the expression for the delayed output y(t − t0) by substituting t =

(t − t0).
Step 3. If y(t, t0) = y(t − t0), then the system is time invariant. Otherwise it is a time

varying system.

The following examples illustrate the method of identifying time invariancy.

� Example 2.4

Check whether the following systems are time invariant or not:

(a) y(t) = tx(t)

(b) y(t) = cos x(t)

(c) y(t) = x(t) cos x(t)

(d) y(t) = e−2x(t)

(e)
d2

dt
y(t) + 2

d

dt
y(t) + 5y(t) = x(t)

(f)
d2

dt
y(t) + 2t

d

dt
y(t) + 5y(t) = x(t)

(g) y(t) =
[
dx(t)

dt

]2

(h) y(t) = at2x(t) + btx(t − 2)

(Anna University, 2013)Solution:

(a) y(t) = t x(t)

1. For the delayed input x(t − t0), the output y(t, t0) is obtained as

y(t, t0) = tx(t − t0)

2. The delayed output y(t − t0) is obtained by substituting t = t − t0 in the
given equation

y(t − t0) = (t − t0)x(t − t0)
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3. y(t − t0) �= y(t, t0)
4.

The system is Time Varying.

(b) y(t) = cos x(t)

1. y(t, t0) = cos x(t − t0) [For Delayed input]
2. y(t − t0) = cos x(t − t0) [Delayed output]
3. y(t − t0) = y(t, t0)
4.

The system is Time Invariant.

(c) y(t) = x(t) cos x(t)

1. y(t, t0) = x(t − t0) cos x(t − t0) [For Delayed input]
2. y(t − t0) = x(t − t0) cos x(t − t0) [Delayed output]
3. y(t − t0) = y(t, t0)
4.

The system is Time Invariant.

(d) y(t) = e−2x(t)

1. The output due to delayed input is,

y(t, t0) = e−2x(t−t0)

2. The delayed output is obtained by putting t = t − t0

y(t − t0) = e−2x(t−t0)

3. y(t − t0) = y(t, t0)
4.

The system is Time Invariant.

(e) d2

dt y(t) + 2 d
dt y(t) + 5 y(t) = x(t)

The coefficients of the given differential equation are 1, 2 and 5 and they are
constants. They do not vary with time. Hence

The system is Time Invariant.
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(f) d2

dt2 y(t) + 2t d
dt y(t) + 5 y(t) = x(t)

The coefficient of dy(t)
dt is 2t and it varies with respect to time. Hence

The system is Time Varying.

(g) y(t) = [ d
dt x(t)

]2

1. For the delayed input x(t − t0) the output is obtained as

y(t, t0) =
[
d

dt
x(t − t0)

]2

2. The delayed output is obtained by putting t = t − t0 in the given equation

y(t − t0) =
[
d

dt
x(t − t0)

]2

3. y(t − t0) = y(t, t0)
4.

The system is Time Invariant.

(h) y(t) = at2x(t) + btx(t − 2)
The output y(t, t0) due to the delayed input x(t − t0) is

y(t, t0) = at2x(t − t0) + btx(t − t0 − 2) (a)

The delayed output y(t − t0) is obtained by substituting t = t − t0.

y(t − t0) = a(t − t0)
2x(t − t0) + b(t − t0)x(t − t0 − 2) (b)

From equations (a) and (b) we see

y(t, t0) �= y(t − t0)

The system is Time Varying.
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2.4.3 Static and Dynamic Systems
(Memoryless and System with Memory)

Consider the R-C series electrical circuit shown in Fig. 2.4a. The charge in the capac-
itor is determined by the current that has flown through it. By this mechanism the
capacitor remembers about some thing about its past. Similarly consider themechan-
ical system in Fig. 2.4b. The stored energy in the mechanical spring depends on the
past history of the applied force. The present response of these systems which have
energy storing elements depends not only on the present excitation but also on the
past excitation which are remembered by these elements. Such systems are called
dynamic systems or systems with memory.

Consider the electrical network of Fig. 2.4a in which only a resistor is connected.
The current flowing through the resistor depends on thepresent valueof the excitation.
The response does not depend on the excitation at any other time. Such systemswhich
have no energy storing elements are called static systems or systemswithoutmemory.

Adynamic system is, therefore, defined as a system inwhich the output signal
at any specified time depends on the values of the input signals at the specific
time at other time also.

A static system is defined as a system in which the output signal at any
specified time depends on the present value of the input signal alone. Static
system is also called as instantaneous system

Consider the input x(t) and output y(t) at t = 0 as represented in Fig. 2.4(c). If
the output at any instant of time depends upon the input which occurs at the same
instant of time without any deviation, (t0 = 0) the input is called the present input.
If the output at any instant t0 depends only on the value of the input x(t) for t < t0
the input with respect to the output is called as past input. On the other hand if t > t0
then the input is called future input. Thus we have

t = t0, Present input.

t < t0, Past input.

t > t0, Future input.

The following examples illustrate the method of identifying static and dynamic
systems.

� Example 2.5

Determine whether the following systems are static or dynamic:

(a) y(t) = x(t + 1) + 5

(b) y(t) = x(t2)

(c) y(t) = x(t) sin 2t
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(d) y(t) = x(t − 3) + x(3 − t)

(e) y(t) = x

(
t

4

)

(f) y(t) =
∫ t

−∞
x(τ )dτ

(g)
dy(t)

dt
+ 5y(t) = 2x(t)

(h) y(t) = 2x(t) + 3

(i) y(t) = e−2x(t)

Solution:

(a) y(t) = x(t + 1) + 5
y(0) = x(1) + 5

The system response depends on the future input x(t + 1) where t > t0. Hence

The system is Dynamic.

(b) y(t) = x(t2)

For t = 1,
y(1) = x(1) [t = t0 Present input]

For t = 2,
y(2) = x(4)
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The response depends on the present and future
inputs. The output x(4) depends upon the future input x(2). Hence

The system is Dynamic.

(c) y(t) = x(t) sin 2t
The system response depends on the present value of the input x(t). Due to sin 2t,
only its magnitude varies from −1 to +1. Hence, the output depends upon the
present input since y(1) = x(1) sin 2.

The system is Static.

(d) y(t) = x(t − 3) + x(3 − t)
For t = 0,

y(0) = x(−3) + x(3)

Consider the output
y(0) = x(−3) + x(3)

The input-output are represented below.

The output x(−3) depends upon the past input. The output x(3) depends on Future
input. The system response depends on past and future values of input. Hence

The system is Dynamic.
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(e) y(t) = x
( t
4

)

For t = 0, y(0) = x(0)

For t = 1, y(1) = x

(
1

4

)

For t = −1, y(−1) = x

(
−1

4

)

Consider the output y(0) = x(0) for t = 0. The output depends upon the present
input. Consider the output at t = 1

y(1) = x

(
1

4

)

The input-output are shown below.

The output x(1/4) depends upon the past input x(1). Now consider the output at
t = −1

y(−1) = x

(
−1

4

)

The input-output are represented below.
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The output x(−1/4) depends upon future input x(−1). The system response
depends on present, future and past values of input. Hence

The system is Dynamic.

(f) y(t) = ∫ t
−∞ x(τ)dτ

By integrating the input, the output is retained and stored in a memory from time
t to the infinite past. Hence

The system is Dynamic.

(g) d y(t)
dt + 5 y(t) = 2x(t)

The input-output is described by a first order differential equation. It requires an
energy storing element which remembers the past history of the input applied.
Hence

The system is Dynamic.

(h) y(t) = 2x(t) + 3
The output always depends on the present input. Hence

The system is Static.

(i) y(t) = e−2x(t)

The output always depends on the present input only. Hence

The system is Static.

2.4.4 Causal and Non-causal Systems

Consider a continuous time system excited by the signal x(t). If the response (out-
put) depends on the present and past values of the input x(t), the system is said
to be causal. In a causal signal, the output cannot start before the input is applied.
Hence, the causal system is also called non-anticipative system. On the other hand,
if the system acts on the knowledge of future input, before it is being applied such
systems are called anticipative or non-causal systems. Real time systems are all
causal systems.

Consider the system described by the following input-output equation

y(t) = x(t − 3) + x(t + 3) (2.7)
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x(t)

x(t) y(t)

(a)

(c)

(b)

R
M

K

y(t)C

x(t)
y(t) output

x(t t0)

0

 Past input

t

x(t) Present inputx(t t0)

t>t0 t<t0t=t0

t t0 t0

Future input

Fig. 2.5 a, b Dynamic systems. c Representation of present, past and future inputs graphically

For the input shown in Fig. 2.5a, the output y(t) is sketched and shown in Fig. 2.5b.
The output y(t) at time t is given by the sum of the input values at (t − 3) which is 3
second before and at (t + 3) which is 3 second after. This is illustrated in Fig. 2.5b.
Here the system responds to the future input x(t + 3) and it is non-causal system and
cannot be realizable in real time. The following examples illustrate the method of
identifying causal and non-causal systems.

� Example 2.6

Consider the continuous time systems described below by their input-output equa-
tions. Identify whether they are causal or non-causal.

(a) y(t) = x

(
t

4

)

(b) y(t) = x(t) sin(1 + t)

(c) y(t) = x(t2)

(d) y(t) = x(
√
t)

(e) y(t) = x(t + 1)

(f) y(t) = x(t − 1)
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(g) y(t) = d

dt
x(t)

(h) y(t) =
∫ t+4

t−4
x(τ )dτ

Solution:

(a) y(t) = x
( t
4

)

For t = 0, y(0) = x(0)

For t = −4, y(−4) = x(−1)

For t = 1, y(1) = x

(
1

4

)

In the above three cases, the input-output represented as given below. The output
depends upon the present, future and past inputs. Since the output depends on
future value of input which is evident from y(−4) = x(−1).

The system is Non-causal.

(b) y(t) = x(t) sin(1 + t)

y(0) = x(0) sin(1)

y(1) = x(1) sin(2)

y(−1) = x(−1) sin(0)

Thus at all time, the output depends on the present input only. Hence

The system is Causal.

(c) y(t) = x(t2)
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For t = 0, y(0) = x(0)

For t = 1, y(1) = x(1)

For t = 2, y(2) = x(4)

The system output depends on the present input as seen from y(0) = x(0) and
y(1) = x(1).

The system output y(t) at t = 2, which is y(2) = x(4) depends on the future input
x(t). Hence

The system is Non-causal.

(d) y(t) = x(
√
t)

At t = 0.64

The output depends on the future input. Hence

The system is Non-causal.
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(e) y(t) = x(t + 1)
For t = 0,

y(0) = x(1)

The system output depends on the future input.

Hence

The system is Non-causal.

(f) y(t) = x(t − 1)

For t = 0, y(0) = x(−1)

For t = 1, y(1) = x(0)

For t = 2, y(2) = x(1)

The output depends on the past values of the input.

x( 1)

x(0)

0

input
Past

1t t

t 0

Output

Hence

The system is Causal.
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(g) y(t) = d
dt x(t)

y(0) = d

dt
x(0)

y(1) = d

dt
x(1)

The output depends on the present input. Hence

The system is Causal.

(h) y(t) = ∫ t+4
t−4 x(τ)dτ

y(t) =
[
x(τ )

]t+4

t−4

= x(t + 4) − x(t − 4)

x( 1)

x(0)

0

input
Past

1t t

t 0

Output

For t = 0,

y(0) = x(4) − x(−4)

The output y(0) depends on future input x(4). Hence

The system is Non-causal.

2.4.5 Stable and Unstable Systems

Consider a cone which is resting on its base as shown in Fig. 2.7a. The cone at this
position when given a small disturbance, will stay in the same position with a small
displacement which is the new equilibrium state. Now this position of the cone is
said to be in stable state. On the other hand, consider the cone resting on its tip.When
the cone is given a small displacement (say an impulse) the contact of the tip with
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x(t)

0

1

1

(a) (b)

present
input

t

y(t)

x(t 3)

0

Past
1

2241t 4 t

x(t 3)
Future input

input

Fig. 2.6 A non-causal system

Fig. 2.7 Stable and unstable
systems

(a) (b)

the resting surface is lost and it rolls over the surface. The output position (resting
on the tip) is never reached. This state of the cone is said to be unstable.

Consider a linear time invariant continuous time system which is excited by an
impulse as shown in block diagram of Fig. 2.6a. The output response of the system
is shown in Fig. 2.6b and c. In Fig. 2.6b the area under the impulse response curve is
finite. It can be mathematically proved, that such systems whose area of the impulse
response curve is finite, are said to be stable. On the other hand, consider Fig. 2.6c.
The area under this impulse curve is infinite. Systems, which possess such an impulse
curve are said to be unstable.

A linear time invariant continuous time system is said to be Bounded Input
Bounded Output (BIBO) stable, if for any bounded input, it produces bounded
output. This also implies that for BIBO stability, the area under the impulse
response (output) curve should be finite.

The BIBO stability concept is mathematically expressed as follows. Let the input-
output of a linear time invariant system be expressed as,

y(t) = f [x(t)] for all t (2.8)

If |x(t)| is bounded, |y(t)| should also be bounded for the system to be stable.

|y(t)| ≤ My < ∞ for all t (2.9)

|x(t)| ≤ Mx < ∞ for all t (2.10)

where |Mx| and |My| represent positive values. It can be easily established that the
necessary and sufficient condition for the LTIC time system to be stable is,
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x(t)

x(t)

y(t)
SYSTEM

δ(t)

t0

(a)

y(t)

t0

y(t)

t0

(b) (c)

Fig. 2.8 Impulse response of stable and unstable systems

y(t) =
∫ ∞

−∞
|x(t)|dt < ∞ (2.11)

The following examples illustrate the method of finding the stability of LTIC time
system.

� Example 2.7

Determine whether the systems described by the following equations: are BIBO
stable.

(a) y(t) = tx(t)

(b) y(t) = e−2|t|

(c) y(t) = x(t) sin t

(d) y(t) = te2tu(t)

(e) y(t) = e4tu(t − 3)

(f) y(t) = e−2t sin 2t u(t)

Solution:

(a) y(t) = t x(t)
If x(t) is bounded, y(t) varies with respect to time and becomes unbounded.
Hence

The system is BIBO Unstable.
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(b) y(t) = e−2|t|
Here

x(t) = e−2t 0 ≤ t < ∞
= e2t − ∞ < t < 0

y(t) =
∫ ∞

−∞
x(t)dt

=
∫ 0

−∞
e2tdt +

∫ ∞

0
e−2tdt

=
[
1

2
e2t

]0

−∞
−

[
1

2
e−2t

]∞

0

= 1

2
[1 + 1] = 1 < ∞

The output is bounded and the system is stable.

The system is BIBO Stable.

(c) y(t) = x(t) sin t
It x(t) is bounded, y(t) is also bounded because sin t will take a maximum value
of +1 and −1. Hence, y(t) is bounded.

The system is BIBO Stable.

(d) y(t) = te2t u(t)
Here the output varies linearly as t and also exponentially increasing due to e2t .
Hence, |y(t)| = ∞ and the system is BIBO unstable. Mathematically this can
be proved as follows. For a causal system, |y(t)| can be written as

|y(t)| =
∫ ∞

0
te2tdt

The following integration formula is used to evaluate the above integral.

∫ ∞

0
teatdt = 1

a2

[
eat{at − 1}

]∞
0

|y(t)| = 1

4

[
e2t{2t − 1}

]∞
0

= 1

4
[e∞{2∞ − 1} + 1]

= ∞



2.4 Properties (Classification) of Continuous Time System 229

The system is BIBO Unstable.

(e) y(t) = e4t u(t − 3)
Theoutput response is exponentially increasing as t increaseswith a time delay of
t = 3. Hence, the system is unstable. This is mathematically proved as follows:

|y(t)| =
∫ ∞

−∞
|x(t)|dt

=
∫ ∞

3
e4tdt

= 1

4

[
e4t

]∞
3

= ∞ − 1

4
e12

= ∞

The system is BIBO Unstable.

(f) y(t) = e−2t sin 2t u(t)
The output response is a function of exponential decay and a sinusoid. The
sinusoid will have a maximum value of +1 and −1. As t increases, y(t) will
exponentially decrease and the output is bounded. The result can be mathemat-
ically obtained as follows. For a causal signal u(t)

|y(t)| =
∫ ∞

0
e−2t sin 2t dt

Using the formula,

∫ ∞

0
eat sin bt dt =

[
eat{a sin bt − b cos at}]∞

0

a2 + b2

we get,

|y(t)| = 2

22 + 22

[
e−2t{sin 2t − cos 2t}

]∞
0

= 1

4
< ∞

The system is BIBO Stable.
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x(t) y(t) w(t) = x(t)
System H

System 1 System 2

 Inverse system 
H 1

X(s) Y(s) W(s) = X(s)
 s s

 1

(a)

(b)

Fig. 2.9 Representation of inverse system

2.4.6 Invertibility and Inverse System

Consider the system H which is excited with x(t). The system produces the output
y(t). This signal is applied as the input to the inverse systemH−1 which produces the
output x(t). The block diagram representation of the system and the inverse system
is shown in Fig. 2.9a. Form Fig. 2.9a, the inverse system is defined as follows.

A system is said to be invertible if the distinct inputs give distinct output.
Consider the system shown in Fig. 2.9b. The input-output relationship of system

1 is described as,

d

dt
y(t) = x(t)

Consider system 2, the input-output of this system is described by

d

dt
y(t) = x(t)

When these two systems are cascaded, the output response of the interconnected
system is same as the excitation of the system itself. The system which makes
this possible is called inverse system. Here unique excitation produces unique
response.

� Example 2.8

Consider the systems described by the equations given below:

(a) The impulse h(t) is given as

h(t) = δ(t) − 3e−3tu(t) + 4e−4tu(t)

(b)
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dy(t)

dt
+ 5y(t) = d2x(t)

dt2
+ 2

dx(t)

dt
− 8x(t)

Determine the inverse systems for the above. Are these systems both causal and
stable?

Solution:

(a) h(t) = δ(t) − 3e−3t u(t) + 4e−4t u(t)
Taking Laplace transform on both sides we get

H(s) = 1 − 3

s + 3
+ 4

s + 4

= (s2 + 8s + 12)

(s + 3)(s + 4)

The inverse of the above system is,

H−1(s) = 1

H(s)
= (s + 3)(s + 4)

s2 + 8s + 12

H−1(s) = (s + 3)(s + 4)

(s + 2)(s + 6)

The poles ofH−1 are at s = −2 and s = −6. Hence, the inverse systems is stable.
The region of convergence (ROC) (refer Chap. 8) is to the right of right most
pole s = −2. Hence, it is causal.

The inverse system is both Causal and Stable.

(b) d y(t)
dt + 5 y(t) = d2x(t)

dt2 + 2 dx(t)
dt − 8x(t)

Taking Laplace transform on both sides of the above equation we get,

(s + 5)Y(s) = (s2 + 2s − 8)X(s)

H(s) = Y(s)

X(s)
= (s2 + 2s − 8)

(s + 5)

= (s − 2)(s + 4)

(s + 5)

The inverse system is,

H−1(s) = 1

H(s)
= (s + 5)

(s − 2)(s + 4)
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H−1(s) = (s + 5)

(s − 2)(s + 4)

The poles of the inverse systems are at s = 2 and s = −4. The pole at s = 2 will
make the system unstable if the system is causal. For the system to be stable the
ROC should form a strip between s = 2 and s = −4 in which case it includes
the jω axis. In this case, the system has to be non-causal.

The system is not both Causal and Stable.

� Example 2.9

Determine whether the given system is memoryless, time invariant, linear, causal
and stable. Justify your answers.

y(t) = (cos 3t) x(t)

(Anna University, December, 2006)
Solution:

y(0) = x(0)

y(1) = cos 3x(1)

y(−1) = cos 1x(−1)

1. The output depends only on the present input. Hence, the systems is memoryless
(static). Since the output does not depend on the future input, it is causal.

2. The output due to the delayed input is,

y(t, t0) = cos 3t x(t − t0)

The delayed output is obtained by substituting t = (t − t0) in the given equation

y(t − t0) = cos 3(t − t0)x(t − t0)

y(t − t0) �= y(t, t0)

The system is therefore time varying.
3. To test the linearity of the system, consider the given equation

y(t) = (cos 3t)x(t)

y1(t) = (cos 3t)x1(t)

y2(t) = (cos 3t)x2(t)
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The sum of the weighted output is

y3(t) = a1y1(t) + a2y2(t) = cos 3t[a1x1(t) + a2x2(t)]

The output due to the weighted sum of input is,

y4(t) = (cos 3t)[a1x1(t) + a2x2(t)]
y3(t) = y4(t)

The system is Linear.

4.
|y(t)| = cos 3t|x(t)|

If x(t) is bounded |y(t)| is also bounded. Hence, the system is stable.

The system is,

(a) Static, (b) Time Variant, (c) Linear, (d) Causal and (e) Stable.

� Example 2.10

Verify whether the system given by

y(t) = x(t2)

is causal, instantaneous, linear and shift invariant.

(Anna University, May, 2006)
Solution:

1.

y(t) = x(t2)

y(2) = x(4)

See Example 2.5b. The output depends on the future input. Hence, the system is
not causal.
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2. Since the output depends on the present, and future inputs, it requires memory.
It is, therefore, not instantaneous.

3. The response due to the delayed input is,

y(t, t0) = x[(t2 − t0)]

The delayed output is obtained by putting t = t − t0 in the given equation

y(t − t0) = x[(t − t0)
2]

y(t, t0) �= y(t − t0)

Hence, the system is shift variant.
4.

y(t) = x(t2)

y1(t) = x1(t
2)

y2(t) = x2(t
2)

The sum of the weighted output is,

y3(t) = a1y1(t) + a2y2(t)

= a1x1(t
2) + a2x2(t

2)

The output due to the weighted sum of the input is,

y4(t) = f [a1x1(t) + a2x2(t)]
= a1x1(t

2) + a2x2(t
2)

y3(t) = y4(t)

The system is linear.

The system is
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(a) Non-causal, (b) Not Instantaneous, (c) Shift Variant and (d) Linear.

� Example 2.11

Determine whether the system described by the following equation is static, linear,
time variant and causal.

y(t) = Ev[x(t)]

Solution:

1. y(t) = Ev[x(t)]

y(t) = Ev[x(t)]
= 1

2
[x(t) + x(−t)]

For t = −1, y(−1) = 1

2
[x(−1) + x(1)]

For t = 1, y(1) = 1

2
[x(1) + x(−1)]

For t = −1, the output depends on the present value of x(−1) and also the past value
of x(1). For t = 1, the output depends on the present value of x(1) and future value
of x(−1). Hence, the system is non-causal. Since x(1) requires memory, the system
is dynamic.

2.

y(t) = 1

2
[x(t) + x(−t)]

The output due to the delayed input is,

y(t, t0) = 1

2
[x(t − t0) + x(−t − t0)]
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The delayed output is obtained by putting t = t − t0

y(t − t0) = 1

2
[x(t − t0) + x(−t + t0)]

y(t, t0) �= y(t − t0)

Hence, the system is time variant.
3.

y(t) = 1

2
[x(t) + x(−t)]

y1(t) = 1

2
[x1(t) + x1(−t)]

y2(t) = 1

2
[x2(t) + x2(−t)]

The weighted sum of the output is,

y3(t) = a1y1(t) + a2y2(t)

= 1

2
[a1x1(t) + a1x1(−t) + a2x2(t) + a2x2(−t)]

The output due to the weighted sum of the input is,

y4(t) = f [a1x1(t) + a2x2(t)]
= 1

2
[a1{x1(t) + x1(−t)} + a2{x2(t) + x2(−t)}]

y3(t) = y4(t)

The system is linear.

The system is

(a) Dynamic, (b) Non-causal, (c) Time Variant and (d) Linear.

� Example 2.12

Determine whether the following system is static, time invariant, linear and causal.

3
dy(t)

dt
+ 5t y(t) = x(t)

Solution:

1. The system is described by differential equation. Hence, it is dynamic.
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2. In the given differential equation, the coefficient of y(t) is 5t which is a function
of time t. Hence, the system is time varying.

3. The differential equations of the input a1x1 and a2x2 are written as follows:

3
d

dt
[a1y1(t)] + 5t a1y1(t) = a1x1(t)

3
d

dt
[a2y2(t)] + 5t a2y2(t) = a2x2(t)

Adding the above two equations we get

3
d

dt
[a1y1(t) + a2y2(t)] + 5t[a1y1(t) + a2y2(t)] = a1x1(t) + a2x2(t)

3
d

dt
y3(t) + 5t y3(t) = a1x1(t) + a2x2(t)

where

y3(t) = a1y1(t) + a2y2(t)

The differential equation for the weighted sum of input is written as,

3
d

dt
[a1y1(t) + a2y2(t)] + 5t[a1y1(t) + a2y2(t)] = a1x1(t) + a2x2(t)

3
d

dt
y4(t) + 5t y4(t) = a1x1(t) + a2x2(t)

where

y4(t) = a1y1(t) + a2y2(t)

y3(t) = y4(t)

Further when the input x(t) = 0, the output y(t) = 0. Hence, the system is
linear.

4. From the given differential equation it is obvious that y(t) depends on the present
input only.

y(1) = x(1)

y(2) = x(2)

Hence, the system is causal.

The system is

(a) Dynamic, (b) Time Varying, (c) Linear and (d) Causal.
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� Example 2.13

Check whether the system having the input-output relation

y(t) =
∫ t

−∞
x(τ )dτ

is linear and time invariant.

(Anna University, April, 2004)
Solution:

1. y(t) = ∫ t
−∞ x(τ)dτ

a1y1(t) =
∫ t

−∞
a1x1(τ )dτ

a2y2(t) =
∫ t

−∞
a2x2(τ )dτ

The weighted sum of the output is,

y3(t) = a1y1(t) + a2y2(t)

=
∫ t

−∞
a1x1(τ )dτ + a2

∫ t

−∞
a2x2(τ )dτ

The output due to the weighted sum of input is,

y4(t) =
∫ t

−∞
[a1x1(τ ) + a2x2(τ )]dτ

y3(t) = y4(t)

The system is linear.
2. The output due to the delayed input is,

y(t, t0) =
∫ t

−∞
x(τ − t0)dτ

The delayed output due to the input is,

y(t − t0) =
∫ t

−∞
x(τ − t0)dτ

y(t, t0) = y(t − t0)

The system is time invariant.
The system is both



2.4 Properties (Classification) of Continuous Time System 239

(a) Linear and (b) Time Invariant.

� Example 2.14

A certain system is described by the following input-output equation

y(t) = x(t + 1) + x(t2)

Determine whether the system is static, causal, time invariant, linear and stable.

Solution:

1. y(t) = x(t + 1) + x(t2)

y(0) = x(1) + x(0)

The output component x(0) depends on the present input x(0) and the output
component x(1) depends on the future input x(0). To store the future input it
requires memory and hence, it is dynamic system. Since the output depends on
future input it is non-causal.

2. If the input is delayed by t0, the output is,

y(t, t0) = x(t − t0 + 1) + x(t2 − t0)

The delayed output due to the input is obtained by putting t = t − t0.

y(t − t0) = x(t − t0 + 1) + x(t − t0)
2

y(t, t0) �= y(t − t0)

The system is time variant.
3. The weighted sum of the output due to input is,

a1y1(t) = a1[x1(t + 1) + x1(t
2)]

a2y2(t) = a2[x2(t + 1) + x2(t
2)]

y3(t) = a1y1(t) + a2y2(t)

= a1[x1(t + 1) + x1(t
2)] + a2[x2(t + 1) + x2(t

2)]

The output due to the weighted sum of input is,

y4(t) = a1[x1(t + 1) + x1(t
2)] + a2[x2(t + 1) + x2(t

2)]
y3(t) = y4(t)

The system is linear.
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4. For the system, if input x(t) is bounded, then the output y(t) is also bounded.
Hence, the system is stable.

The system is

(a) Dynamic, (b) Non-causal, (c) Time Variant, (d) Linear and (e) Stable.

� Example 2.15

The input-output relationship of a certain system is given by the following equation:

y(t) = x(t − 7) − x(2 − t)

Determine whether the above system is linear and causal.

Solution:

1. y(t) = x(t − 7) − x(2 − t)

y(t) = x(t − 7) − x(2 − t)

The weighted sum of the output due to the input is given as

y3(t) = a1y1(t) + a2y2(t)

a1y1(t) = a1[x1(t − 7) − x1(2 − t)]
a2y2(t) = a2[x2(t − 7) − x2(2 − t)]
y3(t) = a1[x1(t − 7) − x1(2 − t)] + a2[x2(t − 7) − x2(2 − t)]

The output due to the weighted sum of input is,

y4(t) = a1[x1(t − 7) − x1(2 − t)] + a2[x2(t − 7) − x2(2 − t)]
y3(t) = y4(t)

Further if the input x(t) = 0, the output y(t) is also zero. The system is linear.
2.

y(t) = x(t − 7) − x(2 − t)

For t = 0,

y(0) = x(−7) − x(2)

The output x(−7) depends on the past input x(0) and the output −x(2) depends on
the future input x(0). Hence, it is non-causal.



2.4 Properties (Classification) of Continuous Time System 241

The system is

(a) Linear and (b) Non-causal.

2.5 Discrete Time System

The block diagram of a discrete time system is shown in Fig. 2.8. x[n] is the excitation
(input) signal and y[n] is the repones (output) signal of the DT system. H represents
the functional relationship between the input and output which is described by dif-
ference equation. The input-output signals appear at discrete interval of time nwhere
n = 0, 1, 2 . . . which is an integer. n can also take negative value of an integer.

2.6 Properties of Discrete Time System

Like CT systems, DT systems also possesses similar properties which are given
below:

1. Linear and non-linear
2. Time varying and time invariant
3. Causal and non-causal
4. Stable and unstable
5. Static (instantaneous) and dynamic (system without and with memory)
6. Invertibility and inverse.
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2.6.1 Linear and Non-linear Systems

Alinear discrete time systemobeys theproperty of superposition.Asdiscussed forCT
system, the superposition property is composed of homogeneity and additivity. Let
x1[n] excitation produce y1[n] response and x2[n] produce y2[n] response. According
to additivity property of superposition theorem, if both x1[n] and x2[n] are applied
simultaneously, then

x1[n] + x2[n] = y1[n] + y2[n]

Let a1x1[n] and a2x2[n] be the inputs. According to the homogeneity (scaling) prop-
erty, when these signals are separately applied,

a1x1[n] = a1y1[n]
a2x2[n] = a2y2[n]

If a1x1[n] + a2x2[n] are simultaneously applied the output is obtained by applying
superposition theorem as,

a1x1[n] + a2x2[n] = a1y1[n] + a2y2[n]

In the above equation, a1x1[n] + a2x2[n] is called the weighted sum of input and
a1y1[n] + a2y2[n] is called the weighted sum of the output. Therefore, the following
procedure is followed to test the linearity of a DT system.

1. Express

y1[n] = f (x1[n])
y2[n] = f (x2[n])

2. Find the weighted sum of the output as

y3[n] = a1y1[n] + a2y2[n]

3. Find the output y4[n] due to the weighted sum of input as

y4[n] = f (a1x1[n] + a2x2[n])

4. If y3[n] = y4[n], then given DT system is linear. Otherwise it is non-linear.
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The following examples illustrate the method of testing a DT system for its lin-
earity.

� Example 2.16

Test whether the following DT systems are linear or not:

(a) y[n] = x2[n]
(b) y[n] = x[4n + 1]
(c) y[n] = x[n] + 1

x[n + 1]
(d) y[n] = x[n2]
(e) y[n] = x[n] + nx[n + 1]

Solution:

(a) y[n] = x2[n]

y1[n] = x21[n]
y2[n] = x22[n]

1. The weighted sum of the output y3[n] is,

y3[n] = a1y1[n] + a2y2[n]
= a1x

2
1[n] + a2x

2
2[n]

2. The output y4[n] due to the weighted sum of the input is,

y4[n] = [a1x1[n] + a2x2[n]]2
= a21x

2
1[n] + a22x

2
2[n] + 2a1a2x1[n]x2[n]

3.

y3[n] �= y4[n]

The system is Non-linear.

(b) y[n] = x[4n + 1]
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a1y1[n] = a1x1[4n + 1]
a2y2[n] = a2x2[4n + 1]
y3[n] = a1y1[n] + a2y2[n]

1. The weighted sum of the output is,

y3[n] = a1y1[n] + a2y2[n]
= a1x1[4n + 1] + a2x2[4n + 1]

2. The output due to the weighted sum of the input is,

y4[n] = a1x1[4n + 1] + a2x2[4n + 1]

3.

y3[n] = y4[n]

The system is Linear.

(c) y[n] = x[n] + 1
x(n+1)

a1y1[n] = a1

[
x1[n] + 1

x1(n + 1)

]

a2y2[n] = a2

[
x2[n] + 1

x2(n + 1)

]

1. The weighted sum of the output y3[n] is,

y3[n] = a1y1[n] + a2y2[n]
= a1

[
x1[n] + 1

x1(n + 1)

]
+ a2

[
x2[n] + 1

x2(n + 1)

]

2. The output due to the weighted sum of the input is,

y4[n] = f [a1x1[n] + a2x2[n]]
= a1x1[n] + a2x2[n] +

[
1

a1x1[n + 1] + a2x2[n + 1]
]

3.

y3[n] �= y4[n]
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4. Further if x[n] = 0, the output y[n] is not zero and it is ∞.

The system is Non-linear.

(d) y[n] = x[n2]

a1y1[n] = a1x1[n2]
a2y2[n] = a2x2[n2]

1. The weighted sum of the output y3[n] is,

y3[n] = a1y1[n] + a2y2[n]
= a1x1[n2] + a2x2[n2]

2. The output y4[n] due to the weighted sum of input is,

y4[n] = a1x1[n2] + a2x2[n2]

3.

y3[n] = y4[n]

The system is Linear.

(e) y[n] = x[n] + nx[n + 1]

a1y1[n] = a1[x1[n] + nx1[n + 1]]
a2y2[n] = a2[x2[n] + nx2[n + 1]]

1. The weighted sum of the output is,

y3[n] = a1y1[n] + a2y2[n]
= a1[x1[n] + nx1[n + 1]] + a2[x2[n] + nx2[n + 1]]

2. The output due to the weighted sum of the input is,

y4[n] = a1x1[n] + a2x2[n] + a1nx1[n + 1] + a2nx2[n + 1]

3.

y3[n] = y4[n]
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The system is Linear.

2.6.2 Time Invariant and Time Varying DT Systems

Consider the discrete time system represented in block diagram of Fig. 2.9a. If the
input is x[n] then the output is y[n]. If the input is time delayed by n0, which becomes
x[n − n0], the output becomes y[n − n0]. The signal representation and the delayed
signals are shown in Fig. 2.9b and c respectively. Such systems are called time invari-
ant.

If an arbitrary excitation x[n] of a system causes a response y[n] and the
delayed excitation x[n − n0] where n0 is any arbitrary integer causes y[n − n0]
then the system is said to be time invariant.
Procedure to Check Time Invariancy of DT Systems

1. For the delayed input x[n − n0] find the output y[n, n0].
2. Obtain the delayed output y[n − n0] by substituting n = n − n0 in y[n].
3. If y[n, n0] = y[n − n0], the system is time invariant. Otherwise the system is time

varying.

The following examples illustrate themethod of testing the time invariancy ofDT sys-
tems.

� Example 2.17

Determine whether the following systems are time invariant or not:

(a) y[n] = nx[n]
(b) y[n] = x[2n]
(c) y[n] = x[−n]
(d) y[n] = sin(x[n])
(e) y[n] = x[n]x[n − 1]

Solution:

(a) y[n] = nx[n]
1. The output for the delayed input x[n − n0] is obtained by delaying the input

x[n] as x[n − n0]. Thus

y[n, n0] = nx[n − n0]

2. The delayed output for the input x[n] is obtained by substituting n = n − n0.

y[n − n0] = (n − n0)x[n − n0]
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3.

y[n, n0] �= y[n − n0]

The system is Time Variant.

(b) y[n] = x[2n]

The output due to delayed input is

y[n, n0] = x[2n − n0]

The delayed output is,

y[n − n0] = x[2(n − n0)]
= x[2n − 2n0]

y[n, n0] �= y[n − n0]

The system is Time Varying.

(c) y[n] = x[−n]

The output due to delayed input is

y[n, n0] = x[−n − n0]

The delayed output is,

y[n − n0] = x[−(n − n0)]
= x[−n + n0]

y[n, n0] �= y[n − n0]

The system is Time Varying.

(d) y[n] = sin(x[n])

The output due to delayed input is

y[n, n0] = sin(x[n − n0])
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The delayed output is,

y[n − n0] = sin(x[n − n0])
y[n, n0] = y[n − n0]

The system is Time Invariant.

(e) y[n] = x[n]x[n − 1]
The output due to delayed input is

y[n, n0] = x[n − n0]x[n − n0 − 1]

The delayed output is,

y[n − n0] = x[n − n0]x[n − n0 − 1]
y[n, n0] = y[n − n0]

The system is Time Invariant.

2.6.3 Causal and Non-causal DT Systems

A discrete time system is said to be causal if the response of the system depends
on the present or the past inputs applied. The systems is non-causal if the output
depends on the future input.

The following examples illustrate themethod of identifying causal and non-causal
systems.

� Example 2.18

Determine whether the following systems are causal or not:

(a) y[n] = x[n − 1]
(b) y[n] = x[n] + x[n − 1]
(c) y[n − 1] = x[n]
(d) y[n] = sin(x[n])

(e) y[n] =
n+4∑

k=−∞
x(k)

(f) y[n] =
−3∑
k=0

x(k)
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Solution:

(a) y[n] = x[n − 1] y[0] = x[−1]
y[1] = x[0]

x[n − 1] is the past input for the output y[n]. The output depends on the past
value of x[n]. Hence

The system is Causal.

(b) y[n] = x[n] + x[n − 1]

For n = 0, y[0] = x[0] + x[−1]
For n = 1, y[1] = x[1] + x[0]

Here x[n] is present value and x[n − 1] is past value. The output depends on the
present and past inputs. Hence

The system is Causal.

(c) y[n − 1] = x[n]

Put n = n + 1
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y[n] = x[n + 1]
y[0] = x[1]

The output depends on the future inputs. Hence

The system is Non-causal.

(d) y[n] = sin x[n] y[0] = sin x[0]
y[−1] = sin x[−1]

The output depends on the present input only. Hence

The system is Causal.

(e) y[n] = ∑n+4
k=−∞ x[k]

y[0] =
4∑

−∞
x[k]

= x[−∞]+x[−∞ + 1]+ · · · +x[−1]+x[0]+x[1]+x[2]+x[3]+x[4]

x[−∞] + x[−∞ + 1], . . . , x[−1] = Future output for past input

x[0] = Present output for present input

x[1], x[2], x[3] and x[4] = Past output for future input

The output depends on past, present and future inputs. Hence

The system is Non-causal.

(f) y[n] = ∑n−3
k=0 x[k]

y[0] =
−3∑
k=0

x[k]

= x[0] + x[−1] + x[−2] + x[−3]
x[0] = Present output for present input

x[−1], x[−2], x[−3] = Future outputs for past input

The output depends on the present and past inputs. Hence

The system is Causal.
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2.6.4 Stable and Unstable Systems

A discrete time system is said to be stable if for any bounded input, it produces
a bounded output. This implies that the impulse response

y[n] =
∞∑

−∞
|h[n]| < ∞

is absolutely summable.
For a bounded input,

|x[n]| ≤ Mx < ∞

the output

|y[n]| ≤ My < ∞

From the above two conditions, it can be obtained

y[n] =
∞∑

−∞
|h[n]| < ∞

The following examples illustrate the above procedure.

� Example 2.19

Checkwhether theDT systems described by the following equations are stable or not.

(a) y[n] = sin x[n]

(b) y[n] =
n+1∑
k=0

x[k]

(c) y[n] = ex[n]

(d) h[n] = 3nu[n + 3]
(e) y[n] = x[−n − 3]
(f) y[n] = x[n − 1] + x[n] + x[n + 1]
(g) h[n] = e−|n|

(h) h[n] = n u[n]
(i) h[n] = 3nu[n − 3]
(j) h[n] = 2nu[−n − 1]
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Solution:

(a) y[n] = sin x[n] If x[n] is bounded, then sin x[n] is also bounded and so y[n] is
also bounded

The system is Stable.

(b) y[n] = ∑n+1
k=0 x[k]

Here as n → ∞, y[n] → ∞ and the output is unbounded. For bounded input n
should be a finite number.
In that case y[n] is bounded and the system is stable.

The system is Stable. for n = finite

The system is Unstable. for n = ∞

(c) y[n] = ex[n]
For |x[n]| bounded, e|x[n]| is bounded and the system is stable.

The system is Stable.

(d) h[n] = 3nu[n + 3]

|y[n]| =
∞∑

n=−3

3n

= (3)−3 + (3)−2 + (3)−1 + (3)0 + (3)1 + · · · + (3)∞

= ∞

The output is unbounded.

The system is Unstable.

(e) y[n] = x[−n − 3] If x[n] is bounded, x[−n] is also bounded, x[−n − 1] is
bounded and y[n] is bounded.

The system is Stable.

(f) y[n] = δ[n − 1] + δ[n] + δ[n + 1]
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y[0] = δ[−1] + δ[0] + δ[1] = 0 + 1 + 0 = 1

y[1] = δ[0] + δ[1] + δ[2] = 1 + 0 + 0 = 1

y[−1] = δ[−2] + δ[−1] + δ[0] = 0 + 0 + 1 = 1

y[−2] = δ[1] + δ[2] + δ[3] = 0 + 0 + 0 = 0

y[2] = δ[1] + δ[2] + δ[3] = 0 + 0 + 0 = 0

y[n] =
∞∑

−∞
|h[k]| = 1 + 1 + 1 = 3 < ∞

The system is Stable.

(g) h[n] = e−|n|

y[n] =
∞∑

−∞
e|n| =

−1∑
−∞

en +
∞∑
0

e−n =
∞∑
1

e−n +
∞∑
0

e−n

= e−1 + e−2 + · · · + 1 + e−1 + e−2 + · · ·
= e−1[1 + e−1 + e−2 + · · · ] + 1 + e−1 + e−2 + · · ·
= e−1 1

[1 − e−1] + 1

[1 − e−1]
= e−1

(1 − e−1)
+ 1

(1 − e−1)

= [1 + e−1]
[1 − e−1] = 2.164 < ∞

The system is Stable.

(h) h[n] = n u[n]

y[n] =
∞∑
0

n = 1 + 2 + · · · + ∞ = ∞

The system is Unstable.

(i) h[n] = 3nu[n − 3]

y[n] =
∞∑
3

3n = 33 + 34 + · · · + ∞ = ∞
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The system is Unstable.

(j) h[n] = 2nu[−n − 1]

y[n] =
−1∑
−∞

2n =
∞∑
1

(
1

2

)n

= 1

2
+

(
1

2

)2

+ · · ·

= 1

2

[
1 + 1

2
+

(
1

2

)2

+ · · ·
]

= 1

2

[
1

1 − 1
2

]
= 1 < ∞

The system is Stable.

2.6.5 Static and Dynamic Systems

A discrete time system is said to be static (memoryless or instantaneous) if the
output response depends on the present value only and not on the past and
future values of excitation. Discrete systems described by difference equations
require memory and hence they are dynamic systems.

The following examples illustrate the method identifying static and dynamic dis-
crete systems.

� Example 2.20

Identify whether the following systems are static or dynamic:

(a) y[n] = x[3n]
(b) y[n] = sin(x[n])
(c) y[n − 1] + y[n] = x[n]
(d) y[n] = sgn|x[n]|

Solution:

(a) y[n] = x[3n]
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For n = 0, y[0] = x[0]
For n = 1, y[1] = x[3]

For n = −1, y[−1] = x[−3]

The outputs y[0] = x[0], y[1] = x[3] and y[−1] = x[−3] depend upon the present
input, future input and past input respectively.

The system is Dynamic.

(b) y[n] = sin(x[n])

y[0] = sin(x[0])
y[1] = sin(x[1])

The output depends on the present input at all time. Hence

The system is Static.

(c) y[n − 1] + y[n] = x[n]
The system is described by first order difference equationwhich requirememory.
Hence

The system is Dynamic.

(d) y[n] = sgn|x[n]|

sgn|x[n]| = 1 for n > 0

= −1 for n < 0

y[1] = x[1] = 1

y[−1] = x[−1] = −1
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Fig. 2.10 Block diagram
representation of discrete
time system x[n] y[n]

H

The output depends on the present value of the input. Hence

The system is Static.

2.6.6 Invertible and Inverse Discrete Time Systems

A discrete time system is said to be invertible if distinct input leads to distinct
output. If a system is invertible then an inverse system exists.

Consider the system shown in Fig. 2.10. The input x[n] produces the output y[n].
This system is in cascade with its inverse system. The output of this system is nothing
but the difference of the two successive inputs y[n] − y[n − 1]. This is the input to the
original system. Thus, by connecting an inverse system in cascade with the original
system, the excitation signal x[n] is re-established provided the original system is
invertible. The concept of invertibility is very widely used in communications.

� Example 2.21

Determine whether the following systems are static, causal, time invariant, linear and
stable.

(a) y[n] = x[4n + 1]
(b) y[n] = x[n] + n x[n + 1]
(c) y[n] = x[n]u[n]
(d) y[n] = log10 x[n]
(e) y[n] = x2[n]
(f) y[n] = x[n] cos[ωn]

(Anna University, 2007 and 2013)
Solution:

(a) y[n] = x[4n + 1]
1.

For n = 0, y[0] = x[1]
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x[n] x[n n0] y[n,n0]Time Delay
n0

Time Delay

H

x[n] y[n] y[n n0]
H

x[n] y[n]
H

n0 1 2 3

x[n]

n0 n0

x[n n0]

n0 n0

y[n,n0]

n0 1 2 3

y[n]

(a)

(b)

(c)

Fig. 2.11 Block diagram and signal representation to illustrate time invariancy of DT system

x[n]

System Inverse System

y[n] w(n) x[n]
y[n] =  x[k] w[n] = y[n] y[n 1]k =

Fig. 2.12 Inverse discrete time system
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The output x[1] depends on future input, [x[0]].

Hence

The system is Dynamic and Non-causal.

2. The output due to the delayed input is,

y[n, n0] = x[4n − n0 + 1]

The delayed output due to the input is,

y[n − n0] = x[4(n − n0) + 1]
= x[4n − 4n0 + 1]

y[n, n0] �= y[n − n0]

The system is Time Variant.

3. a1y1[n] = a1x1[4n + 1]
a2y2[n] = a2x2[4n + 1]

The sum of weighted output due to the input is,

y3[n] = a1y1[n] + a2y2[n]
= a1x1[4n + 1] + a2x2[4n + 1]

The output due to the weighted sum of input is,

y4[n] = a1x1[4n + 1] + a2x2[4n + 1]
y3[n] = y4[n]
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The system is Linear.

4. The input is time shifted and time compressed signal. As long as the input
is bounded the output is also bounded.

The system is Stable.

The system is

(1) Dynamic, (2) Non-causal, (3) Time Variant, (4) Linear and (5) Stable.

(b) y[n] = x[n] + n x[n + 1]
1. For n = 1,

y[1] = x[1] + 1 × x[2]

Theoutputs x[1] and x[2]dependuponpresent and future inputs respectively.

The system is Dynamic and Non-causal.

2. The output due to the delayed input is,

y[n, n0] = x[n − n0] + nx[n − n0 + 1]

The delayed output due to the input is,

y[n − n0] = x[n − n0] + (n − n0)x[n − n0 + 1]
y[n, n0] �= y[n − n0]

The system is Time Variant.
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3. The weighted sum of the output due to the input is,

y3[n] = a1y1[n] + a2y2[n]
= a1x1[n] + a1nx1[n + 1] + a2x2[n] + a2nx2[n + 1]

The output due to the weighted sum of the input is,

y4[n] = a1{x1[n] + nx1[n + 1]} + a2{x2[n] + nx2[n + 1]}
y3[n] = y4[n]

The system is Linear.

4. As long as x[n] is bounded, y[n] is also bounded provided n is finite.

The system is Stable.

Otherwise the system is unstable. The system is

(1) Dynamic, (2) Non-causal, (3) Time Variant, (4) Linear and (5) Stable.

(c) y[n] = x[n]u[n]
1.

y[0] = x[0]u[0]
y[1] = x[1]u[1]

The output depends on present input only.

The system is Static and Causal.

2. For a causal signal n ≥ 0. The weighted sum of the output due to input is,

y3[n] = a1y1[n] + a2y2[n]
= {a1x1[n] + a2x2[n]}u[n]

The output due to the weighted sum of input is,

y4[n] = {a1x1[n] + a2x2[n]}u[n]
y3[n] = y4[n]
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The system is Linear.

3. The output due to the delayed input is,

y[n, n0] = x1[n − n0]u[n]

The delayed output due to the input is,

y[n − n0] = x1[n − n0]u[n − n0]
y[n, n0] �= y[n − n0]

The system is Time Variant.

4. As long as x[n] is bounded, y[n] is also bounded.

The system is Stable.

The system is

(1) Static, (2) Causal, (3) Linear, (4) Time Variant and (5) Stable.

(d) y[n] = log10 x[n]
1. y[0] = log10 x[0]

y[1] = log10 x[1]
y[−1] = log10 x[−1]

The output depends on present input only.

The system is Static and Causal.

2. The weighted sum of the output due to input is,

y3[n] = a1y1[n] + a2y2[n]
= a1 log10 x1[n] + a2 log10 x2[n]

The output due to the weighted sum of input is,

y4[n] = log10(a1x1[n] + a2x2[n])
y3[n] �= y4[n]
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The system is Non-linear.

3. The output due to the delayed input is,

y[n, n0] = log10 x[n − n0]

The delayed output due to input is,

y[n − n0] = log10 x[n − n0]
y[n, n0] = y[n − n0]

The system is Time Invariant.

4. As long as x[n] is bounded, log10 x[n] is bounded and y[n] is also bounded.

The system is Stable.

The system is

(1) Static, (2) Causal, (3) Non-linear, (4) Time invariant and (5) Stable.

(e) y[n] = x2[n]
1. y[0] = x2[0]

y[1] = x2[1]

The output depends on present input only.

The system is Static and Causal.

2. The weighted sum of the output due to input is,

y3[n] = a1y1[n] + a2y2[n]
= a1x

2
1[n] + a2x

2
2[n]

The output due to weighted sum of input is,

y4[n] = {a1x1[n] + a2x2[n]}2
= a21x

2
1[n] + a22x

2
2[n] + 2a1a2x1[n]x2[n]

y3[n] �= y4[n]



2.6 Properties of Discrete Time System 263

The system is Non-linear.

3. The output due to the delayed input is,

y[n, n0] = x2[n − n0]

The delayed output due to the input is,

y[n − n0] = x2[n − n0]
y[n, n0] = y[n − n0]

The system is Time Invariant.

4. If x[n] is bounded, x2[n] is bounded and y[n] is also bounded.

The system is Stable.

The system is

(1) Static, (2) Causal, (3) Non-linear, (4) Time invariant and (5) Stable.

(f) y[n] = x[n] cos[ωn] For all values of n, the output y[n] depends on the present
input x[n] only.Hence the system is static and causal (memoriless). Theweighted
sum of the output is,

y3[n] = a1y1[n] + a2y2[n]
= a1x1[n] cos[ωn] + a2x2[n] cos[ωn]

The output due to the weighted sum of the input is,

y4[n] = [a1x1[n] + a2x2[n]] cos[ωn]
y3[n] = y4[n]

The output is zero when the input is zero. Hence the system is linear. The output
due to the delayed input is

y[n, n0] = x[n − n0] cos[ωn]

The delayed output is given by

y[n − n0] = x[n − n0] cos[ω(n − n0)]
y[n, n0] �= y[n − n0]
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The system is time varying. As long as x[n] is bounded, y[n] is also bounded.
Since cos[ωn] varies from −1 to +1. Hence the system is BIBO stable. The
system is,

Static, Causal, Linear, Time varying and Stable.

Summary

1. The system is broadly classified as continuous and discrete time system.
2. The CT and DT systems are further classified based on the property of

causality, linearity, time invariancy, invertibility, memory and stability.
3. The definitions of the above properties are given which are same for both

CT and DT systems. Illustrative examples are given to explain these prop-
erties.

Exercises
I. Short Answer Type Questions

1. What are the properties of systems? Systems are generally classified
as continuous and discrete time systems. Further classifications of these
systems are done based on their properties which include (a) linear and
non-linear, (b) time invariant and time variant, (c) static and dynamic,
(d) causal and non-causal, (e) stable and unstable and (f) Invertible and
non-invertible.

2. Define system. What is linear system? A system is defined as the inter-
connection of objects with a definite relationship between objects and
attributes. A system is said to be linear if the weighted sum of several
inputs produceweighted sumof outputs. In other words, the system should
satisfy the homogeneity and additivity of super position theorem if it is to
be linear. Otherwise it is a non-linear system. For a linear system if the
input is zero the output should also be zero.

3. What is time invariant and time varying system? A system is said to
be time invariant if the output due to the delayed input is same as the
delayed output due to the input. If the continuous time system is described
by the differential equation its coefficients should be time independent
for the system to be time invariant. In the case of discrete time system,
the coefficients of the difference equation describing the system should
be time independent (constant) for the system to be time invariants. If the
above conditions are not satisfied the system (CT as well as DT) is said to
be time variant.
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4. What are static and dynamic systems? If the output of the system
depends only on the present input, the system is said to be static or instan-
taneous. If the output of the system depends on the past and future input,
the system is not static and it is called dynamic system. Static system does
not require memory and so it is called memoryless system. Dynamic sys-
tem requires memory and hence, it is called system with memory. System
which are described by differential and difference equations are dynamic
systems.

5. What are causal and non-causal systems? If the system output depends
on present and on past inputs, it is called causal system. If the system
output depends on future input it is called non-causal system.

6. What are stable and unstable systems? If the input is bounded and
output is also bounded, the system is called BIBO stable system. If the
input is bounded and the output is unbounded, the system is unstable.
System whose impulse response curve has finite area is also called stable
systems.

7. What are invertible and non-invertible systems? A system is said to be
invertible if the distinct inputs give distinct outputs.

8. State the condition for a discrete time LTI system to be causal and
stable. (Anna University, 2008)
A discrete time LTI system is said to be causal and stable if the poles
of the transfer function all lie in the left half s-plane and the Region of
Convergence (ROC) is to the right of the right most pole.

9. What is the overall impulse response of h1(t) and h2(t) when they are
in (a) series (b) parallel? (Anna University, 2005)
(a) The overall impulse repones when h1(t) and h2(t) are in series is given
by

h(t) = h1(t) ∗ h2(t)

(b) If h1(t) and h2(t) are connected in parallel,

h(t) = (h1(t) + h2(t)) ∗ x(t)

10. Check whether the system having the input-output relation

y(t) =
∫ t

−∞
x(τ)dτ

is linear and time invariant. (Anna University, 2004)
The system is linear. (See Example 2.2(f)) By differentiating the above
equation we get

dy(t)

dt
= x(t)
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The coefficient of the differential equation is time independent and is
constant. Hence, it is a time invariant system.

11. Check whether the system classified by

y( y) = ex(t)

is time invariant or not? (Anna University, 2007)

y(t, t0) = ex(t−t0)

y(t − t0) = ex(t−t0)

y(t, t0) = y(t − t0)

The system is time invariant.
12. Determine whether the system described by the following input-

output relationship is linear and causal?

y(t) = x(−t)

(Anna University, 2007)
The system is linear and non-causal.

13. Is the system y(t) = cos t x(t − 5) time invariant?

y(t, t0) = cos tx(t − t0 − 5)

y(t − t0) = cos(t − t0)x(t − t0 − 5)

y(t, t0) �= y(t − t0)

The system is not time invariant.
14. A certain LTID time system has the following impulse response.

h[n] =
(
1
3

)n

u[n − 2]

Is the system both causal and stable?
The response depends on the past input u[n − 2] and hence, it is causal.

h[n] =
∞∑
n=2

(
1

3

)n

= 1

6
< ∞

The system is stable. The system is both causal and stable.
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II. Long Answer Type Questions
The systems given below have input x(t) or x[n] and output y(t) or y[n].Deter-
mine whether each of them is (a) Static, (b) Casual, (c) Time Invariant, (d)
Linear and (e) Stable.

1.

y(t) = d
dt

[e−2t x(t)]

(a) The system response requires memory. Hence, it is dynamic.
(b) The output depends on the present input only. Hence, it is causal.
(c) The output due to the delayed input is not the same as the delayed output.

Hence, it is time variant.
(d) The weighted sum of the output is the same as output due to weighted sum

of the input. Hence, the system is linear.
(e) Since d

dt (e
−2tx(t)) is bounded y(t) is also bounded and hence, the system is

stable.

2.
y(t) = x(t) + 10x(t − 5) t ≥ 0

(a) The output response depends on present and past inputs. Hence, it is
dynamic.

(b) The output does not depend on the future input. Hence, it is causal.
(c) The output due to the delayed input is same as the delayed output. Hence,

the system is time invariant.
(d) The weighted sum of the output is the same as output due to the weighted

sum of the input. Hence, it is linear.
(e) As long as the input x(t) is bounded, x(t − 5) is also bounded. Hence, y(t)

is bounded. The system is stable.

3.
y(t) = x(10t)

(a) The system response depends on present, past and future inputs. Hence, it
is dynamic.

(b) Since the output depends on the future input, it is non-causal.
(c) The output due to the delayed input is not the same as the delayed output.

Hence, the system is time variant.
(d) The weighted sum of the output is the same as output due to the weighted

sum of the input. Hence, it is linear.
(e) If the input is bounded, the output is also bounded. The system is stable.

4.

y(t) = x
(

t
10

)
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The output depends on present, past and future inputs.

(a) The system is dynamic.
(b) The system is non-causal.
(c) The output due to the delayed input is not the same as the delayed output.

The system is time variant.
(d) Theweighted sumof theoutputwill be the sameas output due to theweighted

sum of the input. The system is linear.
(e) If the input x( t

10 ) is bounded, the output is also bounded. The system is
stable.

5.

y(t) = d
dt

x(t − 4)

(a) The system requires memory and so it is dynamic.
(b) The output depends on past inputs. Hence, it is causal.
(c) The output due to the delayed input is same as the delayed output. The

system is time invariant.
(d) The weighted sum of the output is the same as output due to the weighted

sum of the input. The system is linear.
(e) If the input is bounded, the output is also bounded. The system is stable.

6.
y[n] = x[5n]

(a) The system response depends on present, past and future inputs. Hence, it
is dynamic.

(b) Non-causal.
(c) The output due to the delayed input is not same as the delayed output. Hence,

it is time variant.
(d) The weighted sum of the output is same as output due to the weighted sum

of the input. The system is linear.
(e) If the input x[5n] is bounded, the output y[n] is also bounded. The system

is stable.

7.
y[n + 2] + 3 y[n + 1] + 4 y[n] = x[n]

(a) The system is dynamic.
(b) The system is causal.
(c) The system is time invariant.
(d) The system is linear.
(e) The system is stable.

8.
y[n] = 5x[3n]
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(a) The system is dynamic.
(b) The system is non-causal.
(c) The system is time invariant.
(d) The system is linear.
(e) The system is stable if n is finite.

9.
y[n] = sin(2πx[n]) + x[n + 1]

(a) The system is dynamic.
(b) The system is non-causal.
(c) The system is time invariant.
(d) The system is non-linear.
(e) The system is stable for n being finite.



Chapter 3
Time Domain Analysis of Continuous
and Discrete Time Systems

Learning Objectives

� To find the time response of an LTIC system by using convolution integral.
� To find the convolution of two time signals. Both analytical and graphical meth-

ods are used.
� To derive the properties of convolution of CT signals.
� To get the step response from impulse response and vice versa.
� To represent discrete time signals in terms of impulses.
� To establish the properties of convolution sum.
� To find the convolution of DT signals.
� To obtain step response, causality and stability of DT system from impulse

response.

3.1 Introduction

A system as stated earlier performs a function. It operates on something and produces
something else. Thus, when a system is excited by the input, it produces a response
(output). Like signals, systems are also classified as Continuous Time (CT) and
Discrete Time (DT) systems. If the input to the system is continuous and the output
produced is also continuous, the system is called continuous time system. Such
systems are described by differential equations. On the other hand if the input to the
system is discrete in nature in the form of impulses, and if the output produced is
also in the form of impulses such systems are called discrete time systems. These
systems are represented in Fig. 3.1a and b, respectively.
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(b)

DT SYSTEM
Output y(n)

x(t) y(t)

tt

x(n)

Input x(t)

Input x(n)

(a)

CT SYSTEM
Output y(t)

n

y(n)

n

Fig. 3.1 Representation of CT and DT systems

3.2 Time Response of Continuous Time System

A linear time invariant continuous time system is described by the following differ-
ential equation:

dny(t)

dtn
+ a1

dn−1y(t)

dtn−1
+ · · · + an−1

dy(t)

dt
+ any(t)

= bn−m
dmx(t)

dtm
+ bn−m−1

dm−1x(t)

dtm−1
+ · · · + bn−1

dx(t)

dt
+ bnx(t) (3.1)

The coefficients ai and bi are constants. It should be noted that m ≤ n for the system
to be Bounded Input-Bounded Output (BIBO) stable and to reduce the noise. The
total response consists of two parts.

They are

• Zero input response (response due to initial conditions).
• Zero state response (response due to input alone).

Zero input response is the response of the system when the input x(t) = 0. The zero
input response is obtained due to the initial conditions alone. The zero state response
of the system is obtained when all the initial conditions are zero and only the input
x(t) alone is applied. The total response is the sum of zero input response and zero
state response. The solution of Eq. (3.1) for total response is obtained by the following
methods:
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• By the application of classical method which gives the complete solution in terms
of particular and homogeneous solutions.

• By the application of transform (Laplace and Fourier) techniques.
• By the method of convolution integral.

The transform techniques are very powerful compared to classical method to find
the solution of y(t) of Eq. (3.1). These methods are discussed in detail in Chaps. 7
and 8. The solution obtained from convolution integral is discussed in this chapter.

3.3 The Unit Impulse Response

Consider the LTIC time system shown in Fig. 3.2. Let the system be causal. Let the
input x(t) = δ(t), an impulse which is characterized as given below

δ(t) = 1 t = 0

= 0 t �= 0 (3.2)

The output response is now denoted by h(t) which is called the impulse response of
the system. This is illustrated in Fig. 3.2.

3.4 Unit Impulse Response and the Convolution Integral

Let x(t) be any arbitrary input as shown in Fig. 3.3a. Figure 3.3b shows the input
as a sum of narrow rectangular pulses. Consider the rectangular pulse shown
in Fig. 3.3b in the shaded area. The width of the pulse is �τ = 3�τ − 2�τ .
The area of this pulse is x(2�τ)�τ . As�τ → 0, the pulse becomes a delta function
of strength x(2�τ)�τ . The above delta function is represented as

x(2�τ)�(τ)δ(t − 2�τ)

The function x(t) is continuous and is the sum of the impulses occurring at
t = 0, �τ , 2�τ , . . . , n�τ . This can be expressed as

x(t) h(t)

y(t)
LTIC SYSTEM

δ(t)

t

h(t)

t

Fig. 3.2 Impulse response of LTIC system
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x(t)
(a) (b)

x(0)

x(Δτ)
x(2Δτ)

x(3Δτ)

x(nΔτ)

Δτ 2Δτ 3Δτ nΔτt

x(t)

t

....

Fig. 3.3 Representation of any arbitrary input signal

Table 3.1 Output due to delta function

S.No Input x(t) Output y(t)

1. x(t) = δ(t) y(t) = h(t)

2. x(t) = δ(t − n�τ) y(t) = h(t − n�τ)

3. x(t) = [x(n�τ)�τ ][δ(t − n�τ)] y(t) = [x(n�τ)�τ ][h(t − n�τ)]
4. x(t) = Lt

�τ→0

∞∑
n=−∞

y(t) = Lt
�τ→0

∞∑
n=−∞

[x(n�τ)][δ(t − n�τ)�τ ] [x(n�τ)][h(t − n�τ)�τ ]

x(t) = Lt
�τ→0

∞∑

−∞
x(n�τ)(�τ)δ(t − n�τ) (3.3)

Let h(t) be the unit impulse response of a linear time invariant continuous system.
This is the output due to the input δ(t). The response of the system for the delta
function at t = n�τ is therefore

y(t) = x(n�τ)(�τ)h(t − n�τ) (3.4)

The input and the corresponding output pairs are shown in Table 3.1 and represented
in Fig. 3.4.

For the series of impulses, the response is the summation of their respective
impulse responses. This is expressed mathematically as

y(t) = Lt
�τ→0

∞∑

n=−∞
x(n�τ)h(t − n�τ)�τ (3.5)

When the limit �τ → 0, the summation becomes integration and the integration is
expressed as

y(t) =
∫ ∞

−∞
x(τ )h(t − τ)dτ (3.5a)
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(t)
(a)

(b)

(c)

t

δ(t nΔ )

n

n

t

x(n ) δ (t n )

x(n ) h (t n ) 

t

h(t)

n

n

t

h(t)

t

h(t)

t

Fig. 3.4 The response of the system for delta function

The above integration is called convolution integral. The convolution operation of
the two time functions x(t) and h(t) is symbolically denoted by

y(t) = x(t) ∗ h(t) (3.5b)

Thus, using convolution integral Eq. 3.5a, one can get output response y(t) if the
input x(t) and the impulse response h(t) are known. Equation 3.5a indeed gives the
zero state response of the system.

3.5 Step by Step Procedure to Solve Convolution

The following steps are followed to determine the output response using
convolution:

Step 1. Let x(t) be the input signal and h(t) the impulse response. Substitute t = τ

where τ is an independent dummy variable and represent x(τ ) and h(τ ).
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Step 2. Represent x(τ ) in figure, invert h(τ ) as h(−τ) and represent it in figure.
This is called folding of h(τ ). Shift the inverted h(−τ) along the τ axis
and obtain h(t − τ) by giving very long negative shift.

Step 3. Multiply the two signals x(τ ) and h(t − τ) and integrate over the overlap-
ping interval. For this x(τ ) is fixed and h(t − τ) is moved toward the right
so that x(τ ) and h(t − τ) overlap.

Step 4. Whenever either x(τ ) or h(t − τ) changes, the new time shift occurs. Iden-
tify the end of the current interval and the beginning of the new interval.
The output response y(t) is calculated using Step 3.

Step 5. Steps 3 and 4 are repeated for all intervals.

Thus, the output response y(t) can be determined analytically using convolution
integral or by graphical method described above. The following are the properties of
convolution and are discussed below

3.6 Properties of Convolution

Some important properties of convolution integral include

• The commutative property;
• The distributive property;
• The associative property;
• The shift property;
• The width property and
• The convolution with unit impulse.

The above properties are discussed below.

3.6.1 The Commutative Property

According to this property, if y(t) = x(t) ∗ h(t), then y(t) can also be expressed as
y(t) = h(t) ∗ x(t).

Proof According to Eq. (3.5), the output y(t) is written in terms of convolution
integral as

y(t) =
∫ ∞

−∞
x(τ )h(t − τ)dτ

Put t − τ = p and dτ = −dp.
For τ = ∞; p = −∞; and τ = −∞; p = ∞
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y(t) = −
∫ −∞

+∞
x(t − p)h( p)dp

=
∫ ∞

−∞
x(t − p)h( p)dp

=
∫ ∞

−∞
h( p)x(t − p)dp

y(t) = h(t) ∗ x(t)

x(t) ∗ h(t) = h(t) ∗ x(t) (3.6)

3.6.2 The Distributive Property

Consider the two systemswith impulse responsesh1(t) andh2(t) connected in parallel
as shown in Fig. 3.5a. The reduced block diagram is shown in Fig. 3.5b. According
to the distributive property

x(t) ∗ h1(t) + x(t) ∗ h2(t) = x(t) ∗ (h1(t) + h2(t))

Proof From Fig. 3.5b, the following equation is written

y(t) = x(t) ∗ (h1(t) + h2(t))

= x(t) ∗ h1(t) + x(t) ∗ h2(t)

Fig. 3.5 The distributive
property of convolution

(a)

(b)

x(t)

x(t)

y1(t)

y2(t)

h1(t)

h1(t)  h2(t)

h2(t)

y(t)

y(t)
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For Fig. 3.5a, the following equations are written

y1(t) =
∫ ∞

−∞
x(τ )h1(t − τ)dτ = x(t) ∗ h1(t)

y2(t) =
∫ ∞

−∞
x(τ )h2(t − τ)dτ = x(t) ∗ h2(t)

y(t) = y1(t) + y2(t)

= x(t) ∗ h1(t) + x(t) ∗ h2(t)

From Fig. 3.5b, the following equation is written

y(t) =
∫ ∞

−∞
x(τ )[h1(t − τ) + h2(t − τ)]dτ

= x(t) ∗ (h1(t) + h2(t))

Thus, the distributive property is proved as

x(t) ∗ h1(t) + x(t) ∗ h2(t) = x(t) ∗ [h1(t) + h2(t)] (3.7)

3.6.3 The Associative Property

According to this property

[x(t) ∗ h1(t)] ∗ h2(t) = x(t) ∗ [h1(t) ∗ h2(t)]

Proof Consider the two systems connected in cascade with their impulse responses
h1(t) and h2(t) as shown in Fig. 3.6. The excitation signal is x(t), and the output
response is y(t). From Fig. 3.6, the following equation is written. The output of the
first system is

y1(t) =
∫ ∞

τ=−∞
x(τ )h1(t − τ)dτ

The output of the second system is

y(t) = y1(t) ∗ h2(t) =
∫ ∞

m=−∞
y1(m)h2(t − m)dm

Fig. 3.6 The associative
property of convolution x(t) y(t)

h1(t)
y1(t) h2(t)
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=
∫ ∞

m=−∞

[∫ ∞

τ=−∞
x(τ )h1(m − τ)dτ

]

h2(t − m)dm

Put m − τ = q and dm = dq

y(t) =
∫ ∞

τ=−∞
x(τ )

[∫ ∞

q=−∞
h1(q)h2[(t − (q + τ)]dq

]

dτ

=
∫ ∞

τ=−∞
x(τ )

[∫ ∞

q=−∞
h1(q)h2[(t − τ) − q]dq

]

dτ

But ∫ ∞

q=−∞
h1(q)h2[(t − τ) − q]dq = h1(t) ∗ h2(t) = h(t)

Therefore,

y(t) =
∫ ∞

τ=−∞
x(τ )h(t − τ)dτ

= x(t) ∗ h(t)

y(t) = x(t) ∗ [h1(t) ∗ h2(t)]

[x(t) ∗ h1(t)] ∗ h2(t) = x(t) ∗ [h1(t) ∗ h2(t)] (3.8)

3.6.4 The Shift Property

According to the shift property

x(t) ∗ h(t − T) = y(t − T)

Proof Let x(t) and h(t) be the input and the impulse response functions, respectively.
Let h(t) be shifted by T as h(t − T). Then, the convolution of these signals is given by

x(t) ∗ h(t) =
∫ ∞

−∞
x(τ )h(t − τ)dτ

x(t) ∗ h(t − T) =
∫ ∞

−∞
x(τ )h(t − τ − T)dτ

=
∫ ∞

−∞
x(τ )h[(t − T) − τ ]dτ

= y(t − T)
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x(t)
(a) (b)

(c)

tt t

t

T1 T2

h(t)

t

(T1 T2)

y(t) = x(t) *  h(t)

t

Fig. 3.7 Width property of convolution

Thus,
x(t) ∗ h(t − T) = y(t − T) (3.9)

3.6.5 The Width Property

Let T1 be the width of x(t) and T2, the width of h(t). The width of y(t) = x(t) ∗ h(t)
is T1 + T2.

Proof Figure 3.7a shows x(t) of T1 width and Fig. 3.7b shows h(t)which has a width
of T2. In convolution h(t − τ) is put in the extreme left and moved toward the right
keeping x(τ ) fixed. The leading edge of h(t − τ) overlaps with the left most edge of
x(τ ) and passes through a width of x(τ ) which is T1. Thus, the duration of overlap
is (T2 + T1).

3.7 Analytical Method of Convolution Operation

The following are the basic steps involved in convolution integral equation:

1. For the input signal x(t), express it as x(τ ).
2. Express impulse response function h(t) as h(t − τ) by substituting t = (t − τ).
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3. Integrate
∫∞
τ=−∞ x(τ )h(t − τ)dτ to get y(t).

4. The limit of integration depends on the time limit of x(t). For causal signals x(t)
and h(t), the lower limit of convolution integral is zero and the upper limit is t.

5. Find y(t) = ∫∞
τ=−∞ x(τ )h(t − τ)dτ .

The following examples, illustrate this.

� Example 3.1

The impulse response of a certain system is h(t) = e−5tu(t). Find the output response
of the system for the input x(t) = e−2tu(t).

Solution:

1.

x(t) = e−2t

x(τ ) = e−2τ

h(t) = e−5t

h(τ ) = e−5τ

h(−τ) = e5τ

h(t − τ) = e−5(t−τ)

2. Both x(t) and h(t) are causal. Hence, the limit of convolution integral is from
0 to t. Thus, y(t) is expressed as

y(t) =
∫ t

0
x(τ )h(t − τ)dτ

y(t) =
∫ t

0
e−2τ e−5(t−τ)dτ

= e−5t
∫ t

0
e3τ dτ

[e−5t is a constant when the integration is done for τ ]
= e−5t

3

[
e3τ
]t

0

= e−5t

3
[e3t − 1]u(t)

y(t) = 1

3
[e−2t − e−5t]u(t)

The graphical representation of convolution operation is shown in Fig. 3.8.
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x(τ)

0

0

1

τ

h( τ)

τ τ

1

h(τ)

1
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0

h(t τ)

t<0

tτ τ

1
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(d)

0

x(τ) h(t τ)

tτ τ

t 0

(e)
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Fig. 3.8 Graphical representation of convolution operation

In Fig. 3.8, x(τ ) is fixed and h(t − τ) is shifted toward the right so that there is
overlapping between x(τ ) and h(t − τ).

� Example 3.2

Find y(t) if x(t) = u(t) and h(t) = u(t).

Solution:

1.
x(τ ) = 1

2.

h(τ ) = 1

h(−τ) = 1

h(t − τ) = 1

3. Both x(t) and h(t) are causal. Hence, the limit of integration is from 0 to t. Thus,
y(t) is obtained from
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y(t) =
∫ t

0
dτ = [

τ
]t

0

y(t) = tu(t)

� Example 3.3

Find y(t) if x(t) = eatu(t) and h(t) = u(t).

Solution:

1.

x(t) = eatu(t)

x(τ ) = eaτ

2.

h(t) = u(t)

h(τ ) = 1

h(t − τ) = 1

3. Both x(t) and h(t) are causal. Hence, the limit of integration is from 0 to t.
Thus, y(t) is obtained from the following integral.

y(t) =
∫ t

0
eaτ dτ

= 1

a

[
eaτ
]t

0

y(t) = 1

a
[eat − 1]u(t)

� Example 3.4

Find y(t) if x(t) = ea1tu(t) and h(t) = ea2tu(t).

Solution:

1.

x(t) = ea1t

x(τ ) = ea1τ
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2.

h(t) = ea2t

h(−τ) = e−a2τ

h(t − τ) = ea2(t−τ)

3. Both x(t) and h(t) are causal signals. Hence, the limit of integration is from
0 to t. Thus, y(t) is obtained from the following integral.

y(t) =
∫ t

0
ea1τ ea2(t−τ)dτ

= ea2t
∫ t

0
e(a1−a2)τ dτ

= ea2t

(a1 − a2)

[
e(a1−a2)τ

]t

0

= ea2t

(a1 − a2)
[e(a1−a2)t − 1]

y(t) = [ea1t − ea2t]
(a1 − a2)

u(t) a1 �= a2

� Example 3.5

Find y(t) if x(t) = eatu(t) and h(t) = eatu(t).

Solution:

1.

x(t) = eat

x(τ ) = eaτ

2.

h(t) = eat

h(τ ) = eaτ

h(t − τ) = ea(t−τ)

3. Both x(t) and h(t) are causal signals. Hence, the limit of integration is from
0 to t. Thus, y(t) is obtained from
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y(t) =
∫ t

0
eaτ ea(t−τ)dτ

= eat
∫ t

0
e0dτ

= eat
[
τ
]t

0

y(t) = teatu(t)

� Example 3.6

Find y(t) if x(t) = e−3tu(t) and h(t) = (2 − e−2t)u(t).

Solution:

1. It can be shown that
∫ ∞

−∞
x(τ )h(t − τ)dτ =

∫ ∞

−∞
x(t − τ)h(τ )dτ

The above property is used for convenience.
2.

h(t) = (2 − e−2t)

h(τ ) = (2 − e−2τ )

3.

x(t) = e−3t

x(τ ) = e−3τ

x(t − τ) = e−3(t−τ)

4. y(t) is obtained by taking the limit of integration from 0 to t since x(t) and h(t)
are causal signals

y(t) =
∫ t

0
x(t − τ)h(τ )dτ

=
∫ t

0
e−3(t−τ)(2 − e−2τ )dτ

= e−3t
∫ t

0
(2e3τ − eτ )dτ

= e−3t

[
2

3
e3τ − eτ

]t

0

= e−3t

[
2

3
e3t − 2

3
− et + 1

]
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y(t) =
[
2

3
+ 1

3
e−3t − e−2t

]

u(t)

� Example 3.7

Convolve the signal
x(t) = e−2tu(t) with h(t) = u(t).

(Anna University, April, 2005)
Solution:

1.

x(t) = e−2t

x(τ ) = e−2τ

2.

h(t) = u(t)

h(τ ) = u(τ )

h(t − τ) = u(t − τ) = 1

3. Both x(t) and h(t) are causal signals. Hence,

y(t) =
∫ t

0
x(τ )h(t − τ)dτ

=
∫ t

0
e−2τ dτ

= −1

2

[
e−2τ

]t

0

y(t) = 1

2
[1 − e−2t]u(t)

� Example 3.8

Find y(t) if x(t) = t and h(t) = u(t).

Solution:

1.

x(t) = t

x(τ ) = τ
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2.

h(t) = u(t)

h(t − τ) = u(t − τ) = 1

3. Both x(t) and h(t) are causal. Hence

y(t) =
∫ t

0
x(τ )h(t − τ)dτ

=
∫ t

0
τdτ

= 1

2

[
τ 2
]t

0

y(t) = 1

2
t2u(t)

� Example 3.9

Find y(t) if x(t) = sin at u(t) and h(t) = u(t).

(Anna University, December, 2007)
Solution:

1.

x(t) = sin at u(t)

x(τ ) = sin aτ

2.

h(t) = u(t)

h(t − τ) = u(t − τ) = 1

3. Both x(t) and h(t) are causal signals. Hence, y(t) is determined from the follow-
ing integral:

y(t) =
∫ t

0
x(τ )h(t − τ)dτ

=
∫ t

0
sin aτdτ

= 1

a

[
− cos aτ

]t

0
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y(t) = 1

a
[1 − cos at]u(t)

3.7.1 Convolution Operation of Non-causal Signals

For non-causal signals, the limit of convolution integral depends on the time limit
of x(t). These limits should be carefully evaluated and the convolution integral is
solved. The following examples illustrate the method of solving convolution integral
when the signal is non-causal.

� Example 3.10

Solve for y(t) if h(t) = ea1tu(t) and x(t) = ea2tu(−t).

Solution:

1.

x(t) = ea2tu(−t)

x(τ ) = ea2τ u(−τ)

The fixed signal is shown in Fig. 3.9a.
2.

h(t) = ea1tu(t)

h(τ ) = ea1τ u(τ )

h(t − τ) = ea1(t−τ)u(t − τ)

h(τ ), h(−τ), and h(t − τ) for t < 0 and t > 0 are shown in Fig. 3.9b, c, d and
e, respectively.

3. The overlapping of h(t − τ) with x(τ ) is shown in Fig. 3.9f for t < 0 and in
Fig. 3.9g for t > 0. The overlapping occurs for −∞ < τ < t and for −∞ <

τ < 0, respectively.
4. For t < 0, the convolution integral and the corresponding output y1(t) are given

below

y1(t) =
∫ t

−∞
x(τ )h(t − τ)dτ

=
∫ t

−∞
ea2τ ea1(t−τ)dτ

= ea1t
∫ t

−∞
e(a2−a1)τ dτ

= ea1t

(a2 − a1)

[
e(a2−a1)τ

]t

−∞
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x(τ)

0

1

1

τ

(a)

h( τ)

τ

τ τ

0

1

τ

(c)

h(τ)

0 τ

(b)

h(t τ)

τ 0

1

τ

(e)

h(t τ)

t < 0

t > 0

t 

τ 0

1

τ

(d)

x(τ) h(t τ)

τ 0

1

τ

(f)

Overlapping

t < 0

t 

x(τ) h(t τ)

τ 0

1

τ

(g)

t > 0

t 

t

Fig. 3.9 Graphical representation of convolution

= ea1t

(a2 − a1)

[
e(a2−a1)t

]

iff a2 > a1 for convergence.

y1(t) = ea2t

(a2 − a1)
u(−t)

5. For t > 0, the overlapping occurs for −∞ < τ < 0. The convolution integral
and the corresponding output y2(t) are given by
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y2(t) =
∫ 0

−∞
x(τ )h(t − τ)dτ

=
∫ 0

−∞
ea2τ ea1(t−τ)dτ

= ea1t
∫ 0

−∞
e(a2−a1)τ dτ

= ea1t

(a2 − a1)

[
e(a2−a1)τ

]0
−∞

y2(t) = ea1t

(a2 − a1)
u(t)

6. The output response y(t) is the sum of y1(t) and y2(t). Thus,

y(t) = y1(t) + y2(t)

y(t) = [ea2tu(−t) + ea1tu(t)]
(a2 − a1)

a2 > a1

� Example 3.11

Find y(t) if x(t) = e3tu(−t) and h(t) = u(t − 2) using convolution integral.

Solution:

1. x(τ ) and h(τ ) are represented in Fig. 3.10a and b, respectively.
2. Fig. 3.10b is folded to get h(−τ) and then time shifted to the extreme left and is

shown in Fig. 3.10c.
3. Figure 3.10a and c is combined in Fig. 3.10d which represents x(τ )h(t − τ) .

When h(t − τ) is moved toward right it overlaps with x(τ ) for the time interval
−∞ < τ < t − 2. Hence, the lower limit of integration is −∞ and the upper
limit of convolution integral is (t − 2). Let y1(t) be the output now.

y1(t) =
∫ (t−2)

−∞
x(τ )h(t − τ)dτ

=
∫ (t−2)

−∞
e3τ dτ = 1

3

[
e3τ
]t−2
−∞

= 1

3

[
e3(t−2)

]
u(−t + 2) t < 2

4. When h(t − τ) is moved further toward the right, the right edge of h(t − τ)

slides past the right edge of x(τ ) for τ > 0. The lower limit of the convolution
integral is−∞ and the upper limit is zero since for τ > 0, there is no overlapping
between x(τ ) and h(t − τ). Let y2(t) be the output now.
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x( )

0

1

(a)
h( )

0 2

1

(b)

(c)
h(t )

(t 2) 0

x( )h(t )

 < 0  or  t < 2

h(t )

x( )

0

1

(d)

(t 2)

(t 2)

x( ) h(t )

 > 0 or t 2

0

(e)

2

y(t)

0

1
3e 6

tt

(f)

1
3

Fig. 3.10 Convolution of e3tu(−t) and u(t − 2)

y2(t) =
∫ 0

−∞
e3τ dτ =

[
1

3
e3τ
]0

−∞

= 1

3
u(t − 2) t ≥ 2

The total output response

y(t) = y1(t) + y2(t)

y(t) = 1

3
[e3(t−2)u(−t + 2) + u(t − 2)]

� Example 3.12

Find the convolution of the following signals

x(t) = e−2tu(t) and h(t) = u(−t)

and plot the output response with respect to t.
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h(τ)

0

1

1

ττ

(b)

h( τ)

0 ττ

(c)

x(τ)

e 2τ

0

1

ττ

(a)

h(t τ)

0 ττ

(d)

t

x(τ)h(t τ)

x(τ)

h(t τ)

0

t<0

ττ

(e)

t

x(τ)h(t τ)

0

t>0

τ

(f)

t

y(t)

e 2tu(t)

ı
²

0 tt

(g)

ı
²

ı
²

u( t)

Fig. 3.11 Convolution of x(t) = e−2tu(t) and h(t) = u(−t) and the output response curve

Solution:

1. x(τ ), h(τ ), h(t − τ) are shown in Fig. 3.11a, b and c, respectively.
2. Figure 3.11d shows h(t − τ) where h(t − τ) is left shifted to the extreme.
3. Figure 3.11e shows x(τ ) and h(t − τ). It is observed that for−∞ < τ < t, there

is no overlapping and hence y(t) = 0. For t < 0 there is overlapping and y(t) is
found as follows.

4.

y(t) =
∫ ∞

0
e−2τ dτ

= −1

2

[
e−2τ

]∞
0

= 1

2
u(−t)

5. For t > 0, x(τ )h(t − τ) is shown in Fig. 3.11f.
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y(t) =
∫ ∞

t
e−2τ dτ = 1

2
e−2t t > 0

y(t) = 1

2
[u(−t) + e−2tu(t)]

6. The plot of y(t) with respect to t is sketched and shown in Fig. 3.11g.

� Example 3.13

Find the convolution of the following signals and find the output response

x(t) = u(t − 2)

h(t) = u(t + 2)

Solution:
1. x(t), h(t), x(τ ) and h(−τ) and h(t − τ) are shown in Fig. 3.12a, b, c, d and e,

respectively.
2. h(t − τ) when shifted to the extreme left is shown in Fig. 3.12f and with x(τ ).
3. h(t − τ) when moved toward the right, it does not overlap for −∞ < τ < 2.

However, it overlaps for 2 ≤ τ < (t + 2). Hence, the limits of the convolu-
tion integration is from τ = 2 to τ = t + 2. The overlapping area is shown in
Fig. 3.12g.

4. y(t) is obtained from the following convolution integral by putting x(τ ) = 1 and
h(t − τ) = 1

y(t) =
∫ t+2

2
x(τ )h(t − τ)dτ

=
∫ t+2

2
dτ = [τ ]t+2

2

y(t) = t u(t)

5. The plot of y(t) with respect to time t is shown in Fig. 3.12h which is a straight
line with unit slope.

� Example 3.14

Find the convolution of the signal shown in Fig. 3.13a and b by graphical method.

(Anna University, December, 2006)
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x(t)=u(t−2)

1

2 t

(a)
h(t)=u(t+2)

1

−2 t

(b)

x(τ)

x(τ)h(t−τ)

0 2

1

τ−τ

(c)

h(t−τ)

x(τ)h(t−τ)

2

x(τ)h(t−τ) 1
1

1

0 (t+2)

1

y(t)=t

x(τ)h(t−τ)

(t+ ) 0 2

1

−τ

τ

τ−τ

(e) (f)

(g) (h)

h(−τ)

0 2

1

τ−τ

(d)

tt+2

Fig. 3.12 Convolution of x(t) = u(t − 2) and h(t) = u(t + 2) and the output response curve

Solution:

1. The given rectangular or gate signals x(t) and h(t) are shown in Fig. 3.13a and
b, respectively.

2. h(−τ) is obtained by putting t = τ in h(t) and then by folding (inversion). This
is shown in Fig. 3.13c.

3. h(t − τ) is obtained by adding t with−τ . h(t − τ) is shifted to the extreme left so
that x(τ ) and h(t − τ) do not have any overlapping. This is shown in Fig. 3.13d.

4. Now h(t − τ) is moved toward right so that it overlaps with x(τ ). The right edge
CD of h(t − τ)when slides past the left edge EF of x(τ ), overlapping starts. This
is shown in Fig. 3.13e. For one sliding at a time the time interval is −2 < t < 0
as seen from Fig. 3.13e. Further, from the overlapping area, the lower limit of
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−1 1

−1 1

A C E 1

1−1
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HB D F

t
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0
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h(−τ)
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(t−1) (t+1)

x(τ)

(a)

(c) (d)

−1 1

11

t0

h(t)

x(τ)h(t−τ)

(b)

x(τ)h(t−τ)
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−τ (t+1)

A E C G
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x(τ) −2 t 0

0

1

τ

(e)

−1 1(t−1)

x(τ)h(t−τ)

−τ (t+1)=1

A, E C, G

D, HB, F

t = 0

0

1

τ

(f)

t−1=−1

x(τ)h(t−τ)

h(t−τ)

(t−1) (t+1)

0 < t < 2

−τ

x(τ)

A

B H

G C

D

E

F
−1 0 τ

(g)

1

Fig. 3.13 Convolution of two gate signals
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x(τ)h(t−τ)

x(τ)

E

F H

G A

B D

C

t > 2

(h)

t+1t−1−1 1

1 h(t−τ)

0 τ

y(t)

0−1−2−t 1

1

2

2 t

(i)

Fig. 3.13 (continued)

integration is−1 and the upper limit is (t + 1). The following integral is solved.

y(t) =
∫ t+1

−1
x(τ )h(t − τ)dτ

=
∫ t+1

−1
dτ

=
[
τ
]t+1

−1

y(t) = (t + 2) − 2 < t < 0 (a)

5. Now h(t − τ) is further moved toward the right. When t = 0, AB edge coincides
withEFedge andCDedge coincideswithGHedge simultaneously. This is shown
in Fig. 3.13f.

From Fig. 3.13f, the overlapping occurs during the interval −1 < τ < 1.
Hence, the lower limit of the convolution integral is −1 and the upper limit is 1.
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y(t) =
∫ 1

−1
x(τ )h(t − τ)dτ

=
∫ 1

−1
dτ

=
[
τ
]1

−1

y(t) = 2 t = 0 (b)

6. h(t − τ) is further shifted toward the right. Now the right edge of x(τ ) which is
CD slides past the right edge of h(t − τ) which is GH. The overlapping area is
shown in Fig. 3.13g. This occurs during the time interval 0 < t < 2. The lower
limit of the integral is (t − 1) and the upper limit is 1. Hence,

y(t) =
∫ 1

t−1
x(τ )h(t − τ)

=
∫ 1

t−1
dτ

=
[
τ
]1

t−1

y(t) = (2 − t) 0 < t < 2 (c)

7. Considerh(t − τ) for t > 2.Nowh(t − τ) and x(τ )donot overlap.Consequently
y(t) = 0. This is shown in Fig. 3.13h.

8. Now equations (a), (b) and (c) are used to find y(t) in the respective time interval.

y(t) = (t + 2) − 2 < t < 0

= 2 t = 0

= (2 − t) 0 < t < 2

= 0 t > 2

t −2 −1 0 1 2
y(t) 0 1 2 1 0

The time response graph is shown in Fig. 3.13i. Here, it should be noted that for
equation (a) for t = 0, y(t) = 2. From equation (b) for t = 0, y(t) = 2.

9. The result can be easily obtained by using convolution property of Laplace
transform (LT) which is discussed in Chap. 8. The output is obtained as

y(t) = (t + 2)u(t + 2) + (t − 2)u(t − 2) − 2tu(t)
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� Example 3.15

Find the convolution of the two signals given below in Fig. 3.14a and b.

(Anna University, December, 2005)

Fig. 3.14 Convolution of
two signals of Example 3.15 x(t)

1

t2

x(−τ)

1

τ−2

x(t−τ)

1

τ(t−2) t

h(t)

1

−1

t1 2

(a) (b)

(c) (d)

h(τ)

1

−1

1 2 τ

(e)

x(t−τ)

x(t−τ)h(τ)

tt−2

h(τ)

−1

1 2

0 < t < 1

τ

(f)



3.7 Analytical Method of Convolution Operation 299

x(t−τ)

t
21

1

1

x(t−τ)h(τ)

0

h(τ)

1 < t < 2

τ

(g)

x(t−τ)

h(τ)

21

x(t−τ) h(τ)

t−2

2 < t < 3

τ

(h)

t

x(t−τ)

1

1

1

2

−1

x(t−τ)h(τ)

t−2

t

h(τ)

3 < t < 4

τ

(i)

1

1 2 3 4

−1

t

(j)

Fig. 3.14 (continued)
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Solution:

1. Figure 3.14a and b represents x(t) and h(t). x(−τ) and x(t − τ) are shown in
Fig. 3.14c and d, respectively. Fig. 3.14e represents h(τ ).

2. In the present case, h(τ ) is kept fixed and x(t − τ) is moved toward right so that
it convolves with h(τ ).

3. The first overlapping of x(t − τ) and h(τ ) is shown in Fig. 3.14f. This occurs for
the time interval 0 < t < 1. Here, the right edge of x(t − τ) slides past the left
edge of h(τ ).

The shaded area gives the overlapping. The time limit is from t = 0 to t.
Accordingly, the integration is carried out as follows:

y(t) =
∫ t

0
x(t − τ)h(τ )dτ

=
∫ t

0
1 × 1dτ

=
[
τ
]t

0

y(t) = t 0 < t < 1 (a)

4. x(t − τ) is shifted to the right so that the leading edge crosses past of middle
edge of h(τ ) . The time interval is 1 < t < 2 before the next overlapping. This
is represented in Fig. 3.14g.

For Fig. 3.14g, the following convolution integral is written

y(t) =
∫ t

0
x(t − τ)h(τ )dτ

=
∫ 1

0
dτ −

∫ t

1
dτ

=
[
τ
]1

0
−
[
τ
]t

1

= 1 − t + 1

y(t) = 2 − t 1 < t < 2 (b)

5. x(t − τ) is moved further toward the right so that its leading edge crosses τ =
2 but the trailing edge is behind τ = 1. This time duration is 2 < t < 3. The
convolution graph is shown in Fig. 3.14h.

The convolution integral for Fig. 3.14i is written as
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y(t) =
∫ 2

t−2
x(t − τ)h(τ )dτ

=
∫ 1

t−2
dτ −

∫ 2

1
dτ

=
[
τ
]1

t−2
−
[
τ
]2

1

= 1 − t + 2 − 2 + 1

y(t) = (2 − t) 2 < t < 3 (c)

6. Now x(t − τ) is moved to the right such that the trailing edge is past τ = 1
but less than τ = 2, the time duration for this convolution is 3 < t < 4. The
convolution graph is shown in Fig. 3.14i.
For Fig. 3.14i, the following convolution integral is written with the lower limit
as (t − 2) and the upper limit 2.

y(t) =
∫ 2

t−2
x(t − τ)h(τ )dτ

= −
∫ 2

t−2
dτ

= −
[
τ
]2

t−2

= t − 2 − 2

y(t) = (t − 4) 3 < t < 4 (d)

7. For t > 4, there is no overlapping between x(t − τ) and h(τ ) and hence y(t) = 0.
8. Equations (a), (b), (c) and (d) are used to find y(t) for the respective time duration

and are shown in the table below.

t 0 0.5 1 1.5 2 2.5 3 3.5 4
y(t) 0 0.5 1 0.5 0 −0.5 −1 −0.5 0

9. The response curve y(t) is plotted and its shown in Fig. 3.14j.
10. Using convolution theorem of LT, the output response can be easily obtained as

y(t) = t − 2(t − 1)u(t − 1) + 2(t − 3)u(t − 3) − (t − 4)u(t − 4)

The plot of y(t) using the above equation will give the same response as shown
in Fig. 3.14j.
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� Example 3.16

x(t) = u(t) − u(t − 4)

h(t) = u(t) − u(t − 1)

(a) Find y(t) using convolution. Use graphical method.
(b) Verify the width property of convolution.
(c) What is y(t) by LT using convolution theorem?

Solution:

(a)

1. x(t) = u(t) − u(t − 4) is represented in Fig. 3.15a.
2. h(t) = u(t) − u(t − 1) is represented in Fig. 3.15b.
3. Figure 3.15c represents x(τ ) which is kept fixed.
4. Figure 3.15d represents h(−τ).
5. By giving very long left shift h(t − τ) is represented in Fig. 3.15.
6. x(τ )h(t − τ) is represented in Fig. 3.15f. Now h(t − τ) is moved toward the

right so that there is overlapping between x(τ ) and h(t − τ).
7. The overlapping of x(τ ) and h(t − τ) is shown in shaded area. The movement

of h(t − τ) toward right is such that the right edge crosses past the left edge of
x(τ ). From Fig. 3.15g, the limit of integration of the shaded area is from 0 to
t. The time interval is 0 < t < 1 so that the right and left edges of h(t − τ) do
not simultaneously cross over the left edge of x(τ ). The following convolution
integral is now solved.

y(t) =
∫ t

0
x(τ )h(t − τ)dτ

=
∫ t

0
dτ

y(t) =
[
τ
]t

0

y(t) = t 0 < t < 1 (a)

8. The left edge of h(t − τ) now crosses past the left edge of x(τ ). To make the
right edge of h(t − τ) not to cross the right edge of x(τ ), the time duration
should be 1 < t < 4. The overlapping portion of the convolution is shown in
Fig. 3.15h. From the overlapping area, the limit of integration is from (t − 1) to
t. The following equation is solved for y(t).
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y(t) =
∫ t

t−1
x(τ )h(t − τ)dτ

=
∫ t

t−1
dτ

=
[
τ
]t

t−1

4

4

1
1

−1

x(t)=u(t)−u(t−4)
u(t)

−u(t−4)

t

t

(a)

h(t)
u(t)

(t−1) t

−u(t−1)

1

1

1

1

1 1

−1

1

4

1

4

x(τ)

h(t−τ) x(τ)h(t−τ)
h(t−τ)

(t−1) t

h(−τ)

h(t) = u(t)−u(t−1)

t

τ

τ τ

τ

t

x(τ)

(b)

(c) (d)

(e) (f)

Fig. 3.15 Convolution of x(t) = u(t) − u(t − 4) and h(t) = u(t) − u(t − 1)
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h(t−τ)

(g)

−τ

x(τ)h(t−τ)

t0t−1

x(τ)

4

0 < t < 1

τ

(h)
x(τ)h(t−τ)

tt−1

h(t−τ)

x(τ)

4

1 < t < 4

τ

(i)
x(τ)h(t–τ)

h(t–τ)

x(τ)

tt–1 4

4 < t < 5

τ
(j)

x(τ)h(t–τ)

tt–1

h(t–τ)

x(τ)

4

1

t > 5

τ

(k)
y(t)

1

1 2 3 4 5 t

Fig. 3.15 (continued)
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y(t) = 1 1 < t < 4 (b)

9. The right edge of h(t − τ) crosses past the right edge of x(τ ). The time interval
should be 4 < t < 5. Now the left edge of h(t − τ) does not cross past the right
edge of x(τ ). From the shaded area, the lower limit of integration is (t − 1) and
the upper limit is 4. Now the following equation is written for y(t).

y(t) =
∫ 4

t−1
x(τ )h(t − τ)dτ

=
∫ 4

t−1
dτ = [τ ]4t−1

y(t) = (5 − t) 4 < t < 5 (c)

10. For t > 5, there is no overlapping between x(τ ) and h(t − τ) and hence y(t) = 0.
11. Using equations (a), (b) and (c), y(t) is found for the appropriate time interval

and tabulated below

t 0 1 2 3 4 5
y(t) 0 1 1 1 1 0

12. The response curve y(t) is shown in Fig. 3.14k.

(b) 1. The width of x(t), T1 = 4;
2. The width of h(t), T2 = 1;
3. The width of y(t) = T1 + T2 = 4 + 1 = 5;

This is verified from Fig. 3.15k.

(c) Convolution by LT method.

1. From Fig. 3.15a

X(s) = 1

s
[1 − e−4s]

2. From Fig. 3.15b

H(s) = 1

s
[1 − e−s]

3.

Y(s) = X(s)H(s)

= 1

s2
[1 − e−s][1 − e−4s]

= 1

s2
[1 − e−s − e−4s + e−5s]
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y(t) = t − (t − 1)u(t − 1) − (t − 4)u(t − 4)

+(t − 5)u(t − 5)

For t = 0, y(0) = 0

t = 1, y(1) = 1

t = 2, y(2) = 2 − 1 = 1

t = 3, y(3) = 3 − 2 = 1

t = 4, y(4) = 4 − 3 − 0 = 1

t = 5, y(5) = 5 − 4 − 1 + 0 = 0

The same result as in (a) is obtained without any laborious task.

� Example 3.17

Find the convolution of the signals shown in Fig. 3.16a and b. Verify the result using
convolution theorem of LT.

(a)

(c) (d)

x(t)

3

2

4

2

2

3

–3

0

h(–τ)

x(τ)h(t–τ)

h(t–τ)

(t–3) (t+4) 0

h(t)

t

τ

τ

τ–τ

(e)

(t–3) (t+4) 0

(b)

3

2

0

2

4 t

h(t–τ) x(τ)

Fig. 3.16 Convolution of x(t) and h(t) of Example 3.17
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x(τ)h(t–τ)

t–3 t+4 2

x(τ)
h(t–τ)

(f)

0

2

3

τ–τ

–4 < t < –2

x(τ)h(t–τ)

t–3 t+4

x(τ)

h(t–τ)

(g)

0 2

2

3

–2 < t < 3

τ

x(τ)h(t–τ)

t–3 t+4

x(τ)

h(t–τ)

(h)

2

2

3

3 < t < 5

τ

x(τ)h(t–τ)

t–3 t+4

x(τ)

h(t–τ)

(i)

2

2

3

t > 5
y(t)=0

τ

y(t)

y(t)=6t+24 y(t)=30–6t

(j) 

12

6

–t 4– 3– 2– 1– 0 1 2 3 4 5 t

Fig. 3.16 (continued)
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Solution:

1. Theh(t) is expressed ash(τ ) and folded. The foldedh(−τ) is shown inFig. 3.16c.
2. h(t − τ) is obtained by adding t to 4 and −3 in Fig. 3.16c and shifted to the left

most and is shown in Fig. 3.16d.
3. x(τ ) and h(t − τ) are represented in Fig. 3.16e.
4. h(t − τ) is shifted toward right. The overlapping of h(t − τ) with x(τ ) is shown

in Fig. 3.16f. The time interval is −4 < t < −2 so that change occurs one at a
time. The limit of integration is form 0 to (t + 4). Thus, y(t) is found as given
below.

y(t) =
∫ t+4

0
x(τ )h(τ )dτ

=
∫ t+4

0
3 × 2dτ

=
[
6τ
]t+4

0

y(t) = (6t + 24) − 4 < t < −2 (a)

5. h(t − τ) is further shifted toward right. The right edge of x(τ ) is crossed first.
The overlapping area is shown in Fig. 3.16g. The time duration is −2 < t < 3
so that only one change occurs at a time. The limit of integration is from 0 to 2.
y(t) is obtained as given below.

y(t) =
∫ 2

0
x(τ )h(t − τ)dτ

=
∫ 2

0
3 × 2dτ

=
[
6τ
]2

0

y(t) = 12 − 2 < t < 3 (b)

6. When h(t − τ) is moved further to the right, its left edge crosses the left edge of
x(τ ). The overlapping area is shown inFig. 3.16h. The timeduration is 3 < t < 5.
The limit of integration is from (t − 3) to 2. y(t) is obtained as given below
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y(t) =
∫ 2

t−3
x(τ )h(t − τ)dτ

=
∫ 2

t−3
3 × 2dτ

=
[
6τ
]2

t−3

y(t) = 6[2 − t + 3]

y(t) = (30 − 6t) 3 < t < 5 (c)

7. Ifh(t − τ) is furthermoved to the right, for t > 5, there is nooverlappingbetween
x(τ ) and h(t − τ) and therefore y(t) = 0. This is shown in Fig. 3.16i.

8. For various time intervals, y(t) is found and tabulated as given below

y(t) = (6t + 24) − 4 < t < −2

y(t) = 12 − 2 < t < 3

y(t) = (30 − 6t) 3 < t < 5

y(t) = 0 t > 5

t −4 −3 −2 −1 0 1 2 3 4 5
y(t) 0 6 12 12 12 12 12 12 6 0

9. Figure 3.16j shows the output response curve y(t). For the given x(t), the width
is T1 = 2 and for h(t) the width is T2 = 7. Thus, the total width of y(t) is
T = T1 + T2 = 9. This is verified from Fig. 3.16j.
y(t) from convolution property of LT.

1. The Laplace transform of x(t) is

X(s) =
∫ 2

0
3e−stdt = −3

s

[
e−st

]2

0

= 3

s
[1 − e−2s]

2. The Laplace transform of h(t) is

H(s) =
∫ 3

−4
2e−stdt

= −2

s

[
e−st

]3

−4

= 2

s
[e4s − e−3s]
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Y(s) = X(s)H(s)

= 6

s2
[1 − e−2s][e4s − e−3s]

= 6

s2
[e4s − e2s − e−3s + e−5s]

y(t) = 6[(t + 4)u(t + 4) − (t + 2)u(t + 2) − (t − 3)u(t − 3)

+(t − 5)u(t − 5))]
y(−4) = 6[0] = 0

y(−3) = 6

y(−2) = 6(2) = 12

y(3) = 6(7 − 5 + 0) = 12

y(4) = 6

y(5) = 6(9 − 7 − 2) = 0

The same response y(t) is obtained here also with ease.

� Example 3.18

Find the output response y(t) for the signals shown in Fig. 3.17a and b. Plot the
response curve y(t).

Solution:

1. The triangular wave x(t) and the rectangular wave h(t) are shown in Fig. 3.17a
and b, respectively.

2. The slope of the triangular wave is 1
5 . Hence,

x(t) = 1

5
t 0 ≤ t ≤ 5

3. When h(t − τ) is moved toward right, it overlaps with x(τ ) for −2 < t < 2.
The limit of integration is 0 to t + 2 as seen from the overlapping area of
Fig. 3.17e. The output response during the above period is

y(t) =
∫ t+2

0

1

5
τdτ

= 1

10
[τ 2]t+2

0

y(t) = 1

10
[(t + 2)2] − 2 < t < 2 (a)
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(a) (b)

(c) (d)

x(t)

1

5 –2 2

1

0

2– 0 2

1

t–2

1

t+2

h(–τ) h(t–τ)

h(t)

t 

τ τ–τ

t

x(τ)h(t–τ)

h(t–τ) x(τ)

t–2 t+2

(e)

0 5

1

–2 < t < 2

τ

x(τ)h(t–τ)

h(t–τ)

x(τ)

t–2 t+2

(f)

0 5

1

2 < t 3

τ

x(τ)h(t–τ)

x(τ) h(t–τ)

t–2 t+2

(g)

5

1

3 < t < 7

τ

Fig. 3.17 Convolution of a triangular and a rectangular waves
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y(t)

2.4

(h)

0.8t

0 22 3 7

1.6

tt
T 9

(t 2)21
10

(21 t2 4t)1
10

Fig. 3.17 (continued)

4. When the left edge of h(t − τ) crosses past the left edge of x(τ ), there is over-
lapping during the time interval 2 < t < 3 with the limits of integration from
(t − 2) to (t + 2). This is shown in Fig. 3.17f. During this period, the output
response is obtained as given below.

y(t) =
∫ t+2

t−2

1

5
τdτ

= 1

10
[τ 2]t+2

t−2

= 1

10
[(t + 2)2 − (t − 2)2]

y(t) = 0.8t 2 < t < 3 (b)

5. When h(t − τ) is moved further toward right, the right edge of h(t − τ) crosses
past the right edge of x(τ ). The overlapping occurs during the time interval
3 < t < 7. The limit of integration as seen from Fig. 3.17g is from (t − 2) to 5.
During this period, the output response is obtained from the following integral.

y(t) =
∫ 5

t−2

1

5
τdτ

= 1

10

[
τ 2
]5

t−2

= 1

10
[25 − (t − 2)2]

y(t) = 1

10
[21 − t2 + 4t] 3 < t < 7 (c)
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6. Further movement of h(t − τ) toward the right beyond τ = 5 does not overlap
with x(τ ) and hence y = 0 for t > 7.

7. The expressions for the output response y(t) for different time intervals are given
below

y(t) = 0 t ≤ −2

y(t) = 1

10
(t + 2)2 − 2 ≤ t < 2

y(t) = 0.8t 2 < t < 3

y(t) = 1

10
(21 − t2 + 4t) 3 < t < 7

y(t) = 0 t > 7

The above expressions are used to plot y(t) and the responses curve is shown in
Fig. 3.17h.

8. The width property of convolution is checked as follows. From Fig. 3.17a and
b, we get T1 = 5, T2 = 4, respectively. Thus, we get T = T1 + T2 = 5 + 4 = 9.
From Fig. 3.17h, the width of y(t) is found as T = 9.

� Example 3.19

Consider the following signals:

x(t) = e−2|t|

h(t) = u(t)

Using convolution, find y(t).

Solution:

1. x(t) and h(t) are represented in Fig. 3.18a and b, respectively.
2. h(t − τ) and x(τ ) are represented in Fig. 3.18c.
3. For −∞ ≤ t ≤ 0, the overlapping is shown in Fig. 3.18c. The signals overlap

for the limits of integration from −∞ to t. Hence,

y(t) =
∫ t

−∞
e2τ dτ t < 0

= 1

2

[
e2τ
]t

−∞

y(t) = 1

2
e2t t < 0 (a)
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x(t)

t

(a) (b)

(d)(c)

t

e2t

e 2t

0

1
h(t)

t

1

x( )h(t )
h(t )

t  0

t

x( )

0

1
x( )h(t )

t > 0

t0

1

Fig. 3.18 Convolution of x(t) = e−2|t| and h(t) = u(t)

4. Consider the overlapping for t > 0. The limit of integration is from −∞ to 0
and from 0 to t. The expression for the output response is

y(t) =
∫ 0

−∞
e2τ dτ +

∫ t

0
e−2τ dτ

= 1

2

[
e2τ
]0

−∞
− 1

2

[
e−2τ

]t

0

y(t) = 1 − 1

2
e−2t t > 0 (b)

5. The total response is the sum of (a) and (b).

y(t) =
(

1 − 1

2
e−2t

)

u(t) + 1

2
e2tu(−t)

� Example 3.20

Consider the following signals:

x(t) = 2t 0 < t < 1

= (3 − t) 1 < t < 3

= 0 elsewhere.

h(t) = u(t) − u(t − 2)

Find y(t) by convolving x(t) and h(t).
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Solution:

1. The given equation for x(t) is a triangle which is shown in Fig. 3.19a. The equa-
tion for h(t) represents a pulse which is shown in Fig. 3.19b. h(t − τ) is shown
in Fig. 3.19c. Figure 3.19d represents the convolution of x(τ ) and h(t − τ). The
overlapping that takes place when h(t − τ) is moved toward the right at various
stages is shown in figures to follow.

2. Consider Fig. 3.19e.

Fig. 3.19 Convolution of a
triangle and pulse

2

(a)

3

x(t)

t

1

(b)

21

h(t) u(t) u(t 2)

t

h(t τ)

τ (t 2) t

1

(c)

τ

2

1

10

(d)

3

x(τ)h(t τ)

(t 2) t

h(t τ) x(τ)

τ

2

1

(e)

3

x(τ)h(t τ)

0 t 1

(t 2) t



316 3 Time Domain Analysis of Continuous and Discrete Time Systems

Fig. 3.19 (continued)

2

10

1

(f)

3

x(τ)h(t τ)

1 t 2

(t 2) ττ t

2

10

1

(g)

3

x(τ)h(t τ)

(t 2) ττ t

2 t 3

2

10

(h)

3

x(τ)h(t τ)

h(t τ)

x(τ)

t 2 t

3 t 5

y(t) =
∫ t

0
2τdτ

= [
τ 2]t

0

y(t) = t2 0 ≤ t ≤ 1

3. Consider Fig. 3.19f.

y(t) =
∫ 1

0
2τdτ +

∫ t

1
(3 − τ)dτ

= [τ 2]10 +
[

3τ − τ 2

2

]t

1

=
[

1 + 3t − t2

2
− 3 + 1

2

]
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y(t) =
(

3t − t2

2
− 3

2

)

1 ≤ t ≤ 2

4. Consider Fig. 3.19g.

y(t) =
∫ 1

t−2
2τdτ +

∫ t

1
(3 − τ)dτ

=
[
τ 2
]1

t−2
+
[

3τ − τ 2

2

]t

1

=
[

1 − t2 − 4 + 4t + 3t − t2

2
− 3 + 1

2

]

y(t) =
(

−3

2
t2 + 7t − 11

2

)

2 ≤ t ≤ 3

5. From Fig. 3.19h, the following equation is written for y(t).

y(t) =
∫ 3

t−2
(3 − τ)dτ

=
[

3τ − τ 2

2

]3

t−2

= 9 − 9

2
− 3t + 6 + (t − 2)2

2

y(t) = t2

2
− 5t + 25

2
3 ≤ t ≤ 5

6. For t > 5, there is no overlapping between x(τ ) and h(t − τ) and hence y(t) = 0.
The value of y(t) for different time intervals are listed below

(a) y(t) = t2 0 ≤ t ≤ 1

(b) y(t) =
(

3t − t2

2
− 3

2

)

1 ≤ t ≤ 2

(c) y(t) =
(

−3

2
t2 + 7t − 11

2

)

2 ≤ t ≤ 3

(d) y(t) =
(

t2

2
− 5t + 25

2

)

3 ≤ t ≤ 5

(e) y(t) = 0 t > 5
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� Example 3.21

Find the output of a LTIC system with the impulse responses h(t) = δ(t − 3) and
x(t) = (cos 4t + cos 7t).

(Anna University, 2004)
Solution: According to shifting property of convolution

y(t) = x(t) ∗ δ(t − t0)

= x(t − t0)

Applying the above property, we get

y(t) = cos 4(t − 3) + cos 7(t − 3)

� Example 3.22

The impulse response of an LTIC system is shown in Fig. 3.20a. The input x(t) =
δ(t) − δ(t − 1.5). Find the response y(t) of the system.

(Anna University, 2004)

Fig. 3.20 Output response
curve

1

1

(a)

2

h(t)

t

1.0

5.0 1

0.5

0.5

1.5 2.5 3.5

(b)

2

1.0

3 4

y(t)

t
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Solution: The given triangular wave h(t) shown in Fig. 3.20a is split up as two ramp
signals.

h(t) = t[u(t) − u(t − 1)] + (2 − t)[u(t − 1) − u(t − 2)]

(See also Example 3.88).

y(t) = h(t) ∗ x(t)

= h(t) ∗ [δ(t) − δ(t − 1.5)]
= h(t) ∗ δ(t) − h(t) ∗ δ(t − 1.5)

= h(t) − h(t) ∗ δ(t − 1.5)

h(t) ∗ δ(t − 1.5) = h(t − 1.5)

y(t) = t[u(t) − u(t − 1)] + (2 − t)[u(t − 1) − u(t − 2)]
−(t − 1.5)[u(t − 1.5) − u(t − 2.5)]
−[2 − (t − 1.5)][u(t − 2.5) − u(t − 3.5)]

= tu(t) + (2 − 2t)u(t − 1) − (t − 1.5)

×u(t − 1.5) − (2 − t)u(t − 2) + (2t − 5)

×u(t − 2.5) − (t − 3.5)u(t − 3.5)

The following table is prepared from the above equation.

t 0 1 1.5 2 2.5 3 t ≥ 3.5
y(t) 0 1 0.5 −0.5 −1 −0.5 0

The output response curve y(t) is plotted and is shown in Fig. 3.20b.

� Example 3.23

The system shown in Fig. 3.21 is formed in connecting two systems in cascade. The
impulse response of the systems are given by h1(t) = e−2tu(t) and
h2(t) = 2e−tu(t). Find the overall impulse response of the system.

(Anna University, June, 2007)

Fig. 3.21 Two systems
connected in cascade x(t)

h1(t) h2(t)
y(t)
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Solution: Both h1(t) and h2(t) are causal systems. The limits of integration is from
0 to t

h1(τ ) = e−2τ u(τ )

h2(τ ) = 2e−τ u(τ )

h2(t − τ) = 2e−(t−τ)u(t − τ)

The impulse response of the combined system is given by

h(t) = h1(t) ∗ h2(t)

h(t) =
∫ t

0
2e−2τ e−(t−τ)dτ

= 2e−t
∫ t

0
[e−τ ]dτ

= −2e−t
[
e−τ

]t

0

h(t) = −2e−t[e−t − 1]

h(t) = 2[e−t − e−2t]u(t)

� Example 3.24

Show that
x(t) ∗ δ(t − t0) = x(t − t0)

(Anna University, June, 2007)
Solution:

x(t) ∗ δ(t − t0) =
∫ ∞

−∞
δ(τ − t0)x(t − τ)dτ

= x(t − τ)|τ=t0

x(t) ∗ δ(t − t0) = x(t − t0)

� Example 3.25

Prove that
x(t) ∗ u(t) =

∫ t

−∞
x(τ )dτ

(Anna University, June, 2007)
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Solution:

x(t) ∗ u(t) =
∫ t

−∞
x(τ )u(t − τ)dτ

Since

u(t − τ) = 1 τ < t

= 0 τ > t

The above equation can be written as

x(t) ∗ u(t) =
∫ t

−∞
x(τ )dτ

� Example 3.26

The signals x(t) and y(t) shown in Fig. 3.22a and b are, respectively, input and output
of an LTIC system. Sketch the response to the following inputs:

x(t)

t

1

1 0

(a) (b)

1

y(t)

t1 0 1

1

1

32

(d)

4

y(t 3)

t

1

42 0

(c)
x(t 3)

t

(f)

1

2
2

y(t)

t

(e)

110

x(t)

t1

Fig. 3.22 Two signals x(t) and y(t)
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(h)

1

y(t)

t

(g)

11

t t
1

3
3

x(t) y(t)

x(t)

3

(i)

10

3x(t)

t1

3

1

(k)

1 30

3x(t) x(t 2)

t1

1

(j)

31

x(t 2)

t

3

1

y(t 2) 3y(t)
(k)

due to 3x(t)

t1 0 1 2 3

due to x(t 2)

Fig. 3.22 (continued)

1. x(t) = x(t − 3)
2. x(t) = 2x(t)
3. x(t) = −3x(t)
4. x(t) = x(t − 2) + 3x(t)

(Anna University, May, 2007)
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Solution:

1. x(t − 3) is shown in Fig. 3.22c. It is time shifted by 3. The amplitude remains
at 1. Hence, the output with the same amplitude is to be time shifted by 3 to the
right. This is shown in Fig. 3.22d.

2. The input x(t) = 2x(t).The amplitude is multiplied by a factor 2 without anytime
shift. The input and the output are shown in Fig. 3.22e and f, respectively.

3. x(t) = −3x(t) is shown in Fig. 3.22g. Here, the amplitude is multiplied by a
factor −3 without anytime advance or delay. Therefore, the output should also
be multiplied by the factor −3. This is shown in Fig. 3.22h.

4. The input x(t) = x(t − 2) + 3x(t). The input x(t)which is amplified by the factor
3 is shown as 3x(t) for −1 < t < 1 in Fig. 3.22i. The time delayed input x(t)
which is x(t − 2) is shown in Fig. 3.22j for the time interval 1 < t < 3. The
output due to input 3x(t) for −1 < t < 1 and the output due to input x(t − 2)
for 1 < t < 3 is shown in Fig. 3.22k.

3.8 Causality of an Linear Time Invariant Continuous
Time System

An LTIC system is said to be causal iff the output y(t) depends only on the present
and past value of input. Consider the output response of a certain system whose
impulse response is h(t) and the input is x(t). Using convolution integral, the output
response is obtained from the following equation.

y(t) =
∫ ∞

−∞
h(τ )x(t − τ)dτ (3.10)

For a causal system h(τ ) = 0 for τ < 0. Now Eq. (3.10) is written as

y(t) =
∫ ∞

0
h(τ )x(t − τ)dτ (3.11)

If a causal signal is applied to a non-causal system

y(t) =
∫ ∞

−∞
x(τ )h(t − τ)dτ

=
∫ t

−∞
h(τ )x(t − τ)dτ (3.12)

If a causal signal is applied to a causal system

y(t) =
∫ t

0
x(τ )h(t − τ)dτ

=
∫ t

0
h(τ )x(t − τ)dτ (3.13)
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3.9 Stability of a Linear Time Invariant System

A linear time invariant continuous time system is said to be Bounded Input Bounded
Output (BIBO) stable if every bounded input applied to the input terminal results in
a bounded output. Such a stability is called external stability. On the other hand if a
systemwhich is in equilibrium state andwhen a small disturbance is given, the system
comes back to the equilibrium state then the system is said to be internally stable. If
every bounded input produces bounded output, the system is said to be BIBO stable.
On the other hand, if even one bounded input produces unbounded output, the system
is said to be BIBO unstable. The BIBO stability can also be expressed in terms of
impulse response of the system. Consider the following convolution:

y(t) = h(t) ∗ x(t)

=
∫ ∞

−∞
h(τ )x(t − τ)dτ

|y(t)| =
∣
∣
∣
∣

∫ ∞

−∞
h(τ )x(t − τ)dτ

∣
∣
∣
∣

≤
∫ ∞

−∞
|h(τ )||x(t − τ)|dτ

If x(t) is bounded, then |x(t − τ)| < A < ∞ and

|y(t)| ≤ A
∫ ∞

−∞
|h(τ )|dτ (3.14)

For the output also to be bounded which will make the system stable

∫ ∞

−∞
|h(τ )|dτ < ∞ (3.15)

Equation (3.15) is nothing but the area under the impulse response curve. This is the
necessary and sufficient condition for the system to be stable. The stable and unstable
response curves of an LTIC time system are shown in Fig. 3.23a and b, respectively.

Fig. 3.23 Impulse response
curves of stable and unstable
systems

(a) Stable (b) Unstable

h(t)

t

h(t)

t
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� Example 3.27

The impulse response of a certain system is given by

h(t) = e−3tu(t − 2)

Determine the stability of the system.

Solution:

y(t) =
∫ ∞

−∞
|h(t)|dt

=
∫ ∞

2
e−3tdt

= −1

3

[
e−3t

]∞
2

= 1

3
e−6

y(t) = 8.262 × 10−4 < ∞

The output response y(t) < ∞ which is finite and hence the system is BIBO stable.
The output response curve is shown in Fig. 3.24 which shows the area under the
output response curve is finite. Hence, the system is BIBO stable.

� Example 3.28

The impulse response of an LTIC system is

h(t) = e−2t sin 3t u(t)

Determine whether the given system is BIBO stable.

Fig. 3.24 Output response
curve of Example 3.27

2

h(t)

t
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Solution:

h(t) = e−2t sin 3t u(t)

y(t) =
∫ ∞

0
e−2t sin 3tdt

For a causal system, the lower limit of integration is 0.

y(t) =
∫ ∞

0
|e−2t sin 3t|dt

The above integration is solved using the following property of integration

y(t) =
∫ ∞

0
e−at sin bt dt = b

a2 + b2

Here a = 2; b = 3

∴ y(t) = 3

4 + 9

y(t) = 3

13
< ∞

The system is BIBO stable.

� Example 3.29

A certain LTIC system has the following impulse response. Determine whether the
system is BIBO stable.

h(t) = e−3t cos 2t u(t)

Solution:
h(t) = e−3t cos 2t u(t)

This is a causal system and the output is expressed as

y(t) =
∫ ∞

0
|e−3t cos 2t|dt

The above integration is solved using the following property

∫ ∞

0
e−at cos bt dt = a

a2 + b2

Here a = 3; b = 2
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∴ y(t) = 3

9 + 4

y(t) = 3

13
< ∞

The system is BIBO stable.

� Example 3.30

The impulse response of a certain LTIC system is given by

h(t) = te−2tu(t)

Determine the BIBO stability of the system.

Solution:

h(t) = te−2tu(t)

y(t) =
∫ ∞

0
|te−2t|dt

The above integration is solved using u − v method. Let u = t, du = dt, dv =
e−2tdt, v = − 1

2e−2t

y(t) = uv −
∫ ∞

0
vdu

=
[

t

(

−1

2
e−2t

)]∞

0

+ 1

2

∫ ∞

0
e−2tdt

= 0 + 1

2

∫ ∞

0
e−2t

= −1

4

[
e−2t

]∞
0

y(t) = 1

4
< ∞

y(t) is finite and hence the system is BIBO stable.

� Example 3.31

For a certain system, the impulse response h(t) is given by h(t) = e(−1+j)tu(t). Deter-
mine the BIBO stability of the system.
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Solution:
h(t) = e(−1+j)tu(t)

For a causal system

y(t) =
∫ ∞

0
|h(t)|dt

=
∫ ∞

0
|e(−1+j)t|dt

=
∫ ∞

0
|e−t||ejt|dt

|ejt| = | cos t + j sin t| =
√
cos2 t + sin2 t = 1

y(t) =
∫ ∞

0
e−tdt

=
[

− e−t
]∞
0

y(t) = 1 < ∞

Since y(t) is finite, the given system is BIBO stable.

� Example 3.32

Determine the BIBO stability of the system whose impulse response is

h(t) = e3tu(−t − 3)

Solution: The impulse response of the given system is shown in Fig. 3.25. It is non-
causal. The lower limit of integration is −∞ and the upper limit is −3. Hence, the
output response is obtained from the following equation:

y(t) =
∫ −3

−∞
|e3t|dt

= 1

3

[
e3t
]−3

−∞

= 1

3
e−9

y(t) = 4.11 × 10−5 < ∞

Since y(t) is finite, the system is BIBO stable.
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� Example 3.33

Determine whether the system described by the following response function is BIBO
stable.

Solution: From Fig. 3.25a, the area under the impulse response curve is finite. The
system is therefore BIBO stable. This can also be proved mathematically as follows:

y(t) =
∫ ∞

−∞
|h(t)|dt

=
∫ 0

−∞
etdt +

∫ ∞

0
e−tdt

=
[
et
]0

−∞
+
[

− e−t
]∞
0

= 1 − 0 − 0 + 1

y(t) = 2 < ∞

The system output is finite and hence the system is stable.

� Example 3.34

The system shown in Fig. 3.26 is formed by connecting two systems in cascade. The
impulse response of the systems are given by h1(t) and h2(t), respectively. h1(t) =
e−2tu(t) and h2(t) = 2e−tu(t). Determine if the overall system is BIBO stable.

(Anna University, May, 2007)

Fig. 3.25 Impulse response
of Example 3.32. a The
Impulse response curve of
Example 3.33

h(t)

tt 3

1

h(t)

tt

et

e t

0

1
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Fig. 3.26 Impulse response
of two systems connected in
cascade

x(t)
h1(t) h2(t)

y(t)

Solution: The overall impulse response h(t) = h1(t) ∗ h2(t) is obtained in Example
3.23 as

h(t) = 2[e−t − e−2t]u(t)

Since the system is causal, the following equation is obtained to determine the BIBO
stability.

y(t) =
∫ ∞

0
|h(t)|dt

= 2
∫ ∞

0
[e−t − e−2t]dt

= 2

[

−e−t + 1

2
e−2t

]∞

0

= 2

[

1 − 1

2

]

= 1

y(t) = 1 < ∞

Hence, the system is BIBO stable.

� Example 3.35

Find which of the following systems with the impulse response given are causal.

(a) e−atu(t)

(b) e−a|t|

(c) e−atu(t − 1)

(d) e+atu(−t − 1)

(e) eatu(−t + 1)

(f ) eatu(t + 1)

(g) eatu(t + 1) + e−atu(t − 1)

Solution:

(a) u(t) is the present input. Hence, the system is causal h(t) = 0 for t < 0.
(b) The impulse response depends on the present and future input. Hence, the system

is non-causal h(t) �= 0 for t < 0.
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(c) The impulse response depends on the past input u(t − 1). Hence, the system is
causal h(t) = 0 for t < 0.

(d) The impulse response depends on future input u(−t − 1). Hence, the system is
non-causal h(t) �= 0 for t < 0.

(e) The impulse response depends on future input u(−t + 1). Hence, the system is
non-causal h(t) �= 0 for t < 0.

(f) The impulse response depends on future input u(t + 1). Hence, the system is
non-causal h(t) �= 0 for t < 0.

(g) The impulse response depends on future input u(t + 1). Hence, it is non-causal
h(t) �= 0 for t < 0.

3.10 Step Response from Impulse Response

The step response of an LTIC system can be obtained from the impulse response by
integrating it. Let s(t)denote the step response. Consider the systemwith the impulse
response h(t). Let u(t) be the input signal. Using convolution, the following equation
is written:

s(t) = u(t) ∗ h(t)

=
∫ t

−∞
h(τ )u(t − τ)dτ

s(t) =
∫ t

−∞
h(τ )dτ (3.16)

For the causal system, the lower limit of integration is 0. Hence,

s(t) =
∫ t

0
h(τ )dτ (3.17)

Thus, the step response is obtained by integrating the impulse response. The
impulse response is obtained by differentiating the step response s(t).

The following examples illustrate the method of obtaining step response from
impulse response.

� Example 3.36

The impulse response of a certain LTIC system is given by

h(t) = e−4tu(t) − e−2tu(t)

Determine the step response of the system.
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t

u(t 1)

1

1

1

u(t 1)

h(t)
(a) (b)

t11

1

h(t) u(t 1)
u(t 1)

Fig. 3.27 Plot of h(t) = u(t + 1) − u(t − 1)

Solution:
h(t) = [e−4t − e−2t]u(t)

The step response s(t) is given by

s(t) =
∫ t

0
h(τ )dτ

=
∫ t

0
[e−4τ − e−2τ ]dτ

=
[

−1

4
e−4τ + 1

2
e−2τ

]t

0

=
[

−1

4
e−4t + 1

4
+ 1

2
e−2t − 1

2

]

s(t) = 1

4
[2e−2t − e−4t − 1]

� Example 3.37

Find the step response whose impulse response is

h(t) = u(t + 1) − u(t − 1)

(Anna University, May, 2007)
Solution: The impulse response shown in Fig. 3.27a can be represented as in
Fig. 3.27b. From Fig. 3.27b, the step response is obtained as follows:

s(t) =
∫ t

−∞
h(τ )dτ =

∫ 1

−1
dτ =

[
τ
]1

−1
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s(t) = 2

� Example 3.38

The impulse response of a certain system is given by

h(t) = δ(t) − δ(t − 2)

Determine the step response.

Solution:
h(t) = δ(t) − δ(t − 2)

The step response is obtained from the following convolution.

s(t) = h(t) ∗ u(t)

= [δ(t) − δ(t − 2)] ∗ u(t)

using convolution property, δ(t) ∗ u(t) = u(t) and δ(t − 2) ∗ u(t) = u(t − 2)we get,

s(t) = u(t) − u(t − 2)

the above result can also be obtained by integrating the impulse function which is a
step function.

� Example 3.39

Find the step response of the system whose impulse response is

h(t) = t2

2
u(t)

Solution:

h(t) = t2

2
u(t)

s(t) =
∫ t

0

τ 2

2
dτ

= 1

6

[
τ 3
]t

0

s(t) = t3

6
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� Example 3.40

Find the step response of the system whose impulse response is

h(t) = e−2tu(t + 2)

Solution:

h(t) = e−2tu(t + 2)

s(t) =
∫ t

−2
e−2τ dτ

= −1

2
[e−2τ ]t

−2

= −1

2
[e−2t − e4]

s(t) = [27.3 − 0.5e−2t]u(t + 2)

� Example 3.41

Find the step response of the system if the impulse response is

h(t) = e3tu(t − 2)

From the results so obtained find the impulse response.

Solution:

h(t) = e3tu(t − 2)

s(t) =
∫ t

2
e3τ dτ = 1

3

[
e3τ
]t

2

s(t) = 1

3
[e3t − 403.4]u(t − 2)

The impulse response h(t) is obtained by differentiating the step response

h(t) = ds(t)

dt
= e3tu(t − 2)



3.10 Step Response from Impulse Response 335

Important Points to Remember in Connection
with Convolution Integral

1. The convolution operation is expressed as

y(t) =
∫ ∞

−∞
x(τ )h(t − τ)dτ

The symbolic representation of convolution is

y(t) = x(t) ∗ h(t)

“∗” indicates convolution operation.
2. For the causal signal, the convolution integral is given by

y(t) =
∫ t

0
x(τ )h(t − τ)dτ

For the non-causal signal, the convolution is given by

y(t) =
∫ t

−∞
x(τ )h(t − τ)dτ

3. The commutative property of convolution is

x(t) ∗ h(t) = h(t) ∗ x(t)
∫ ∞

−∞
x(τ )h(t − τ)dτ =

∫ ∞

−∞
x(t − τ)h(τ )dτ

4. The distributive property of convolution is

y(t) = x(t) ∗ h(t)

where
h(t) = (h1(t) + h2(t))

5. The associative property of convolution is

[x(t) ∗ h1(t)] ∗ h2(t) = x(t) ∗ [h1(t) ∗ h2(t)]

6. The shifting property of convolution is

x(t − p) ∗ h(t − q) = y(t − p − q)
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7. The width property of convolution is that the width of

x(t) ∗ h(t) = T1 + T2

where T1=width of x(t) and T2=width of h(t).
8. The convolution with an impulse is

x(t) ∗ δ(t) = x(t)

9. The convolution with the delayed impulse is

x(t) ∗ δ(t − t0) = x(t − t0))

10. The convolution with unit step is

x(t) ∗ u(t) =
∫ t

0
x(τ )dτ

11. The convolution with a delayed step is

x(t) ∗ u(t − t0) =
∫ t−t0

−∞
x(τ )dτ

12. System causality
For a causal system h(τ ) = 0 for t < 0.

13. The necessary and sufficient condition for the system to be bounded input
bounded output stable is ∫ ∞

−∞
|h(τ )|dτ < ∞

14. The step response from impulse response is obtained from

s(t) =
∫ t

−∞
h(τ )dτ

The impulse response is obtained by differentiating step response.

3.11 Representation of Discrete Time Signals
in Terms of Impulses

As discussed in the previous chapter, the discrete time signal is represented as a
sequence of impulses. If these sequences of impulses are expressed mathematically,
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it will help us develop the characterization of any Linear Time Invariant Discrete
(LTID) time system.

Consider the sequence of impulse signals shown in Fig. 3.28a. The time shifted
impulse sequences are shown in Fig. 3.28b–e for the sequence interval −4 ≤ n ≤ 3,
the impulses are represented as x(−4), x(−3), x(−2), x(−1), x(0), x(1), x(2) and
x(3). The signal say at n = −3 is mathematically expressed as

x(−3)δ(n + 3) = x(−3) n = −3

= 0 n �= −3

δ(n + 4), δ(n + 3), . . . , δ(n − 3) are unit impulses occurring at n = −4, n = −3,
. . . , n = 3. These sequences of impulses are shown in Fig. 3.28a. These sequences
are mathematically expressed as

x(n) = x(−4)δ(n + 4) + x(−3)δ(n + 3) + · · · + x(2)δ(n − 2) + x(3)δ(n − 3)

Fig. 3.28 Sequence of
impulse signals

2 2

1
1.5

x(n)
(a)

n 4 3 2 1 0 1 2 3 4 n

1

2
5

1

2

x(n)

x( 3)  (n 3) 2

(b)

n 4 3 2 1 0 1 2 3 4 n
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Fig. 3.28 (continued)

2

x(n)

x( 2) (n 2) 2

(c)

n 4 3 2 1 0 1 2 3 4 n

2

x(n)

x(0) (n) 2

(d)

n 4 3 2 1 0 1 2 3 4 n

x(n)

x(3) (n 3) 1

(e)

n 4 3 2 1 0 1 2 3

1

4 n

In general, if these sequences occur in the interval−∞ < n < ∞, then x(n) is math-
ematically expressed as

x(n) =
∞∑

k=−∞
x(k)δ(n − k) (3.18)

3.12 The Discrete Time Unit Impulse Response

Let δ(n − k) be unit impulse which is shifted by k. It has value 1 corresponding
to value k. Let hk(n) denote the response of the linear time invariant discrete time
system. By superposition theorem, the output response y(n) to the input x(n) is
obtained as the weighted linear combination of these responses. Thus, the impulse
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x(n) x(k) (n k)
k

y(n) x(k) h
k
(n)

 kDISCRETE TIME
SYSTEM

Fig. 3.29 Input-output of DT system

response y(n) can be expressed as

y(n) =
∞∑

k=−∞
x(k)hk(n) (3.19)

Thus, if we know the response of a linear system to the set of shifted unit impulses,
it is possible to determine the response to any arbitrary input sequence. The block
diagram of DT system is shown in Fig. 3.29.

3.13 The Convolution Sum

Similar to linear time invariant continuous time systemwhere the convolution integral
was made use of in determining the output response of the system, in discrete time
system the convolution sum or superposition sum is used to determine the output
sequence. For any arbitrary x(n), knowing the impulse response sequence hk(n), the
output response y(n) is obtained as explained below.

Let h−1(n), h0(n), h1(n) be the impulse responses to the input x(n)δ(n + 1),
x(n)δ(n) and x(n)δ(n − 1). By applying superposition theorem, it is possible to
get y(n) which is nothing but the linear combination of the responses due to the
individual shifted impulses. Consider the signals x(n), h−1(n), h0(n) and h1(n) rep-
resented in Fig. 3.30a, b, c and d, respectively. The signal x(−1)δ(n + 1) is obtained
from x(n) at n = −1. Similarly, x(2)δ(n) is obtained from x(n) at n = 0. Similarly,
x(1)δ(n − 1), x(2)δ(n − 2) can be obtained. The product of x(−1)δ(n + 1)h−1(n)

gives y(−1). Similarly x(0)δ(n)h0(n) gives y(0) and x(1)δ(n − 1)h1(n) gives y(1)
evaluated at n = 1. These signals are represented in Fig. 3.31.

From Fig. 3.31a–k the values of y(n) for −∞ < n < ∞ are calculated from
x(n)h(n) by summing up all these values for a given n. Thus,

n = −1, y(−1) = −3 + 2 − 1 = −2

n = 0, y(0) = 4 = 4



340 3 Time Domain Analysis of Continuous and Discrete Time Systems

Fig. 3.30 Input and impulse
response sequences
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(d)

n = 1, y(1) = −1.5 − 2 − 2 = −5.5

n = 2, y(2) = 1.5 − 4 + 1 = −1.5

The sketch of y(n) is shown in Fig. 3.31k. Thus, the response y(n) at any instant n is
nothing but the superposition of the input at every point of n. Since δ(n − k) is the
time shifted version of δ(n), the response hk(n) is the time shifted version of h0(n)

which can be represented as
hk(n) = h0(n − k)

Now, the equation for the convolution sum can be written as

y(n) =
∞∑

k=−∞
x(k)h0(n − k)

For convenience if we drop the subscript on h0(n − k), the above equation is
written as

y(n) =
∞∑

k=−∞
x(k)h(n − k) (3.20)

The above equation is referred to as the convolution sum or superposition sum.
h(n) is the impulse response of the LTID time system for the input δ(n). The convo-
lution sum is symbolically represented as
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Fig. 3.31 Convolution sum of discrete signals
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y(n) = x(n) ∗ h(n) (3.21)

There are different methods available to get the solution of y(n) by the convolution
method, and they are described and illustrated below with examples. The properties
of convolution which will be useful for solving convolution sum are discussed first
as follows.

3.14 Properties of Convolution Sum

3.14.1 Distributive Property

Two linear time invariant discrete time systems connected in parallel are shown in
Fig. 3.32a with their impulse responses h1(n) and h2(n). According to convolution
sum

y1(n) = x(n) ∗ h1(n)

y2(n) = x(n) ∗ h2(n)

y(n) = y1(n) + y2(n)

= x(n) ∗ h1(n) + x(n) ∗ h2(n)

y(n) =
∞∑

k=−∞
x(k)h1(n − k) +

∞∑

k=−∞
x(k)h2(n − k)

=
∞∑

k=−∞
x(k)[h1(n − k) + h2(n − k)]

Substituting h(n − k) = [h1(n − k) + h2(n − k)], we get

y(n) =
∞∑

k=−∞
x(k)h(n − k)

= x(n) ∗ h(n)

y(n) = x(n) ∗ [h1(n) + h2(n)] (3.22)

3.14.2 Associative Property of Convolution

According to this property y(n) = x(n) ∗ [h1(n) ∗ h2(n)] = [x(n) ∗ h1(n)] ∗ h2(n).
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Fig. 3.32 Distributive
property of convolution
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Fig. 3.33 Associative
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Proof Consider two linear time invariant discrete time systems connected in cascade
as shown in Fig. 3.33a with their impulse responses h1(n) and h2(n), respectively.
From Fig. 3.33a, the following equations are written:

y1(n) = x(n) ∗ h1(n)

=
∞∑

k=−∞
x(k)h1(n − k)

y(n) = y1(n) ∗ h2(n)

=
∞∑

k=−∞
y1(k)h2(n − k)

=
∞∑

k=−∞
x( p)h1(k − p)h2(n − k)
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Putting (k − p) = q in the above equation, we get

y(n) =
∞∑

p=−∞
x( p)

∞∑

q=−∞
h1(q)h2(n − p − q)

=
∞∑

p=−∞
x( p)

∞∑

q=−∞
h(n − p)

=
∞∑

p=−∞
x( p)h(n − p)

y(n) = x(n) ∗ h(n)

where

h(n) =
∞∑

q=−∞
h1(q)h2(n − q)

h(n) = h1(n) ∗ h2(n)

Hence,
y(n) = x(n) ∗ (h1(n) ∗ h2(n))

y(n) = [x(n) ∗ h1(n)] ∗ h2(n) (3.23)

y(n) = x(n) ∗ [h1(n) ∗ h2(n)]

3.14.3 Commutative Property of Convolution

According to commutative property

h1(n) ∗ h2(n) = h2(n) ∗ h1(n)

Proof Consider the following convolution

h1(n) ∗ h2(n) =
∞∑

k=−∞
h1(k)h2(n − k)

Put n − k = p in the above equation.
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Fig. 3.34 Width property of
convolution

(a) x(n)

0 1 2 3 4 n

(b) h(n)

0 1 2 3 5 4n

h1(n) ∗ h2(n) =
∞∑

p=−∞
h1(n − p)h2( p)

=
∞∑

p=−∞
h2( p)h1(n − p)

h1(n) ∗ h2(n) = h2(n) ∗ h1(n) (3.24)

3.14.4 Shifting Property of Convolution

Let x(n) and h(n) be two sequences. The output response y(n) is expressed as

y(n) = x(n) ∗ h(n)

If the sequences x(n) and h(n) are shifted by p and q, respectively, as x(n − p) and
h(n − q) then

x(n − p) ∗ h(n − q) = y(n − p − q) (3.25)

3.14.5 The Width Property of Convolution

Consider the sequences x(n) and h(n) which are shown in Fig. 3.34a and b, respec-
tively. Let the width of x(n) be T1 and that of h(n) be T2. Then, the width
of y(n) = x(n) ∗ h(n) is T = T1 + T2. For the sequences represented in Fig. 3.34,
T1 = 4 and T2 = 5. The width of y(n) should be T = 4 + 5 = 9.

3.14.6 Convolution with an Impulse

Let x(n) be the discrete time signal. When this signal convolves with an impulse δ(n)

then
x(n) ∗ δ(n) = x(n)
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Proof

x(n) ∗ δ(n) =
∞∑

k=−∞
x(k)δ(n − k)

δ(n − k) = 1 for n = k

= 0 for n �= k

x(n) ∗ δ(n) =
∑

k=n

x(k)

x(n) ∗ δ(n) = x(n) (3.26)

3.14.7 Convolution with Delayed Impulse

If the sequence x(n) convolves with δ(n − n0) then

x(n) ∗ δ(n − n0) = x(n − n0)
Proof

x(n) ∗ δ(n − n0) =
∞∑

k=−∞
x(k)δ(n − k − n0)

δ(n − k − n0) = 1 if k = n − n0
= 0 if k �= n − n0

∴ x(n) ∗ δ(n − n0) =
∑

k=n−n0

x(k)δ((n − n0) − k)

x(n) ∗ δ(n − n0) = x(n − n0) (3.27)

3.14.8 Convolution with Unit Step

x(n) ∗ u(n) =
∞∑

k=−∞
x(k)

Proof

x(n) ∗ u(n) =
∞∑

k=−∞
x(k)u(n − k)

u(n − k) = 1 for all k
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∴ x(n) ∗ u(n) =
∞∑

k=−∞
x(k) (3.28)

3.14.9 Convolution with Delayed Step

If x(n) convolves with delayed step u(n − n0), then

x(n) ∗ u(n − n0) =
n−n0∑

k=−∞
x(k)

Proof

x(n) ∗ u(n − n0) =
∞∑

k=−∞
x(k)u(n − k − n0)

u(n − n0) = 1 for n ≥ n0
= 0 for n < n0

∴ x(n) ∗ u(n − n0) =
n−n0∑

k=−∞
x(k) (3.29)

3.14.10 System Causality from Convolution

A linear time invariant discrete time system is said to be causal iff the impulse
response does not exist for n < 0.

Proof The output response can be written in terms of impulse response and input
signal as follows:

y(n) =
∞∑

k=−∞
h(k)x(n − k)

=
1∑

k=−∞
h(k)x(n − k) +

n∑

k=0

h(k)x(n − k)

For k < 0
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y(n) =
1∑

k=−∞
h(k)x(n − k)

The response depends on future inputs x(n + k), x(n + k − 1), . . . , x(n + 1). For a
causal system, the output response should not depend on future input. Hence,

1∑

k=−∞
h(k)x(n − k) = 0 or h(k) = 0 for k < 0

Changing k as n,
h(n) = 0 for n < 0 (3.30)

3.14.11 BIBO Stability from Convolution

A linear time invariant discrete time system is said to be BIBO stable iff its impulse
response is absolutely summable. It is mathematically expressed as

y(n) =
∞∑

k=−∞
|h(n)| < ∞

Proof

y(n) =
∞∑

k=−∞
x(k)h(n − k)

=
∞∑

k=−∞
h(k)x(n − k)

|y(n)| =
∣
∣
∣
∣
∣

∞∑

k=−∞
h(k)x(n − k)

∣
∣
∣
∣
∣

The magnitude of the sum of the terms is always less than or equal to the sum of the
magnitude. Thus,

∣
∣
∣
∣
∣

∞∑

k=−∞
h(k)x(n − k)

∣
∣
∣
∣
∣
≤

∞∑

k=−∞
|h(k)||x(n − k)|

For a bounded input, |x(n − k)| < ∞. Let it be Mx

|y(n)| ≤ Mx

∞∑

k=−∞
|h(k)|



3.14 Properties of Convolution Sum 349

For the bounded output |y(n)| < ∞. Let it be My

∞∑

k=−∞
|h(k)| = My < ∞

y(n) < MxMy < ∞

Changing k = n in the impulse response summation, we get

∞∑

n=−∞
|h(n)| < ∞ (3.31)

In other words,
∑∞

n=−∞ |h(n)| is summable and finite for the discrete time system to
be BIBO stable.

3.14.12 Step Response in Terms of Impulse Response
of a LTDT System

The step response s(n) is obtained from the impulse response as

s(n) =
n∑

k=0

h(k)

Proof Let

1. y(n) = s(n) for step input.
2. h(n) = Impulse response
3. x(n) = u(n) =step input sequence

The convolution of h(n) and x(n) is expressed as

s(n) =
∞∑

k=−∞
h(k)u(n − k)

u(n − k) = 1 n > k

= 0 n < k

s(n) =
n∑

k=0

h(k) × 1

s(n) =
n∑

k=0

h(k)
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The properties of LTID system convolution and the connected results are summa-
rized below.

Important Points to Remember in Connection
with Convolution Sum

1. The convolution sum is mathematically expressed as

y(n) = x(n) ∗ h(n)

y(n) =
∞∑

k=−∞
x(k)h(n − k)

“∗” denotes convolution operation.
2. The commutative property of convolution is

x(n) ∗ h(n) = h(n) ∗ x(n)

3. The distributive property of convolution is

y(n) = x(n) ∗ h(n)

where
h(n) = h1(n) + h2(n)

4. The associative property of convolution is

[x(n) ∗ h1(n)] ∗ h2(n) = x(n) ∗ [h1(n) ∗ h2(n)]

5. The shifting property of convolution is

x(n − p) ∗ h(n − q) = y(n − p − q)

6. The width property of convolution is

[x(n) ∗ h(n)] = T1 + T2

where T1=width of x(n) sequence and T2=width of h(n) sequence.
7. The convolution with an impulse is

x(n) ∗ δ(n) = x(n)

8. The convolution with delayed impulse is
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x(n) ∗ δ(n − n0) = x(n − n0)

9. Convolution with unit step is

x(n) ∗ u(n) =
∞∑

k=−∞
x(k)

10. Convolution with a delayed step is

x(n) ∗ u(n − n0) =
∞∑

k=−∞
x(k − n − n0)

11. System causality in terms of impulse response is

h(n) = 0 for n < 0

12. The necessary and sufficient BIBO stability condition is

∞∑

n=−∞
|h(n)| < ∞

In other words |h(n)| should be absolutely summable.

13. Step response s(n) is obtained from impulse response using the following math-
ematical expression:

s(n) =
n∑

k=0

h(k)

3.15 Response Using Convolution Sum

If the impulse response h(n) is known, the output response y(n) can be obtained for
any input sequence x(n) by using the following methods:

• Analytical methods and
• Graphical method

In analytical method, y(n) is obtained by

— Using mathematical expression for the convolution sum
— Multiplication method
— Tabulation method.
— Matrix method.
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3.15.1 Analytical Method Using Convolution Sum

� Example 3.42

The impulse response h(n) of a certain LTID system is given by h(n) = anu(n)where
0 < a < 1. The system is excited by x(n) = u(n), a step sequence. Find y(n) using
convolution sum.

(Anna University, December, 2006)
Solution: The impulse response and input sequences are represented in Fig. 3.35a
and b, respectively. They are causal sequences. Hence, the convolution sum given in
Eq. (3.20) is written as follows:

x(n) = u(n)

x(k) = u(k) = 1

h(n) = anu(n)

h(n − k) = an−ku(n − k)

u(k) = 1

u(n − k) = 1

y(n) =
n∑

k=−0

x(k)h(n − k)

=
n∑

k=−0

(an−k)

= an
n∑

k=−0

(
1

a

)k

The above expression is simplified using the finite summation formula

n∑

k=−0

Ak = (1 − An+1)

(1 − A)

Fig. 3.35 Representation of
h(n) and x(n) sequences

(a) h(n) anu(n)

1

n

(b) x(n) u(n)

1

n
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Therefore,

y(n) = an
(
1 − 1

an+1

)

(
1 − 1

a

)

y(n) = (1 − an+1)

(1 − a)
u(n)

� Example 3.43

x(n) = u(n)

h(n) = u(n)

Find
y(n) = x(n) ∗ h(n)

Solution: The excitation sequence x(n) and the impulse response sequence h(n)

are shown in Fig. 3.36a and b, respectively. Since these two signals are causal, the
convolution sum can be written as follows:

y(n) =
n∑

k=0

(1)k(1)n−k

= (1)n
n∑

k=0

(1) =
n∑

k=0

1

According to finite summation formula

n∑

k=0

1 = (1 + n)

Fig. 3.36 Representation of
x(n) = u(n) and h(n) = u(n)

(a) x(n) u(n)

1

0 1 2 3 n

(b) h(n) u(n)

1

0 1 2 3 n
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Therefore
y(n) = (1 + n)u(n)

� Example 3.44

x(n) = u(n)

h(n) = (0.6)nu(n)

Find
y(n) = x(n) ∗ h(n)

Solution:

x(n) = 1n

x(k) = 1k

h(n) = (0.6)nu(n)

h(n − k) = (0.6)n−ku(n − k)

y(n) =
n∑

k=−0

1k(0.6)n−k

= (0.6)n
n∑

k=0

1k(0.6)−k

= (0.6)n
n∑

k=0

(
1

0.6

)k

= (0.6)n

[
1 − 1

(0.6)n+1

]

[
1 − 1

0.6

]

[Using Finite Summation Formula]

= [(0.6)n+1 − 1]
(0.6) − 1

y(n) = 2.5[1 − (0.6)n+1]u(n)

� Example 3.45

x(n) = anu(n)

h(n) = bnu(n)
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Find
y(n) = x(n) ∗ h(n)

Solution: x(n) and h(n) are causal and hence the range of convolution sum is 0 <

k < n.

x(n) = anu(n)

x(k) = aku(k)

h(n) = bnu(n)

h(n − k) = bn−ku(n − k)

y(n) =
n∑

k=0

x(k)h(n − k)

= bn
n∑

k=0

(a

b

)k

= bn

[
1 − ( a

b )n+1
]

(1 − a
b )

[Using Finite Summation Formula]

y(n) = (bn+1 − an+1)

(b − a)
u(n)

� Example 3.46

x(n) =
(
1

5

)n

u(n)

h(n) = 3nu(n)

Find
y(n) = x(n) ∗ h(n)

Solution:

x(n) =
(
1

5

)n

u(n)

x(k) =
(
1

5

)k

u(k)



356 3 Time Domain Analysis of Continuous and Discrete Time Systems

h(n) = 3nu(n)

h(n − k) = 3n−ku(n − k)

For causal x(n) ∗ h(n)

y(n) =
n∑

k=0

x(k)h(n − k)

=
n∑

k=0

(
1

5

)k

3n−k

= 3n
n∑

k=0

(
1

15

)k

Using finite summation formula, we get

y(n) = 3n

[
1 − 1

15n+1

]

(
1 − 1

15

)

= 3n [15n+1 − 1]
(14)

15

15n+1

y(n) = 1

14(5)n
[15n+1 − 1]u(n)

� Example 3.47

x(n) = (0.6)nu(n)

h(n) = (0.2)nu(n)

Find
y(n) = x(n) ∗ h(n)

Solution:

x(n) = (0.6)nu(n)

x(n − k) = (0.6)n−ku(n − k)

h(n) = (0.2)nu(n)

h(k) = (0.2)ku(k)
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Both x(n) and h(n) are causal signals. Hence, the summation of convolution is 0 <

k < n. In this problem, we use commutative property of convolution.

x(n) ∗ h(n) = h(k) ∗ x(n)

y(n) =
n∑

k=0

h(k)x(n − k)

=
n∑

k=0

(0.2)k(0.6)n−k

= (0.6)n
n∑

k=0

(
1

3

)k

Using finite summation formula, we get

y(n) = (0.6)n

[
1 − 1

3n+1

]

(
1 − 1

3

)

y(n) = (0.6)n

[
3n+1 − 1

]

2

3

3n+1

y(n) = 0.5(0.2)n[3n+1 − 1]u(n)

� Example 3.48

Two discrete time systems with impulse responses h1(n) and h2(n) are connected in
cascade as shown in Fig. 3.37. Determine the unit sample response of the intercon-
nected system.

Solution:
y(n) = x(n) ∗ h(n)

where
h(n) = h1(n) ∗ h2(n)

x(n) y(n)
h1(n)=(   )

n
u(n)3

1

System 1 System 2

h2(n)=(   )
n
u(n)4

1

Fig. 3.37 Impulse response of two systems connected in cascade
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For a sample

x(n) = δ(n)

x(n) ∗ h(n) = δ(n) ∗ h(n)

= h(n)

= h1(n) ∗ h2(n)

Therefore,

y(n) = h1(n) ∗ h2(n)

h1(k) =
(
1

3

)k

u(k)

h1(n − k) =
(
1

4

)n−k

u(n − k)

y(n) =
n∑

k=0

(
1

3

)k (1

4

)n−k

=
(
1

4

)n n∑

k=0

(
4

3

)k

=
(
1

4

)n

[
1 − (

4
3

)n+1
]

(
1 − 4

3

)

y(n) =
(
1

4

)n

3

[(
4

3

)n+1

− 1

]

u(n)

� Example 3.49

Determine the convolution of the signals

x(n) = cosπn u(n)

h(n) =
(
1

2

)n

u(n)

(Anna University, May, 2007)
Solution:

x(n) = cosπn u(n)

= (−1)nu(n)

x(k) = (−1)ku(k)
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h(n) =
(
1

2

)n

u(n)

h(n − k) =
(
1

2

)n−k

u(n − k)

Both x(n) and h(n) are casual. Hence, the convolution sum takes the range of 0 <

k < n.

y(n) =
n∑

k=0

x(k)h(n − k)

=
n∑

k=0

(−1)k

(
1

2

)n−k

=
(
1

2

)n n∑

k=0

[(−1)(2)]k

=
(
1

2

)n n∑

k=0

(−2)k

=
(
1

2

)n
[
1 − (−2)n+1

]

[1 − (−2)]
= 1

3

(
1

2

)n

[1 − (−2)n+1]

y(n) = 1

3

(
1

2

)n

[1 + 2(−2)n]u(n)

� Example 3.50

x(n) = (0.2)nu(n)

h(n) = (0.2)−nu(−n)

Find
y(n) = x(n) ∗ h(n)

Solution: The signal x(n) is a casual signal and h(n) is an anti-causal signal. x(k)

is shown in Fig. 3.38a and h(k) is shown in Fig. 3.38b, respectively. h(−k) is shown
in Fig. 3.38c and h(n − k) shifted to the extreme left for n < 0 and to the right for
n > 0. They are shown in Fig. 3.38d and e, respectively.
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x(k) h(k)

1

11

k k−k0 1

1

2 3 4 5

(a) (b)

(d)

(f)

(c)

(e)

•
•
•
•
• • •

h(−k)

k0 1

1

2 3 4

•
•
•
•

•

• • •

h(n−k)

k0

•
•
•
• • • •

0−1−2−3

•
•

•
•
•••

h(n−k)

n < 0

n > 0

k−k 0−1−2−3

•
•

•
• • ••••

n

y(n)

n−n 0−1 1 2 3 4−2−3−4

•
•

•
• •

•
• •

•
•••••••

n

Fig. 3.38 Convolution of casual and anti-causal signals

y(n) = x(n) ∗ h(n)

=
∞∑

k=−∞
x(k)h(n − k)

=
∞∑

k=−∞
(0.2)ku(k)(0.2)−(n−k)u(−(n − k))

= (0.2)−n
∞∑

k=−∞
(0.2)2ku(k)u(k − n)

When h(n − k) is moved toward the right, it overlaps with x(k) for n < 0 and for
n > 0. For n < 0

u(k)u(k − n) =
{
1 k > 0

0 otherwise
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Now the limits of summation of y(n) is 0 < k < ∞. Therefore,

y(n) = (0.2)−n
∞∑

k=0

[(0.2)2]k

= (0.2)−n

[
1

1 − (0.2)2

]

y(n) = (0.2)−n

0.96
n < 0

For n > 0

u(k)u(k − n) =
{
1 for k ≥ n

0 otherwise

The limits of the summation of y(n) is n ≤ k ≤ ∞

y(n) =
∞∑

k=n

(0.2)ku(k)(0.2)−(n−k)u(−n + k)

= (0.2)−n
∞∑

k=n

[(0.2)2]k

Using the finite summation formula

∞∑

k=n

ak = an

1 − a

we get

y(n) = (0.2)−n

[
(0.2)2n

(1 − 0.22)

]

= (0.2)n

0.96
n ≥ 0.

In general

y(n) = (0.2)|n|

0.96
for all n

The response y(n) is plotted and is shown in Fig. 3.38f.
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k−k 01 2−1−2−3−4−5−6

(a) (b)

• •
•
•
•
•

• •
•

k−k

(c)

•
•

•

•

h(n−k)

n−4

k−k 0 1 2 3 4 5 6 7

•
•

•
• • •

•

x(k) ( )4
1 k

h(k) ( )5
1 k

Fig. 3.39 Representation of signals for Example 3.51

� Example 3.51

x(n) =
{
0 n < −6
(
1
4

)n
n ≥ −6

h(n) =
{
0 n < 4
(
1
5

)n
n ≥ 4

Find
y(n) = x(n) ∗ h(n)

Solution: Figure 3.39a, b and c show x(k), h(k) and h(n − k), respectively.

y(n) = x(n) ∗ h(n) =
n−4∑

k=−6

x(k)h(n − k)

From Fig. 3.39a, the following equation is written.

x(k) =
{
0 k < −6
(
1
4

)k
k ≥ −6

From Fig. 3.39b, the following equation is written.
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h(n − k) =
{
0 (n − k) < 4 or k > n − 4
(
1
5

)k
(n − k) > 4 or k < n − 4

When h(n − k) is moved toward the right, h(n − k) overlaps with x(k) at n ≥ −2

y(n) =

⎧
⎪⎨

⎪⎩

0 n < −2
n−4∑

k=−6

(
1
4

)k ( 1
5

)n−k
n ≥ −2

using the following summation formula

n∑

k=m

(a)k = an+1 − am

(a − 1)

we get

y(n) =
n−4∑

k=−6

(
1

4

)k (1

5

)n−k

=
(
1

5

)n n−4∑

k=−6

(
5

4

)k

=
(
1

5

)n

[(
5
4

)n−3 − (
5
4

)−6
]

(
5
4 − 1

)

= 4

(
1

5

)n
[(

5

4

)n−3

−
(
5

4

)−6
]

= 4

(
1

5

)n
[(

5

4

)n+3 (4

5

)6

−
(
4

5

)6
]

= 47
(
1

5

)n+6
[(

5

4

)n+3

− 1

]

� Example 3.52

A linear time invariant discrete time system has the following impulse response.

h(n) =
(
1

2

)n

u(n)

The system is excited by the signal x(n)=u(n) determine the output of the system at
n = −6, n = 6 and n = 12.

Solution: x(k), h(k) and h(n − k) are shown in Fig. 3.40a, b and c, respectively. At
n = −6, h(n − k) < 0 and it does not overlap with x(k) and hence y(n) = 0. For
n > 0, the following equation is written:
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Fig. 3.40 Representation of
signals for Example 3.51

x(k)

x(n−k)

k

k

0 1

1

2 3

(a)

(c)

• • • •

• • •

•
•

•
•

••••

h(k)

k0 1

1

2 3 4

(b)
•
•
•
•

•• • •

n

y(n) = x(n) ∗ h(n)

=
n∑

k=0

x(n)h(k)

=
n∑

k=0

(
1

2

)n−k

=
(
1

2

)n n∑

k=0

(2)k

=
(
1

2

)n 1 − 2n+1

(1 − 2)

=
(
1

2

)n

(2n+1 − 1)u(n)

Substituting n = 6

y(6) =
(
1

2

)6

[27 − 1]

y(6) = 127

64

Substituting n = 12

y(12) =
(
1

2

)12

[213 − 1]

y(12) = 8191

4096
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Fig. 3.41 Signals of
Example 3.53

x(k)

k0 1

1

2 3

(a)

• • • • • •

• • •

h(n−k)

(n−4)−k k0

(c)

• • •

• • •

• • •

h(k)

k0 1 2 3 4 5

(b)

• • •

y(−6) = 0

� Example 3.53

x(n) = u(n)

h(n) = u(n − 4)

Find
y(n) = x(n) ∗ h(n)

Solution: The signals x(k), h(k) and h(n − k) are shown in Fig. 3.41a, b and c,
respectively. Figure 3.41c is moved toward right so that it overlaps with x(k). Over-
lapping occurs for n − 4 ≤ k ≤ ∞. Therefore, the limit of convolution sum is k = 0
to k = (n − 4)

y(n) =
n−4∑

k=0

x(k)h(n − k) n ≥ 4

=
n−4∑

k=0

1 = (n − 3)

y(n) = (n − 3) n ≥ 4
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� Example 3.54

A linear time invariant system has the following impulse response:

h(n) = [u(n) − u(n − 6)]

The system is excited by

x(n) = [u(n − 1) − u(n − 5)]

Determine the output of the system.

x(k)

k0 1

1

2 3 4

(a)

• • • •

h(k)

k0 1

1

2 3 4 5

(b)

• • • • • •

h(n−k)

n < 0

n−5 n

k−k 0−5

1

−4 −3 −2 −1

(c)

•• •••• • •

h(n−k)

h(n−k)

n−5

1 < n < 4

4 < n < 6

n

k−k 2

1

1

−2 −1 0

0

1 3

1 2 3 4 6 7 8

4

k

(d)

(e)

• •

• •• • • •

• • •

•• ••

• • •

•

n−5

−3

n

5

Fig. 3.42 Convolution sum for Example 3.54. Response plot of Example 3.52
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h(n−k)

n−5 n

6 < n < 9

1

1

0 4 5 6 7 9 k

(f)

• • • • • •

• •

h(n−k)

n−5 n

n > 9

0 6 7 8 9 k

(g)

• • • • • •

• • ••

y(n)

0

1 1

0

2 1

22

3

3 3

4

4 4 4

5 6 7 8 n

(h)

• •

•

• •

9 10

• •
• • •

Fig. 3.42 (continued)

Solution:
Method 1

1. x(k), h(k) and h(n − k) are represented in Fig. 3.42a, b and c, respectively. For
n = 0, there is no overlapping and hence y(n) = 0.

2. Overlapping interval 1:
h(n − k) when moved toward right overlaps with x(k) when the leading edge
(right edge) of h(n − k) crosses past the left edge x(k). This happenswhen n > 1.
This overlapping does not change until n < 4. Hence, the overlapping interval
is 1 ≤ n ≤ 4 The summation interval is from k = 1 to k = n.

y1(n) =
n∑

k=1

1

The finite summation formula used is

N2∑

k=N1

1 = N2 − N1 + 1
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Therefore,
y1(n) = n − 1 + 1 = n 1 ≤ n ≤ 4s

This is shown in Fig. 3.42d.
3. Overlapping interval 2:

For n > 4, the right edge of h(n − k) crosses past the right edge of x(k). This
change of overlapping occurs during the time interval 4 < n < 6. The output
during this interval is y2(n)

y2(n) =
4∑

k=1

1 4 ≤ n ≤ 6

= 4 − 1 + 1

= 4

This is shown in Fig. 3.42e.
4. Overlapping interval 3:

When the left edge of h(n − k) crosses past the left edge of x(k), there is overlap-
ping and it continues untiln = 4.Theoverlapping interval is therefore 6 ≤ n < 9.
The output is y3(n). The limits of summation is from
k = n − 5 to k = 4

y3(n) =
4∑

k=n−5

1

= −n + 5 + 4 + 1

= 10 − n 6 < n < 9

This is shown in Fig. 3.42f.
5. For n > 9, there is no overlapping and hence y(n) = 0. This is shown in

Fig. 3.42g. Hence, the output response y1(n), y2(n) and y3(n) are summed up
with their respective time interval to get the total response y(n).

6.

y(n) = n 1 < n < 4

y(n) = 4 4 < n < 6

y(n) = 10 − n 6 < n < 9

The values of y(n) for 1 ≤ n ≤ 10 is shown in the following table. y(n) =
{0, 1, 2, 3, 4, 4, 4, 3, 2, 1}

n 0 1 2 3 4 5 6 7 8 9 10
y(n) 0 1 2 3 4 4 4 3 2 1 0
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7. The plot of y(n) with respect to n is shown in Fig. 3.42h.
8. To check the width property of convolution. The width property can be easily

checked. The number of elements of h(n) is T1 = 4. The number of elements of
h(n) isT2 = 6. Thewidth property of y(n) isT = T1 + T2 − 1 = 6 + 4 − 1 = 9.
From Fig. 3.42h, it is seen that y(n) has 9 elements.

Method 2

1. x(k) and h(k) can be expressed by the following sequences

x(n) = δ(n − 1) + δ(n − 2) + δ(n − 3) + δ(n − 4)

h(n) = δ(n) + δ(n − 1) + δ(n − 2) + δ(n − 3) + δ(n − 4) + δ(n − 5)

2.

y(n) = h(n) ∗ x(n)

= h(n) ∗ [δ(n − 1) + δ(n − 2) + δ(n − 3) + δ(n − 4)]
= h(n) ∗ δ(n − 1) + h(n) ∗ δ(n − 2) + h(n) ∗ δ(n − 3) + h(n) ∗ δ(n − 4)

= y1(n) + y2(n) + y3(n) + y4(n)

where

y1(n) = h(n) ∗ δ(n − 1)

y2(n) = h(n) ∗ δ(n − 2)

y3(n) = h(n) ∗ δ(n − 3)

y4(n) = h(n) ∗ δ(n − 4)

By using the property h(n) ∗ δ(n − 1) = h(n − 1), we get

y1(n) = δ(n − 1) + δ(n − 2) + δ(n − 3) + δ(n − 4) + δ(n − 5) + δ(n − 6)

y2(n) = h(n) ∗ δ(n − 2)

= δ(n − 2) + δ(n − 3) + δ(n − 4) + δ(n − 5) + δ(n − 6) + δ(n − 7)

y3(n) = h(n) ∗ δ(n − 3)

= δ(n − 3) + δ(n − 4) + δ(n − 5) + δ(n − 6) + δ(n − 7) + δ(n − 8)

y4(n) = δ(n − 4) + δ(n − 5) + δ(n − 6) + δ(n − 7) + δ(n − 8) + δ(n − 9)

y(n) = y1(n) + y2(n) + y3(n) + y4(n)

y(n) = δ(n − 1) + 2δ(n − 2) + 3δ(n − 3) + 4δ(n − 4) + 4δ(n − 5)

+4δ(n − 6) + 3δ(n − 6) + 2δ(n − 7) + δ(n − 9)
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x(k) u(k) u(k−4)

1

0 1 2 3 k

(a)

• •• •

h(k)=ak

1

0 1 2 3 k

(b)

k−k n

(c)

•
•

•
•

•• • •
0

h(n−k)=a(n−k)

•
•

•
•
• •

Fig. 3.43 Representation of signals for Example 3.53

y(n) = {0, 1, 2, 3, 4, 4, 4, 3, 2, 1}

The same result is analytically obtained in a simpler way as illustrated above.

� Example 3.55

x(n) = u(n) − u(n − 4)

h(n) = anu(n) 0 < a < 1

Find
y(n) = x(n) ∗ h(n)

Solution:

1. Time interval 0 < n < 3:
x(k) = u(k) − u(k − 4) is shown in Fig. 3.43a. h(k) is represented in Fig. 3.43b
and h(n − k) is shown in Fig. 3.43c.

2. Overlapping between x(k) and h(n − k) does not occur for k < 0 or n < 0.
Therefore y(n) = 0 for n < 0.

3. When h(n − k) is moved toward right, the right edge of h(n − k) overlaps with
the left edge of x(k). The overlapping occurs for the time interval 0 ≤ n ≤ 3.
The summation of limits are therefore from 0 to n. Therefore,
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y(n) =
n∑

k=0

an−k1

= an
n∑

k=0

(
1

a

)k

= an

[
1 − 1

an+1

]

(1 − 1
a )

= (an+1 − 1)

(a − 1)

y(n) = (1 − an+1)

(1 − a)
0 < n < 3

4. Time interval n > 3:

When h(n − k) moves further toward the right for n > 3, the overlapping con-
tinues and the limit of the convolution sum is 0 ≤ k ≤ 3

y(n) =
3∑

k=0

x(k)h(n − k)

=
3∑

k=0

an−k

= an
3∑

k=0

(
1

a

)k

= an

[
1 − 1

a4
]

(1 − 1
a )

y(n) = an−3 [1 − a4]
(1 − a)

n ≥ 3

� Example 3.56

x(n) = [u(n) − u(n − 6)]
h(n) = an[u(n) − u(n − 3)] where 0 < a < 1

Find (Fig. 3.44)
y(n) = x(n) ∗ h(n)
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x(k)=u(k)−u(k−6)

k k0 1

1

2 3 4 5

(a)

• • • • • •

u(k)−u(k−3)

0 1

1

2

(b)

• • •

k −k

h(k)=ak[u(k)−u(k−3)]

0 1

1

2

(c) (d)

•

•

•

k

h(n−k)

•

•
•

(n−2) n

Fig. 3.44 Representation of signals for Example 3.56

Solution:

1. For n < 0, h(n − k) and x(k) do not overlap. Hence,

y(n) = 0 for n < 0

2. When h(n − k) is moved toward right h(n − k) overlaps with x(k) for the time
interval 0 ≤ n ≤ 2. Here, the limits of the convolution sum is 0 ≤ k ≤ 5

x(k) =
{
1 0 ≤ k ≤ 5

0 otherwise

h(n − k) =
{

a(n−k) k ≤ n

0 otherwise

y(n) =
n∑

k=0

an−k 0 ≤ n ≤ 2

= an

[
n∑

k=0

(
1

a

)k
]

= an

[
1 − 1

an+1

]

(
1 − 1

a

)

y(n) = (1 − an+1)

(1 − a)
0 ≤ n ≤ 2
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3. For n ≥ 2, the left edge of h(n − k) slides over the left edge of x(k). But the
right edge of h(n − k) is within the right edge of x(k). For this the time duration
is 2 ≤ n ≤ 5. Here, the limit of the convolution sum is (n − 2) ≤ k ≤ n

y(k) =
n∑

k=n−2

an−k

Put p = k − n + 2

=
2∑

p=0

a(2−p)

= a2

⎡

⎣
2∑

p=0

(
1

a

)p
⎤

⎦

= a2

[
1 − 1

a3
]

(
1 − 1

a

)

y(n) = (1 − a3)

(1 − a)
2 ≤ n ≤ 5

4. For n > 5, the right edge of h(n − k) slides past the right edge of x(k). The left
edge of h(n − k) is within the right edge of x(k) if n < 7. Hence, the time interval
is 5 ≤ n ≤ 7. The limits of the convolution sum is (n − 2) ≤ k ≤ 5.

y(n) =
k=5∑

k=n−2

an−k 5 ≤ n ≤ 7

using the following summation formula

n∑

k=m

(a)k = an+1 − am

(a − 1)

we get

y(n) =
k=5∑

k=n−2

an−k

= an
k=5∑

k=n−2

(
1

a

)k
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=
an
[(

1
a

)6 − (
1
a

)n−2
]

(
1
a − 1

)

=
an+1

[(
1
a

)6 − (
1
a

)n
a2
]

(1 − a)

= an−5
[
1 − a8−n

]

(1 − a)
5 ≤ n ≤ 7

5. For n > 7, the left edge of h(n − k) leaves the right edge of x(k) and there is no
overlapping between x(k) and h(n − k). Consequently y(n) = 0 for n > 7.

� Example 3.57

The impulse response of a certain LTID system is given by

h(n) = u(n + 1) − u(n − 4)

The system is excited by the following signal.

x(n) = u(n) − 2u(n − 2) + u(n − 4)

Analytically derive an expression for y(n) = h(n) ∗ x(n) and plot the same.

Solution:

1. u(n), −2u(n − 2) and u(n − 4) are shown in Fig. 3.45a, b and c, respectively.
From these figure x(n) = u(n) − 2u(n − 2) + u(n − 4) is obtained and repre-
sented in Fig. 3.45d.

2. h(n) = u(n + 1) − u(n − 4) is represented in Fig. 3.45e. From this figure, we
get h(n) = {1,1, 1, 1, 1}.

↑
3.

y(n) = h(n) ∗ x(n)

x(n) = δ(n) + δ(n − 1) − δ(n − 2) − δ(n − 3)

y(n) = h(n) ∗ δ(n) + h(n) ∗ δ(n − 1) − h(n) ∗ δ(n − 2) − h(n) ∗ δ(n − 3)

= h(n) + h(n − 1) − h(n − 2) − h(n − 3)

= y1(n) + y2(n) + y3(n) + y4(n)

where

y1(n) = h(n) = δ(n + 1) + δ(n) + δ(n − 1) + δ(n − 2) + δ(n − 3)

y2(n) = h(n − 1) = δ(n) + δ(n − 1) + δ(n − 2) + δ(n − 3) + δ(n − 4)
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(a) (b)u(n)

2u(n 2)

1

0 1 2 3 n

(c) u(n 4)

1

4 5 6 n

2

2

3 4 5 6 n

(e) h(n)

1

1 0 21 3 n

(d) x(n) u(n) 2u(n 2) u(n 4)

1

1

2 13 n

(f) y(n) h(n) * x(n)

2
1 1

1 2 1 03 4 5

1 1

2

6 n

Fig. 3.45 Signal representation of Example 3.57

y3(n) = −h(n − 2) = −δ(n − 1) − δ(n − 2) − δ(n − 3) − δ(n − 4) − δ(n − 5)

y4(n) = −h(n − 3) = −δ(n − 2) − δ(n − 3) − δ(n − 4) − δ(n − 5) − δ(n − 6)

y(n) = δ(n + 1) + 2δ(n) + δ(n − 1) − δ(n − 4) − 2δ(n − 5) − δ(n − 6)

y(n) = {1, 2, 1, 0, 0, −1, −2, −1}↑

The output response y(n) is represented in Fig. 3.45f.

� Example 3.58

x(n) = 2nu(−n − 2)

h(n) = u(n − 1)
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Fig. 3.46 Signal
representation of Example
3.58

(a) x(k) 2ku( k 2)

1
4

234k 0 k

(c) h(n k)

(n 1)k 0 k

(b) h(k) u(k 1)

1

0 1 2 3 k

1
81

16

Find
y(n) = x(n) ∗ h(n)

by analytical method (Fig. 3.46).

Solution:

x(k) = 0 for k > −2

= 2k for k ≤ −2

h(n − k) = 0 for k > n − 1

= 1 for k ≤ n − 1

1. Time interval −∞ < n < −1.
When h(n − k) is moved from extreme left toward right, the right edge of h(n −
k) starts overlapping with the left edge of x(k) during the interval −∞ < k <

n − 1. Hence, the summation interval is from −∞ to (n − 1).

y(n) =
n−1∑

k=−∞
2k − ∞ < n < −1

= 2n−1 + 2n−2 + 2n−3 + · · ·

y(n) = 2n−1

[

1 + 1

2
+ 1

22
+ 1

23
+ · · ·

]

= 2n−1

[
1

1 − 1
2

]

y(n) = 2n − ∞ < n < −1



3.15 Response Using Convolution Sum 377

2. Time interval n > −1.
For n ≥ −1, the right edge of h(n − k) slides past the right edge of x(k) where
there is transition. The limits of convolution sum is therefore −∞ < k < −2.

y(n) =
−2∑

k=−∞
2k n > −1

=
∞∑

2

(
1

2

)k

Using the summation formula

∞∑

k=n

(a)k = an

(1 − a)

we get

y(n) =
(
1

2

)2 1

1 − (
1
2

)

= 0.5 n > −1

y(n) = 2n n < −1

y(n) = 0.5 n > −1

� Example 3.59

What is the response of anLTID systemwith impulse responseh(n) = δ(n) + 2δ(n −
1) for the input x(n) = {1, 2, 3}?

(Anna University, April, 2005)
Solution:

h(n) = δ(n) + 2δ(n − 1)

x(n) = {1, 2, 3}
= δ(n) + 2δ(n − 1) + 3δ(n − 2)

The output response y(n) is obtained by the following convolution

h(n) = h(n) ∗ x(n)

= h(n) ∗ δ(n) + h(n) ∗ 2δ(n − 1) + h(n) ∗ 3δ(n − 2)

= y1(n) + y2(n) + y3(n)
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Fig. 3.47 Response of
Example 3.59

y(n)

0

4

1

1

7
6

2 3 n

where

y1(n) = h(n) ∗ δ(n) = h(n)

y2(n) = h(n) ∗ 2δ(n − 1) = 2h(n − 1)

y3(n) = h(n) ∗ 3δ(n − 2) = 3h(n − 2)

y1(n) = h(n) = δ(n) + 2δ(n − 1)

y2(n) = 2h(n − 1) = 2δ(n − 1) + 4δ(n − 2)

y3(n) = 3h(n − 2) = 3δ(n − 2) + 6δ(n − 3)

∴ y(n) = δ(n) + 4δ(n − 1) + 7δ(n − 2) + 6δ(n − 3)

The response is plotted and is shown in Fig. 3.47.

� Example 3.60

Find the overall impulse response of the system shown in Fig. 3.48a if

h1(n) =
(
1

3

)n

u(n)

h2(n) =
(
1

2

)n

u(n)

h3(n) =
(
1

5

)n

u(n)

(Anna University, April, 2004)
Solution:

1. The block diagram of the system of Example 3.60 is shown in Fig. 3.48a. Its
equivalence by block diagram reduction technique is shown in Fig. 3.48b.

2. FromFig. 3.48b, it is seen that the blocks h1 and h3 are in cascade and their convo-
lution is h1 ∗ h3. Similarly, h2(n) and h3(n) are in cascade and their convolution
is h2(n) ∗ h3(n). The block diagram of the above step is shown in Fig. 3.48c.
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h
1
(n)

x(n)

h
2
(n) h

3
(n)

(a)

x(n)

y(n)

y(n)

h
1
(n)

h
2
(n)

h
1
(n)

h
3
(n)

h
3
(n)

(b)

x(n) y(n)

h
1
(n) * h

3
(n)

h
2
(n) * h

3
(n)

h
1
(n)

(c)

Fig. 3.48 Block diagram representation and its equivalence Example 3.60. c Block diagram of
Step 2

3. From Fig. 3.48c, the following equations are obtained

y(n) = [h1(n) ∗ h3(n) + h1(n) + h2(n) ∗ h3(n)] ∗ x(n)

x(n) = δ(n)

Therefore,

y(n) = [h1(n) ∗ h3(n) + h1(n) + h2(n) ∗ h3(n)] ∗ δ(n)

= h1(n) ∗ h3(n) + h1(n) + h2(n) ∗ h3(n)

= y1(n) + y2(n) + y3(n)

y1(n) = h1(n) ∗ h3(n)
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Since the impulse response of all the blocks are causal, the limits of convolution
sum is 0 ≤ k ≤ n.

y1(n) =
n∑

k=0

(
1

3

)n−k (1

5

)k

=
(
1

3

)n n∑

k=0

(
3

5

)k

=
(
1

3

)n

[
1 − (

3
5

)n+1
]

1 − 3
5

y1(n) = 5

2

(
1

3

)n [5n+1 − 3n+1]
5(n+1)

u(n)

y2(n) = h1(n) =
(
1

3

)n

u(n)

y3(n) = h2(n) ∗ h3(n)

=
n∑

k=0

(
1

2

)n−k (1

5

)k

=
(
1

2

)n n∑

k=0

(
2

5

)k

=
(
1

2

)n

[
1 − (

2
5

)n+1
]

1 − 2
5

y3(n) = 5

3

(
1

2

)n [5n+1 − 2n+1]
5n+1

u(n)

y(n) = y1(n) + y2(n) + y3(n)

y(n) =
{
5

2

(
1

3

)n [5n+1 − 3n+1]
5n+1

+
(
1

3

)n

+ 5

3

(
1

2

)n [5n+1 − 2n+1]
5n+1

}

u(n)
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3.15.2 Convolution Sum of Two Sequences by
Multiplication Method

Let

x(n) = {x1, x2, x3, x4}↑
h(n) = {h1, h2, h3}↑

The convolution of these two sequences x(n) ∗ h(n) is obtained as given below

1. Write down x(n) and h(n) one below the other

x1 x2 x3 x4
h1 h2 h3

2. Carry out the multiplication of the first row by the second row as given below

x1 x2

h1

h3x1 h3x2 h3x3

h2x4

h3x4

h3x4=A1

h3x3+h2x4=A2

h3x2+h2x3+h1x4=A3

h3x1+h2x2+h1x3=A4

h2x1+h1x2=A5

h1x1=A6

h2x3h2x2

h1x3

h2x1

h1x2h1x1 h1x4

h2

x3

h3

x4

3. Arrange the sequences so obtained as given below

y(n) = {A6, A5, A4, A3, A2, A1}↑

4. Let N1 = width of the x(n) sequence to the left and N2 = width of the h(n)

sequence to the left.
The width of the output sequence y(n) to the left is N = N1 + N2. In the example
illustrated aboveN1 = 2 andN2 = 2. In the y(n) sequence, the arrow correspond-
ing to n = 0 is marked such that to the left of the arrow N = N1 + N2 = 4 is
marked which is at A2. From y(n) sequence y(0) = A2; y(1) = A1; y(−1) = A3;
y(−2) = A4; y(−3) = A5 and y(−4) = A6.
The width property can also be easily checked. For x(n) the width T1 = 4. For
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h(n), thewidthT2 = 3. Thewidth of y(n) = T = T1 + T2 − 1 = 4 + 3 − 1 = 6.

It is to be noted here the above method follows the theory explained in
Example 3.54, Method 2 and also in Example 3.59.

The following examples illustrate the above method.

� Example 3.61

What is the response of anLTID systemwith impulse responseh(n) = δ(n) + 2δ(n −
1) for the input x(n) = {1, 2, 3}.
Solution:

h(n) = δ(n) + 2δ(n − 1)

= {1, 2}↑
x(n) = {1, 2, 3}↑

whereN1 = 0, N2 = 0, N = N1 + N2 = 0 andT1 = 2, T2 = 3, T = 3 + 2 − 1 = 4

1 2
1 2 3

3 6
2 4

1 2

1 4 7 6

y(n) = {1, 4, 7, 6}↑

The same result as in Example 3.59 is obtained.

� Example 3.62

Find the convolution of x(n) = {1, 2, 3, 4, 5} with h(n) = {1, 2, 3, 3, 2, 1}.
(Anna University, May, 2005)

Solution: When no arrow is marked in x(n) or h(n), the signals are to be taken as
causal and therefore N1 = 0,N2 = 0 and N = N1 + N2 = 0; T1 = 6, T2 = 5, T =
6 + 5 − 1 = 10.
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The following multiplication is done.

1 2 3 3 2 1
1 2 3 4 5

5 10 15 15 10 5
4 8 12 12 8 4

3 6 9 9 6 3
2 4 6 6 4 2

1 2 3 3 2 1
1 4 10 19 30 36 35 26 14 5

y(n) = {1, 4, 10, 19, 30, 36, 35, 26, 14, 5}↑

� Example 3.63

Find the linear convolution of

x(n) = {1, 2, 3, 4, 5, 6}↑

and

h(n) = {2, −4, 6, −8}↑

(Anna University, April, 2004)
Solution:

1 2 3 4 5 6
2 −4 6 −8

−8 −16 −24 −32 −40 −48
6 12 18 24 30 36

−4 −8 −12 −16 −20 −24
2 4 6 8 10 12
2 0 4 0 −4 −8 −26 −4 −48

here N1 = 0; N2 = 0 and N = 0; T1 = 6, T2 = 4 and T = 6 + 4 − 1 = 9.

y(n) = {2, 0, 4, 0, −4, −8, −26, −4, −48}↑
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� Example 3.64

x(n) = {−1/2, 2, 1/3, 3/2}↑
h(n) = {1, −1/2, 2/3}↑

Find y(n) by convolution method.

Solution:HereN1 = 1; N2 = 2 andN1 + N2 = 3; T1 = 4, T2 = 3 and T = 4 + 3 −
1 = 6.

−1

2
2

1

3

3

2
1 −1

2

2

3

−1

3

4

3

2

9
1

1

4
−1 −1

6
−3

4
−1

2
2

1

3

3

2

−1

2

9

4
−1

8

3
−19

36
1

y(n) =
{

−1

2
,

9

4
, −1,

8

3
, −19

36
, 1

}

↑

� Example 3.65

Find the convolution of the following

x(n) = u(n) − 3u(n − 2) + 2u(n − 4)

h(n) = u(n + 1) − u(n − 8)

Solution:

1. x(n) and h(n) are represented in Fig. 3.49a and d, respectively.

From Fig. 3.49a, x(n) is written as

x(n) = {1, 1, −2, −2} N1 = 0; T1 = 4↑
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x(n)

u(n)

(a)

(c) (d)

1

0 1 2

1

1

1 1

2

2 2

32

2 2 2 2u(n 4)

3u(n 2)

u(n 1)

u(n 8)

1 0 1

1

6 875432

h(n)

3

1 1

1

3 3

n

x(n)
(b)

n

n

3 4 5

11 1

8 9

h(n)

Fig. 3.49 Representation of x(n) and h(n) of Example 3.65

From Fig. 3.49d, h(n) is written as

h(n) = {1, 1, 1, 1, 1, 1, 1, 1, 1} N2 = 1; T2 = 9↑
2. The following multiplication is carried out:

1 1 1 1 1 1 1 1 1
1 1 −2 −2

−2 −2 −2 −2 −2 −2 −2 −2 −2
−2 −2 −2 −2 −2 −2 −2 −2 −2

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 2 0 −2 −2 −2 −2 −2 −2 −3 −4 −2

N = N1 + N2 = 0 + 1 = 1 and T = T1 + T2 − 1 = 4 + 9 − 1 = 12.

y(n) = {1, 2, 0,−2,−2,−2,−2,−2,−2,−3,−4,−2}↑



386 3 Time Domain Analysis of Continuous and Discrete Time Systems

3.15.3 Convolution Sum by Tabulation Method

The convolution sum of two sequences x(n) and h(n) to obtain y(n) by tabulation
method is explained below

1. Let

x(n) = {x1, x2, . . . , x(n)}
h(n) = {h1, h2, . . . , h(n)}

Mark x1, x2, . . . , xn in columns and h1(n), h2(n), . . . , h(n) in rows.
2. The h1 row is completed by multiplying the corresponding column. Thus when

h1 row crosses with x1 column, the product becomes x1h1. Similarly, when h1
row crosses with x2 column, the product becomes h1x2. Thus, all the elements
rowwise are determined and tabulated.

3. Draw the diagonal dotted lines as shown in Table 3.2.
4. By adding the elements in a particular diagonal gives y(n).
5. The value of N and T of the sequence y(n) are determined as explained in the

previous examples.
From Table 3.2, y(n) is obtained and is given below.

From diagonal 1, y(0) = x1h1
From diagonal 2, y(1) = x1h2 + x2h1
From diagonal 3, y(2) = x1h3 + x2h2 + x3h1

From diagonal 4, y(3) = x1h4 + x2h3 + x3h2 + x4h1
From diagonal 5, y(4) = x1h5 + x2h4 + x3h3 + x4h2 + x5h1
From diagonal 6, y(5) = x2h5 + x3h4 + x4h3 + x5h2
From diagonal 7, y(6) = x3h5 + x4h4 + x5h3
From diagonal 8, y(7) = x4h5 + x5h4
From diagonal 9, y(8) = x5h5

y(n) = {y(0), y(1), y(2), y(3), y(4), y(5), y(6), y(7), y(8)}

From the y(n), the width property T = T1 + T2 can be easily checked. The arrow
↑ corresponding to n = 0 is decided by N1 and N2. The following examples
illustrate the above method.



3.15 Response Using Convolution Sum 387

Table 3.2 Tabulation method of convolution

 x
1
 h

1 
x

2
 h

1 
x

3
 h

1 
x

4
 h

1 
x

5
 h

1

 x
1
 h

2 
x

2
 h

2 
x

3
 h

2 
x

4
 h

2 
x

5
 h

2

 x
1
 h

3 
x

2
 h

3 
x

3
 h

3 
x

4
 h

3 
x

5
 h

3

 x
1
 h

4 
x

2
 h

4 
x

3
 h

4 
x

4
 h

4 
x

5
 h

4

 x
1
 h

5 
x

2
 h

5 
x

3
 h

5 
x

4
 h

5 
x

5
 h

5

h
1

diagonal 1

diagonal 2

diagonal 3

diagonal 4

diagonal 5

diagonal 6

h
2

h
3

h
4

h
5

y(0)
x

1

y(1)
x

2

y(2)
x

3

diagonal 7 diagonal 8 diagonal 9

y(3)
x

4

y(4)

y(5)

y(6)

y(7)

y(8)

x
5

� Example 3.66

x(n) = {1, 2, 3, 4, 5}
h(n) = {1, 2, 3, 3, 2, 1}

Find
y(n) = x(n) ∗ h(n)

(Anna University, April, 2005)
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Solution:

1 11

2

3

2

1

3

2 1

3 1 3 2 3 3 3 4 3 5

3 1 3 2 3 3 3 4 3 5

2 2 2 3 2 4 2 5

2 1 2 2 2 3 2 4 2 5

1 2 1 3 1 4 1 5

1 1 1 2 1 3 1 4 1 5

h(n)

x(n)

y(0) 1
1

y(1) 4
2

y(2) 10
3

y(3) 19
4

y(4) 30

y(5) 36

y(6) 35

y(7) 26

y(8) 14

y(9) 5

5

y(n) = {1, 4, 10, 19, 30, 36, 35, 26, 14, 5}

Since N1 = 0 and N2 = 0, N = N1 + N2 = 0. Therefore, the first diagonal corre-
sponds to y(0). Further, x(n) has T1 = 5 and h(n) has T2 = 6. Hence y(n) has a
width of T = T1 + T2 − 1 = 5 + 6 − 1 = 10. Thus, y(n) starts with y(0) and goes
up to y(9). They are calculated from the respective diagonal.

y(0) = 1 × 1 = 1

y(1) = 2 × 1 + 1 × 2 = 4

y(2) = 3 × 1 + 2 × 2 + 1 × 3 = 10

y(3) = 3 × 1 + 3 × 2 + 2 × 3 + 1 × 4 = 19

y(4) = 2 × 1 + 3 × 2 + 3 × 3 + 2 × 4 + 1 × 5 = 30
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y(5) = 1 × 1 + 2 × 2 + 3 × 3 + 3 × 4 + 2 × 5 = 36

y(6) = 1 × 2 + 2 × 3 + 3 × 4 + 3 × 5 = 35

y(7) = 1 × 3 + 2 × 4 + 3 × 5 = 26

y(8) = 1 × 4 + 2 × 5 = 14

y(9) = 1 × 5 = 5

y(n) = {1, 4, 10, 19, 30, 36, 35, 26, 14, 5}

� Example 3.67

Find the linear convolution of

x(n) = {1, 2, 3, 4}↑

h(n) = {2, −4, 6, −8}↑

Plot the response y(n).

Solution:

2 1 2

6 16 6 2 6 3 6 4

4 14

8 18 8 2 8 3 8 4

4 2 4 3 4 4

2 2 2 3 2 4

y( 5) 2

h(n)

1
y( 4) 0

2
y( 3) 4

3
y( 2) 0

y( 1) 14

y(0) 0

y(1) 32

4

x(n)

The tabulation of x(n) and h(n) is shown above. T1 = 4 and T2 = 4 and hence
T = T1 + T2 − 1 = 4 + 4 − 1 = 7. There should be 7 diagonals in the table.N1 = 2
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Fig. 3.50 Response plot of
Example 3.67

y(n)

2

4

5 4 3 2

14

32

1 0 1 nn

and N2 = 3 and therefore N = N1 + N2 = 2 + 3 = 5. There should be five elements
to the left of y(0) out of the total of seven. Therefore, the first diagonal corresponds
to y(−5) and the last diagonal corresponds to y(1). They are calculated as follows:

y(−5) = 2 × 1 = 2

y(−4) = −4 × 1 + 2 × 2 = 0

y(−3) = 6 × 1 − 4 × 2 + 2 × 3 = 4

y(−2) = −8 × 1 + 6 × 2 − 4 × 3 + 2 × 4 = 0

y(−1) = −8 × 2 + 6 × 3 − 4 × 4 = −14

y(0) = −8 × 3 + 6 × 4 = 0

y(1) = −8 × 4 = −32

y(n) = {2, 0, 4, 0,−14, 0,−32}↑

y(n) is plotted as shown in Fig. 3.50.

3.15.4 Convolution Sum of Two Sequences by Matrix Method

By thismethod, the data sequences are represented as amatrix. Let T1 be the length of
the signal x(n) and T2 be the length of h(n). The X matrix is formed with a dimension
of (T1 + T2 − 1) × T2 and a H matrix is formed with a dimension of T2 × 1. The Y
matrix is obtained as

Y = XH

The output response y(n) is obtained by putting the arrowmark (↑) in the appropriate
place by determining the range of N as explained in previous cases.
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The formation of X matrix is as follows. The first column of X is formed from
the sequence of x(n). The other elements of X are formed as explained below. H
is a column matrix which is nothing but the transpose of h(n). Consider x(n) =
{x1, x2, x3, x4} and h(n) = {h1, h2, h3}

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1 0 0 0
x2 x1 0 0
x3 x2 x1 0
x4 x3 x2 x1
0 x4 x3 x2
0 0 x4 x3
0 0 0 x4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

7×4

; H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h1

h2

h3

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

4×1

The elements of the matrix X are completed by diagonalizing with x1, then x2, x3, x4
and so on. The Y matrix is obtained by multiplying the matrices X and H. To satisfy
the multiplication property of matrix, the last row of H is put as 0.

Y = XH

Y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1 0 0 0
x2 x1 0 0
x3 x2 x1 0
x4 x3 x2 x1
0 x4 x3 x2
0 0 x4 x3
0 0 0 x4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h1

h2

h3

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

y(0)
y(1)
y(2)
y(3)
y(4)
y(5)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1h1
x2h1 + x1h2
x3h1 + x2h2 + x1h3
x4h1 + x3h2 + x2h3
x4h2 + x3h3
x4h3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The following examples illustrate the above method.

� Example 3.68

x(n) = {1, 2, 3, 4, 5, 6}
h(n) = {2, −4, 6, −8}

Find
y(n) = x(n) ∗ h(n)



392 3 Time Domain Analysis of Continuous and Discrete Time Systems

by matrix method.

Solution:

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0
2 1 0 0 0 0
3 2 1 0 0 0
4 3 2 1 0 0
5 4 3 2 1 0
6 5 4 3 2 1
0 6 5 4 3 2
0 0 6 5 4 3
0 0 0 6 5 4
0 0 0 0 6 5
0 0 0 0 0 6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

11×6

; H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2

−4

6

−8

0

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

6×1

Y = XH

Y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 × 2 = 2
2 × 2 − 1 × 4 = 0
3 × 2 − 2 × 4 + 1 × 6 = 4
4 × 2 − 3 × 4 + 2 × 6 − 8 = 0
5 × 2 − 4 × 4 + 3 × 6 − 2 × 8 = −4
6 × 2 − 5 × 4 + 4 × 6 − 3 × 8 = −8
−6 × 4 + 5 × 6 − 4 × 8 = −26
6 × 6 − 5 × 8 = −4
−6 × 8 = −48

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

For x(n),N1 = 0 and for h(n),N2 = 0. For y(n),N = 0 therefore in the abovematrix,
the first row corresponds to y(0).

y(n) = {2, 0, 4, 0, −4, −8, −26, −4, −48}
↑N=0

� Example 3.69

Find the convolution sum for the following sequences

x(n) = {1, 1, 0, 1, 1}
↑

h(n) = {1, −2, −3, 4}
↑
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Solution:

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
1 0 1 1 0
1 1 0 1 1
0 1 1 0 1
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

9×5

; H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

−2

−3

4

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

5×1

Y = XH

Y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1 − 2

−2 − 3
1 − 3 + 4
1 − 2 + 4
−2 − 3
−3 + 4

4
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
−1
−5
2
3

−5
1
4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

N1 = 3; N2 = 1 and hence N = 4; T1 = 5; T2 = 4 and hence T = 8.

←− −−−−T = 8−−−− −→
y(n) = {1, −1, −5, 2, 3, −5, 1, −4}←− N = 4 −→↑

3.16 Convolution Sum by Graphical Method

The procedure for the determination of convolution sum by graphical method is
similar to the convolution integral of continuous time system. The following steps
are followed.

1. Represent x(n)versusn in a graph.Replacen by k and x(k)versus k is represented
in a graph. One can straightaway plot x(k) versus k.

2. Similar to Step 1, plot h(k) versus k.
3. By folding h(k), obtain h(−k).
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4. By adding “n′′ to h(−k), obtain h(n − k). Shift h(n − k) to the extreme left. Start
moving h(n − k) toward the right so that x(k) and h(n − k) overlap each other. It
is to be noted that x(k) should be kept fixed and h(n − k) alone should be moved
by one sample at an instant. Calculate y(n) at that instant.

5. The procedure is repeated at other instants and at each time y(n) is calculated.
When there is no overlapping, the movement of h(n − k) is stopped and here
y(n) = 0.

The following examples illustrate this graphical procedure.

� Example 3.70

Compute the convolution of the two sequences x(n) and h(n) shown in Fig. 3.51a
and b, respectively, and plot y(n) versus n. Use graphical method.

(Anna University, December, 2006)
Solution:

1. Figure 3.51a shows the sequence of x(n) and Fig. 3.51b the sequence of h(n)

2. n is replaced by k and x(k) and h(k) are represented in Fig. 3.51c and d, respec-
tively.

3. h(−k) is obtained from h(k) by folding and is shown in Fig. 3.51e.
4. n is added in h(−k) and h(n − k) is obtained. h(n − k) is moved to the extreme

left so that there is no overlapping between x(k) and h(n − k) initially. This is
shown in Fig. 3.51f.

5. x(k) is fixed and h(n − k) is moved toward right so that it overlaps with x(k). At
n = −1, the first overlapping occurs and y(−1) = 1 × 2 = 2. This is shown in
Fig. 3.51c and g.

6. When h(n − k) is moved toward right by one more sample (now n = 0), the plot
of x(k) and h(n − k) is shown in Fig. 3.51h and y(n) = 1 × 1 + 2 × 2 = 5.

7. For n = 1, the plot of x(k) and h(n − k) is shown in Fig. 3.51i and the overlapping
is shown in dotted line. y(1) = 1 × 2 = 2.

8. For n = 2, the plot of x(k) and h(n − k) is shown in Fig. 3.51j. Here, there is no
overlapping. Hence y(2) = 0.

9. N1 = 2 and N2 = 0. Therefore, N = N1 + N2 = 2, T1 = 3 and T2 = 3. There-
fore T = T1 + T2 − 1 = 5

10.
←− T = 5 −→

y(n) = {0, 2, 5, 2, 0}|N = 2| ↑

The plot of y(n) is shown in Fig. 3.51k.
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� Example 3.71

Find the linear convolution of

x(n) = {1, 2, 3, 4, 5}
h(n) = {1, 2, 3, 3, 2, 1}

Use graphical methods.

(Anna University, December, 2007)

x(n)

n0

2

1

−2 −1

(a)

•

•

x(k)

k0

2

1

−2 −1

(c)

(e) (f)

•

•

h(−1−k)

k0

2

1

−3 −2

(g)

•

•

h(−k)

k−1

2

1

−2

•

•

h(n)

n0

0

h(n−k)

(n−2) (n−1) k

2

1
•

•

0

h(k)

0

2

1

2 1

k

(b)

(d)

•

•

2

1

2 1

•

•

Fig. 3.51 Signal representation of Example 3.57



396 3 Time Domain Analysis of Continuous and Discrete Time Systems

x(k)

k0

2

1

2 1

(i)

•

•

h(1 k)

n 1
y(1) 2

n 0
y(0) 5

k0

1

2

•

•

x(k)

k0

2

1

2 1

(h)

•

•

h( k)

k0

2

1

2 1

•

•

k

k

(k)(j)
x(k)

h(2 k)

n 2
no overlapping

0 1

2

1
•

•

2

1•

•

y(n)

n0

2

1n 1

•

•

2

5

•

Fig. 3.51 (continued)

Solution:

1. x(k) is shown in Fig. 3.52a and h(k) is shown in Fig. 3.52b. h(n − k) is shown
in Fig. 3.52c. h(n − k) is moved toward right so that it overlaps with x(k). This
happens at n = 0. The sample with strength 1 in x(k) and the sample h(k) with
strength 1 at n = 0 overlap as in Fig. 3.52d. The product of these two samples is
y(0) = 1 × 1 = 1.



3.16 Convolution Sum by Graphical Method 397

2. h(n − k) is moved further toward right by one more sample n = 1. Now this is
shown in Fig. 3.52e. The product of the overlapping samples for n = 1 is shown
by dotted lines) y(1) = 1 × 2 + 2 × 1 = 4.

3. For n = 2, x(k) and h(n − k) are shown in Fig. 3.52f. 3 samples in each of x(k)

and h(n − k) overlap. Hence, y(2) = 1 × 3 + 2 × 2 + 3 × 1 = 10.
4. For n = 3, x(k) and h(n − k) are shown in Fig. 3.52g. Here 4 samples overlap.

Hence, y(3) = 1 × 3 + 2 × 3 + 3 × 2 + 4 × 1 = 19.
5. For n = 4, x(k) and h(n − k) are shown in Fig. 3.52h y(4) = 1 × 2 + 2 × 3 +

3 × 3 + 4 × 2 + 5 × 1 = 30.
6. For n = 5, x(k) and h(n − k) are shown in Fig. 3.52i. Here 5 samples overlap.

y(5) = 1 × 1 + 2 × 2 + 3 × 3 + 4 × 3 + 5 × 2 = 36.
7. For n = 6, x(k) and h(n − k) are shown in Fig. 3.52j. Here 4 samples overlap.

y(6) = 2 × 1 + 3 × 2 + 4 × 3 + 5 × 3 = 35.
8. For n = 7, x(k) and h(n − k) are shown in Fig. 3.52k. Here 3 samples overlap.

Hence, y(7) = 3 × 1 + 4 × 2 + 5 × 3 = 26.
9. For n = 8, x(k) and h(n − k) are shown in Fig. 3.52l. Here 2 samples overlap.

Hence, y(8) = 4 × 1 + 5 × 2 = 14.
10. For n = 9, x(k) and h(n − k) are shown in Fig. 3.52m. Here one sample overlaps.

y(9) = 5 × 1 = 5.
11. For n = 10, x(k) and h(n − k) does not overlap with any of the samples of x(k).

Hence, y(10) = 0.
12. For x(n),N1 = 0 and for h(n),N2 = 0. Hence,N = N1 + N2 = 0. For x(n),T1 =

5 and for h(n), T2 = 6. Hence, width of y(n) = T1 + T2 − 1 = 5 + 6 − 1 = 10.

y(n) = {1, 4, 10, 19, 30, 36, 35, 26, 14, 5}
↑

� Example 3.72

x(n) = 2u(n + 2) − 2u(n) − 3u(n − 1) + 3u(n − 3)

h(n) = −u(n + 1) + 3u(n) − 5u(n − 1) + 3u(n − 2)

Find
y(n) = x(n) ∗ h(n)

by graphical convolution.

Solution:

1.

x(n) = 2u(n + 2) − 2u(n) − 3u(n − 1) + 3u(n − 3)

= {2, 2, 0, −3, −3}
↑
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This is represented in Fig. 3.53(a) with n replaced by k.

h(n) = −u(n + 1) + 3u(n) − 5u(n − 1) + 3u(n − 2)

= {−1, 2, −3}↑

This is represented in Fig. 3.53b with n replaced by k.
2. h(n − k) is created and put to the extreme left and is shown in Fig. 3.53c.
3. h(n − k) is moved toward right sample by sample. The first overlapping between

x(k) and h(n − k) occurs when n = −3 which is shown in Fig. 3.53d. The dotted
line shows the overlapping with x(k). At n = −3, y(−3) is obtained as y(−3) =
2 × (−1) = −2.

4. For n = −2, x(k) and h(−2 − k) are shown in Fig. 3.53e. The overlaps are shown
by dotted lines.

y(−2) = 2 × (−1) + 2 × 2 = 2

5. For n = −1, x(k) and h(−1 − k) are shown in Fig. 3.53f. The overlaps are shown
in dotted lines. y(−1) = 2 × (−3) + 2 × 2 = −2.

6. For n = 0, x(k) and h(−k) are shown in Fig. 3.53g. The overlaps are shown in
dotted lines. y(0) = 2 × (−3) + 0 + (3 × 1) = −3.

7. For n = 1, x(k) and h(1 − k) are shown in Fig. 3.53h. The overlaps are shown
in dotted lines. y(1) = (−3 × 2) + (−3 × −1) = −3.

x(k)

k0 1 2 3 4

5

1

(a)

•

•
4
•

3
•

2
•

h(k)

k0 1 2 3 4 5

1

(b)

•

3
•

3
•

2
•

2
•

1
•

h(n−k)

(n−5) n k

(c)

2
•

2
•

3
•

3
•

1
•

1
•

Fig. 3.52 Convolution of Example 3.71
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x(k)

k0 1 2 3 4

5

1•

•
4
•

3
•

2
•

x(−k)n=0
y(0)=1 1=1

k

2

1•
•

3
•

3
•

2
•

1
•

x(k)

k0 1 2 3 4

5

1

(e)

•

•
4
•

3
•

2
•

h(1−k)

y(1)=1 2+2 1=4

k0 1

1•1•

3
•

3
•

2•
2
•

(d)

−4 −3 −2 −1

n=1

x(k)

k0 1 2 3 4

5

1

(f)

•

•
4
•

3
•

2
•

h(2−k)

k0

1•1•

• •
2

3
3

•
2
•

n=2
y(2) 10

n=3
y(3) 19

x(k)

k0 1 2 3 4

5

1

(g)

•

•
4
•

3
•

2
•

h(3−k)

k0 1 2−1−2 3

1• 1•

•3 •3
2
• 2•

Fig. 3.52 (continued)
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x(k)
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1
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•
•
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•

4
•

5
•
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•
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1• 1•
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•

•

3
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4
•

5
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2
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•
•
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• 1

•
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1•
•
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•
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21 43

•
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5
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3
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Fig. 3.52 (continued)
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(m) (n)

n=9
y(9)=5 1=5

x(k)
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h(9 k)

0

k
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2
•
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4
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5
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3
•

3
•

3
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x(k)
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h(10 k)
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k

k
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2
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3
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1
•

4
•

5
•

3
•

2
•

2
•

3
•

Fig. 3.52 (continued)

8. For n = 2, x(k) and h(2 − k) are shown in Fig. 3.53i. The overlaps are shown in
dotted lines. y(2) = (−3 × −3) + (−3 × 2) = 3.

9. For n = 3, x(k) and h(3 − k) are shown in Fig. 3.53j. The overlapping is shown
in dotted line. y(3) = (−3 × −3) = 9.

10. For n = 4, x(k) and h(4 − k) are shown in Fig. 3.53k. There is no overlapping
and y(3) = 0.

11. For the given x(n),N1 = 2 and for h(n),N2 = 1.Hence for y(n),N = N1 + N2 =
2 + 1 = 3. The width of x(n) is T1 = 5 and that of h(n) is T2 = 3. Hence, the
width of y(n) is T = T1 + T2 − 1 = 5 + 3 − 1 = 7.

12.
y(n) = {−2, 2, −2, −3, −3, 3, 9}← N=3 → ↑

n=0←− −−−−T = 7−−−− −→

� Example 3.73

Find the convolution of x(n) with h(n)

x(n) = anu(n) where 0 < a < 1

h(n) =
{
1 0 ≤ n ≤ 9

0 n ≥ 10

(Anna University, April, 2004)
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(a)
x(k)
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1 22
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1 k
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Fig. 3.53 Graphical method of obtaining y(n) of Example 3.72
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Fig. 3.53 (continued)
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x(k)=aku(k)

k0 1 2 3

(a)

1
1•

•

•
•

4
•

5 6

h(k)=1
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••••••••• •
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(f)

• • • • • • • • • •
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(d)

0n−9 n
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n  9

k
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Fig. 3.54 Convolution sum of Example 3.73

Solution:

1. x(k) = aku(k) is shown in Fig. 3.54a.
2. h(k), h(−k) are shown in Fig. 3.54b and c, respectively. h(n − k) is shown in

Fig. 3.54d.
3. h(n − k) is moved toward right so that it overlaps with x(k). The right edge of

h(n − k) slides past the left edge of x(k) for n = 0. The overlapping continues
without change until the left edge of h(n − k) slides past the right edge of x(k).
Hence, the summation limit is 0 ≤ k ≤ n

y(n) =
n∑

k=0

x(k)h(n − k)

=
n∑

k=0

ak 0 ≤ n ≤ 9

Using finite summation formula, we get
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y(n) = (1 − an+1)

(1 − a)
0 ≤ n ≤ 9

4. If h(n − k) is shifted further a change occurs when the left edge of h(n − k)

slides past the left edge of x(k) as shown in Fig. 3.54f. The summation interval
is from n − 9 ≤ k ≤ n

y(n) =
k=n∑

k=n−9

ak

Put k − n + 9 = p, k − n = p − 9 = 0 or p = 9. The lower limit of summation
is p = 0 and the upper limit is p = 9. Now ak = an−9a. Substituting the above,
we get

y(n) =
p=9∑

p=0

a(n−9)ap

= a(n−9)
p=9∑

p=0

ap

Using the finite summation formula

p=9∑

p=0

ap = (1 − a10)

(1 − a)

y(n) = a(n−9) (1 − a10)

(1 − a)
n > 9

y(n) = 0 for n < 0

y(n) = (1 − a(n+1))

(1 − a)
for 0 ≤ n ≤ 9

y(n) = a(n−9)

(
(1 − a10)

(1 − a)

)

n > 9

3.17 Deconvolution

The deconvolution is the process of getting x(n) if h(n) and y(n) are known. As per
convolution sum

y(n) =
k=∞∑

k=−∞
x(k)h(n − k)



406 3 Time Domain Analysis of Continuous and Discrete Time Systems

If we assume that x(n) and h(n) are one sided finite sequences the above equation is
written as

y(n) =
k=n∑

k=−∞
x(k)h(n − k)

y(0) = h(0)x(0)

y(1) = h(1)x(0) + h(0)x(1)

y(2) = h(2)x(0) + h(1)x(1) + h(0)x(2)

Now

x(0) = y(0)

h(0)

y(1) = h(1)x(0) + h(0)x(1)

x(1) = y(1) − h(1)x(0)

h(0)

Knowing x(0), h(0), h(1) and y(1), we can find x(1). From y(2), the following
equation is written.

x(2) = y(2) − h(2)x(0) − h(1)x(1)

h(0)

In general

x(n) = y(n) −
k=n−1∑

k=0

x(k)h(n − k)

� Example 3.74

y(n) = {1, 5, 10, 11, 8, 4, 1}
↑

h(n) = {1, 2, 1}
↑

Find x(n).

(Anna University, April, 2003)
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Solution: The number of samples in h(n), y(n), and x(n) are T1 = 3, T = 7, T2 = 5,
respectively. The following relationship holds good.

T = T1 + T2 − 1

T2 = T − T1 + 1

= 7 − 3 + 1 = 5

Thus, x(0), x(1), x(2), x(3) and x(4) are to be determined.
For n = 0

x(0) = y(0)

h(0)
= 1

1
= 1

For n = 1

x(1) = y(1) − x(0)h(1)

h(0)
= 5 − 1 × 2

1
= 3

For n = 2

x(2) = y(2) −∑k=1
k=0 x(k)h(2 − k)

h(0)

= y(2) − x(0)h(2) − x(1)h(1)

h(0)

= 10 − 1 × 1 − 3 × 2

1
= 10 − 1 − 6 = 3

For n = 3

x(3) = y(3) −∑k=2
k=0 x(k)h(3 − k)

h(0)

= y(3) − x(0)h(3) − x(1)h(3) − x(1)h(2) − x(2)h(1)

h(0)

= 11 − 1 × 0 − 3 × 1 − 3 × 2

1
= 2

For n = 4,

x(4) = y(4) −∑k=3
k=0 x(k)h(4 − k)

h(0)

= y(4) − x(0)h(4) − x(1)h(3) − x(2)h(2) − x(3)h(1)

h(0)

x(4) = 8 − 1 × 0 − 3 × 0 − 3 × 1 − 2 × 2

1
= 1
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∴ x(n) = {1, 3, 3, 2, 1}
↑

� Example 3.75

Find x(n) given h(n) = {1, 2, 3, 2} and y(n) = {3, 8, 17, 25, 26, 23, 10}.
Solution: The number of samples in y(n), h(n), x(n) is T = 7, T1 = 4, T2, respec-
tively.

T = T1 + T2 − 1

T2 = T − T1 + 1

= 7 − 4 + 1 = 4

∴ x(n) = {x(0), x(1), x(2), x(3)}
x(0) = y(0)

h(0)
= 3

1
= 3

x(1) = y(1) − x(0)h(1)

h(0)
= 8 − 3 × 2

1
= 2

x(2) = y(2) −∑k=1
k=0 x(k)h(2 − k)

h(0)

= y(2) − x(0)h(2) − x(1)h(1)

h(0)

= 17 − 3 × 3 − 2 × 2

1

x(2) = 4

x(3) = y(3) −
k=2∑

k=0

x(k)h(3 − k)

= y(3) − x(0)h(3) − x(1)h(2) − x(2)h(1)

h(0)

= 25 − 3 × 2 − 2 × 3 − 4 × 2

1
= 5

Hence
x(n) = {3, 2, 4, 5}
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3.18 Step Response of the System

Equation (3.32) gives the step response of the discrete time system if the impulse
response h(n) is known

s(n) =
k=n∑

k=0

h(k) (3.32)

The following examples illustrate how to find step response from impulse response.

� Example 3.76

Find the step response of the system whose impulse response is

h(n) = anu(n) where 0 < a < 1

Solution:

s(n) =
n∑

k=0

h(k)

s(n) =
n∑

k=0

ak

Using the finite summation formula, we get

s(n) = (1 − an+1)

(1 − a)

� Example 3.77

Find the step response whose impulse response is given by

h(n) = δ(n − 1) + δ(n − 5)

Solution:

s(n) = h(n) ∗ u(n) = [δ(n − 1) + δ(n − 5)] ∗ u(n)

= δ(n − 1) ∗ u(n) + δ(n − 5) ∗ u(n)

By using the property δ(n − 1) ∗ u(n) = u(n − 1), we get
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s(n) = u(n − 1) + u(n − 5)

� Example 3.78

Find the step response of the system whose impulse response is

h(n) =
(
1

3

)n

.

Solution:

s(n) =
n∑

k=0

(
1

3

)k

= 1 − 1
3n+1

1 − 1
3

= (3n+1 − 1)

(3 − 1)

1

3n

s(n) = 1

2

(
1

3

)n

(3n+1 − 1)u(n)

� Example 3.79

Find the step response if the impulse response h(n) = u(n)

Solution:

s(n) =
n∑

k=0

h(k) =
n∑

k=0

u(k)

=
n∑

k=0

1

s(n) = (n + 1)

3.19 Stability from Impulse Response

From Eq. (3.31), for the discrete time system to be bounded input output stable,
My(n) = ∑∞

n=−∞ |h(n)| < ∞. The following examples illustrate this.
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� Example 3.80

The impulse response of a certain system is

h(n) = anu(n) where 0 < a < 1

Find whether the system is BIBO stable.

Solution: h(n) is causal. Hence

My(n) =
∞∑

n=0

an = 1

(1 − a)
< ∞

Hence, the system is BIBO stable.

� Example 3.81

h(n) = anu(−n)

Find whether the system is BIBO stable.

Solution:

My(n) =
∞∑

n=−∞
an

For n > 0, u(n) = 0. Hence,

My(n) =
0∑

n=−∞
an

=
∞∑

n=0

a−n =
∞∑

n=0

(
1

a

)n

= 1

1 − 1
a

= a

a − 1
< ∞

Hence, the system is BIBO stable.

� Example 3.82
h(n) = anu(n − 1) where a > 1

Find whether the system is BIBO stable.
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Fig. 3.55 Impulse response
plot of Example 3.82
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Fig. 3.56 Impulse response
plot of Example 3.83
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Solution: The impulse response plot of h(n) = anu(n − 1) is shown in Fig. 3.55, and
it is noticed that the sequence is not summable. Hence, the system is unstable.

My(n) =
∞∑

n=1

an

= a + a2 + a3 + . . .

My(n) = ∞

The system is BIBO unstable.

� Example 3.83

h(n) = 2nu(5 − n)

Find whether the system is BIBO stable

Solution: The impulse response plot of h(n) = 2nu(5 − n) is shown in Fig. 3.56.
u(5 − n) = 0 for n > 5. For −∞ ≥ n ≤ 5, h(n) = 2n
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My(n) =
5∑

n=−∞
2n

=
0∑

n=−∞
2n +

5∑

1

2n

=
∞∑

n=0

2−n +
5∑

1

2n

=
∞∑

n=0

(
1

2

)n

+
5∑

1

2n

= 1

1 − 1/2
+

5∑

0

2n − 1

= 2 + (1 − 26)

1 − 2
− 1

= 1 + 26 − 1 = 26

My(n) = 26 < ∞

The system is BIBO stable.

� Example 3.84

h(n) = e−5|n|

Find whether the system is BIBO stable (Fig. 3.57).

Solution:

My(n) =
∞∑

n=−∞
e−5|n|

=
−1∑

n=−∞
e5n +

∞∑

n=0

e−5n

=
∞∑

n=1

e−5n +
∞∑

n=0

e−5n

My(n) = e−5

(1 − e−5)
+ 1

(1 − e−5)
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1234n 0 1

1

2 3 4 n

h(n) = e 5 n

... ...

Fig. 3.57 Impulse responses plot of Example 3.84

= (1 + e−5)

(1 − e−5)
= 1.0136 < ∞

My(n) = 1.0136

My(n) is finite and hence the system is stable.

3.20 System Causality

From expression (3.30) the impulse response function h(n) = 0 for n < 0 for the
system to be causal. This is illustrated in the following examples.

� Example 3.85

h(n) = anu(−n)

Find whether the system is causal.

Solution:The impulse response plot of h(n) is shown in Fig. 3.58. FromFig. 3.58, it is
evident that at n = −1, h(−1) = 1

a and is not zero. Hence, the system is non-causal.
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Fig. 3.58 Impulse response
of Example 3.85
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Fig. 3.59 Impulse response
of Example 3.86
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n > 0

where a > 1

n < 0

n

h(n) = anu(n 1)

n

� Example 3.86

h(n) = anu(n − 1) where a > 1

Find whether the system is causal.

Solution: The plot of h(n) = anu(n − 1) is shown in Fig. 3.59. It is observed that for
n < 0, h(n) = 0. Hence, the system is causal.

� Example 3.87

h(n) = e−a|n|

Find whether the system is causal.

Solution: The impulse response plot of h(n) is shown in Fig. 3.60.

h(n) = e−an n ≥ 0

= ean n < 0

h(n) �= 0 for n < 0.

Hence, the system is non-causal.
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1234n 0 1

1

2 3 4

...

n < 0 n > 0

n

ah(n) = e n

Fig. 3.60 Impulse response of Example 3.87

� Example 3.88

The impulse response of a certain linear time invariant continuous time system is
shown in Fig. 3.61a. The system is excited with the input x(t) which is shown in
Fig. 3.61b. Derive expressions for the output response y(t) using convolutionmethod.

Solution:

1. Figure 3.61a and b show x(t) and h(t), respectively. x(τ ) and h(τ ) are obtained
by putting t = τ in x(t) and h(t), respectively. x(−τ) is obtained by folding x(τ )

and is shown in Fig. 3.61c. x(t − τ) is obtained by adding t in x(−τ). x(t − τ)

is shifted to the extreme left and is shown in Fig. 3.61d.
2. h(τ ) is kept fixed and x(t − τ) is shifted toward right so that there is overlapping

between h(τ ) and x(t − τ).
3. Time interval −1 < t < 0.

During the above time interval the right edge of x(t − τ) slides past the left edge
of h(τ ). Here the input is in the form of impulse. The output y(t) is obtained
using the property,

h(t) ∗ x(t − t0) = h(t − t0)

In the above interval (Fig. 3.61e).

h(t) = 3t

x(t) = 2δ(t + 1)

y(t) = h(t) ∗ x(t)

= 3 × 2(t + 1)

= 6(t + 1)
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4. Time interval 0 < t < 1 (Fig.3.61f).
During the above time interval, the second transition occurs. The transition
should be one at a time where there is a change in h(τ ). The right edge of
x(t − τ) slides past τ = 1. Here,

h(t) = (4 − t)

x(t) = 2δ(t + 1)

y(t) = h(t) ∗ x(t)

= 2[4 − (t + 1)]
= 2(3 − t)

5. Time interval 1 < t < 2 (Fig.3.61g).
During the interval, the left edge of x(t − τ) slides past the left edge of h(τ ).

h(t) x(t)(a)

3

0 1 4

3t

(4 t)

t

(b)

2

0 11

3

t

x(t ) h( )
(e)

3

0 1 4

1 < t <0

x( )(c)

3

0 11

2

x(t )(d)

3

0(t 1) (t 1)

2

3

(t 1) (t 1)

2

x(t ) h( )
(f)

0 1 4

0 < t <1

3

(t 1) (t 1)

2

Fig. 3.61 Convolution of two signals of Example 3.88
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x(t ) h( )
(g)

3

0 1 4

1 < t <23

(t 1) (t 1)

2

x(t ) h( )
(h)

3

0 1 4

2 < t <33

(t 1) (t 1)

2

x(t ) h( )
(i)

3

0 1 4

3 < t <5
3

(t 1) (t 1)

2

x(t ) h( )
(j)

3

0 1 4

t > 5
3

(t 1) (t 1)

2

y(t)
(k)

3
4

6

11

0 11 2 3 4 5 tt

Fig. 3.61 (continued)

y(t) = h(t) ∗ x(t)

= 3 × 3(t − 1) + 2(4 − (t + 1))

= (7t − 3)

6. Time interval 2 < t < 3 (Fig.3.61h).
During the above interval the left edge of x(t − τ) slides past h(τ ) at τ = 1.

y(t) = h(t) ∗ x(t)

= 3[4 − (t − 1)] + 2[4 − (t + 1)]
= 21 − 5t
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7. Time interval 3 < t < 5 (Fig.3.61i).
In this interval the right edge of x(t − τ) slides past the right edge of h(τ ).

y(t) = h(t) ∗ x(t) = 3[4 − (t − 1)] = 15 − 3t

8. Time interval t > 5 (Fig. 3.61j).
When t > 5, x(t − τ) does not overlap with h(τ ) and hence y(t) = 0.

y(t) = 6(t + 1) − 1 < t < 0

= 2(3 − t) 0 < t < 1

= (7t − 3) 1 < t < 2

= (21 − 5t) 2 < t < 3

= (15 − 3t) 3 < t < 5

= 0 t > 5

The output response is given in Fig. 3.61k.

t −1 0 1 2 3 4 ≥ 5
y(t) 0 6 4 11 6 3 0

� Example 3.89

x[n] = 3nu[−n] and h[n] = u[n].

Find
y[n] = x[n] ∗ h[n]

Solution:

1. x[k] which is obtained from x[n] is shown in Figs. 3.62a. Similarly, h[k] is
sketched in Fig. 3.62b. h(n − k) for n ≤ 0 and for n > 0 are shown in Fig. 3.62c
and d, respectively.

2. Whenh[n − k] ismoved toward the right it overlapswith x[n] and the overlapping
interval is−∞ < k ≤ n. The output response y[n] is obtained from the following
convolution sum.

y[n] =
n∑

k=−∞
(3)k n ≤ 0

=
∞∑

k=−n

(
1

3

)k
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x[k]
(a)

0

1

. . .
kk

h(n k)

n 0 n>0

(c)

0

1

. . . . . .

. . .

kk

h[k]
(b)

3

1

0 1 2

h(n k)(d)

0 kk

k

n n

Fig. 3.62 x[k] and h[k] of Example 3.89

Using the following finite summation formula,

∞∑

k=n

ak = an

(1 − a)
0 < a < 1

we get

y[n] =
(
1
3

)−n

1 − 1
3

= 1

2
(3)1+n n ≤ 0

For the interval n > 0,

y[n] =
0∑

k=−∞
(3)k =

∞∑

k=0

(
1

3

)k

= 1

1 − 1
3

= 3

2
n > 0
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y[n] = 1

2
(3)1+n n ≤ 0

= 3

2
n > 0

Summary

1. If h(t) is the impulse response of an LTIC system and if x(t) is the input,
then the output of the system y(t) is obtained using the convolution integral.
The output is given by

y(t) =
∫ ∞

−∞
h(t − τ)x(τ )dτ

2. The convolution integral has commutative, distributive, associative, shift
and width properties.

3. Analytical as well as graphical methods are available for solving the con-
volution integral.

4. If the area under the impulse response curve is finite, then the LTIC system
is said to be BIBO stable.

5. From the impulse response of an LTIC system by integrating it, the step
response is obtained.

6. For a causal system the impulse response h(t) = 0 for t < 0.
7. If h(n) is the impulse response of an LTID system and if x(n) is the input,

then the output of the system y(n) is obtained using convolution sum. The
output is given by

y(n) =
∞∑

k=−∞
x(k)h(n − k)

8. The convolution sum has commutative, distributive, associative, shift and
width properties.

9. Analytical as well as graphical methods are available for solving the con-
volution sum.

10. A discrete time system is said to be causal if the impulse response h(n) = 0
for n < 0.

11. If the impulse response of a discrete time system is absolutely summable,
then the system is said to be BIBO stable.

12. Step response s(n) is obtained from impulse response h(n) using themath-
ematical expression

s(n) =
n∑

k=0

h(k)
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Exercises
I. Short Answer Type Questions

1. What is the convolution integral or superposition integral?
If h(t) is the impulse response of an LTIC system and if it is excited by
the signal x(t), then the output y(t) is expressed as

y(t) =
∫ +∞

−∞
x(τ )h(t − τ)dτ

The above equation is referred to as the convolution or superposition inte-
gral. Symbolically, it is written as

y(t) = x(t) ∗ h(t)

2. Outline the procedure to evaluate the convolution integral?

(a) Graph x(τ ) by substituting t = τ in x(t) and keep it fixed.
(b) Obtain h(τ ). By folding get h(−τ). Graph h(t − τ).
(c) Keeping x(τ ) fixed move h(t − τ) so that it overlaps with x(τ ).
(d) Multiply x(τ ) and h(t − τ) and integrate for −∞ < τ < ∞ to obtain

y(t).

3. What are the properties of convolution integral?
The properties of convolution integral are

(a) The commutative property;
(b) The distributive property;
(c) The associative property;
(d) The shift property; and
(e) The width property.

4. What is convolution sum?
If h(n) is the impulse response of a linear time invariant discrete time
system and if x(n) is input, then the output y(n) is obtained from the
following equation

y(n) =
∞∑

k=−∞
x(k)h(n − k)

The above equation is called convolution sum. Symbolically it is repre-
sented as

y(n) = x(n) ∗ h(n)

5. How impulse response is related to stability of the system?
For an LTIC system if the area under the impulse response curve is finite,
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the system is BIBO stable. In other words,
∫∞
−∞ |h(τ )|dτ should be abso-

lutely integrable. For a LTID time system to be stable the impulse response∑∞
k=−∞ h(k) should be absolutely summable.

6. How impulse response is related to causality of the system?
For an LTIC system to be causal, the impulse response h(t) = 0 for t < 0.
For an LTID system to be causal, the impulse response h(n) = 0 for n < 0.

7. How step response is obtained from impulse response of an LTIC and
LTID systems?
The step response of an LTIC system is obtained by integrating its impulse
response. The step response of an LTID system is obtained by summing
its impulse response (Fig. 3.63).

8. Evaluate x(n) ∗ δ(n) and x(n) ∗ δ(n − n0)?

x(n) ∗ δ(n) = x(n)

x(n) ∗ δ(n − n0) = x(n − n0)

9. Evaluate x(t) ∗ δ(t) and x(t) ∗ δ(t − t0)?

x(t) ∗ δ(t) = x(t)

x(t) ∗ δ(t − t0) = x(t − t0)

10. Evaluate x(t − t1) ∗ h(t − t2)?

x(t − t1) ∗ h(t − t2) = y(t − t1 − t2)

11. The response of LTIC system to step input is y(t) = 1 − e−3t . Find its
impulse response?

h(t) = dy(t)

dt
= 3e−3t

12. If x(n) = δ(n) − 2δ(n − 1) + 3δ(n − 2) − δ(n + 1). Express x(n − 1)
in terms of sequences?

x(n − 1) = δ(n − 1) − 2δ(n − 2) + 3δ(n − 3) − δ(n)

13. Sketch x(t) = u(t + 3) − u(t − 3)?

14. h(n) = ( 1
2

)n
u(n). Find A so that h(n) − Ah(n − 1) = δ(n)?

h(n) − h(n − 1) =
(
1

2

)n

u(n) − A

(
1

2

)n−1

u(n − 1)

If A = 1/2
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Fig. 3.63 x(t) =
u(t + 3) − u(t − 3).

tt 33 0

1

x(t)

h(n) − h(n − 1) =
(
1

2

)n

u(n) −
(
1

2

)n

u(n − 1) = δ(n)

15. An LTID system has the following impulse response

h(n) =
(
1
2

)n

u(n + 1)

Is the system causal and BIBO stable?
The system is non-zero for n = −1. Hence, it is non-causal.

∞∑

−∞
h(n) =

∞∑

−1

(
1

2

)n

=
(
1

2

)−1

+
∞∑

0

(
1

2

)n

= 2 + 1

1 − 1/2
= 4 < ∞

The system is BIBO stable.

II. Long Answer Type Questions

1. x(t) = e5t u(−t) and h(t) = u(t − 10). Find y(t) = x(t) ∗ h(t)?

y(t) = 1

5
e5(t−10) t ≤ 10

= 1

5
t ≥ 10

2. x(t) = u(t − 2) − u(t − 6) and h(t) = e−5t u(t). Find y(t) = x(t) ∗ h(t)?
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y(t) = 1

5
[1 − e−5(t−2)] 2 ≤ t ≤ 6

= 1

5
e−5t[e30 − e10] 6 < t ≤ ∞

3. x(t) = u(t) − u(t − 1) and h(t) = t; 0 < t ≤ 2. Find y(t) = x(t) ∗ h(t)?

y(t) = 0 t < 0

= 1

2
t2 0 < t < 1

=
(

t − 1

2

)

1 < t < 2

= −1

2
t2 + t + 3

2
2 < t < 3

= 0 t > 3

4. x(t) = u(t − 2) − u(t − 5) and h(t) = e−4t u(t). Find (a) y(t) = x(t) ∗ h(t)
and (b) y(t) = dx(t)

dt ∗ h(t)?

(a) y(t) = 1

4
[1 − e−4(t−2)] 2 ≤ t ≤ 6

= 1

4
e−4t[e24 − e8] 6 ≤ t ≤ ∞

(b) y(t) = e−4(t−2)u(t − 2) − e−4(t−5)u(t − 5)

5. Consider the impulse responde h(t) and excitation signal x(t) shown in
Fig.3.64a and b, respectively. Using convolution find y(t) = x(t) ∗ h(t)?

y(t) = 0 t < −2

= 6(t + 2) − 2 ≤ t ≤ −1

= 2(1 − 2t) − 1 ≤ t ≤ 0

y(t) = 2(1 − t) 0 ≤ t ≤ 1

= 0 t > 1

6. x(t) and h(t) signals are shown in Fig. 3.65a and b, respectively. Find
y(t) = x(t) ∗ h(t)?

y(t) = 0 t < 0

= 1

2
t2 0 ≤ t ≤ 1
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h(t)
x(t)

(a)

2

0 1 2 t

(b)

0 t

1

12

3

Fig. 3.64 Impulse response and excitation signals of Problem 5

x(t)
(a)

0

1

1 t

h(t)
(b)

0

1

2 t

Fig. 3.65 Signals x(t) and h(t) of Problem 6

= 1

2
1 ≤ t ≤ 2

=
(

−1

2
t2 + 2t − 3

2

)

2 ≤ t ≤ 3

= 0 t > 3

7. x(t) = e−4t u(t) and h(t) = u(t − 3). Find y(t) = x(t) ∗ h(t)?

y(t) = 1

4
[1 − e−4(t−3)]u(t − 3)

8. Find the step response of the system whose impulse response is given as
h(t) = (e−5t − e−3t)u(t)?

s(t) =
[

− 2

15
− 1

5
e−5t + 1

3
e−3t

]

u(t)

9. Determinewhether the followingLTICtime systemswhose impulse response
given below are stable. (a) h(t) = e(−3+ j5)t u(t) and (b) h(t) =
e5t sin 3tu(t)?

(a) y(t) = 1

3
< ∞ B.I.B.O. stable.

(b) y(t) = 3

34
< ∞ B.I.B.O. stable.
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x[n] h[n]
(a)

1

0 1 2 3 n

(b)

1

0 1 2 n

Fig. 3.66 x[n] and h[n] for Problem 13

10. x[n] = u[n − 4] − u[n − 10] and h[n] = u[n − 5] − u[n − 16]. Find
y[n] = x[n] ∗ h[n]?

y[n] = (n − 8) 9 ≤ n ≤ 13

= 6 10 ≤ n ≤ 19

= (25 − n) 20 ≤ n ≤ 24

= 0 n > 24

11. x[n] = 4nu[−n − 2] and h[n] = u[n − 2]. Find y[n] = x[n] ∗ h[n]?
y[n] = 1

3

[
1

4

]n−1

n < 0

= 1

12
n > 0

12. Determinewhether the followingLTIDtime systemswhose impulse response
given below are stable. (a) h[n] = n sin 2πn u[n], (b) h[n] =
5nu[−n] and (c) h[n] = 2−nu[n − 5]?

(a) y[n] = ∞ B.I.B.O. unstable.

(b) y[n] = 1

4
< ∞ B.I.B.O. stable.

(c) y[n] = 1

6
< ∞ B.I.B.O. stable.

13. x[n]and y[n] are shown in Fig. 3.66a and b, respectively. Derive expression
for y[n] = x[n] ∗ h[n]and hence obtain the sequence y[n]by substituting
numerical values. Verify the results by multiplication method?

y[n] = (n + 1) 0 ≤ n ≤ 2

= (6 − n) 3 ≤ n ≤ 5

= 0 n > 5

y[n] = {1, 2, 3, 3, 2, 1}↑
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Fig. 3.67 y[n] of Problem
14

y(n)

3

1 1

1 1

4 9 10 n

The same answer is obtained by multiplication method (Fig. 3.67).
14. h[n] = u[n] − u[n − 6] and x[n] = δ[n − 3] − δ[n − 5]. Find y[n] =

x[n] ∗ h[n] and sketch the same?
15. x[n] = e−2nu[n] and h[n] = 3−nu[n]. Find y[n] = x[n] ∗ h[n]?

y[n] = [3e2 − (3e2)−n]u[n]
[3e2 − 1]

16. x[n] = (0.5)n u[n] and h[n] = (0.9)nu[n]. Find y[n] = x[n] ∗ h[n]?

y[n] = 2.5[0.9n+1 − 0.5n+1]u[n]



Chapter 4
Fourier Series Analysis of Continuous
Time Signals

Learning Objectives

� To represent the periodic continuous time signal by trigonometric Fourier series.
� To represent the CT signal by polar Fourier series.
� To determine the exponential Fourier series and Fourier spectra.
� To establish the properties of Fourier series.
� To establish Parseval’s theorem and Dirichlet conditions.

4.1 Introduction

Sinusoidal input signals are often used to study the response of the system which
gives useful information. If a linear time invariant system is excited by a complex
sinusoid, the output response is also a complex sinusoid of the same frequency as
the input. However, the amplitude of such a sinusoid is different from the input
amplitude and also has a phase shift. If the system is excited by the signal which
is a weighted superposition of the complex sinusoids, the system output is also a
weighted superposition of the system response to each complex sinusoid. Thus, any
arbitrary excitation signal x(t) can be expressed as a linear combination of complex
sinusoids. The output is obtained by summing up the responses to the individual
complex sinusoids using superposition. However, expressing any arbitrary real func-
tion as a linear combination of complex sinusoids is a matter of concern. Baron
Jean Baptiste Joseph Fourier (1768–1830), a French mathematician represented
an arbitrary signal x(t) in the formof a linear combination of complex sinusoids and is
called as Fourier Series. In a Fourier series, representation of a periodical signal, the
higher frequency sines and cosines have frequencies that are integer multiples of the
fundamental frequency. These multiples are called harmonic numbers. The study
of signals using sinusoids has widespread applications in every branch of science

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Palani, Signals and Systems,
https://doi.org/10.1007/978-3-030-75742-7_4

429

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75742-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-75742-7_4


430 4 Fourier Series Analysis of Continuous Time Signals

and engineering. This great mathematical poem, which finds wide applications in
modern communication, signal processing, antenna design and several other fields,
was not shown much enthusiasm by the scientific world during its inception. Fourier
could not get the results published for the lack of mathematical rigor. The vehe-
ment opposition came from his fellow countrymen and great mathematical wizards
Lagrange and Laplace. However, fifteen years later, after several tireless attempts,
Fourier successfully published the results in the form of text which is a classic now.

Fourier, born on 21-03-1768, in France, was the son of a tailor. Being orphaned
at the age of eight, Fourier was educated in a local military college where he showed
his brilliance in mathematics. When the French revolution broke out, many intel-
lectuals decided to leave France to save themselves from the growing barbarism.
Fourier escaped the guillotine twice. Napoleon Bonaparte, a soldier scientist cap-
tured power in France, after the historical French revolution and stopped prosecu-
tion of intellectuals. The French ruler, who himself was a great scientist, appointed
Fourier chair of mathematics academy in which he served with distinction when he
was just 26 years of age. He was honored as the Baron of the empire by Napoleon
in 1809. When Napoleon was exiled by King Louis XVIII, Fourier was identified
as a Bonapartist and was treated with all disgrace. Napoleon came back to power
within a year of his exile from Elba. However, he was defeated by the English captain
Nelson in the battle of Waterloo and the great warrior scientist died in 1821 at St.
Helena Island, where he was in exile for the second time. Fourier should have again
become an orphan, but with the help of his former student who was now a prefect
of Paris. He was appointed as the statistical bureau of the seine and subsequently, in
1827, elected to the powerful position of secretary of the Paris Academy of Science.

While carrying out investigations on the propagation of heat in solid bodies,
Fourier was able to establish the Fourier series and Fourier integral. In 1807, when
he was 40 years of age, Fourier published his results. He claimed that any arbitrary
function can always be expressed as a sum of sinusoids. For the lack of rigor and
generality, the judges, including the great Frenchmathematicians Lagrange, Laplace,
Legendre, Monge and Lacroix, criticized Fourier’s work, but appreciated the nov-
elty and importance of the work. Fourier could not defend the criticisms since the
necessary tools were not available with him at that time. However, in the year 1829,
Dirichlet proved most of the claims of Fourier by putting a few restrictions (Dirichlet
conditions).

Fifteen years after the paper was rejected mainly due to the vehement opposition
given by Lagrange and to some extent by Laplace, Fourier published his results in
expanded form as a text which has now become a classic in the area of mathematics,
science and engineering applications. The great mathematician who laid the founda-
tion of signal representation and analysis died on 16-05-1830, when he was 63 years
old.
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4.2 Periodic Signal Representation by Fourier Series

A continuous time signal x(t) is said to be periodic if there is a positive non-zero
value of T for which

x(t + T) = x(t) for all t (4.1)

The fundamental period T0 of x(t) is the smallest positive value of T for which
Eq. (4.1) is satisfied. 1

T0
is called fundamental frequency f0 and ω0 = 2π

T0
is called

fundamental radian frequency. The real sinusoidal signal

x(t) = cos(ω0t + φ) (4.2)

and the complex exponential signal

x(t) = ejω0t (4.3)

have been proved in Chap.1 as periodic signals as Eq. (4.1) is applicable in the above
cases.The prerequisite for the representation of any arbitrary continuous signal
x(t) in Fourier series is that it should be periodic. Non-periodic signals cannot
be represented by Fourier series but can be represented by Fourier transform
which is discussed later.

4.3 Different Forms of Fourier Series Representation

Any arbitrary real or complex x(t) signal which is periodic with fundamental period
T0 can be expressed as a sum of a sinusoid of period T0 and its harmonics. They are
represented in the following forms of Fourier series:

1. Trigonometric Fourier series.
2. Complex exponential Fourier series.
3. Polar or Harmonic form Fourier series.

The above Fourier series representations are described below with illustrated exam-
ples.

4.3.1 Trigonometric Fourier Series

Consider any arbitrary continuous time signal x(t). This arbitrary signal can be split
up as sines and cosines of fundamental frequency ω0 and all of its harmonics are
expressed as given below.
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x(t) = a0 +
∞∑

n=1

an cos nω0t + bn sin nω0t (4.4)

Equation (4.4) is theFourier series representationof an arbitrary signal x(t) in trigono-
metric form.

In Eq. (4.4), a0 corresponds to the zeroth harmonic or DC. The expression for the
constant term a0 and the amplitudes of the harmonic can be derived as

a0 = 1

T0

∫

T0

x(t) dt (4.5)

an = 2

T0

∫

T0

x(t) cos nω0t dt (4.6)

bn = 2

T0

∫

T0

x(t) sin nω0t dt (4.7)

In Eqs. (4.5), (4.6) and (4.7)

T0 = 1

f0
= 2π

ω0

T0 = Fundamental period of x(t) in seconds;
f0 = Fundamental frequency in Hz.;
ω0 = Radian frequency in rad/second.

For the detailed derivation of the above equations, one may refer to standard
textbooks. Equation (4.4) is valid iff x(t) is periodic.

To Prove the periodicity of x(t)

The periodicity x(t) is proved if x(t) = x(t + T0). Substituting (t + T0) in place of t
in Eq. (4.4), the following equation is obtained.

x(t + T0) = a0 +
∞∑

n=1

an cos nω0(t + T0) +
∞∑

n=1

bn sin nω0(t + T0)

= a0 +
∞∑

n=1

an cos(nω0t + nω0T0) +
∞∑

n=1

bn sin(nω0t + nω0T0)
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x(t + T0) = a0 +
∞∑

n=1

an cos(nω0t + 2πn) +
∞∑

n=1

bn sin(nω0t + 2πn)

= a0 +
∞∑

n=1

an cos(nω0t) +
∞∑

n=1

bn sin nω0t

x(t + T0) = x(t) (4.8)

Thus, it is established, if x(t) is periodic, at t = T0 every sinusoid starts and repeats
the same over the next T0 seconds and so on. The followings points are to be noted
while the coefficients a0, an and bn are determined. It can be proved that

1. If the periodical signal x(t) is symmetrical with respect to the time axis, then the
coefficient a0 = 0.

2. If the periodical signal x(t) represents an even function, only cosine terms in FS
exists and therefore bn = 0.

3. If the periodical signal x(t) represents an odd function, only sine terms in FS
exists and therefore an = 0.

4.3.2 Complex Exponential Fourier Series

By using Euler’s identity, the complex sinusoids can always be expressed in terms
of exponentials. Thus, the trigonometric Fourier series of Equation (4.4) can be
represented as

x(t) =
∞∑

n=−∞
Dne

jω0nt (4.9)

where

Dn = 1

T0

∫

T0

x(t)e−jω0ntdt (4.10)

Equation (4.9) represents exponential Fourier series and Dn is the coefficient of the
exponential Fourier series. For detailed derivation of Equation (4.10), one may refer
to standard textbooks. It is to be noticed here that Eq. (4.9) is in a compact form and it
ismuchmore convenient to handle compared to trigonometric Fourier series. Further,
determination of the coefficientsDn usingEq. (4.10) ismuch easier compared toa0,an
and bn in Eq. (4.4). For these reasons many authors prefer exponential Fourier series
representation of signals. The coefficients Dn are related to trigonometric Fourier
series coefficients an and bn as
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D0 = a0

Dn = 1

2
(an − jbn)

D∗
n = conjugate of Dn

= 1

2
(an + jbn)

(4.11)

4.3.3 Polar or Harmonic Form Fourier Series

The results derived in Sects. 4.31 and 4.32 are applicable if x(t) is real or complex.
When x(t) is real, the coefficients of trigonometric Fourier series an and bn are real.
In such cases, Eq. (4.4) can be expressed in a compact form as

x(t) = C0 +
∞∑

n=1

Cn cos(nω0t − θn) (4.12)

where Cn and θn are related to an and bn as

C0 = a0

Cn =
√
a2n + b2n

θn = tan−1

(
bn
an

)
(4.13)

Equation (4.12) is also called as compact form Fourier series or cosine form
Fourier series.

The coefficients of compact form Fourier series and exponential form Fourier
series are related as

D0 =C0

|Dn| = ∣∣D∗
n

∣∣ = 1

2
Cn

∠Dn = θn; ∠D∗
n = −θn

(4.14)

For detailed derivations of Equations (4.13) and (4.14), one may refer to standard
textbooks. Table 4.1 gives the different form of Fourier series representation, their
coefficients and their equivalence.
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Table 4.1 Different forms of fourier series representation

FS Form Coefficients Equivalence

1. Trigonometric a0 = 1
T0

∫

T0

x(t)dt a0 = C0 = D0

x(t) = a0 +
∞∑
n=1

an cos nω0t an = 2
T0

∫

T0

x(t) cos nω0t dt an − jbn = Cnejθn = 2Dn

+bn sin nω0t bn = 2
T0

∫

T0

x(t) sin nω0t dt an + jbn = Cne−jθn = 2D∗
n

2. Exponential

x(t) =
∞∑

n=−∞
Dnejnω0t Dn = 1

T0

∫

T0

x(t)e−jnω0tdt Cn = 2 |Dn| n ≥ 1

3. Polar or compact cosine C0 = a0 θn = ∠Dn

x(t) = C0 +
∞∑
n=1

Cn cos(nω0 t − θn) Cn = √
a2n + b2n

θn = tan−1
(
bn
an

)

x(t)

t

T0

5 3 1 0

1

1 3 5 7

Fig. 4.1 A rectangular wave of Example 4.1

The following examples illustrate the method of determining the Fourier series
(FS) in the above three forms.

� Example 4.1

Find the trigonometric Fourier series for the periodic signal shown in Fig. 4.1.

Solution:

1. From Fig. 4.1, it is evident that the waveform is symmetrical with respect to the
time axis t. Hence, a0 = 0.

2. By folding x(t) across the vertical axis, it is observed that x(t) = x(−t) which
shows that the function of the signal is even. Hence, bn = 0.
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3. From Fig. 4.1, it is easily obtained that the fundamental period T0 = 4 seconds
and the fundamental radian frequency ω0 = 2π

T0
= π

2 radians per second. From
Eq. (4.4), the trigonometric Fourier series is written as

x(t) = a0 +
∞∑

n=1

[an cos nω0t + bn sin nω0t]

But

x(t) = 1 for − 1 ≤ t ≤ 1

= −1 for 1 ≤ t ≤ 3

Substituting a0 = 0 and bn = 0, and ω0 = π
2

x(t) =
∞∑

n=1

an cos
nπ

2
t

an = 2

T0

3∫

−1

x(t) cos
(nπ

2
t
)
dt

= 1

2

⎡

⎣
1∫

−1

cos
nπ

2
t dt +

3∫

1

(−1) cos
nπ

2
t dt

⎤

⎦

= 1

2

[{
2

nπ
sin

nπ

2
t

}1

−1

−
{

2

nπ
sin

nπ

2
t

}3

1

]

= 1

nπ

[
sin

nπ

2
+ sin

nπ

2
+ sin

nπ

2
+ sin

nπ

2

]

= 4

nπ
sin

nπ

2
= 0 for n = even

= 4

nπ
for n = 1, 5, 9, 13, . . .

= − 4

nπ
for n = 3, 7, 11, 15, . . .

x(t) =
∞∑

n=1

an cos
nπ

2
t

x(t) = 4

π

[
cos

π

2
t − 1

3
cos

3π

2
t + 1

5
cos

5π

2
t − 1

7
cos

7π

2
t

]
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x(t)

t

T0

3 2 1

1

1

1

32

Fig. 4.2 Saw tooth waveform

� Example 4.2

For the periodic signal shown in Fig. 4.2, determine the trigonometric Fourier series.

Solution:

1. From Fig. 4.2, T0 = 2 seconds and ω0 = 2π
T0

= π . The signal is symmetrical
with respect to time axis and hence a0 = 0. Also, from Fig. 4.2, it is evident
that x(t) = −x(−t), and therefore, the signal is an odd signal and an = 0. The
Fourier series for such a signal is, therefore

x(t) =
∞∑

n=1

bn sin nω0t.

2. The coefficient bn is determined as follows:

x(t) = t − 1 ≤ t ≤ 1

bn = 2

T0

∫ 1

−1
t sin nω0t dt

=
∫ 1

−1
t sin nπ t dt

The above integral is solved using the infinite integral

∫
udv = uv −

∫
vdu

Let u = t, du = dt
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dv =
∫

sin nπ t dt; v = − 1

nπ
cos nπ t

bn =
[
− t

nπ
cos nπ t

]1

−1

+ 1

n2π2

[
sin nπ t

]1
−1

= − 2

nπ
cos nπ + 1

n2π2
[sin nπ + sin nπ ]

since sin nπ = 0,

bn = − 2

nπ
cos nπ

x(t) =
∞∑

n=1

bn sin nπ t

x(t) = 2

π

[
sin π t − 1

2
sin 2π t + 1

3
sin 3π t + . . .

]

� Example 4.3

Find the trigonometric Fourier series for the signal shown in Fig. 4.3.

(Anna University, December 2006)
Solution:

1. From Fig. 4.3, T0 = 2π and ω0 = 2π
T0

= 1. The signal is neither odd nor even.
Further, it is not symmetrical with respect to the time axis. So the coefficients,
a0, an and bn are to be evaluated.

x(t)

t4 2 2 4 6 80

1

Fig. 4.3 Saw tooth signal of Example 4.3
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2.

x(t) = t

2π
0 ≤ t ≤ 2π

(
for a ramp signal the slope is

1

2π

)

a0 = 1

T0

∫ 2π

0

t

2π
dt = 1

4π2

[
t2

2

]2π

0

a0 = 1

2

an = 2

T0

∫ 2π

0

t

2π
cos nt dt

= 1

2π2

∫ 2π

0
t cos nt dt

Let u = t; du = dt

dv =
∫

cos nt dt; v = sin nt

n

an = uv −
∫

vdu

= 1

2π2

[
t sin nt

n
+ cos nt

n2

]2π

0

= 1

2π2
[0 + 0 + 1 − 1]

an = 0

(This is due to half wave symmetry).

bn = 2

T0

∫ 2π

0

t

2π
sin nt dt

= 1

2π2

[
− t cos nt

n
+ sin nt

n2

]2π

0

[using u-v method]

= 1

2π2

[
−2π

n
cos 2πn

]
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bn = − 1

nπ

x(t) = 1

2
−

∞∑

n=1

1

nπ
sin nt

� Example 4.4

Determine the trigonometric Fourier series representation of a full wave rectified
signal.

(Anna University, April 2005)
Solution:

1. The full wave rectified signal is shown in Fig. 4.4. Here T0 = π and
ω0 = 2π

T0
= 2.

2. The signal is not symmetricalwith respect to time axis. Therefore,a0 is calculated
as follows:

a0 = 1

T0

∫ π

0
x(t)dt

where
x(t) = sin t 0 ≤ t ≤ π

a0 = 1

π

∫ π

0
sin t dt

= 1

π

[
− cos t

]π

0
= 2

π

a0 = 2

π

x(t)

t2 2 3 40

1

T0

Fig. 4.4 A full wave rectifier
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3.
x(t) = x(−t)

The given signal represents an even function, and therefore

bn = 0

4.

an = 2

π

∫ π

0
sin t cos nω0t dt

= 2

π

∫ π

0
sin t cos 2nt dt

Using the property,

sinA cosB = 1

2
[sin(A + B) + sin(A − B)]

the above integral is written as

an = 1

π

∫ π

0
sin(2n + 1)t dt+ 1

π

∫ π

0
sin(1 − 2n)t dt

= 1

π

[
−cos(2n + 1)t

(2n + 1)

]π

0

+ 1

π

[
−cos(1 − 2n)t

(1 − 2n)

]π

0

= 1

π

[
−cos(2n + 1)π + 1

(2n + 1)

]
+ 1

π

[
−cos(1 − 2n)π + 1

(1 − 2n)

]

= 1

π

[
1 − (−1)2n+1

(2n + 1)
+ 1 − (−1)1−2n

(1 − 2n)

]

= 1

π

[
2

(2n + 1)
+ 2

(1 − 2n)

]

= 2

π

[
1 − 2n + 2n + 1

(1 − 4n2)

]

an = 4

π(1 − 4n2)

x(t) = 2

π
+ 4

π

∞∑

n=1

1

(1 − 4n2)
cos 2nt
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x(t)

t2 2 3 40

A

T0 2

Fig. 4.5 A half wave rectified sine function

� Example 4.5

Obtain the Fourier series expression of a half wave sine wave.

(Anna University, December 2007)
Solution:

1. T0 = 2π and ω0 = 2π
T0

= 2π
2π = 1

x(t) = A sin t 0 ≤ t ≤ π

= 0 π ≤ t ≤ 2π

a0 = 1

2π

∫ π

0
A sin t dt

= A

2π

[
− cos t

]π

0
= A

π

a0 = A

π

2.

an = 2

2π

∫ π

0
A sin t cos nt dt

= A

2π

[∫ π

0
sin(1 + n)t dt+

∫ π

0
sin(1 − n)t dt

]

= A

2π

[
−cos(1 + n)t

(1 + n)
− cos(1 − n)t

(1 − n)

]π

0

= A

2π

[
1 − cos(1 + n)π

(1 + n)
+ 1 − cos(1 − n)π

(1 − n)

]
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= A

2π

[
2

(1 + n)
+ 2

(1 − n)

]
= 2A

π(1 − n2)

an = 2A

π(1 − n2)
n �= 1

Since for n = 1, an = ∞, a1 is calculated as follows: For n = 1,

a1 = 1

2π

∫ π

0
A sin t cos t dt

= A

2π

∫ π

0
sin 2t dt

= A

4π

[− cos 2t
]π

0 = 0

a1 = 0

3.

bn = 2

2π

∫ π

0
A sin t sin nt dt

= A

2π

[∫ π

0
{cos(1 − n)t − cos(1 + n)t} dt

]

= A

2π

[
sin(1 − n)t

(1 − n)
− sin(1 + n)t

(1 + n)

]π

0

= A

2π

[
sin(1 − n)π − sin 0

(1 − n)
− sin(1 + n)π + sin 0

(1 + n)

]

bn = 0 n �= 1

For n = 1, b1 = ∞ and therefore b1 is calculated as follows:

b1 = 2

2π

∫ π

0
A sin t sin t dt

= A

π

∫ π

0
A sin2 t dt

= A

2π

[∫ π

0
(1 − cos 2t)dt

]
= A

2π

[
t − sin 2t

2

]π

0
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x(t)

t2 t2

t2 1 13 2 30

T0 2

Fig. 4.6 Representation of x(t) = t2

b1 = A

2

x(t) = A

π
+ A

2
sin t +

∞∑

n=2

2A

π(1 − n2)
cos nt

� Example 4.6

Determine the Fourier series representation of the signal x(t) = t2 for all values of
‘t’ which exists in the interval (−1, 1).

(Anna University, May, 2007)
Solution:

1. For the given signal T0 = 2 and ω0 = 2π
T0

= π .

a0 = 1

2

∫ 1

−1
t2dt =1

2

[
t3

3

]1

−1

= 1

3

a0 = 1

3

2.

an = 2

2

∫ 1

−1
t2 cos nπ t dt

=
∫ 1

−1
t2 cos nπ t dt
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Applying
∫
udv = uv − ∫

vdu twice for the above equation, we get

an =
[
t2
sin nπ t

nπ
+ 2t

n2π2
cos nπ t − 2

n3π3
sin nπ t

]1

−1

=
[
sin nπ

nπ
+ 2

n2π2
cos nπ − 2

n3π3
sin nπ + sin nπ

nπ

+ 2

n2π2
cos nπ − 2

n3π3
sin nπ

]

sin nπ = 0 for all n

an = 4

n2π2
cos nπ

an = 4

n2π2
(−1)n

3. From Fig. 4.6, it is evident that x(t) is an even function and therefore bn = 0.
4.

x(t) = 1

3
+ 4

π2

∞∑

n=1

(−1)n

n2
cos nπ t

x(t) = 1

3
+ 4

π2

[
− cosπ t + 1

4
cos 2π t − 1

9
cos 3π t + . . .

]

4.4 Properties of Fourier Series

4.4.1 Linearity

Let x1(t) and x2(t) be two periodic signals with the same period T0. Let Dn1 and
Dn2 be the Fourier series coefficients in complex exponential form. Let x(t) be the
composite signal of x1(t) and x2(t) which are related as

x(t) = Ax1(t) + Bx2(t) (4.15)

where A and B are constants.
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From Eq. (4.10)

Dn1 = 1

T0

∫

T0

x1(t)e
−jnω0tdt (4.16)

Dn2 = 1

T0

∫

T0

x2(t)e
−jnω0tdt (4.17)

Let Dn be the Fourier series coefficient of x(t)

Dn = 1

T0

∫

T0

x(t)e−jnω0tdt (4.18)

= 1

T0

∫

T0

[Ax1(t) + Bx2(t)]e
−jnω0tdt (4.19)

= 1

T0

∫

T0

Ax1(t)e
−jnω0tdt + 1

T0

∫

T0

Bx2(t)e
−jnω0tdt (4.20)

Dn = ADn1 + BDn2 (4.21)

The Fourier series coefficient of the composite signal x(t) is the linear combi-
nation of individual signal.

4.4.2 Time Shifting Property

According to the time shifting property, if the periodic signal x(t) with funda-
mental period T0 is time shifted, the periodicity remains the same and the FS
coefficient is multiplied by the factor e− jnw0 t0 .

Proof Let x(t) be time shifted by t0. Now the time shifted signal is x(t − t0). The
Fourier series coefficient of x(t) is

Dn = 1

T0

∫

T0

x(t)e−jnω0tdt (4.22)

Let Dn0 be the FS coefficient for the time shifted signal.

Dn0 = 1

T0

∫

T0

x(t − t0)e
−jnω0tdt (4.23)
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Substitute τ = (t − t0) in the above equation

Dn0 = 1

T0

∫

T0

x(τ )e−jnω0(τ+t0)dτ

= e−jnω0t0
1

T0

∫

T0

x(τ )e−jnω0τdτ (4.24)

Dn0 = e−jnω0t0Dn (4.25)

4.4.3 Time Reversal Property

According to the time reversal property, if the signal x(t) is time reversed, the
periodicity remains the same with the time reversal in the FS coefficient.

Proof Let x(t) be the signal with period T0 and the FS coefficient Dn. If x(t) is time
reversed, the signal becomes x(−t). Let D−n be the FS coefficient of x(−t).

Dn = 1

T0

∫

T0

x(−t)e−jnω0tdt (4.26)

Let us substitute τ = −t

Dn = 1

T0

∫

T0

x(τ )e−j(−n)ω0τ (−dτ) (4.27)

= − 1

T0

∫

T0

x(τ )e−j(−n)ω0τdτ (4.28)

Dn = −D−n

4.4.4 Time Scaling Property

According to time scaling property, if x(t) is periodic with fundamental period
T0, then x(at) where a is any positive real number, is also periodic but with a
fundamental period of T0

a .
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Proof Let Ds be the FS coefficient of x(at).

Ds = 1

T0

∫

T0

x(at)e−jnω0tdt (4.29)

Let at = τ

Ds = 1

aT0

∫

T0

x(τ )e−jnω0
τ
a dτ

Ds = 1

a
Dn/a (4.30)

4.4.5 Multiplication Property

According to multiplication property, if x1(t) and x2(t) are the two signals
having the periodicity T0, then the Fourier coefficient of the product of these
two signals is given by

Dn =
∞∑

l=−∞
Al Bn−l

where Al and Bl are the FS coefficients of x1(t) and x2(t) respectively.

Proof Let

x(t) = x1(t) × x2(t)

Dn = 1

T0

∫

T0

x(t)e−jnω0tdt

Dn = 1

T0

∫

To

[x1(t) × x2(t)] e
−jnω0tdt

= 1

T0

∫

T0

[ ∞∑

l=−∞
Ale

jlω0t

]
x2(t)e

−jnω0tdt

=
∞∑

l=−∞
Al

1

T0

∫

T0

x2(t)e
−j(n−l)ω0tdt
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Dn =
∞∑

l=−∞
AlBn−l (4.31)

4.4.6 Conjugation Property

According to this property, that the FS coefficients have conjugate symmetric
property

D−n = D∗
nProof

x(t) =
∞∑

n=−∞
Dne

jnω0t

x∗(t) =
[ ∞∑

n=−∞
Dnejnω0t

]∗

=
∞∑

n=−∞
D∗

ne
−jnω0t

Let l = −n,

x∗(t) =
∞∑

l=−∞
D∗

−le
jlω0t (4.32)

Thus during conjugation, FS coefficient becomes conjugate and time reversed.

4.4.7 Differentiation Property

If a periodical signal x(t) is differentiated, the FS coefficient is multiplied by
the factor jnω0.

Proof

x(t) =
∞∑

n=−∞
Dne

jω0nt
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dx(t)

dt
=

∞∑

n=−∞
jω0nDne

jω0nt

=
∞∑

n=−∞
D1

ne
jω0nt (4.33)

where D1
n = jω0nDn. Thus, when the signal x(t) is differentiated, its FS coefficient

is multiplied by the factor jω0n.

4.4.8 Integration Property

According to the integration property, the FS coefficient of x(t) when x(t) is
integrated becomes.

1
jω0n

Dn

Proof

x(t) =
∞∑

n=−∞
Dne

jnω0t

Integrating both sides we get

t∫

−∞
x(t) =

t∫

−∞

∞∑

n=−∞
Dne

jnω0tdt

=
∞∑

n=−∞

Dnejnω0t

jω0n

=
∞∑

n=−∞
D1

ne
jnω0t (4.34)

where D1
n = 1

jω0n
Dn. Thus, when the signal x(t) is integrated, its FS coefficient is

divided by the factor jω0n.

4.4.9 Parseval’s Theorem

According to Parseval’s theorem, that the total average power in a periodic
signal is the sum of the average powers in all its components which is the sum
of the squared value of FS coefficients.
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Proof The average power in a periodic signal is given by

P = 1

T0

∫

T0

|x(t)|2 dt

P = 1

T0

∫

T0

x(t) [x(t)]∗ dt

= 1

T0

∫

T0

x(t)

[ ∞∑

n=−∞
Dne

jω0nt

]∗
dt

=
∞∑

n=−∞
D∗

n

1

T0

∫

T0

x(t)e−jω0ntdt

=
∞∑

n=−∞
D∗

nDn

P =
∞∑

n=−∞
|Dn|2 (4.35a)

For a real x(t), |D−n| = |Dn|

P = D2
0 + 2

∞∑

n=1

|Dn|2 (4.35b)

For a trigonometric Fourier series,

P = C2
0 + 1

2

∞∑

n=1

C2
n (4.35c)

� Example 4.7

Find the Fourier series representation for the signal

x(t) = 3 cos
(π

2
t + π

4

)

and hence find the power.

(Anna University, April, 2008)
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Solution:

x(t) = 3 cos
(π

2
t + π

4

)

= 3

2

[
ej(π/2t+π/4) + e−j( π

2 t+π/4)
]

= 3

2
ejπ/4e

j(π/2)t + 3

2
e−jπ/4e−jπ/2t

Compare this with complex exponential Fourier series

x(t) =
∞∑

n=−∞
Dne

jnω0t where ω0 = π

2

=
∞∑

n=−∞
Dne

jn π
2 t

x(t) = D−1e
−j π

2 t + D1e
j π
2 t (b)

D1 = 3

2
ej

π
4 = 3

2

[
cos

π

4
+ j sin

π

4

]

Comparing Eqs. (a) and (b), we get

D1 = 3

2
√
2
(1 + j); |D1| = 3

2

D−1 = 3

2
√
2
(1 − j); |D−1| = 3

2

P =
∞∑

n=−∞
|Dn|2 = D2

−1 + D2
1 =

(
3

2

)2

+
(
3

2

)2

= 9

2
.

� Example 4.8

Find the Fourier series of the following signals. Also, find the power using Fourier
series coefficients.

(a) x(t) = 2 cos 3t + 3 sin 2t

(b) x(t) = cos2 t
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Solution:

(a) x(t) = 2 cos 3t + 3 sin 2t

1.

ω01 = 3; T01 = 2π

ω01
= 2π

3

ω02 = 2; T02 = 2π

ω02
= 2π

2
= π

T01
T02

= 2π

3π
= 2

3
T0 = 3T01 = 2T02 = 2π

ω0 = 2π

T0
= 2π

2π
= 1

2. Using Euler’s Formula, x(t) can be expressed as

x(t) = (ej3t + e−j3t) + 3

j2
(ej2t − e−j2t)

= e−j3t + j
3

2
e−j2t + ej3t − j

3

2
ej2t

x(t) can also be expressed in complex exponential form as

x(t) =
∞∑

n=−∞
Dne

jnω0t

=
∞∑

n=−∞
Dne

jnt

Equating the two equations for x(t), we get

e−j3t + j
3

2
e−j2t + ej3t − j

3

2
ej2t =

∞∑

n=−∞
Dne

jnt

Putting n = ±3
D3 = 1 and D−3 = 1

Putting n = ±2

D2 = −j
3

2
and D−2 = j

3

2

All other Dn = 0.
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Power P = |D−3|2 + |D−2|2 + |D3|2 + |D2|2

= 12 +
(
3

2

)2

+ 12 +
(
3

2

)2

= 13

2
.

(b) x(t) = cos2 t

x(t) = cos2 t

= 1

2
[1 + cos 2t]

ω0 = 2

x(t) = 1

2
+ 1

2

[
ej2t + e−j2t

]

2
=

∞∑

n=−∞
Dne

j2nt

For n = 0;

D0 = 1

2

For n = ±1;

D1 = 1

4
and D−1 = 1

4

Power P = D2
0 + D2

−1 + D2
1 = 1

4
+ 1

16
+ 1

16
= 3

8
.

� Example 4.9

Find the exponential Fourier series for the signal shown in Fig. 4.7.

(Anna University, December 2007)

x(t) cos t

t10 0

1

10

. . .

/2 /2

Fig. 4.7 Signal of Example 4.9
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Solution:

x(t) = cos t
−π

2
≤ t ≤ π

2
T0 = 10

ω0 = 2π

T0
= 0.2π

Dn = 1

T0

T0∫

0

x(t)e−jω0ntdt

= 1

10

π/2∫

−π/2

cos t e−jω0ntdt

= 1

20

π/2∫

−π/2

(ejt + e−jt)e−j0.2nπ tdt

= 1

20

⎡

⎢⎣
π/2∫

−π/2

ej(1−.2nπ)tdt +
π/2∫

−π/2

e−j(1+.2nπ)tdt

⎤

⎥⎦

= 1

20

{
1

j(1 − .2nπ)

[
ej(1−.2nπ)t

]π/2

−π/2 + 1

j(1 + .2nπ)

[
e−j(1+.2nπ)t

]π/2

−π/2

}

= 1

20

{
1

j(1 − .2nπ)

[
ej

π
2 (1−.2nπ) + e+jπ/2(1−.2nπ)

]

− 1

j(1 + .2nπ)

[
e−jπ/2(1+.2nπ) − ejπ/2(1+.2nπ)

]}

= 1

10

[
1

(1 − .2nπ)
sin

π

2
(1 − .2nπ) + 1

(1 + .2nπ)
sin

π

2
(1 + .2nπ)

]

= 1

10(1 − .04n2π2)

[
(1 + .2nπ) cos 0.1nπ2 + (1 − .2nπ) cos(0.1nπ2)

]

Dn = 0.2 cos 0.1nπ2

(1 − 0.04n2π2)

x(t) =
∞∑

n=−∞
Dne

j0.2πnt
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D0 = 0.2

D−1 = D+1 = 0.1818

D−2 = D+2 = 0.135

D−3 = D+3 = 0.0783

D−4 = D+4 = 0.026

x(t) =
∞∑

n=−∞
Dne

jω0nt

= D0 + D1(e
−j0.2π t + ej0.2π t) + D2(e

−j0.4π t + ej0.4π t)

+D3(e
−j0.6π t + ej0.6π t) + D4(e

−j0.8π t + ej0.8π t) + · · ·

x(t) = [0.2 + 0.3636 cos 0.2π t + 0.27 cos 0.4π t

+0.1566 cos 0.6π t + 0.052 cos 0.8π t + · · · ]

� Example 4.10

Consider thewaveformshown inFig. 4.8.Determine the complex exponential Fourier
series.

Solution:

1. From Fig. 4.8, T0 = 2 and ω0 = 2π
T0

= 2π
2 = π .

x(t)

t3 2 1

1

1

0 1 2 3 4

Fig. 4.8 Signal of Example 4.10



4.4 Properties of Fourier Series 457

2.

Dn = 1

T0

T0∫

0

x(t)e−jnω0tdt

Dn = 1

2

1∫

0

e−jnπ tdt − 1

2

2∫

1

e−jnπ tdt

= 1

2

1

(−jnπ)

[
e−jnπ t

]1
0 − 1

2(−jnπ)

[
e−jnπ t

]2
1

= 1

2(−jnπ)

[
e−jnπ − 1 − e−jnπ2 + e−jnπ

]

= 1

−2nπ j

[
2e−jnπ − 2

] [
∵ e−jnπ2 = 1

]

= 1

jnπ

[
1 − e−jnπ

]

= 1

jnπ
[1 − cos nπ ]

Dn = 2

jnπ

where n is an odd number. For even number n, cos nπ = 1
3.

x(t) =
∞∑

n=−∞
Dne

jnπ t

x(t) = 2

jπ

∞∑

m=−∞

1

2m + 1
ej(2m+1)π t

where m is any integer which will be equivalent to n being odd integer.

D−1 = − 2

jπ
;

x−1(t) = D−1e
−jπ t

D+1 = 2

jπ
;

x+1(t) = D+1e
jπ t
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x1(t) = x+1(t) + x−1(t)

= 2

jπ
[ejπ t − e−jπ t]

= 4

π
sin(π t) (Fundamental component)

D−3 = −
(

2

jπ

)
1

3
;

x−3(t) = D−3e
−j3π t

D+3 =
(

2

jπ

)
1

3
;

x+3(t) = D+3e
j3π t

x3(t) = x+3(t) + x−3(t)

=
(

2

jπ

)
1

3
[ej3π t − e−j3π t]

=
(
4

π

)
1

3
sin(3π t) (Third harmonic)

Similarly, x5(t) can be obtained as

x5(t) =
(
4

π

)
1

5
sin(5π t) (Fifth harmonics)

x(t) = [x1(t) + x3(t) + x5(t) + · · · ]

x(t) = 4

jπ

[
sin π t + 1

3
sin 3π t + 1

5
sin 5π t + · · ·

]

� Example 4.11

Let

x(t) =
{
t 0 ≤ t ≤ 1

2 − t 1 ≤ t ≤ 2

be a periodic signal with fundamental period T0 = 2 and Fourier coefficients ak .

(a) Determine the value of a0.
(b) Determine the Fourier series representation of dx(t)

dt .
(c) Use the result of part (b) and the differentiation property of FS to help determine

the Fourier series coefficients of x(t).

(Anna University, May 2008)
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Solution:

(a)

x(t) =
{
t 0 ≤ t ≤ 1

2 − t 1 ≤ t ≤ 2

The above equation represents a triangle in the given time interval and the peri-
odical signal with period T0 = 2 is shown in Fig. 4.9.

ω0 = 2π

T0
= π

The Fourier series coefficient a0 is determined as follows:

a0 = 1

T0

T0∫

0

x(t)dt

= 1

2

1∫

0

t dt + 1

2

2∫

1

(2 − t)dt

dx(t)
dt

t

1

1

x(t)

t

1

(a)

(b)

3 2 1 0 1

1

2

2

3

3

4

4

5

5

4

4 3 2 1 0

5

Fig. 4.9 a A triangular wave and b Derivative of triangular wave
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= 1

2

[
t2

2

]1

0

+ 1

2

[
2t − t2

2

]2

1

= 1

4
+ 1

2

[
4 − 2 − 2 + 1

2

]

a0 = 1

2

(b) Differentiating the given x(t), we get

dx(t)

dt
=

{
1 0 ≤ t ≤ 1

−1 1 ≤ t ≤ 2

This is the square wave and is shown in Fig. 4.9b. Figures 4.8 and 4.9b are
the rectangular waves with the amplitude and periodicity. The exponential FS
coefficient of Fig. 4.8 has been determined as

D′
n = 2

jnπ
where n is an odd integer.

= 2

j(2m + 1)π
where m is any integer.

dx(t)

dt
= ẋ(t) = 2

jπ

∞∑

m=−∞

1

(2m + 1)
ej(2m+1)π t

(c) x(t) in the Fourier exponential form can be written as follows:

x(t) =
∞∑

n=−∞
Dne

jnω0t

dx(t)

dt
=

∞∑

n=−∞
(jnω0)Dne

jnω0t

From the result derived in part (b)

Dn = D′
n

jnω0

jnω0Dn = 2

jnπ
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Dn = −2

n2π2

where n is an odd integer.

x(t) = D0 +
∞∑

n=−∞
Dne

jnπ t

D0 = a0 = 1

2
n = 2m + 1 where m is any integer

x(t) = 1

2
− 2

π2

∞∑

m=−∞

1

(2m + 1)2
ej(2m+1)π t

Since n is a squared function. D−1 = D+1, D−2 = D+2 etc

D−1 = D+1 = − 2

π2

x1(t) = − 2

π2
[e−jπ t + e+jπ t]

= − 4

π2
cosπ t (Fundamental component)

D−3 = D+3 = −
(

2

π2

)
1

9

x3(t) = − 2

π2

1

9
[e−j3π t + e+j3π t]

= − 4

π2

[
1

9
cos(3π t)

]
(Third harmonic)

Similarly, x5(t) can be obtained as

x5(t) = − 4

π

[
1

25
cos(5π t)

]

x(t) = 1

2
− 4

π2

[
cos(π t) + 1

9
cos(3π t) + 1

25
cos(5π t) + · · ·

]
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x(t)

t

2

0 1 9 10 1111 10 9 1

Fig. 4.10 Signal of Example 4.12

� Example 4.12

For the signal shown in Fig. 4.10. Determine the exponential Fourier series.

Solution:

T0 = 10

ω0 = 2π

10
= π

5

Dn = 1

T0

1∫

−1

2e−jω0ntdt

= 2

10

1∫

−1

e−j π
5 ntdt

= −1

5

5

π jn

[
e−j πn

5 t
]1

−1

= − 1

jπn

[
e−j πn

5 − e+j nπ5
]

Dn = 2

πn
sin

πn

5
for all n but n �= 0

For n = 0

D0 = Lt
n→0

2

5

sin πn
5

πn
5

D0 = 2

5
= 0.4
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x(t) = 0.4 + 2

π

∞∑

n=−∞

1

n
sin

π

5
ne

−jπnt
5

D−1 = − 2

π
sin

−π

5
= 0.374

D+1 = 2

π
sin

π

5
= 0.374

x1(t) = D−1(e
−j0.2π t) + D+1(e

+j0.2π t)

= 0.374[e−j0.2π t + e−j0.2π t]
= 0.748 cos 0.2π t (Fundamental component)

D−2 = − 1

π
sin

−2π

5
= 0.303

D+2 = D−2 = 0.303

x2(t) = 0.303[e−j0.4π t + e+j0.4π t]
= 0.606 cos(0.4π t) (Second harmonic)

D−3 = − 2

3π
sin

−3π

5
= 0.2

D+3 = D−3 = 0.2

x3(t) = 0.2[e−j0.6π t + e+j0.6π t]
= 0.4 cos(0.6π t) (Third harmonic)

x(t) = D0 + x1(t) + x2(t) + x3(t) + · · ·

x(t) = 0.4 + [0.748 cos(0.2π t) + 0.606 cos(0.4π t) + 0.4 cos(0.6π t) + · · · ]

Note: For n = 5, 10, 15, 20, . . .
Dn = 0

� Example 4.13

Determine the exponential and trigonometric Fourier series of a train of impulse
with periodicity T0 = 1. Verify the exponential and trigonometric coefficients rela-
tionship.
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1 2 33 2 1 0

1

x(t)

t

Fig. 4.11 Periodic train of impulses

Solution:
T0 = 1 and ω0 = 2π

To determine the exponential FS coefficients

Dn = 1

T0

T0∫

0

δ(t) e−jnω0tdt = 1

T0

∫ 1/2

−1/2
δ(t) e−j2πntdt

Over this interval, Dn = 1
T0

Dn = 1

T0
= 1

D0 = 1

x(t) =
∞∑

n=−∞
Dne

jnω0t

x(t) =
∞∑

n=−∞
ej2πnt

To determine the Trigonometric Fourier series

a0 = 1

T

∫ T0

0
δ(t) dt

a0 = 1

T0
= 1

Since the train of impulses is an even signal bn = 0.
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an = 2

T0

∫ T0

0
δ(t) cos nω0t dt

= 2

T0
= 2

x(t) = a0 +
∞∑

n=1

an cos nω0t

x(t) = 1 +
∞∑

n=1

2 cos 2πnt

a0 = D0 = 1

Dn = an
2

= 2

2
= 1

Thus, the relationships between trigonometric and exponential Fourier series coeffi-
cients are verified.

� Example 4.14

For the periodic signal x(t) = e−t with a period T0 = 1 second, find the Fourier series
in

(a) Exponential form,
(b) Trigonometric form,
(c) Polar form, and
(d) Verify the relationships of FS coefficients.

Solution:

(a) Exponential Fourier series
x(t) is plotted as shown in Fig. 4.12.

x(t)

e t

3 2 1 0

0.3678

1

1

2 3 t

Fig. 4.12 Exponentially decaying periodic signal
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T0 = 1

ω0 = 2π

T0
= 2π

Dn = 1

T0

∫ T0

0
x(t)e−jnω0tdt

=
∫ 1

0
e−te−jn2π tdt

=
∫ 1

0
e−(1+j2πn)tdt

= − 1

(1 + j2πn)

[
e−(1+j2πn)t]1

0

= 1

(1 + j2πn)

[
1 − e−(1+j2πn)

]

= 1

(1 + j2πn)

[
1 − e−1

] [
∵ e−j2πn = 1

]

Dn = 0.632

(1 + j2πn)
; |Dn| = 0.632√

1 + 4π2n2

D0 = 0.632

x(t) =
∞∑

n=−∞
Dne

jnω0t

x(t) = 0.632
∞∑

n=−∞

1√
(1 + 4π2n2)

ej2πnt

Dn = 0.632√
1 + 4π2n2

Since n is a squared function

D−n = D+n

D1 = 0.632√
1 + 4π2

= 0.1

x1(t) = D−1[ej2π t + e−j2π t]
= 2 × 0.1 cos 2π t
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= 0.2 cos 2π t (Fundamental component)

D−2 = 0.632√
1 + 4π2 × 4

= 0.05

x2(t) = 0.1 cos 4π t (Second harmonic)

D−3 = 0.632√
1 + 4π2 × 9

= 0.0335

x3(t) = 0.067 cos(0.6π t) (Third harmonic)

x(t) = D0 + x1(t) + x2(t) + x3(t) + · · ·

x(t) = [0.632 + 0.2 cos 2π t + 0.1 cos 4π t + 0.067 cos 6π t + · · · ]

(b) Trigonometric Fourier series

a0 = 1

T0

∫ T0

0
x(t)dt

=
∫ 1

0
e−tdt

a0 = −
[
e−t

]1
0

= (1 − e−1)

a0 = 0.632

an = 2

T0

∫ T0

0
x(t) cosω0nt dt

= 2
∫ 1

0
e−t cos 2πnt dt

Using the property

∫ b

a
eat cos bt dt =

[
eat(a cos bt + b sin bt)

(a2 + b2)

]b

a

an = 2

(1 + 4π2n2)

[
− cos 2πnt(e−t) + e−t2πn sin 2πn

]1
0
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= 2

(1 + 4π2n2)

[
e−1 {− cos 2πn + 2πn sin 2πn} + 1

]

= 2

(1 + 4π2n2)
[1 − e−1]

an = 1.264

(1 + 4π2n2)

bn = 2

T0

To∫

0

x(t) sinω0nt dt

= 2

1∫

0

e−t sin 2πnt dt

Using the property

∫ b

a
eat sin bt dt = 1

(a2 + b2)

{
eat[a sin bt − b cos bt]

}b

a

we get,

bn = 2(
1 + 4π2n2

)
{
e−t [− sin 2πnt − 2πn cos 2πnt]

}1

0

= 2(
1 + 4π2n2

)
[−e−1(sin 2πn + 2πn cos 2πn) + 2πn

]

bn = 4πn(
1 + 4π2n2

) (1 − e−1)

bn = 2.53πn

1 + 4π2n2

x(t) = a0 +
∞∑

n=1

an cosω0nt +
∞∑

n=1

bn sinω0nt
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x(t) = 0.632 + 1.264
∞∑

n=1

n(
1 + 4π2n2

) cos 2πnt

+ 2.53π
∞∑

n=1

n(
1 + 4π2n2

) sin 2πnt

For n = 1
x1(t) = 0.312 cos 2π t + 0.196 sin 2π t

=
√

(0.312)2 + (0.196)2 cos

(
2π t − tan−1 0.196

0.312

)

= 0.2 cos(2π t − 0◦)
= 0.2 cos(2π t) (Fundamental component)

For n = 2
x2(t) = 0.159 cos 4π t + 0.1 sin 4π t

= 0.1 cos(4π t) (First harmonic)

For n = 3
x3(t) = 0.0106 cos 6π t + 0.0666 sin 6π t

= 0.067 cos 6π t

x(t) = a0 + x1(t) + x2(t) + x3(t)

x(t) = [0.632 + 0.2 cos 2π t + 0.1 cos 4π t + 0.067 cos 6π t + · · · ]

(c) Polar form Fourier series (cosine form FS)

x(t) = C0 +
∞∑

n=1

Cn cos(ω0nt − θn)

C0 = a0

Cn =
√
a2n + b2n

θn = tan−1

(
bn
an

)

C0 = 0.632
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Cn =
√

(1.6 + 6.4π2n2)

(1 + 4π2n2)
;

Cn = 1.265√
1 + 4π2n2

θn = tan−1 2.53πn

1.264
= tan−1 2πn = 0

x(t) = 0.632 +
∞∑

n=1

√
1.6 + 6.4π2n2

(1 + 4π2n2)
cos[2πnt]

x(t) = 0.632 +
∞∑

n=1

1.265√
(1 + 4π2n2)

cos 2πnt

(d) 1. a0 = C0 = D0 = 0.632
2.

|Dn| = Cn

2
= 1.265

2
√
1 + 4π2n2

= 0.632√
1 + 4π2n2

3.

Cn =
√
a2n + b2n

=
√

(1.264)2 + 2.532π2n2

(1 + 4π2n2)

=
√
1.6(1 + 4π2n2)

(1 + 4π2n2)

= 1.265√
(1 + 4π2n2

4.5 Existence of Fourier Series—the Dirichlet Conditions

The continuous Fourier series of the signal x(t), is represented in the following form.

x(t) =
∞∑

n=−∞
Dne

j2πnt (4.36)
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where

Dn = 1

T0

∫ T0

0
x(t)e−j2πntdt (4.37)

and n represents the harmonic number.
If the integral in Eq. (4.37) diverges, CTFS cannot be found for x(t). If certain

constraints are put on x(t), Eq. (4.37) converges and the conditions are calledDirichlet
conditions. The Dirichlet Conditions are:

1. The signal x(t) must be absolutely integrable over the time interval t0 < t <

t0 + T0. The above condition implies that

∫ t0+T0

t0

|x (t)| dt < ∞ (4.38)

2. The signal x(t) must have a finite number of maxima and minima in the time
interval t0 < t < t0 + T0.

3. The signal x(t) must have finite number of discontinuities in the time interval
t0 < t < t0 + T0.

4.6 Convergence of Continuous Time Fourier Series

The arbitrary signal x(t) can be expressed by FS in Eq. (4.4), if it is periodic. It does
not mean that every periodic signal can be expressed by FS. When the series uses
a fixed number of terms, then it guarantees convergence. If the energy difference
between the signal x(t) and the corresponding finite term series approaches zero, as
the number of terms approaches infinity, such a series is said to be convergent in the
mean. The Fourier series of x(t) converges in the mean if it has finite energy over
one period. This can be expressed as

E =
∫

T0

|x(t)|2dt < ∞ (4.39)

When conditions (4.39) are satisfied, the Fourier series converges in the mean and
also guarantees that the Fourier coefficient is finite.

4.7 Fourier Series Spectrum

The plot of Fourier series coefficients with respect to ω is called Fourier series
spectrum. In exponential Fourier series and in polar Fourier series, the Fourier series,
the FS coefficients Dn and Cn are complex. Thus, these coefficients have magnitude
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and angle. Thus, the plots of Dn versus n and ∠Dn versus n are called exponential
Fourier spectra. Similarly, the plots of |Cn| versus n and ∠Cn versus n are called
trigonometric Fourier spectra. The following examples illustrate the above methods.

� Example 4.15

For the Example 4.14, plot the exponential Fourier spectra for the periodic signal
x(t) shown in Fig. 4.12.

Solution: The exponential Fourier series coefficient of Fig. 4.12 has been derived as

Dn = 0.632

1 + j2πn
= 0.632√

1 + 4π2n2
∠ − tan−1 2πn

For n = 0

D0 = 0.632∠0◦

For n = ±1,

D1 = D−1 = 0.1∠ ∓ 81◦

D2 = D−2 = 0.05∠ ∓ 85.5◦

D3 = D−3 = 3.35 × 10−2∠ ∓ 87◦

D4 = D−4 = 2.5 × 10−2∠ ∓ 87.7◦

D5 = D−5 = 2 × 10−2∠ ∓ 88.2◦

D6 = D−6 = 1.68 × 10−2∠ ∓ 88.5◦

D7 = D−7 = 1.44 × 10−2∠ ∓ 88.7◦

The magnitude spectrum of Dn is shown in Fig. 4.13a and the phase spectrum is
Fig. 4.13b. Note: ω = nω0 = 2πn or n = ω

2π which is a function of frequency.
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.1.1

.05.05
.0335.0335

.025.025 .02.02 .0168.0168 .0144.0144

88.7˚

88.7˚

87.7˚

87.7˚

87˚

87˚

85.5˚

85.5˚

81˚

81˚

1 2 3 4 5 6 747 6 5 3 2 1

0.632

0

Dn
(a)

(b)

n

1 2 3 4 5 6 747 6 5 3 2 1 0

Dn

n

n

n

88.5˚

88.5˚

88.2˚

88.2˚

Fig. 4.13 Frequency spectra of Example 4.15. a Magnitude spectrum and b Phase angle spectrum

� Example 4.16

Find the trigonometric and exponential series representation of the signal whose
mathematical description is given as

x(t) =
{
1 0 ≤ t < T

2

0 T
2 ≤ t < T

x(t + T) = x(t)

Using the differentiation property of F.S., determine the exponential F.S. coefficient
and verify the results.

(Anna University, 2009 and 2013)
Solution:

1. Trigonometric F.S. Representation
The mathematical description is sketched as the waveform in Fig. 4.14a and its
derivative in Fig. 4.14b. From Fig. 4.14a

T0 = T

and
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x(t)

tt T T/ 2 T/ 2 0.5T T0

1

g(t)
dx(t)
dt

1 11

tt T

1 1

T/ 2 T/ 2 T 0

(a)

(b)

g(t)
dx(t)
dt

1

tt

1

T/ 20

(c)

Fig. 4.14 a, b Representation of x(t) and dx(t)/dt of Example 4.16. c Representation of impulses
in one period
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ω0 = 2π

T0
= 2π

T

The trigonometric F.S. coefficients are determined using Eqs. (4.5), (4.6) and
(4.7)

a0 = 1

T0

∫

T0

x(t)dt

= 1

T0

∫ T/2

0
1dt

a0 = 1

T

[
t
]T/2

0

= 1

2

an = 2

T0

∫

T0

x(t) cosω0ntdt

= 2

T

∫ T/2

0
1 cosω0ntdt

= 2

T

1

ω0n
[sinω0nt]

T/2
0

= 2

T

T

2πn

[
sin

2π

T
nt

]T/2

0

= 1

πn
sin πn

= 0 (for all n)

bn = 2

T0

∫

T0

x(t) sinω0ntdt

= 2

T

∫ T/2

0
1 sinω0ntdt

bn = 2

T

1

ω0n
[− cosω0nt]

T/2
0

= 2

T

T

2πn

[
− cos

2π

T
n
T

2
− 1

]

= 1

πn
[1 − cosπn]

= 0 (for even values of n)

= 2

πn
(for odd values of n)
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x(t) = a0 +
∞∑

n=1

an cosω0nt +
∞∑

n=1

bn sinω0nt

= 1

2
+ 2

π

∞∑

n=1

sinω0nt (for odd values of n)

x(t) =
[
1

2
+ 2

π

{
sin

(
2π

T
t

)
+ 1

3
sin

(
3
2π

T
t

)
+ 1

5
sin

(
5
2π

T
t

)
+ · · ·

}]

2. Exponential F.S. Representation of x(t)
The exponential F.S. coefficient is given by

Dn = 1

T0

∫

T0

x(t)e−jnω0tdt

= 1

T

∫ T/2

0
1e−jnω0tdt

= 1

T(−jnω0)

[
e−jnω0t

]T/2

0

= − 1

jT

T

2πn

[
e−jn(2π/T)(T/2) − 1

]

= − 1

j2πn

[
e−jπn − 1

]

= − 1

j2πn

[
cosπn − j sin πn − 1]

= 1

j2πn

[
1 − cosπn] [sin πn = 0 for any integer value of n]

= 0 (for even values of n)

= 1

jπn
(for odd values of n)

But D0 is to be calculated from first principle since Dn|n=0 = ∞.

Dn = 1

T0

∫ T/2

0
1dt

D0 = 1

T

[
t
]T/2

0

= 1

2
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The F.S. is written as

x(t) = D0 +
∞∑

n=−∞
Dne

jnω0t

For n = ±1

x1(t) = 1

jπ
ej(2π/T)t

x−1(t) = − 1

jπ
e−j(2π/T)t

x1(t) + x−1(t) = 1

jπ

[
ej(2π/T)t − e−j(2π/T)t

]

= 2

π
sin

2π

T
t

For n = ±3

x3(t) = 1

j3π
e+j(2π/T)3t

x−3(t) = − 1

j3π
e−j(2π/T)3t

x3(t) + x−3(t) = 1

j3π

[
ej(2π/T)3t − e−j(2π/T)3t

]

= 2

3π
sin

(
3
2π

T

)
t

Thus, x(t) is written as

x(t) =
[
1

2
+ 2

π

{
sin

(
2π

T
t

)
+ 1

3
sin 3

(
2π

T
3t

)
+ · · ·

}]

3. Exponential F.S. Using Differentiation Technique
The derivative of x(t) is sketched as a train of pulses in Fig. 4.14b. Let

g(t) = dx(t)

dt

Let D′
n be the exponential F.S. coefficient of g(t). Consider the pulses in one

cycle which is represented in the Fig. 4.14c. From Fig. 4.14c, the F.S. coefficient
is written as

D′
n = 1

T

[
1 − e−jω0n(T/2)

]

= 1

T

[
1 − e−j(2π/T)n(T/2)

]
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= 1

T

[
1 − e−jπn

]

= 1

T
[1 − cosπn] (which exists for n is odd)

= 0 (for n is even)

D′
n = 2

T

Using the differentiation property 4.47, we get

(jω0n)Dn = D′
n

Dn = D′
n

jω0n

= 2

jT(2π/T)n

= 1

jπn

Thus, identical results are obtained as in part (2) of the problem in few simpler
steps. The F.S. of x(t) following end stage of part (2) of the problem we write

x(t) =
[
1

2
+ 2

π

{
sin

(
2π

T
t

)
+ 1

3
sin 3

(
2π

T
t

)
+ 1

5
sin 5

(
2π

T
t

)
+ · · ·

}]

� Example 4.17

Consider the triangular wave x(t) shown in Fig. 4.15a.

(a) Find the trigonometric Fourier series using differentiation technique.
(b) Find the exponential F.S. using differentiation technique.

Solution: The equation of the triangle of x(t) can be written as follows.
The slope of the straight line of triangle is,

m = −3

4

The equation of the straight line of the triangle is,

x(t) = −3

4
t + c

At t = 0; x(t) = 3 and hence c = 3.

x(t) = −3

4
t + 3 0 ≤ t < 4
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x(t)

t12

3/4

8 4 0t 4 8 12

t12 8 4 0t 4 8 12

(a)

3

g(t)
dx(t)
dt

3

(b)

Fig. 4.15 Triangular wave of Example 4.17. a x(t) and b dx(t)/dt

(a) To Determine F.S. of the Train of Impulses and the DC Term
Differentiating the above equation with respect to t we get

dx(t)

dt
= −3

4
+ 3δ(t)

Considering all the triangles, the above equation is written as

dx(t)

dt
= −3

4
+ 3

∞∑

n=−∞
δ(t − 4n)

where n is an integer. The above equation is represented in Fig. 4.15b. Using
trigonometric Fourier series, the train of impulses can be represented as follows.

The periodicity of the impulses is given by

T0 = 4 sec

and

ω0 = 2π

T0
= π

2
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a0 = 1

T0

∫ T0

0
3δ(t)dt

= 3

4

∫ 4

0
δ(t)dt

= 3

4

Since the train of impulses represents an even function bn = 0 and an is deter-
mined using Eq. (4.6).

an = 2

T0

∫ T0

0
x(t) cos nω0tdt

= 2 × 3

4

∫ 4

0
δ(t) cos

π

2
ntdt

[
δ(t) cos

π

2
nt = δ(t)

]

= 3

2

∫ 4

0
δ(t)dt

= 3

2

Thus, the F.S. of the train of pulses is written using Eq. (4.4)

∞∑

n=−∞
3δ(t − 4n)

FS←→ a0 +
∞∑

n=1

an cos nω0t +
∞∑

n=1

bn sin nω0t

= 3

4
+ 3

2

∞∑

n=1

cos
(π

2
nt

)

Taking the DC term into account we get the F.S. of dx(t)/dt as given below

dx(t)

dt
FS←→ 3

4
+ 3

2

∞∑

n=1

cos
(π

2
nt

)
− 3

4

dx(t)

dt
FS←→ 3

2

∞∑

n=1

cos
(π

2
nt

)
(a)

To Find the F.S. of the Train of Triangle (x(t))
Using Eq. (4.4), the F.S. of the series of the triangles is obtained as explained
below
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x(t)
FS←→ a0 +

∞∑

n=1

an cosω0nt +
∞∑

n=1

bn sinω0nt

Differentiating the above equation, we get

dx(t)

dt
FS←→

∞∑

n=1

anω0n(− sinω0nt) +
∞∑

n=1

bnω0n(cosω0nt) (b)

Comparing Eqs. (a) and (b), we get

an = 0

bnω0n = 3

2

bn =
(

3

2n

)
2

n

= 3

πn

a0 = 2

T0

∫ T0

0
x(t)dt

= 1

4

∫ 4

0

(
3 − 3

4
t

)
dt

= 1

4

[
3t − 3

8
t2
]4

0

= 3

2

The F.S. of x(t) is written as

x(t) = 3

2
+

∞∑

n=1

3

πn
sin

π

2
nt

x(t) = 3

2
+ 3

π

{
sin

(π

2
t
)

+ 1

2
sin 2

(π

2
t
)

+ 1

3
sin 3

(π

2
t
)

+ · · ·
}

Summary of Steps Followed

1. The given signal x(t) is differentiated and dx(t)/dt is represented in graph
which is in the form of train of impulses and a DC term.

2. Since the series of impulses represent an even function, the F.S. coefficient
bn = 0. Find a0 and an using Eqs. (4.5) and (4.6).

3. With these coefficients express dx(t)/dt in F.S.
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4. x(t) is expressed by the analysis equation as

x(t)
FS←→ a0 +

∞∑

n=1

(an cosω0nt + bn sinω0nt)

dx(t)

dt
FS←→

∞∑

n=1

−anω0n sinω0nt + bnω0n cosω0nt

5. Compare the coefficients obtained in step (3) with those obtained in step (4)
and get an and bn which are F.S. coefficients of x(t).

6. Find a0 using Eq. (4.5).
7. Express x(t) in F.S. using Eq. (4.4).

(b) To Determine the F.S. Using Exponential F.S. The Train of Impulses
The exponential Fourier series and the F.S. coefficients are obtained using
Eqs. (4.9) and (4.10), respectively. The first derivative of the signal x(t) is repre-
sented in Fig. 4.15b. The F.S. coefficient for the train of impulses is determined
as

Dn = 1

T0

∫

T0

δ(t)e−jnω0tdt [δ(t)e−jnωot = 1]

= 3

4

∫ 4

0
δ(t)dt

= 3

4

dx(t)

dt
FS←→ −3

4
+ 3

4

∞∑

n=−∞
ejω0nt

dx(t)

dt
FS←→−3

4
+ 3

4

∞∑

n=−∞
ej(π/2)nt (a)

Fourier Series for the Triangle

The F.S. for the triangle is determined as follows:

Dn = 1

T0

∫

T0

x(t)e−jnω0tdt

x(t) =
∞∑

n=−∞
Dne

jω0nt

dx(t)

dt
=

∞∑

n=−∞
Dn(jnω0)e

jω0nt
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dx(t)

dt
=

∞∑

n=−∞
Dn

(
jn

π

2

)
ej(π/2)nt (b)

Comparing Eqs. (a) and (b), we get

Dn

(
j
π

2
n
)

= 3

4

Dn = −j
3

2πn

x(t) =
∞∑

n=−∞
Dne

jω0nt

= −j
3

2π

∞∑

n=−∞

1

n
ej(π/2)nt

The values of n is substituted from −∞ to +∞ except n = 0. At n = 0; D0 =
a0 = 3

2

x0(t) = 3

2

For n = 1

x1(t) = −j
3

2π
ej(π/2)t

= −j
3

2π

(
cos

π

2
t + j sin

π

2
t
)

For n = −1

x−1(t) = +j
3

2π

(
cos

π

2
t − j sin

π

2
t
)

x1(t) + x−1(t) = −j
3

2π

[
2j sin

π

2
t
]

= 3

π

[
sin

π

2
t
]

For n = ±2
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x2(t) = −j
3

2π

1

2
(ejπ t)

x−2(t) = +j
3

2π

1

2
(e−jπ t)

x2(t) + x−2(t) = −j
3

2π

1

2

[
ejπ t − e−jπ t

]

= 3

2π
[sin π t]

= 3

2π
sin

(
2
π

2
t
)

Similarly for n = 3

x3(t) + x−3(t) = 1

π
sin

(
3
π

2
t
)

In general, x(t) is written as

x(t) = 3

2
+ 3

π

[
sin

(π

2
t
)

+ 1

2
sin

(
2
π

2
t
)

+ 1

3
sin

(
3
π

2
t
)

+ · · ·
]

The same result using trigonometric F.S. aswell as exponential F.S.was obtained.

� Example 4.18

Consider the waveform shown in Fig. 4.1. Using differentiation and integration prop-
erties of F.S., determine the exponential Fourier series coefficient and hence x(t).
Verify the results so obtained with that of Example 4.1.

Solution: The first derivative of the signal shown in Fig. 4.1 is shown in Fig. 4.16a
which is in the form of train of impulses which is alternatively going positive and
negative with amplitude 2. Consider the impulses in one cycle which is shown in
Fig. 4.16b. Here,

dx(t)

dt
= 2[δ(t + 1) − δ(t − 1)]

Let D′
n be the F.S. coefficient for these impulses. From Fig. 4.1.

T0 = 4 sec

and

ω0 = 2π

T0
= π

2
rad/s

From Fig. 4.16b, D′
n can be written as
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D′
n = 2

4
[ejω0n − e−jω0n]

= j sinω0n

According to integration property, Dn, the complex exponential F.S. coefficient of
x(t) can be written as

Dn = D′
n

jω0n

= j sinω0n

jω0n

= 2 sin(π/2)n

πn

= 2

πn
sin

πn

2
(for n is odd)

= 0 (for n is even)

dx(t)
dt

1

2

tt

2

31 2

2

0

(a)

dx(t)
dt

1

2

tt

2

31
2 2

0

(b)

T0

Fig. 4.16 Signal representation of first derivative of signal in Fig. 4.1. a dx(t)/dt and b dx(t)/dt in
one period T0
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Since the waveform x(t) is symmetrical with respect to t, D0 = 0.
Using Eq. (4.9), we write

x(t) =
∞∑

n=−∞
Dne

jω0nt

where n �= 0. For n = ±1

x1(t) = 2

π
[ejω0t + e−jω0t]

= 4

π
cosω0t

= 4

π
cos

π

2
t

For n = −3

D−3 = 2

−π × 3
sin

(
−π

2
× 3

)

= − 2

π × 3

For n = 3

D+3 = 2

π × 3
sin

(π

2
× 3

)

= − 2

π × 3
x3(t) = (D−3e

−jω0t + D3e
jω0t)

= − 2

π

1

3
[e−j(3π/2)t + ej(3π/2)t]

For n = ±3

x3(t) = − 4

π

1

3
cos

(
3
π

2
t
)

Thus, we write

x(t) = 4

π

[
cos

(π

2
t
)

− 1

3
cos

(
3
π

2
t
)

+ 1

5
cos 5

π

2
t + · · ·

]
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The same result is obtained inExample 4.1. Thenumber of steps and themathematical
operations involved in the above method are very less.

� Example 4.19

Consider periodic waveform shown in Fig. 4.17a. Using differentiation and integra-
tion properties of F.S. determine the exponential F.S. coefficient and hence F.S. x(t).

Solution: The given signal is represented in Fig. 4.17a. The signal x(t) repeats itself
for every period T0 = 2 sec. Hence, the fundamental frequency is

ω0 = 2π

T0
= π rad/s.

From Fig. 4.17a, the mathematical description for x(t) is given as

x(t) =
{
4t − 1

2 ≤ t < 1
2

4(1 − t) 1
2 ≤ t < 3

2

x(t + T) = x(t)

dx(t)

dt
=

{
4 − 1

2 ≤ t < 1
2

−4 1
2 ≤ t < 3

2

x(t + T) = x(t)

dx(t)/dt is represented in Fig. 4.17b. When dx(t)/dt is further differentiated at mul-
tiplies of ± 1

2 the up going and down going impulses occur and in other places, the
signal is zero. This is represented in Fig. 4.17c. Let us consider only the impulses
within one period T0 = 2 sec. At t = −1/2 we have 8δ(t + 1/2) and at t = 1/2 we
have 8δ(t − 1/2). If we denote D′

n as the exponential F.S. coefficient, then we may
write

D′
n = 8

T0

[
ej(1/2)ω0n − e−j( 1

2 )ω0n
]

where T0 = 2 sec.

D′
n = j8 sin

1

2
ω0n

= j8 sin
1

2
πn

Using integration property of F.S., the exponential F.S. of x(t) is written as
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x(t)

0.5

2

tt

2

3/2
1

0.5
10

(a)

d2x(t)
dt

0.5

8 8

tt

8

3/21

8

3/2
1/2

1
0

(c)

dx(t)
dt

T0

T0 2 sec

tt 3/2 3/20.5 0.51 0

4

4

(b)

Fig. 4.17 Representation of x(t) of Example 4.19 and its derivatives
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Dn = D′
n

(jω0n)2

= −j8

π2n2
sin

π

2
n (for all odd values ofn)

= 0 (for even values ofn)

Since x(t) is symmetrical with respect to time axis,D0 = 0. The F.S. of x(t) is written
using Eq. (4.9) as

x(t) =
∞∑

n=−∞
Dne

jω0nt

= −j8

π2

∞∑

n=−∞

1

n2
sin

π

2
nejπnt

For n = −1

D−1 = −j8

π2
sin

(
−1

π

2

)
= j8

π2

For n = 1

D1 = −j8

π2
sin

(π

2

)

= − j8

π2

x1(t) = [
D−1e

−jω0nt + D1e
jω0nt

]

= − j8

π2

[ejπ t − e−jπ t]
2j

× 2j

For n = ±1

x1(t) = 16

π2
sin π t

For n = ±3

x3(t) = − 16

π2

[
1

9
sin 3π t

]

For n = ±5

x5(t) = 16

π2

[
1

25
sin 5π t

]
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Summing up x1(t), x2(t), x3(t), . . ., we get x(t) as

x(t) = 16

π2

[
sin π t − 1

9
sin 3π t + 1

25
sin 5π t − · · ·

]

� Example 4.20

Consider the waveform whose mathematical description is given by

x(t) = t2 |t| < 1

x(t + T) = x(t)

Sketch the signal x(t). Using differentiation and integration properties, find the expo-
nential F.S. coefficient, and hence express x(t) in Fourier series.

Solution:
x(t) = |t2| |t| < 1

This waveform which is periodic is shown in Fig. 4.18a. The same waveform is
given in Example 4.6 and is represented in Fig. 4.6. Example 4.6 was solved using
trigonometric F.S. The same problem is solved, using differentiation and integration
properties of exponential F.S.

x(t) = t2

when differentiated becomes
dx(t)

dt
= 2t

This waveform is shown in Fig. 4.18b. When dx(t)/dt is further differentiated, we
get

d2x(t)

dt2
= 2 − 2δ(t + 1) − 2δ(t − 1)

= g1(t) + g2(t)

where
g1(t) = 2 |t| < 1

and
g2(t) = 2[δ(t + 1) + δ(t − 1)]

g1(t) and g2(t) are represented in Fig. 4.18c and d, respectively. When g1(t) is
differentiated



4.7 Fourier Series Spectrum 491

x(t) t2

t2 t2

t2 1t 1 20

1

(a)

T0 2

2t
dx(t)
dt

2

1 tt 1

2

0

(b)

tt 1 10

2

tt

2 2

11
0

(c)
(d)g1(t)

d2x(t)
dt g2(t)

d2x(t)
dt2

tt

2

2

1

1 0

(e)
g3

dg1(t)
dt

Fig. 4.18 Waveform of Example 4.20 and its derivatives

dg1(t)

dt
= 2[δ(t + 1) − δ(t − 1)]

is obtained and is sketched in Fig. 4.18e. From these, the exponential F.S. coefficient
is obtained as given below

Dg2 = − 2

T0
[ejω0n + e−jω0n]

= −2 cosω0n

Dg3 = 2

T0
[ejω0n − e−jω0n]

= +j2 sinω0n

where T0 = 2 sec;
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ω0 = 2π

T0
= 2π

2
= π rad/s

The exponential F.S. coefficient of x(t) is obtained using integration property as

Dn = Dg2
(jω0n)2

+ Dg3
(jω0n)3

= +2 cosπn

π2n2
+ j

2 sin πn

(jω0n)3

Since sin πn = 0 for all integer values of n

Dn = +2 cosπn

π2n2

= 2
(−1)n

π2n2

where n �= 0

D0 = 1

T0

∫ 1

−1
x(t)dt

= 1

2

∫ 1

−1
t2dt

= 1

2

[
t3

3

]1

−1

= 1

3

For n = ±1

x(t) =
∞∑

n=−∞
Dne

jπnt

x1(t) = − 4

π2
cosπ t

For n = ±2

x2(t) = + 4

π2

[
1

4
cos 2π(t)

]

For n = ±3

x3(t) = − 4

π2

[
1

9
cos 3π(t)

]

Using Eq. (4.9) we write



4.7 Fourier Series Spectrum 493

x(t) = 1

3
+ 4

π2

[
− cosπ t + 1

4
cos 2π t − 1

9
cos 3π t + · · ·

]

� Example 4.21

Consider the waveform which has the following mathematical description

x(t) =

⎧
⎪⎨

⎪⎩

2 + t −2 ≤ t < 1

1 |t| < 1

2 − t 1 ≤ t < 2

x(t + 4) = x(t)

(a) Sketch the form.
(b) Using differentiation technique find the exponential F.S. coefficient.
(c) Using exponential F.S. coefficient write the F.S. of x(t).

Solution:

(a) For the given mathematical description, the waveform is represented as x(t) in
Fig. 4.19a.

(b) Thefirst and secondderivatives of x(t) are shown inFig. 4.19b and c, respectively.
(c) Let D′

n be the exponential F.S. coefficient of the waveform shown in Fig. 4.19c.
From this figure, D′

n is written as

D′
n = 1

T0

[
ej2ω0n + e−j2ω0n

] − 1

T0

[
ejω0n + e−jω0n

]

where T0 = 4 sec;

ω0 = 2π

T0
= π

2
rad/s

D′
n = 1

2

[
cosπn − cos

π

2
n
]

Using the integration property of F.S.; Dn is calculated as

Dn = D′
n

(jω0n)2
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x(t)

tt 6 5 3 2 1 0 1 2 3 5 6

1

d2x(t)
dt21

tt

1

1

1

2 1 2

1

0

(a)

(c)dx(t)
dt

tt 2
21

1 0

1

1

(b)

Fig. 4.19 a Waveform of Example 4.23. b First derivative of the waveform. c Second derivative of
the waveform

D′
n = − 2

π2n2

[
cosπn − cos

π

2
n
]

x(t) can be expressed in Fourier series as

x(t) = − 2

π2n2

∞∑

n=−∞

[
cosπn − cos

π

2
n
]
ejω0nt

For n = ±1

x1(t) = − 2

π2n2

[
cosπ − cos

π

2

] [
e−j(π/2)nt + ej(π/2)nt

]

= 4

π2
cos

(π

2
t
)

(Fundamental component)

For n = ±2

x2(t) = − 2

π2

[
cos 2π − cosπ

2

] [
e−jπ t + ejπ t

]

= 4

π2

[
−1

2
cos

(
2
π

2
t
)]

(Second harmonic)
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For n = ±3

x3(t) = − 2

π2 × 9

[
cos 3π − cos

3

2
n

] [
e−j3(π/2)t + ej3(π/2)t

]

= 4

π2

[
1

9
cos

(
3
π

2
t
)]

(Third harmonic)

D0 = 1

T0

[∫ 1

−2
(t + 2)dt +

∫ 1

−1
(2 − t)dt

]

= 1

4

{[
t2

2
+ 2t

]−1

−2

+
[
t
]1

−1
+

[
2t − t2

2

]2

1

}

= 1

4

{[
1

2
− 2 − 4

2
+ 4 + 2 + 4 − 4

2
− 2 + 1

2

]}

= 3

4

The F.S. representation of x(t) is

x(t) = 3

4
+ 4

π2

[
cos

(π

2
t
)

− 1

2
cos

(
2
π

2
t
)

+ 1

9
cos

(
3
π

2
t
)

+ · · ·
]

� Example 4.22

Consider the periodic signal shown in Fig. 4.20a. By using the differentiation tech-
nique, determine the exponential F.S. coefficient, and hence obtain the F.S.

Solution:The given signal is shown in Fig. 4.20a. As seen from this figure T0 = 4sec
and hence

ω0 = 2π

T0
= π

2
rad/s

For x(t) the following mathematical description is given using straight line equation
for one period.

x(t) =
{
2t + 2 −2 ≤ t < 0

−2t + 2 0 ≤ t < 2

Differentiating the above equations, we get

dx(t)

dt
=

{
2 −2 ≤ t < 0

−2 0 ≤ t < 2
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x(t)

2

tt

2

1
2

5 4 3 1
2

3 4
5

0

(a)

d2x(t)
dt

2 3

4 4 4 4

tt 6

44

6 2 1
4

0

(c)

dx(t)
dt

T0 4

4

T0 4 sec

tt 6 62 2 44 0

2

2

(b)

Fig. 4.20 The derivative signals of x(t). (a)TriangularwaveformofExample 4.22.bFirst derivative
and c Second derivative
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The first derivative of the signal is shown in Fig. 4.20b. Further, differentiating the
signal, we get

d2x(t)

dt2
=

⎧
⎪⎨

⎪⎩

4δ(t + 2) −2 ≤ t < 0

−4δ(t) t = 0

4δ(t − 2) 0 ≤ t < 2

The train of impulses is shown in Fig. 4.20c. Consider the impulses between any one
period T0 = 4sec as shown in Fig. 4.20c. The two impulses −4δ and 4δ(t − 2) lie
within a period. Let D′

n be the exponential F.S. coefficient of these impulses. This
can be written as

D′
n = 1

T0
[−4 + 4e−j2ω0n]

= 4

4
[−1 + cos 2ω0n − j sin 2ω0n]

= [−1 + cosπn − j sin πn] (sin πn = 0 for all n)

= (−1 + cosπn)

= −2 (for odd values of n)

= 0 (for even values of n)

The exponential series coefficient Dn for the original signal is obtained from

Dn = D′
n

(jω0n)2

= 8

π2n2

Using Eq. (4.9), x(t) is expressed in F.S. as

x(t) =
∞∑

n=−∞

8

π2n2
ejω0nt

where n is odd and D0 = 0 since x(t) is symmetrical with respect to the time axis.
For n = ±1

x1(t) = 8

π2
[ej(π/2)t + e−j(π/2)t]

= 16

π2
cos

π

2
t

For n = ±3
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x3(t) = 8

π2

1

9
[ej3(π/2)t + e−j3(π/2)t]

= 16

π2

[
1

9
cos 3

π

2
t

]

x(t) = x1(t) + x3(t) + · · ·

x(t) = 16

π2

[
cos

(π

2
t
)

+ 1

9
cos

(
3
π

2
t
)

+ 1

25
cos

(
5
π

2
t
)

+ · · ·
]

� Example 4.23

Consider the signal shown in Fig. 4.21. Using the property of the F.S. and the results
obtained in Example 4.22 determine x(t). The signal is shown for one period of the
periodic signal whose T0 = 4 sec.

Solution: Let xf (t) be the signal of Example 4.22.

x(t) = 2 + xf (t)

The signal shown in Fig. 4.20a is shifted up by a magnitude of 2 to get the signal
represented in Fig. 4.21.Hence, aD.C. termof+2 is introduced in theF.S. of Example
4.22. Thus the F.S. of Example 4.23 is written as

x(t) = 2 + 16

π2

[
cos

π

2
t + 1

9
cos 3

π

2
t + 1

25
cos 5

π

2
t + · · ·

]

x(t)

4

tt 22 0

Fig. 4.21 Signal of Example 4.23
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� Example 4.24

Consider the signal shown in Fig. 4.22. Using the property of the F.S. and the results
obtained in Example 4.22 determine x(t).

Solution: The signal shown in Fig. 4.22 lags behind the signal shown in Fig. 4.20 by
π/2 radians. Other things remaining the same, the results obtained in Example 4.22
is modified with a phase shift of π/2 rad. lagging.

x(t) = 16

π2

[
cos

(π

2
t − π

2

)
+ 1

9
cos

(
3
π

2
t − π

2

)
+ 1

25
cos

(
5
π

2
t − π

2

)
+ · · ·

]

x(t) = 16

π2

[
sin

π

2
t + 1

9
sin 3

π

2
t + 1

25
sin 5

π

2
t + · · ·

]

� Example 4.25

Consider the waveform shown in Fig. 4.23. Using the property of the F.S. and the
results obtained in Example 4.23 express x(t) of the signal shown in Fig. 4.23 in F.S.

Solution: The signal shown in Fig. 4.23 is same as shown in Fig. 4.20 except x(t) of
Fig. 4.20 is time expanded as x(t/2) in Fig. 4.23. The periodicity T0 is changed from
4 sec. to 8 sec. now and the fundamental frequency as

ω0 = π

4
rad/s

The time compression or elongation does not bring any change in the F.S. coefficients.
However, the fundamental frequency and the harmonics have changes according to

x(t)

2

tt

2

2

2
4 1 2 4 60

Fig. 4.22 Signal waveform of Example 4.24
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x(t) x(at)

tt 6 4 2

2

2 4 3

Fig. 4.23 Signal representation of Example 4.25

the changed radian frequency ω0/2. Thus, the result obtained in Example 4.22 is
modified as follows for the Example 4.25.

x(t) = 16

π2

[
cos

(π

4
t
)

+ 1

9
cos

(
3
π

4
t
)

+ 1

25
cos

(
5
π

4
t
)

+ · · ·
]

Summary

1. Any arbitrary periodic signal x(t) can be represented in the form a linear
combination of complex sinusoids. Such a representation is called Fourier
series. The higher frequency sines and cosines have frequencies that are
integer multiples of the fundamental frequency.

2. The Fourier series can be represented in any one of the following forms:

(a) Trigonometry form.
(b) Complex exponential form.
(c) Polar or Harmonic or Cosine form.

The coefficients of the above forms have definite relationships between
them.

3. The Fourier series possesses the following properties:

(a) Linearity,
(b) Time shifting,
(c) Time reversal,
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(d) Time scaling,
(e) Multiplication,
(f) Conjugation,
(g) Differentiation and
(h) Integration.

4. The Parseval’s theoremon Fourier series states that the total average power
in a periodic signal is the sum of the average powers in all its components
which is the sum of the squared value of Fourier series coefficients.

5. Dirichlet showed that if x(t) satisfies certain conditions, the Fourier series
of x(t) is guaranteed. These conditions are called Dirichlet conditions.

6. Themagnitude and phase angle of Fourier series coefficients plotted versus
frequency ω are called Fourier spectra of the signal x(t).

7. The exponential Fourier series is preferred to other types of representations
because it is more compact and the mathematical operations involved are
less.

Exercises
I. Short Answer Type Questions

1. What is a Fourier series?
Any arbitrary periodic signal x(t) can be expressed as a sum of sinusoids
and all its harmonics. Such an infinite series is known as Fourier series.

2. What are the different forms of representing Fourier series?
The different forms of representing Fourier series are:

(a) Trigonometric Fourier series
(b) Polar (compact or cosine form) Fourier series
(c) Exponential form Fourier series

3. Give mathematical expression for trigonometric Fourier series?

x(t) = a0 +
∞∑

n=1

(ancosnω0t + bnsinnω0t)

where
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a0 = 1

T0

∫

T0

x(t)dt

an = 2

T0

∫

T0

x(t)cos nω0tdt

bn = 2

T0

∫

T0

x(t)sin nω0tdt

a0, an, and bn are called the coefficients of trigonometric Fourier series.
4. What is the effect of symmetry in trigonometric Fourier series?

If x(t) has an odd symmetry, an = 0. If x(t) has even symmetry bn = 0. If
x(t) is symmetrical with respect to the time axis, a0 = 0.

5. What is half wave symmetry?
If the periodic signal x(t) when shifted by half the period remains
unchanged except for a sign, the signal is said to be half wave symmetry.
Mathematically, it is expressed as

x

(
t − T0

2

)
= −x(t)

For the signal with half wave symmetry, all the even numbered harmonics
vanish.

6. Give the mathematical expression for the cosine Fourier series?

x(t) = C0 +
∞∑

n=1

Cncosn(nω0t − θn)

where

C0 = a0

Cn =
√
a2n + b2n

θn = tan−1 bn
an

7. Give mathematical expression for the exponential Fourier series?

x(t) =
∞∑

n=−∞
Dne

jω0nt

where



4.7 Fourier Series Spectrum 503

Dn = 1

T0

∫

T0

x(t)e−jω0ntdt

8. How the coefficients of exponential Fourier series are related to the
coefficients of trigonometric and cosine Fourier series?

D0 = a0 = C0

Dn = 1

2

[
an − jbn

]

|Dn| = 1

2
Cn

9. Why exponential Fourier series is preferred to represent the Fourier
series?
The exponential Fourier series is more compact and the system’s response
to exponential signal is simpler.

10. What do you understand by Fourier spectrum?

The Fourier series expresses a periodic signal x(t) as a sum of sinusoids of
fundamental frequencyω0 and their higher harmonics 2ω0, 3ω0, . . . , nω0.
Corresponding to these frequencies, the amplitudes and phases are deter-
mined. The plot of these amplitudes versus nwhich is proportional to nω0

is termed as amplitude spectrum. The plot of phase angle θn versus n is
called phase spectrum.

11. What do you understand by existence of Fourier series?
For the existence of Fourier series, its coefficients should exist. The exis-
tence of these coefficients is guaranteed iff x(t) is absolutely integrable.
In other words ∫

T0

|x(t)| dt < ∞

12. What do you understand by convergence of Fourier series in the
mean?
The periodic signal x(t) which has finite energy over one period guaran-
tees the convergence in the mean of its Fourier series. Mathematically, it
is expressed as ∫

T0

|x(t)|2 dt < ∞

13. What are Dirichlet conditions?
Fourier at the time of presenting his papers, could not successfully defend,
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the existence Fourier series which is infinite. He could not also give con-
vincing reply when there is discontinuities in x(t). The answers to these
questions came from the great mathematician Dirichlet in the form of
certain constraints. These constraints are called Dirichlet conditions and
they are:

(a) The function x(t) must be absolutely integrable.
(b) The function x(t) should have finite number discontinuities in one

period.
(c) The function x(t) should contain only a finite number of maxima and

minima in one period.

14. What do you understand by Parseval’s theorem as applied to Fourier
series?
According to Parseval’s theorem, that the power of the periodic signal is
equal to the sum of the powers of its Fourier coefficients

P = C2
0 + 1

2

∞∑

n=1

C2
n (For cosine FS)

P =
∞∑

n=−∞
|Dn|2 (Exponential FS)

P = D2
0 + 2

∞∑

n=1

|Dn|2 (x(t) = real)

15. What are differentiating and integrating properties of Fourier series?
If a periodical signal x(t) is differentiated the Fourier series coefficient gets
multiplied by the factor jnω0. Suppose Dn is the Fourier series coefficient
t of x(t). Then the Fourier series coefficient of dx(t)

dt is jω0nDn. This is
the differentiation property of Fourier series. If the periodic signal x(t) is
integrated, then the Fourier series coefficient gets divided by jω0n. IfDn is
the coefficient of exponential Fourier series of x(t), then the Fourier series
coefficient of

∫
T0

x(t)dt is 1
jω0n

Dn. This is called the integration property of

Fourier series.

II. Long Answer Type Questions

1. Determine the Trigonometric and exponential Fourier series representation
of the signal x(t) shown in Fig. 4.24?

T0 = T ; ω0 = 2π

T0
= 2π

T

(a) Trigonometric or quadratic Fourier series.
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a0 = τ

T
bn = 0 since x(t) is even

an = 2

nπ
sin

(nπτ

T

)

x(t) = τ

T
+ 2

π

∞∑

n=1

1

n
sin

(nπτ

T

)
cosn

2π t

T

(b) Exponential Fourier series.

Dn = τ

2
sin c

(nπτ

T

)

x(t) =
∞∑

n=1

τ

2
sin c

(nπτ

T

)
ejn

2π t
T

2. Consider the following signal.

x(t) = cos
(

1
3
t + 30◦

)
+ sin

(
2
5
t + 60◦

)

Determine (a) whether the signal is periodic, (b) find the fundamental period
and frequency, (c) what harmonics are present in x(t), (d) Determine the
coefficients of exponential Fourier series and (e) Determine the power of the
signal using Parseval’s theorem?

(a) The signal is periodic.
(b) The fundamental period T0 = 30π and the fundamental radian frequency

ω0 = 1
15 .

(c) Third and sixth harmonics are present.
(d)

x(t)

t

1

0T( T   ) T
2
T

2
T2 (T   )2 (T   )2( T   )2 2 2

Fig. 4.24 Signal x(t) for Problem 1
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x(t)

t

2

1

0 1 2 3 4 5 64 3 2 1

Fig. 4.25 Signal x(t) for Problem 3

0.136

0.068 0.046 0.034

1 2 3 4

1.72

0

Dn(b)

x(t)

et

3 2 1 0 1

1

2 3 t

(a)

n

Fig. 4.26 a x(t) signal and b Amplitude spectrum of Dn

x(t)

t12 1 2 3 40

1

2 1

Fig. 4.27 Signal of Problem 5
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D3 = 1

4
[√3 + j]; D−3 = 1

4
[√3 − j]

D6 = 1

4
[√3 − j]; D−6 = 1

4
[√3 + j]

(e)

P = |D3|2 + |D−3|2 + |D6|2 + |D−6|2 = 1

4
+ 1

4
+ 1

4
+ 1

4
= 1.

3. For the signal shown in Fig. 4.25, determine the coefficients of exponential
Fourier series?

4. Find the exponential Fourier series coefficients for the signal shown in
Fig. 4.26a and plot its amplitude and phase spectrum?

T0 = 1; ω0 = 2π

Dn = 1.72√
1 + 4π2n2

θn = 0

The amplitude spectrum in shown in Fig. 4.16b.
5. Consider the signal shown in Fig.4.27. Determine the exponential Fourier

series coefficients?

D0 = (2π − 1)

4π

Dn = 1

2πn2
[
e−jn − 1

]



Chapter 5
Fourier Series Analysis of Discrete Time
Signals

Learning Objectives

� To represent the discrete time signal by exponential Fourier series.
� To determine the exponential Fourier series coefficients.
� To determine the Fourier spectra of discrete time signal.
� To determine the properties of discrete time Fourier series.

5.1 Introduction

In Chap.4, the continuous time periodic signal x(t)was represented in Fourier series
as a sum of sinusoids or exponentials. In this chapter, a similar development is made
to represent the periodic discrete time signal x[n] by Fourier series. Even though the
Fourier series can be expressed in trigonometric form, because of its compactness
and ease of getting the solution, exponential form of Fourier series is preferred and
is discussed in this chapter.

5.2 Periodicity of Discrete Time Signal

A periodic discrete time signal x[n] is said to be periodic if it repeats itself after every
N0 samples. Consider the sinusoids cos�n. This is said to be periodic if �/2π is a
rational number. This can be proved as follows:

x[n] = cos�n

x[n + N0] = cos�(n + N0)

= cos�n iff �N0 = 2πm
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where m is an integer. Since N0 is an integer

�

2π
= m

N0
= a rational number.

A sinusoid cos�n or exponential ej�n is periodic only if

�

2π
= m

N0
a rational number (5.1)

The periodicity N0 is determined by choosing the smallest value of m that will make
m(2π/�) an integer. The fundamental radian frequency

�0 = 2π

N0
rad/sample (5.2)

5.3 DT Signal Representation by Fourier Series

Consider the following exponential Fourier series

ej0n, e±j�0n, e±2�0n, . . .

The above series will have infinite number of harmonics. Now consider the discrete
time exponentials whose frequencies are multiplied by integer multiples of 2π . Thus

ej(�±2πm)n = ej�ne±j2πmn

= ej�n [∵ e±j2πmn = 1 for any integer value m] (5.3)

Equation (5.3) implies that any kth harmonic is identical to (k + N0)th harmonic.
Thus, the first harmonic is identical to (N0 + 1)nd harmonic, the second harmonic is
identical to (N0 + 2)nd harmonic and so on. Thus, if N0 is the periodicity of x[n]
there will be only N0 independent harmonics and they are repeated in identical
manner for every N0. Unlike continuous time signal which has infinite number
of harmonics, DT signal has finite harmonics.

Nowconsider the exponentials ejk�0nwhere k = 0, 1, 2, . . . , (N0 − 1). The Fourier
series for the N0 harmonics can be expressed as

x[n] =
(N0−1)∑

k=0

Dke
jk�0n (5.4)

To determine Dk in Eq. (5.4), multiply both sides of (5.4) by e−jm�0n
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x[n]e−jm�0n =
(N0−1)∑

k=0

Dke
jk�0ne−jm�0n

Summing both sides of the above equation from n = 0 to (N0 − 1), we get

(N0−1)∑

n=0

x[n]e−jm�0n =
(N0−1)∑

n=0

(N0−1)∑

k=0

Dke
j(k−m)�0n (5.5)

=
(N0−1)∑

k=0

Dk

[
(N0−1)∑

n=0

ej(k−m)�0n

]
(5.6)

But

(N0−1)∑

n=0

ej(k−m)�0n = 0 for k �= m

=
(N0−1)∑

n=0

1 for k = m

= N0

Equation (5.6) becomes

(N0−1)∑

n=0

x[n]e−jm�0n = DkN0

Dk = 1

N0

(N0−1)∑

n=0

x[n]e−jm�0n (5.7)

Now the DTFS of x[n] is, therefore, written as by changing m = k

x[n] =
(N0−1)∑

k=0

Dke
jk�0n

Dk = 1

N0

(N0−1)∑

n=0

x[n]e−jk�0n

(5.8)

(5.9)

Equations (5.8) and (5.9) are called Discrete time Fourier series pairs.
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5.4 Fourier Spectra of x[n]

In Eq. (5.9), if we substitute for k in the range 0 ≤ k < (N0 − 1), we obtain the
exponential Fourier series coefficients D0,D1ej�0n,D2ej2�0n, . . . , D(N0−1)ej(N0−1)�0n.
The corresponding frequencies are 0,�0, 2�0, . . . , (N0 − 1)�0, where �0 = 2π

N0
=

2πF0, where �0 is radian frequency in radian per sample, N0 is fundamental period
and F0 = 1

N0
is the fundamental frequency in cycles per sample. x[n]with periodicity

N0 can be represented by DTFS with sinusoids of fundamental frequency �0 and its
higher harmonics as given by Eq. (5.8). The coefficient Dk can be expressed as

Dk = |Dk|ej∠Dk (5.10)

The plot of |Dk| versus � is known as magnitude spectrum. Similarly, the plot
∠Dk versus � is known as phase spectrum.

5.5 Properties of Discrete Time Fourier Series

5.5.1 Linearity Property

Let x1[n] and x2[n] be two periodic signals with fundamental period N0. According
to linearity property, the linear combinations of these two signals is also periodic
with the same fundamental frequency N0.

Proof Let

x[n] = Ax1[n] + Bx2[n]

Dk1 = 1

N0

(N0−1)∑

k=0

x1[n]e−jk�0n

Dk2 = 1

N0

(N0−1)∑

k=0

x2[n]e−jk�0n

Dk = 1

N0

(N0−1)∑

k=0

x[n]e−jk�0n

=
(N0−1)∑

k=0

{
1

N0
Ax1[n] + 1

N0
Bx2[n]

}
e−jk�0n

= A

N0

(N0−1)∑

k=0

x1[n]e−jk�0n + B

N0

(N0−1)∑

k=0

x2[n]e−jk�0n
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Dk = ADk1 + BDk2

x[n] = Ax1[n] + Bx2[n] DTFS←→ADk1 + BDk2

5.5.2 Time Shifting Property

If x[n] is time shifted by n0, then the periodicity of x[n − n0] is same as x[n].
Proof The Fourier coefficients of x[n] is

Dk = 1

N0

(N0−1)∑

k=0

x[n]e−jk�0n

The Fourier coefficients of x[n − n0] is Dkn0

Dkn0 = 1

N0

(N0−1)∑

k=0

x[n − n0]e−jk�0n

Let (n − n0) = l or n = (l + n0)

Dkn0 = 1

N0

(N0−1)∑

k=0

x[l]e−jk�0(l+n0)

= 1

N0
e−jk�0n0

(N0−1)∑

k=0

x[l]e−jk�0l

Dkn0 = e−jk�0n0Dk

x[n − n0] DTFS←→ e−jk�0n0Dk

5.5.3 Time Reversal Property

If x[n] with fundamental period N0, is the time reversal, the fundamental period is
not changed but the Fourier coefficient changes its sign.
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Proof For x[n];

Dk = 1

N0

(N0−1)∑

k=0

x[n]e−jk�0n

For x[−n];

Dk = 1

N0

(N0−1)∑

k=0

x[−n]ejk�0n

Let us substitute l = −n

Dk = 1

N0

(N0−1)∑

k=0

x[l]ejk�0l

= 1

N0

(N0−1)∑

k=0

x[l]e−j(−k)�0l

Dk = D−k

5.5.4 Multiplication Property

According to this property, if x1[n] and x2[n] are two DT signals with Fourier series
coefficients as Dl and Dq then the Fourier series coefficient of Z[n] = x1[n] × x2[n]
is

Dk =
N0−1∑

q=0

DlDk−q

Proof

Dl = 1

N0

(N0−1)∑

n=0

x1[n]e−jl�0n

Dq = 1

N0

(N0−1)∑

n=0

x2[n]e−jq�0n

Dk = 1

N0

(N0−1)∑

n=0

x1[n] × x2[n]e−jk�0n
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= 1

N0

(N0−1)∑

n=0

x1[n]
⎧
⎨

⎩

(N0−1)∑

q=0

Dqe
jq�0n

⎫
⎬

⎭ e−jk�0n

= 1

N0

(N0−1)∑

q=0

Dq

(N0−1)∑

n=0

x1[n]ejq�0ne−jk�0n

=
(N0−1)∑

q=0

Dq
1

N0

(N0−1)∑

n=0

x1[n]e−j(−q)�0ne−jk�0n

=
(N0−1)∑

q=0

Dq
1

N0

(N0−1)∑

n=0

x1[n]e−j(k−q)�0n

Dk =
(N0−1)∑

q=0

DqDk−q

5.5.5 Conjugation Property

According to this property, the discrete time Fourier coefficient of x∗[n] conjugate
and time reversal of that of x[n].
Proof

x∗[n] =
(N0−1)∑

k=0

[Dke
jk�0n]∗

=
(N0−1)∑

k=0

D∗
ke

−jk�0n

Let l = −k

x∗[n] =
(N0−1)∑

l=0

D∗
l e

jl�0n

Dk
DTFS←→D∗

−k
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5.5.6 Difference Property

According to this property, the Fourier series of the first difference is given by

x[n] − x[n − 1] DTFS←→[1 − e−jk�0 ]Dk

Proof

x[n] =
(N0−1)∑

k=0

Dke
jk�0n

x[n − 1] =
(N0−1)∑

k=0

Dke
jk�0(n−1)

x[n] − x[n − 1] =
(N0−1)∑

k=0

Dke
jk�0n −

(N0−1)∑

k=0

Dke
jk�0(n−1)

=
(N0−1)∑

k=0

Dke
jk�0n(1 − e−jk�0)

x[n] − x[n − 1] DTFS←→(1 − e−jk�0)Dk

5.5.7 Parseval’s Theorem

According to Parseval’s theorem, the total average power of a discrete periodic signal
x[n] equals the sum of the average powers in individual harmonic components which
is expressed as the sum of the squared value of the Fourier series coefficients Dk

(Table5.1).

Proof The average power of discrete periodic signal is given by

P = 1

N0

(N0−1)∑

n=0

|x[n]|2

= 1

N0

(N0−1)∑

n=0

|x[n]x[n]|∗

= 1

N0

(N0−1)∑

n=0

x[n]
{

(N0−1)∑

k=0

Dke
jk�0n

}∗
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Table 5.1 Properties of Discrete time Fourier series

Property Periodic signal x[n] Fourier series coefficients

Linearity Ax1[n] + Bx2[n] ADk1 + BDk2

Time shifting x[n − n0] e−jk�0n0Dk

Time reversal x[−n] D−k

Multiplication x1[n] × x2[n]
(N0−1)∑

q=<N0>

DqDk−q

Conjugation x∗[n] D∗−k

First difference x[n] − x[n − 1] (1 − e−jk�0n)Dk

Parseval’s theorem P = 1

N0

∑

n=<N0>

|x[n]|2 P =
∑

k=<N0>

|Dk |2

=
(N0−1)∑

k=0

D∗
k

1

N0

(N0−1)∑

n=0

x[n]e−jk�0n

=
(N0−1)∑

k=0

D∗
kDk

P =
(N0−1)∑

k=0

|Dk|2

� Example 5.1

Find the discrete time Fourier series of

x[n] = sin 0.2πn

Sketch the amplitude and phase spectra.

Solution:

x[n] = sin 0.2πn

�0 = 0.2π

N0 = 2πm

�0
= 2π

0.2π
= 10m

N0 = 10 for m = 1

Dk = 1

N0

(N0−1)∑

n=0

x[n]e−j�0kn
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choosing −5 ≤ k < 5 we get

Dk = 1

10

4∑

n=−5

sin 0.2πne−j0.2πkn

= 1

20j

4∑

n=−5

[ej.2πn − e−.2πn]e−j.2πkn

= 1

20j

[
4∑

n=−5

ej.2πn(1−k) −
4∑

n=−5

e−j.2πn(1+k)

]

In the above equation, the summation on the right hand side is zero for all values of
k except for k = 1 and k = −1. For these values, these summations will be equal to
N0 = 10. Hence

D1 = 1

20j
[N0] = 1

2j
= 0.5∠−90◦

D−1 = − 1

20j
[N0] = − 1

2j
= 0.5∠90◦

x[n] = D−1e
−j�0n + D1e

j�0n

= 1

2j
[−e−j0.2πn + ej0.2πn]

The plot of Dk and ∠Dk are shown in Figs. 5.1a, b, respectively.

Alternative Method

x[n] = sin 0.2πn

�0 = 0.2π

N0 = 2π

0.2π
= 10

sin 0.2πn = 1

2j
[ej.2πn − e−j.2πn]

Also

sin 0.2πn = 1

2j
[ej�0n − e−j�0 ]

Comparing the above two equations we get
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(a)

(b)

Dk

Dk

N0 = 10

N0 = 10

2

2

2

2

.2

.2

.2 2

2

0.5

0

Fig. 5.1 Discrete Fourier spectra of Dk of Example5.1

D1 = 1

2j

D−1 = D−1+10 = D9 = − 1

2j

sin(0.2πn) = 1

2j
[ej.2πn − ej1.8πn]

� Example 5.2

Find the discrete Fourier series representation of

x[n] = cos 0.2πn
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Solution:

x[n] = cos 0.2πn

�0 = 0.2π

N0 = 2π

�0
= 10

cos 0.2πn = 1

2
[ej.2πn + e−j.2πn]

Also

cos 0.2πn = 1

2
[ej�0n + e−j�0n]

Comparing the above two equations of x[n] we get

D1 = 1

2

D−1 = D−1+10 = D9 = 1

2

cos[0.2πn] = 1

2
[ej�0n + ej9�0n]

cos[0.2πn] = 1

2
[ej.2πn + ej1.8πn]

Note:

ej1.8πn = ej.2πne−j.2πn

= e−j.2πn [∵ ej2πn = 1]

� Example 5.3

Find the Fourier series of

x[n] = cos
π

5
n + sin

π

6
n

Solution:

x[n] = cos
π

5
n + sin

π

6
n

�01 = π

5
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N01 = 2π

(π/5)
= 10

�02 = π

6

N02 = 2π

(π/6)
= 12

N0 = LCM of 10 and 12

= 60

�0 = 2π

N0
= 2π

60

= 1

30
π

x[n] = 1

2

[
ej

π
5 n + e−j π

5 n
] + 1

2j

[
ej

π
6 n − e−j π

6 n
]

Expressing the above series in terms of �0, we get

x[n] = 1

2

[
ej6�0n + e−6�0n

] + 1

2j

[
ej5�0n − e−j5�0n

]

D6 = 1

2
; D−6 = D−6+60 = D54 = 1

2

D5 = 1

2j
; D−5 = D−5+60 = D55 = − 1

2j

x[n] =
[
1

2
ej6�0n + 1

2
ej54�0n + 1

2j
ej5�0n − 1

2j
ej55�0n

]

where �0 = π
30

D6 = 1

2
; D54 = 1

2

D5 = 1

2j
; D55 = − 1

2j

Other values of Dk = 0.

� Example 5.4

Find the discrete Fourier series coefficients and the Fourier series for the function

x[n] = sin2
(π

6
n
)



522 5 Fourier Series Analysis of Discrete Time Signals

Solution:

[
sin

π

6
n
]2 =

[
1

2j
(ej

π
6 n − e−j π

6 n)

]2

= −1

4
[ej π

3 n + e−j π
3 n − 2]

sin2
(π

6
n
)

=
[
1

2
− 1

2
cos

πn

3

]

�0 = π

3

N0 = 2π

π
× 3 = 6

x[n] = sin2
π

6
n

= 1

2
− 1

4
[ej π

3 n + e−j π
3 n]

= 1

2
− 1

4
[ej�0n + e−j�0n]

D0 = 1

2

D1 = −1

4

D−1 = D−1+6 = D5 = −1

4

x[n] = 1

2
− 1

4
ej�0n − 1

4
ej5�0n

where �0 = π
3

D0 = 1

2

D1 = − 1

4

D5 = − 1

4
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x[n]

n0510 1

1

(a)

(b)

2 3 4 5 6 7 8 9 10

Dk

k0 1

1/5

2 3 4 5

Fig. 5.2 a x[n] and b Fourier spectra representation

All other Fourier series coefficients are zero.

� Example 5.5

Find the following sequence find Fourier series coefficients and plot the frequency
spectra.

x[n] =
∞∑

k=−∞
δ[n − 5k]

Solution: The sequence

x[n] =
∞∑

k=−∞
δ[n − 5k] = {1, 0, 0, 0, 0}

and N0 = 5. The plot of x[n] is shown in Fig. 5.2a.
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x[n] =
N0−1∑

k=0

Dke
jk�0n

Dk = 1

N0

N0−1∑

n=0

x[n]e−jk�0n

N0 = 5

�0 = 2π

N0
= 2π

5

Dk = 1

5

4∑

n=0

x[0]e−jk 2π
5 n [∵ x[1], x[2], x[3], x[4] are all 0]

= 1

5
all

The Fourier coefficients of x[n] are sketched in Fig. 5.2b.

� Example 5.6

Consider the periodic sequence with period N0 = 12

x[n] =
{

(1)n 0 ≤ n < 6

0 6 ≤ n < 11

Sketch x[n], also sketch the magnitude spectrum of the Fourier coefficient.

Solution:
The given x[n] is sketched as shown in Fig. 5.3a. From Fig. 5.3a, it is evident that
N0 = 12, and therefore, �0 = 2π

N0
= 2π

12 = π
6

Dk = 1

N0

5∑

n=0

x[n]e−j�0kπn

= 1

12

5∑

n=0

e−j π
6 kn

Applying the summation formula

N−1∑

n=0

αn = (1 − αN )

(1 − α)

the above equation is written as
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x[n]

n0567 1234 1

1

(a)

2 3 4 5 6 7 8 9 10 11 12 138

Dk

k0 1

.5
.5

.228
.118 .118

.324

.086 .086

(b)

2 3 4 5 6 7 8 9 10 11 12

Fig. 5.3 a x[n] sequence and b Dk magnitude spectra

Dk = 1

12

[
(1 − e−jπk)

(1 − e−j π
6 k)

]

= 1

12

[
e−j kπ2 [ej kπ2 − e−j kπ2 ]
e−j kπ12 [ej kπ12 − e−j kπ12 ]

]

Dk = 1

12
− e−jk 5π

12

[
sin kπ

2

sin kπ
12

]

where k = 0, 1, 2, . . . , 11.
For k = 0,

D0 = 1

12

5∑

n=0

1 = 6

12
= 0.5

The following table is prepared:
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x[n]

n0 112345

1
2

3
4

1
2

3
4

1
2

3
4

0

2 3 4 5 6 7 8 9 10

Fig. 5.4 x[n] of Example5.7

k 0 1 2 3 4 5 6 7 8 9 10 11
|Dk| 0.5 0.228 0 0.118 0 0.086 0 0.086 0 0.118 0 0324

the plot of Dk versus k is shown in Fig. 5.3b.

� Example 5.7

Determine the Fourier series coefficients for the sequence shown in Fig. 5.4.

Solution:

N0 = 5

�0 = 2π

N0
= 2π

5

Dk = 1

N0

(N0−1)∑

n=0

x[n]e−j�0kn

D0 = 1

5

4∑

n=0

[0 + 1 + 2 + 3 + 4]

D0 = 2

D1 = 1

5

4∑

n=0

x[n]e−j 2π5 n

= 1

5
[0 + e−j 2π5 + 2e−j 4π5 + 3e−j 6π5 + 4e−j 8π5 ]

= 1

5
[−2.5 + j3.46] = 0.85∠125.85◦
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D1 = 0.85∠125.85◦

D2 = 1

5

4∑

n=0

x[n]e−j 4π5 n

= 1

5
[0 + e−j 4π5 + 2e−j 8π5 + 3e−j 12π5 + 4e−j 16π5 ]

= 1

5
[−2.5 + j0.812] = 0.526∠162◦

D2 = 0.526∠162◦

D3 = 1

5

4∑

n=0

x[n]e−j 6π5 n

= 1

5
[0 + e−j 6π5 + 2e−j 12π5 + 3e−j 18π5 + 4e−j 24π5 ]

D3 = 0.526∠198◦

D4 = 1

5

4∑

n=0

x[n]e−j 8π5 n

= 1

5
[0 + e−j 8π5 + 2e−j 16π5 + 3e−j 24π5 + 4e−j 32π5 ]

D4 = 0.85∠234◦
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� Example 5.8

Find the power of the following signals using Parseval’s theorem.

(a) x[n] = cos
πn

5
+ sin

πn

6

(b) x[n] = sin2
π

6
n

Solution:

(a) In Example 5.3, for x[n] = cos πn
5 + sin πn

6 the Fourier series coefficients have
been determined as

D5 = 1

2j
; |D5| = 1

2

D−5 = − 1

2j
; |D−5| = 1

2

|D6| = 1

2
; |D−6| = 1

2
P = |D5|2 + |D−5|2 + |D6|2 + |D−6|2

= 1

4
+ 1

4
+ 1

4
+ 1

4

P = 1

(b) In Example 5.4, the Fourier series coefficient for x[n] = sin2 πn
6 have been deter-

mined as D0 = 1
2 ; |D1| = − 1

4 ; |D5| = − 1
4

Power P = |D0|2 + |D1|2 + |D5|2

= 1

4
+ 1

16
+ 1

16

P = 3

8

� Example 5.9

For a periodic sampled gate function shown in Fig. 5.5, find the discrete Fourier
series.



5.5 Properties of Discrete Time Fourier Series 529

x[n]

n0 1

1

123212427 2 3 21 24 27

Fig. 5.5 Sampled gate function

Solution:

N0 = 24

�0 = 2π

N0
= π

12

Dk = 1

N0

∑

n=<N0>

x[n]e−jk�0n

= 1

24

3∑

−3

e−j kπ12 n

Using the summation formula

r∑

n=m

xn = xr+1 − xm

(x − 1)

we get

Dk = 1

24

{
e−j4 kπ

12 − e−j3 kπ
12

e−j kπ12 − 1

}

= 1

24

e− j.5kπ
12

e− j.5kπ
12

{
e−j3.5 kπ

12 − ej3.5
kπ
12

e−j.5 kπ
12 − ej.5

kπ
12

}

Dk = 1

24

sin
(
3.5πk
12

)

sin
(
.5πk
12

)
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� Example 5.10

Find the Fourier series coefficients for the following sequences.

(a) x[n] = 2 cos 2.2πn + 4 sin 3.4πn

(b) x[n] = 2 cos 2.2πn + 4 sin 3.3πn

Solution:

(a) x[n] = 2 cos 2.2πn+ 4 sin 3.4πn

�01 = 2.2π

N01 = 2π

�01
m = 2πm

2.2π
= 10 for m = 11

�02 = 3.4π

N02 = 2π

3.4π
m = 10 for m = 17

N0 = LCM of N01 and N02

= 10

�0 = 2π

N0
= 0.2π

x[n] = [ej2.2πn + e−j2.2πn] + 2

j
[ej3.4πn − e−j3.4πn]

Expressing the above sequence in terms of �0, we get

x[n] = [ej11�0n + e−j11�0n] + 2

j
[ej17�0n − e−j17�0n]

D11 = 1; D−11 = D−11+10 = D−1 = 1

D17 = 2

j
; D−17+10 = D−7 = −2

j

x[n] = [ej11�0 + e−j�0 ] + 1

2j
[e17�0n − e−7�0n]

D11 = 1

D−1 = 1

D17 = 2

j

D−7 = − 2

j



5.5 Properties of Discrete Time Fourier Series 531

(b) x[n] = 2 cos 2.2πn+ 4 sin 3.3πn

�01 = 2.2π

N01 = 2π

2.2π
m = 10 (m = 22).

�02 = 3.3π

N02 = 2π

3.3π
m = 20 (m = 33).

N0 = LCM of N01 and N02

= 20

�0 = 2π

20
= 0.1π

x[n] = [ej2.2πn + e−j2.2πn] + 1

2j
[ej3.3πn − e−j3.3πn]

Expressing the above sequence in terms of �0, we get

x[n] = [ej22�0n + e−j22�0n] + 1

2j
[ej33�0n − e−j33�0n]

D22 = 1; D−22 = D−22+20 = D−2 = 1

D33 = 1

2j
; D−33 = D−33+20 = D−13 = − 1

2j

x[n] = [ej22�0n + e−j2�0n] + 1

2j
[ej33�0n − e−j13�0n]

D22 = 1

D−2 = 1

D33 = 1

2j

D−13 = − 1

2j

� Example 5.11

Find the Fourier coefficients and Fourier series of the discrete signal.

x[n] = 4 cos 3.3π(n − 4)
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Solution:

�0 = 3.3π

N0 = 2π

�0
m = 2πm

2.2π
× 33 m = 33

= 20

Let

x1[n] = 4 cos 3.3πn

= 2[ej3.3πn + e−j3.3πn]
= [ej�0πn + e−j�0πn]

Comparing the above equations, we get

D1 = 2

D−1 = D−1+20 = D19 = 2

x1[n] = 2[ej�0n + e19�0n]

According to time shifting theory, the Fourier coefficients of time shifted signal is

Dk = e−jk�0n0D1
k where n0 = 4

= e−jk13.2πD1
k

Thus, the modified Fourier series coefficients are

D1 = 2e−13.2π

D2 = 2e−19×13.2π

x[n] = 2[ej�0(n−4) + ej19�0(n−4)]

� Example 5.12

Find the discrete time Fourier series, and also find the Fourier coefficients for the
signal x[n] shown in Fig. 5.6.
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0 112345678

2
4

0

2 3 4 5 6 7 8 9 10 11 12

1

3

1
2

3
4

1

0

3
2

Fig. 5.6 x[n] of Example5.12

Solution:

N0 = 8

�0 = 2π

N0
= π

4

Dk = 1

N0

(N0/2)∑

n=−(N0/2)

x[n]e−j�0kn

= 1

8

3∑

n=−4

x[n]e−j π
4 kn

where k = 0, 1, 2, 3, 4, 5, 6 and 7.
For k = 0,

D0 = 1

8
[0 + 1 + 2 + 3 + 4 + 3 + 2 + 1]

D0 = 2

For k = 1,

D1 = 1

8

3∑

n=−4

x[n]e−j π
4 n

= 1

8

[
0 + ej

3π
4 + 2ej

π
2 + 3ej

π
4 + 4 + 3e−j π

4 + 2e−j π
2 + ej

3π
4

]

= 1

4

[
cos

3π

4
+ 2 cos

π

2
+ 3 cos

π

4
+ 2

]
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D1 = 0.8535

For k = 2,

D2 = 1

8

3∑

n=−4

x[n]e−j π
2 n

= 1

8

[
0 + ej

3π
2 + 2ejπ + 3ej

π
2 + 4 + 3e−j π

2 + 2e−jπ + e−j 3π2
]

= 1

4

[
cos

3π

2
+ 2 cosπ + 3 cos

π

2
+ 2

]

D2 = 0

For k = 3

D3 = 1

8

3∑

n=−4

x[n]e−j 3π4 n

= 1

8

[
0 + ej

9π
4 + 2ej

3π
2 + 3ej

3π
4 + 4 + 3e−j 3π4 + 2e−j 3π2 + e−j 9π4

]

= 1

4

[
cos

9π

4
+ 2 cos

3π

2
+ 3 cos

3π

4
+ 2

]

D3 = 0.146

For k = 4

D4 = 1

8

3∑

n=−4

x[n]e−jπn

= 1

8

[
0 + ej3π + 2ej2π + 3ejπ + 4 + e−j3π + 2e−j2π + 3e−jπ

]

= 1

4
[cos 3π + 2 cos 2π + 3 cosπ + 2]

D4 = 0

For k = 5
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D5 = 1

8

3∑

n=−4

x[n]e−j 5π4 n

= 1

8

[
0 + ej

15π
4 + 2ej

10π
4 + 3e

5π
4 + 4 + e−j 15π4 + 2e−j 10π4 + 3e−j 5π4

]

= 1

4

[
cos

15π

4
+ 2 cos

10π

4
+ 3 cos

5π

4
+ 2

]

D5 = 0.146

For k = 6

D6 = 1

8

3∑

n=−4

x[n]e−j1.5πn

= 1

8

[
0 + ej4.5π + 2ej3π + 3ej1.5π + 4 + e−j4.5π + 2e−j3π + 3e−j1.5π

]

= 1

4
[cos 4.5π + 2 cos 3π + 3 cos 1.5π + 2]

D6 = 0

For k = 7

D7 = 1

8

3∑

n=−4

x[n]e−j1.75πn

= 1

8

[
0 + ej3×1.75π + 2ej3.5π + 3ej1.75π + 4 + e−j3×1.75π + 2e−j3.5π + 3e−j1.75π

]

= 1

4
[cos 5.25π + 2 cos 3.5π + 3 cos 1.75π + 2]

D7 = 0.8535
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Summary

1. Any arbitrary periodic discrete time signal x[n] with fundamental period
N0 and fundamental radian frequency �0 is expressed in Fourier series as

x[n] =
(N0−1)∑

k=0

Dke
jk�0n

where Dk is called exponential Fourier series coefficient.
2. The Fourier series coefficient Dk is determined from

Dk = 1

N0

(N0−1)∑

n=0

x[n]e−jk�0n

3. The expression for x[n] and Dk are called Fourier series pair.
4. For discrete time Fourier signal x[n], the Fourier series coefficients are

finite which are repeated for every fundamental period N0. This is contrary
to continuous time signal x(t) which has infinite number of harmonics.

5. Fourier series possesses, linearity, time shifting, time reversal, multiplica-
tion, conjugation and first difference properties.

6. Using Parseval’s theorem, the average power of discrete time signal x[n]
can be determined by summing up the squared values of discrete Fourier
series coefficients over one period using the following formula.

P =
(N0−1)∑

k=0

|Dk|2



Chapter 6
Fourier Transform Analysis
of Continuous Time Signals

Learning Objectives

� To define the Fourier transform for continuous time signal which is aperiodic.
� To derive the properties of Fourier transform and demonstrate with examples.
� To find the magnitude and phase angle spectrum of Fourier transform.
� To solve the differential equation by partial fraction method using Fourier trans-

form (FT).

6.1 Introduction

In Chap.4, periodic signals were represented as a sum of everlasting sinusoids
or exponentials. The Fourier series method of analysis of such periodic signals is
indeed a very powerful tool. However, FS fails when applied to aperiodic signals. To
overcome this major limitation, an aperiodic signal x(t) is expressed as a continuous
sum (integral) of everlasting exponentials. Such a representation is called Fourier
integral which is basically a Fourier series with fundamental frequency tending to
zero. By such representation, the aperiodic signal x(t) in the time domain is trans-
formed to X(jω) in the frequency domain. The transformations from x(t) to X(jω)

and from X(jω) to x(t) are called Fourier transform and inverse Fourier transform,
respectively. They are also called Fourier transform pairs.
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6.2 Representation of Aperiodic Signal
by Fourier Integral—The Fourier Transform

If an aperiodic signal is viewed as a periodic signal with an infinite period, then it
can be represented by Fourier series. In such a situation, as the period increases,
the fundamental frequency decreases, and the frequency components become closer.
Now the Fourier series sum becomes an integral.

Consider the periodic signal x(t) defined as follows:

x(t) =
{
1, |t| < T1

0, T1 < |t| < T
2

The above signal is represented as a periodic square wave in Fig. 6.1. The exponential
Fourier series coefficients Dn can be determined as

Dn = 2 sin(nω0T1)

(nω0T)
(6.1)

where ω0 = 2π
T . The Fourier series coefficients TDn are obtained as

TDn = 2 sin(nω0T1)

(nω0)
(6.2)

For a fixed value of T1, the plot of TDn represents a sinc function. Equation (6.2)
is plotted for 2ω0, 4ω0 and 8ω0, and they are represented in Fig. 6.2a, b and c,
respectively.

x(t)

t2T TT 2TT T1 T1
2

T
2

Fig. 6.1 A continuous time periodic square wave
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TDn
T 4T1

T 8T1

T 16T1

2 0

(a)

(b)

(c)

0

0

0

4 0

8 0

2 0

4 0

8 0

TDn

TDn

Fig. 6.2 Fourier series coefficients for different values of T

FromFig. 6.2, it is evident that asT increases (the fundamental frequencyω0 = 2π
T

decreases), the samples of TDn become closer and closer. As T becomes very large,
the original periodic square wave becomes a rectangular pulse. As T → ∞, TDn

becomes continuous.
Let x̄(t) be a non-periodic square wave as represented in Fig. 6.3.

x̄(t) = 0 |t| > T1

The periodic signal x(t) formed by repeating x̄(t)with fundamental periodT is shown
in Fig. 6.1. If T → ∞

Lt
T→∞x(t) = x̄(t)
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Fig. 6.3 A continuous time
aperiodic square wave

1

tT1 T10

x(t)

The Fourier series coefficients of a periodic signal are written as (Fig. 6.1)

Dn = 1

T

∫ T/2

−T/2
x(t)e−jnω0t dt (6.3)

The periodic signal x(t) can be expressed in Fourier series as

x(t) =
∞∑

n=−∞
Dn ejnω0t (6.4)

Tx(t) =
∞∑

n=−∞
TDn ejnω0t (6.5)

Let

X(nω0) = TDn

=
∫ T/2

−T/2
x(t)e−jnω0t dt

x(t) = 1

T

∞∑
n=−∞

TDn ejnω0t

= 1

2π

∞∑
n=−∞

X(nω0)e
jnω0tω0 (6.6)

As T → ∞, ω0 = 2π
T → 0 and nω0 = ω which is continuous. Further, the summa-

tion in Eq. (6.6) becomes an integration. Thus, Eq. (6.6) is written as

X(jω) =
∫ ∞

−∞
x(t)e−jωt dt for all ω (6.7)
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x(t) = 1

2π

∫ ∞

−∞
X(jω)ejωtdω for all t (6.8)

Equation (6.7) is called analysis equation while Eq. (6.8) is called synthesis equation.
Equations (6.7) and (6.8) are called Fourier transform pair. Equation (6.7) transforms
the time function x(t) to frequency function X(jω) and so it is called Fourier trans-
form. Equation (6.8) converts the frequency function to time function and hence it
is called inverse Fourier transform. These transformations are also denoted as given
below.

X(jω) = F[x(t)]
x(t)

FT←→ X(jω)

x(t) = F−1[X(jω)]
X(jω)

IFT←→ x(t)

(6.9)

Note: The time function x(t) is always denoted by a lower case letter and the
frequency function X( jω) by a capital letter. Further, when x(t) is Fourier
transformed, it becomes complex and so it is denoted as X( jω). In some litera-
ture, X( jω) is also represented simply as X(ω).

6.3 Convergence of Fourier Transforms—The Dirichlet
Conditions

As in the case of continuous time periodic signals, the following conditions (Dirichlet
Conditions) are sufficient for the convergence of X(jω).

1. x(t) is absolutely integrable or square integrable. That is

∫ ∞

−∞
|x(t)| dt < ∞∫ ∞

−∞
|x(t)|2 dt < ∞

2. x(t) should have finite number of maxima and minima within any finite interval.
3. x(t) has a finite number of discontinuities within any finite interval.

However, signals which do not satisfy these conditions can have Fourier trans-
forms if impulse functions are included in the transform.
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6.4 Fourier Spectra

The Fourier transform of X(jω) of x(t) is, in general, complex and can be
expressed as

X(jω) = |X(jω)| ∣∣X(jω)

The plot of |X(jω)| versus ω is called magnitude spectrum of X(jω). The plot of∣∣X(jω) versus ω is called phase spectrum. The amplitude (magnitude) and phase
spectra are together called Fourier spectrumwhich is nothing but frequency response
of X(jω) for the frequency range −∞ < ω < ∞.

6.5 Connection Between the Fourier Transform
and Laplace Transform

By definitions,

X(jω) =
∫ ∞

−∞
x(t)e−jωt dt (6.10)

and the Laplace transform is given by

X(s) =
∫ ∞

−∞
x(t)e−st dt (6.11)

From Eqs. (6.10) and (6.11), it is observed that the Fourier transform is a special case
of the Laplace transform in which s = jω. Substituting s = σ + jω in Eq. (6.11), we
get

X(σ + jω) =
∫ ∞

−∞
x(t)e−(σ+jω)t dt

=
∫ ∞

−∞
[x(t)e−σ t]e−jωt dt

= F[x(t)e−σ t]

Thus, the bilateral Laplace transform of x(t) is nothing but the Fourier transform of
x(t)e−σ t . This implies that if the jω axis is the ROC of the Laplace transformation,
it is the Fourier transform.
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Note: The statement that Fourier transform can be obtained from Laplace trans-
form by replacing s by jω is true only if x(t) is absolutely integrable. If x(t) is
not absolutely integrable, the above statement is erroneous.

The following examples illustrate the method of finding Fourier transform of non-
periodic signals.

� Example 6.1

Find the Fourier transform of the following time functions and sketch their Fourier
spectra (amplitude and phase).

(a) x(t) = δ(t)

(b) x(t) = sgn (t)

(c) x(t) = 1 for all t

(d) x(t) = u(t) and x(t) = u(−t)

(e) x(t) = e−atu(t); a > 0

(f) x(t) = e−|a|t ; a > 0

(g) x(t) = eatu(t); a > 0

x(t) = eatu(−t)

Solution:

(a) x(t) = δ(t)

X(jω) =
∫ ∞

−∞
δ(t)e−jωt dt

=
∫ ∞

−∞
δ(t) dt [δ(t) = 0 for t �= 0

= 1 = 1 for t = 0]

δ(t)
FT←→ 1

Fourier Spectra of δ(t)
δ(ω) = 1 which is independent of frequency. Hence, the amplitude spectrum is
constant at all ω and the phase spectrum is zero at all ω. δ(t) and its Fourier
spectra are shown in Fig. 6.4a, b and c, respectively.
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x(t)
(a)

(t)

t0

1
( )

(b) (c)

0

( )

0

1

Fig. 6.4 Representation of δ(t) and its spectra

(b) x(t) = sgn(t)

sgn(t) =

⎧⎪⎨
⎪⎩
1 t > 0

0 t = 0

−1 t < 0

F[sgn(t)] =
∫ ∞

−∞
x(t)e−jωt dt

= −
∫ 0

−∞
e−jωt dt +

∫ ∞

0
e−jωt dt

For the first integral in the right side of the above equations when the lower limit
−∞ is applied, it becomes indeterminate and is not integrable. The problem can
be solved by the use of a TRICK. x(t) is multiplied by e−a|t| and the limiting
value of a → 0 is considered.

F[e−a|t|sgn(t)] =
∫ 0

−∞
−eate−jωt dt +

∫ ∞

0
e−ate−jωt dt

F[e−a|t|sgn(t)] =
∫ 0

−∞
−e(a−jω)t dt +

∫ ∞

0
e−(a+jω)t dt

F[e−a|t|sgn(t)] = Lt
a→0

[ −1

a − jω

{
e(a−jω)t

}0
−∞ − 1

(a + jω)

{
e−(a+jω)t

}∞
0

]

= Lt
a→0

[ −1

(a − jω)
+ 1

a + jω

]
= 1

jω
+ 1

jω
= 2

jω

sgn(t)
FT←→ 2

jω

The same result is derived by a simpler method at a later stage.
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x(t)=sgn(t) X( j )

X( j )

1

0
0

0

/2

/2

tt

1

(a) (b)

(c)

Fig. 6.5 Representation of sgn(t) and its spectra

Fourier Spectra of sgn(t)

X(jω) = 2

jω
=

⎧⎪⎪⎨
⎪⎪⎩
2

ω
∠−90◦ ω ≥ 0

2

ω
∠90◦ ω < 0

x(t) = sgn(t), |X(jω)| = 2
ω
and

∣∣X(jω) are represented in Fig. 6.5a, b and c,
respectively.

(c) x(t) = 1; for all t

F−1[δ(ω)] = 1

2π

∫ ∞

−∞
δ(ω)ejωt dω

Since δ(ω)ejωt = δ(ω),

F−1[δ(ω)] = 1

2π

∫ ∞

−∞
δ(ω) dω

= 1

2π
since δ(ω) =

{
1 ω = 0

0 otherwise

1

2π
FT←→ = δ(ω)

1
FT←→ = 2πδ(ω)
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x(t)
(a) (b)

tt 0

x( j )

2 ( )

0

1

Fig. 6.6 Representation of x(t) = 1 and its FT

The above result shows that a constant signal x(t) = 1 for all t, when Fourier
transformed becomes an impulse 2π δ(ω). x(t) and X(jω) are represented in
Fig. 6.6a and b, respectively.

(d) x(t) = u(t) and x(t) = u(−t)

x(t) =
{
0 t < 0

1 t ≥ 0

Finding the FTof unit step u(t) bydirect integration yields an indeterminate value
as is evident from the following equation because it has a jump discontinuity at
t = 0.

X(jω) =
∫ ∞

0
e−jωt dt

= − 1

jω

[
e−jωt

]∞
0

When the upper limit∞ is applied, the integral does not converge. So the problem
is approached by considering u(t) as

u(t) = 1

2
+ 1

2
sgn(t)

Figure 6.7 represents 1
2 sgn(t),

1
2 and u(t). From Fig. 6.7, u(t) = 1

2 + 1
2 sgn(t)

F[u(t)] = F

[
1

2

]
+ 1

2
F sgn(t)

F

[
1

2

]
= π δ(ω) [From Example 6.1(c)]

F

[
1

2
sgn(t)

]
= 1

jω
[From Example 6.1(b)]
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0.5sgn(t)

0.5

0.5

(a) )c()b(

0

0.5

0t t

x(t)=.5+.5sgn(t)

1

0 t

Fig. 6.7 Representation of u(t) in terms of signum function

F[u(t)] = π δ(ω) + 1

jω

The same result is obtained in a simpler way which is presented at a later stage.
From FT property, which is explained later,

F[x(−t)] = X(−jω)

F[u(−t)] = π δ(ω) − 1

jω

(e) x(t) = e−at u(t); a > 0

X(jω) =
∫ ∞

0
e−ate−jωt dt

=
∫ ∞

0
e−(a+jω)t dt

= − 1

(a + jω)

[
e−(a+jω)t

]∞
0

X(jω) = 1

(a + jω)

|X(jω)| = 1√
a2 + ω2∣∣X(jω) = − tan−1 ω

a

The signal x(t), the amplitude spectrum |X(jω)| and phase spectrum ∣∣X(jω) are
shown in Fig. 6.8a, b and c, respectively.
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x(t)

u(t)

(a) (b)
X(j )

1
a

t 00

1

ate

(c)
X( j )

/2

/4

/4

/2

Fig. 6.8 Representation of x(t) = e−atu(t) and its FT spectra

(f) x(t) = e−a|t|; a > 0

X(jω) =
∫ ∞

−∞
x(t)e−jωt dt

=
∫ 0

−∞
eate−jωt dt +

∫ ∞

0
e−ate−jωt dt

=
∫ 0

−∞
e(a−jω)t dt +

∫ ∞

0
e−(a+jω)t dt

X(jω) = 1

(a − jω)

[
e(a−jω)t

]0
−∞ − 1

(a + jω)

[
e−(a+jω)t

]∞
0

= 1

(a − jω)
+ 1

(a + jω)

X(jω) = 2a

a2 + ω2

[
e−a|t|] FT←→ 2a

a2 + ω2
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Fourier Spectra

|X(jω)| = 2a

a2 + ω2∣∣X(jω) = 0

The Fourier phase spectrum is zero at all frequencies. The representation of x(t)
and its Fourier amplitude spectrum are shown in Fig. 6.9a and b, respectively.

(g) x(t) = eat u(t); a > 0

X(jω) =
∫ ∞

0
eate−jωt dt

=
∫ ∞

0
e(a−jω)t dt

= 1

(a − jω)

[
e(a−jω)t

]∞
0

If the upper limit is applied to the above integral, the Fourier integral does not
converge. Hence, FT does not exist for x(t) = eat u(t).

x(t) = eatu(−t) a > 0

x(−t) = e−atu(t)

From Example 6.1(e), it is derived as

F[e−atu(t)] = 1

(a + jω)

F[x(−t)] = X(−jω)

F[eatu(−t)] = 1

a − jω

0

1

(a) (b)

tt

x(t)

e ateat

0

X( j )

2
a

Fig. 6.9 Representation of e−a|t| and its amplitude spectrum
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The above result can be derived from the first principle as explained below.

F[eatu(−t)] =
∫ 0

−∞
eate−jωt dt

=
∫ 0

−∞
e(a−jω)t dt

= 1

(a − jω)

[
e(a−jω)t

]0
−∞

F[eatu(−t)] = 1

(a − jω)

� Example 6.2

Consider the rectangular pulse shown in Fig. 6.10a which is the gate function. Find
the FT and sketch the Fourier spectra.

(Anna University, April, 2004)
Solution: Method 1:

x(t) = 1 |t| ≤ T

X(jω) =
∫ T

−T
1e−jωt dt

= −1

jω

[
e−jωt

]T
−T

=
[
ejωT − e−jωT

]
jω

= 2T sinωT

ωT
= 2Tsinc ωT

X(jω) = 2Tsinc ωT

Method 2: From Fig. 6.10b, the FT is obtained as

F

[
dx(t)

dt

]
= [ejTω − e−jTω] (a)

Using the integration property of FT, we get

F [x(t)] = 1

jω
[ejTω − e−jTω] + π Ẋ(0)δ(ω)
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x(t)

t0

1

t TT

dx(t)
x(t)dt

1

1

tt T T

(a) (b)

Fig. 6.10 a Representation of gate function. b Differentiated gate function

where ẋ = dx/dt. Putting ω = 0 in equation (a), Ẋ(0) = 0

F [x(t)] = 2

ω

[ejTω − e−jTω]
2j

= 2

ω
sinωT

= 2T
sinωT

ωT

X(jω) = 2TsincωT

Frequency Spectra of Gate Function
Amplitude Spectrum
At ω = 0,

|X(jω)| = 2 sinωT

ωT
= 2 sin 0

0
= 2

At ω = ± nπ
T ,

|X(jω)| = 0, where n = 1, 2, 3, . . .

Phase Spectrum

For 0 < ω <
π

2
,

∣∣X(jω) = 0

For
π

T
< ω <

2π

T
,

∣∣X(jω) = π

The amplitude and phase spectra are shown in Fig. 6.11a and b, respectively.
Note: Since π = −π , in Fig. 6.11b,

∣
∣X( jω) is marked as π .
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(a)

(b)

2

0

X(j )

X(j )

3
T

3
T

2
T

2
T

2
T

2
T

3
T

3
T

T

T

T

T

Fig. 6.11 Fourier spectra of gate function

� Example 6.3

For the following signal x(t), find the FT and FT spectra

x(t) =

⎧⎪⎨
⎪⎩

e−at t > 0

|1| t = 0

−e+at t < 0

Solution: The signal x(t) is sketched as shown in Fig. 6.12.

X(jω) =
∫ ∞

−∞
x(t)e−jωt dt

=
∫ 0

−∞
−eate−jωt dt +

∫ 0+

0−
1e−jωt dt +

∫ ∞

0+
e−ate−jωt dt

= −
∫ 0

−∞
e(a−jω)t dt +

∫ 0+

0−
e−jωt dt +

∫ ∞

0+
e−(a+jω)t dt

X(jω) = −1

(a − jω)

[
e(a−jω)t

]0
−∞ + 0 − 1

(a + jω)

[
e−(a+jω)t

]∞
0+

= −1

(a − jω)
+ 1

(a + jω)

X(jω) = −2jω

(a2 + ω2)



6.5 Connection Between the Fourier Transform and Laplace Transform 553

x(t)

t0

e

1

t

1

at

eat

Fig. 6.12 Anti-symmetry exponential decay pulse

X(j ) )b()a( X(j )

0

0

/2

2

Fig. 6.13 a Amplitude spectra and b Phase spectra

Fourier Transform Spectra

|X(jω)| = 2ω

(a2 + ω2)

∣∣X(jω) =
⎧⎨
⎩

−π

2
ω > 0

π

2
ω < 0

The frequency spectra for −∞ < ω < ∞ are shown in Fig. 6.13a and b.

� Example 6.4

Consider the triangular pulse shown in Fig. 6.14. Find the FT and its amplitude
spectrum.
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Fig. 6.14 Representation of
triangular pulse

x(t)

t0

4

t 22

Solution:

x(t) = 2(| − t| + 2) |t| ≤ 2

x(t) =
{

(2t + 4) −2 ≤ t ≤ 0

(4 − 2t) 0 ≤ t ≤ 2

X(jω) =
∫ 0

−2
(2t + 4)e−jωt dt +

∫ 2

0
(4 − 2t)e−jωt dt

= X1(jω) + X2(jω)

X1(jω) =
∫ 0

−2
(2t + 4)e−jωt dt

Let u = 2t + 4; du = 2 dt; dv = e−jωt dt; and v = − 1
jω e−jωt

X1(jω) = uv −
∫

v du

=
[
(2t + 4)

(−1

jω

)
e−jωt

]0
−2

+ 2

jω

∫ 0

−2
e−jωt dt

X1(jω) = −4

jω
+ 2

ω2
− 2

ω2
ej2ω

X2(jω) =
∫ 2

0
(4 − 2t)e−jωt dt

Let u = (4 − 2t); du = −2 dt; dv = e−jωt dt; and v = − 1
jω e−jωt

X2(jω) = uv −
∫

v du

=
[
(4 − 2t)

(−1

jω

)
e−jωt

]2
0

− 2

jω

∫ 2

0
e−jωt dt
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X2(jω) = 4

jω
− 2

ω2

[
e−jωt

]2
0

= 4

jω
− 2

ω2

[
e−j2ω − 1

]
X(jω) = X1(jω) + X2(jω)

= − 4

jω
+ 2

ω2
− 2

ω2
ej2ω + 4

jω
− 2

ω2
e−j2ω + 2

ω2

= 4

ω2
− 4

ω2
cos 2ω

= 4

ω2
[− cos 2ω + 1]

= 8

ω2
sin2 ω

= 8

[
sinω

ω

]2

X(jω) = 8sinc2 ω

The aboveproblemcanbe solvedusingFTproperty in a fewstepswhich are explained
at a later stage.

Fourier Spectra

|X(jω)| = 8sinc2 ω∣∣X(jω) = 0◦ for all ω

The magnitude spectra are represented in Fig. 6.15.

Note: The FT of rectangular, triangular and other signals can be easily deter-
mined by following the properties of FT which are discussed below.

X( j )

0

8

3 2 2 3

Fig. 6.15 Magnitude spectrum of a triangular wave
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6.6 Properties of Fourier Transform

The Fourier transform possesses the following properties and using them, the same
results are easily obtained. These properties are

1. Linearity,
2. Time shifting,
3. Conjugation and conjugation symmetry,
4. Differentiation,
5. Integration,
6. Time scaling and time reversal,
7. Frequency shifting,
8. Duality,
9. Time convolution and
10. Parseval’s Theorem.

6.6.1 Linearity

If

x1(t)
FT←→ X1(jω)

x2(t)
FT←→ X2(jω)

then

[A x1(t) + B x2(t)] FT←→ [A X1(jω) + B X2(jω)]

Proof Let x(t) = A x1(t) + B x2(t)

X(jω) =
∫ ∞

−∞
x(t)e−jωt dt

=
∫ ∞

−∞
[A x1(t) + B x2(t)]e−jωt dt

= A
∫ ∞

−∞
x1(t)e

−jωt + B
∫ ∞

−∞
x2(t)e

−jωt dt

X(jω) = A X1(jω) + B X2(jω) (6.12)
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6.6.2 Time Shifting

If

x(t)
FT←→ X(jω)

then

x(t − t0)
FT←→ e−jωt0X(jω)

Proof

F[x(t − t0)] =
∫ ∞

−∞
x(t − t0)e

−jωt dt

Let (t − t0) = p and dt = dp

F[x(t − t0)] =
∫ ∞

−∞
x(p)e−jω(p+t0) dp

= e−jωt0

∫ ∞

−∞
x(p)e−jωp dp

F[x(t − t0)] = e−jωt0 X(jω) (6.13)

6.6.3 Conjugation and Conjugation Symmetry

If

x(t)
FT←→ X(jω)

then

x∗(t) FT←→ X∗(−jω)

Proof

F[x∗(t)] = X∗(jω) =
[∫ ∞

−∞
x(t)e−jωt dt

]∗

=
∫ ∞

−∞
x∗(t)ejωt dt
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Replacing ω by (−ω),

X∗(−jω) =
∫ ∞

−∞
x∗(t)e−jωt dt

X∗(−jω) = X(jω) if x(t) is real x∗(t) = x(t)

Also

X(−jω) = X∗(jω) (6.14)

6.6.4 Differentiation in Time

If

x(t)
FT←→ X(jω)

then

dx(t)

dt
FT←→ jωX(jω)

Proof

F[x(t)] = 1

2π

∫ ∞

−∞
X(jω)ejωt dω

F

[
dx(t)

dt

]
= jω

2π

∫ ∞

0
X(jω)ejωt dω

= jω X(jω)

dx(t)

dt
FT←→ jω X(jω) (6.15)

In general,

F

[
dn x(t)

dtn

]
= (jω)n X(jω)
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6.6.5 Differentiation in Frequency

If

F[x(t)] = X(jω)

then

F[tx(t)] = j
d

dω
X(jω)

Proof

X(jω) =
∫ ∞

−∞
x(t)e−jωt dt

d

dω
[X(jω)] =

∫ ∞

−∞
−jtx(t)e−jωt dt

= −jF[tx(t)]

[tx(t)] FT←→ j
dX(jω)

dω
(6.16)

6.6.6 Time Integration

If

F[x(t)] = X(jω)

then

F

[∫ t

−∞
x(τ ) dτ

]
= 1

jω
X(jω) + πX(0) δ(ω)

Proof Let

y(t) =
∫ t

−∞
x(τ ) dτ

Differentiating the above equation, we get
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x(t) = dy(t)

dt

Using differentiation property, we get

X(jω) = jωY(jω)

The differentiation in the time domain corresponds to multiplication by jω in the
frequency domain.

Y(jω) =
(

1

jω

)
X(jω)

if the initial condition X(0) = 0.
If X(jω) �= 0 at ω = 0, then y(t) is not integrable and FT does not exist.

However, this problem is overcome by including impulses in the transform. The
value at ω = 0 is modified by adding πX(0) and the FT is written as

F

[∫ t

−∞
x(τ ) dτ

]
FT←→ 1

jω
X(jω) + πX(0) δ(ω) (6.17)

6.6.7 Time Scaling

If

F[x(t)] = X(jω)

then

F[x(at)] = 1

|a|X

(
jω

a

)

Proof

F[x(at)] =
∫ ∞

−∞
x(at)e−jωt dt

Let at = p; and dt = 1
a dp, a > 0

F[x(p)] = 1

a

∫ ∞

−∞
x(p)e− jωp

a dp
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By definition of FT, we get

F[x(at)] = 1

a
X
(

j
ω

a

)

For a < 0,

F[x(at)] = −1

a
X
(

j
ω

a

)

Hence

F[x(at)] = 1

|a|X
(

j
ω

a

)
(6.18)

For time reversal,

F[x(−t)] = X(−jω) (6.19)

6.6.8 Frequency Shifting

If

F[x(t)] = X(jω)

then

F[x(t)ejω0t] = X[j(ω − ω0)]

Proof

F[x(t)ejω0t] =
∫ ∞

−∞
x(t)ejω0te−jωt dt

=
∫ ∞

−∞
x(t)e−j(ω−ω0)t dt

By definition of FT, we get

F[x(t)ejω0t] = X[j(ω − ω0)] (6.20)
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6.6.9 Duality

If

F[x(t)] = X(jω)

then

F[X(t)] = 2πx(jω)

Proof From Eq. (6.8), we write

x(t) = 1

2π

∫ ∞

−∞
X(jω)ejωt dω

x(−t) = 1

2π

∫ ∞

−∞
X(jω)e−jωt dω

2πx(−t) =
∫ ∞

−∞
X(jω)e−jωt dω

By definition of FT, we get

2πx(−t) = F[X(jω)]

Changing t to jω, we get

2πx(jω) = F[X(t)] (6.21)

6.6.10 The Convolution

Let

y(t) = x(t) ∗ h(t)

F[y(t)] = Y(jω) = X(jω)H(jω)

Proof

y(t) =
∫ ∞

−∞
x(τ )h(t − τ) dτ

F[y(t)] = Y(jω) =
∫ ∞

−∞

[∫ ∞

−∞
x(τ )h(t − τ) dτ

]
e−jωt dt
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Interchanging the order of integration, we get

Y(jω) =
∫ ∞

−∞
x(τ )

[∫ ∞

−∞
h(t − τ)e−jωt dt

]
dτ

By time shifting property, the term inside the bracket becomes e−jωτ H(jω).

Y(jω) =
∫ ∞

−∞
x(τ )e−jωτ H(jω) dτ

= H(jω)

∫ ∞

−∞
x(τ )e−jωτ dτ

By definition of FT, we get

Y(jω) = H(jω)X(jω) (6.22)

6.6.11 Parseval’s Theorem (Relation)

According to Parseval’s theorem, the total energy in a signal is obtained by
integrating the energy per unit frequency |X( jω)|2

2π
.

Proof

E =
∫ ∞

−∞
|x(t)|2 dt

=
∫ ∞

−∞
x(t)x∗(t) dt

=
∫ ∞

−∞
x(t)

[
1

2π

∫ ∞

−∞
X∗(jω)e−jωt dω

]
dt

E = 1

2π

∫ ∞

−∞
X∗(jω)

[∫ ∞

−∞
x(t)e−jωt dt

]
dω

= 1

2π

∫ ∞

−∞
X∗(jω)X(jω) dω

E = 1

2π

∫ ∞

−∞
|X(jω)|2 dω

∫ ∞

−∞
|x(t)|2dt = 1

2π

∫ ∞

−∞
|X(jω)|2dω
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Table 6.1 Fourier transform properties

Property Time signal x(t) Fourier transform X(jω)

1. Linearity x(t) = A x1(t) + B x2(t) X(jω) =
A X1(jω) + B X2(jω)

2. Time shifting x(t − t0) e−jωt0X(jω)

3. Conjugation x∗(t) X∗(−jω)

4. Differentiation in time
dn x(t)

dtn
(jω)nX(jω)

5. Differentiation in frequency tx(t) j
d

dω
X(jω)

6. Time integration
∫ t

−∞
x(τ ) dτ

1

jω
X(jω) + πX(0)δ(ω)

7. Time scaling x(at)
1

|a|X
(

j
ω

a

)
8. Time reversal x(−t) X(−jω)

9. Frequency shifting x(t)ejω0t X[j(ω − ω0)]
10. Duality X(t) 2πx(jω)

11. Time convolution x(t) ∗ h(t) X(jω)H(jω)

12. Parseval’s theorem E =
∫ ∞

−∞
|x(t)|2 dt E = 1

2π

∫ ∞

−∞
|X(jω)|2 dω

Table 6.2 Basic Fourier transform pairs

Signal Fourier transform

1. δ(t) 1

2. u(t)
1

jω
+ πδ(ω)

3. δ(t − t0) e−jωt0

4. te−atu(t)
1

(a + jω)2

5. u(−t) πδ(ω) − 1

jω

6. eatu(−t)
1

(a − jω)

7. e−a|t| 2a

a2 + ω2

8. cosω0t π [δ(ω − ω0) + δ(ω + ω0)]
9. sinω0t −jπ [δ(ω − ω0) − δ(ω + ω0)]

10.
1

(a2 + t2)
e−a|ω|

11. sgn(t)
2

jω
12. 1; for all t 2π δ(ω)
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The above equation is called Parseval’s relation. The Fourier transform properties
are summarized and given in Table 6.1. The basic Fourier transform pairs are given
in Table 6.2.

6.7 Fourier Transform of Periodic Signal

� Example 6.5

Find the Fourier transform of the following periodic signals:

(a) x(t) = ejω0t

(b) x(t) = e−jω0t

(c) x(t) = cosω0t

(d) x(t) = sinω0t

Solution:

(a) x(t) = e jω0 t = 1e jω0 t

Let y(t) = 1. From Example 6.1c

Y(jω) = 2πδ(ω)

By using the frequency shifting property, we get

X(jω) = 2πδ(ω − ω0)

(b) x(t) = e− jω0 t

x(t) = e−jω0t

= e−jω0t1

Since 1
FT←→ 2πδ(ω), by using the frequency shifting property we get

X(jω) = 2πδ(ω + ω0)
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X(j )

( 0)
( 0)

00 0

Fig. 6.16 FT of cos(ω0t)

(c) x(t) = cos(ω0 t)

x(t) = cos(ω0t)

= 1

2

[
ejω0t + e−jω0t

]
Using the results obtained in 6.5(a) and 6.5(b) above, we get

X(jω) = π [δ(ω + ω0) + δ(ω − ω0)]

The frequency spectrum is shown in Fig. 6.16.
(d) x(t) = sin ω0 t

x(t) = sinω0t

= 1

2j

[
ejω0t − e−jω0t

]

X(jω) = −jπ [δ(ω − ω0) − δ(ω + ω0)]

The Fourier spectra of sinω0t are shown in Fig. 6.17.

6.7.1 Fourier Transform Using Differentiation and
Integration Properties

Using differentiation and integration properties, most of the problems encountered in
CT system can be easily and quickly solved while determining the Fourier transform.
Let x(t) be a signal with Fourier transform X(jω). The FT of dx(t)/dt is obtained
using Eq. (6.15). Here, X(jω) is simply multiplied by jω. Thus, we get
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X(j )(a)

00 0

(b) X(j )

0

0

/2

/2

Fig. 6.17 Fourier spectra of sinω0t

x(t)
FT←→ X(jω)

dx(t)

dt
FT←→ jωX(jω)

Similarly, the FT of
∫ t
−∞ x(τ )dτ is obtained by dividing by jω which is given in Eq.

(6.17).

∫ t

−∞
x(τ )dτ

FT←→ 1

jω
X(jω) + πX(0)δ(ω)

where X(0) = X(ω)|ω=0. πX(0)δ(ω) accounts for the total area of x(t). If this area
is zero then X(0) = 0. The use of differentiation and integration properties saves
time while solving mathematical equation. The following step-by-step procedure is
followed:

1. The signal x(t) is sketched.
2. x(t) is differentiated and dx(t)/dt is sketched.
3. The differentiation procedure is repeated until the FT could be easily obtained

just by observation. Usually, the differentiation process is continued until the
signal appears in the form of impulse and time shifted impulses. The FT of these
impulses can be easily obtained.

4. Obtain G(0) which is nothing but X(0) when ω is substituted in the FT of the
last derivative of x(t). Thus, the DC average value πX(0)δ(ω) that results from
integration is added. To this value, G(jω)/(jω)n is added to get FT of x(t). In
other words,

X(jω) = G(jω)

(jω)n
+ πX(0)δ(ω)

where

G(jω) = FT of nth derivative of x(t)

X(0) = G(jω)|ω=0
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The use of differentiation and integration properties is illustrated in a few
examples.

� Example 6.6

Find the CTFT for the following signal x(t):

x(t) =

⎧⎪⎨
⎪⎩
2t + 4 −2 ≤ t < 2

8 2 ≤ t < ∞
0 otherwise

Solution: x(t), dx(t)/dt and d2x(t)/dt2 are represented in Fig. 6.18a to c, respectively.
From Fig. 6.18c, we get the following CTFT for d2x(t)/dt2 = g2(t).

G2(jω) = [2ej2ω − 2e−j2ω]
= 2

[ej2ω − e−j2ω]2j

2j
= j4 sin 2ω

G2(0) = 0

G1(jω) is obtained by dividing G2(jω) by jω and adding the DC term.

x(t) g1(t)
dx(t)

dt
(a)

0 22

8

tt

(b)

22 0

2

t

(c)

2

22

2

tt

t

g2(t)
d2x(t)

dt2

Fig. 6.18 Signal x(t) of Example 6.6
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G1(jω) = G2(jω)

jω
+ πδ(ω)G2(0)

= j4 sin 2ω

jω

= 8

(
sin 2ω

2ω

)
G1(0) = 8

G1(jω) = 8

(
sin 2ω

2ω

) [
sin 2ω

2ω

∣∣∣∣
ω=0

= 1

]

X(jω) = G1(jω)

jω
+ πδ(ω)G1(0)

X(jω) = 4 sin 2ω

jω2
+ 8πδ(ω)

� Example 6.7

Find the FT of the step function u(t) using the integration property of FT.

Solution:
The step function is shown in Fig. 6.19. The step function u(t) and impulse function
δ(t) are related as

δ(t) = du(t)

dt
du(t) = δ(t)dt

Substituting x(t) = u(t) and δ(t) = g(t), the above equation is written after integrat-
ing both sides as

x(t) =
∫ t

−∞
g(τ )dτ

Fig. 6.19 Signal x(t) of
Example 6.7

x(t) u(t)

0

1

tt
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Taking FT on both sides, we get

X(jω) = 1

jω
G(jω) + πG(0)δ(ω)

But

g(t) = δ(t)
FT←→ G(jω) = 1

G(0) = 1

Substituting the above in X(jω), we get

X(jω) = 1

jω
+ πδ(ω)

The same result is obtained in Example 6.1(d).

� Example 6.8

For the following signals, determine the FT using FT properties.

x(t) = 5 sin 10t

(a) y(t) = x(t − 3)
(b) y(t) = x(4(t − 3))
(c) y(t) = x(4t − 3)
(d) y(t) = x(−3t + 4)

Solution:

(a) x(t) = 5 sin 10t

From Example 6.5(d), the FT of x(t) is obtained as

X(jω) = j5π [δ(ω + 10) − δ(ω − 10)]
y(t) = x(t − 3)

FT of y(t) is obtained using the time shifting property (right shift) as

Y(jω) = X(jω)e−j3ω

= j5π [δ(ω + 10) − δ(ω − 10)]e−j3ω

= j5π [δ(ω + 10)e−j3ω − δ(ω − 10)e−j3ω]
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Using the property

X(jω)δ(ω − ω0) = X(jω0)δ(ω − ω0)

we get

Y(jω) = j5π [δ(ω + 10)ej30 − δ(ω − 10)e−j30]

(b)

y(t) = x(4(t − 3))

= x(4t − 12)

x(t)
FT←→ j5π [δ(ω + 10) − δ(ω − 10)]

Using the time shifting property (right shift), we get

x(t − 12)
FT←→ j5π [δ(ω + 10) − δ(ω − 10)]e−j12ω

Using the time scaling property,

x(at)
FT←→ 1

a
X
(

j
ω

a

)
,

x(4t − 12)
FT←→ j

5

4
π
[
δ
(ω

4
+ 10

)
− δ
(ω

4
− 10

)]
e−j3ω

FT←→ j
5

4
π

[
δ

(
ω + 40

4

)
− δ

(
ω − 40

4

)]
e−j3ω

Using the property

δ(aω) = 1

a
δ(ω)

we get

x(4t − 12)
FT←→ j

5

4
π
[
4δ (ω + 40) e−j3ω − 4δ (ω − 40) e−j3ω]

Y(jω) = j5π
[
δ (ω + 40) ej120 − δ (ω − 40) e−j120

]



572 6 Fourier Transform Analysis of Continuous Time Signals

(c) y(t) = x(4t − 3)

x(t)
FT←→ j5π [δ(ω + 10) − δ(ω − 10)]

x(t − 3)
FT←→ j5π [δ(ω + 10) − δ(ω − 10)]e−j3ω

x(4t − 3)
FT←→ j5π

4

[
δ
(ω

4
+ 10

)
− δ
(ω

4
− 10

)]
e−j(3/4)ω

Y(jω) = j5π
[
δ (ω + 40) ej30 − δ (ω − 40) e−j30]

(d) y(t) = x(−3t + 4)

Using the time reversal property,

x(−t)
FT←→ X(−jω)

x(−t)
FT←→ j5π [δ(−ω + 10) − δ(−ω − 10)]

Using the time shifting property (right shifted), we get

x(−t + 4)
FT←→ j5π [δ(−ω + 10) − δ(−ω − 10)]e−j4ω

Using the time scaling property, we get

x(−3t + 4)
FT←→ j5π

3

[
δ
(
−ω

3
+ 10

)
− δ

(−ω

3
− 10

)]
e−j(4/3)ω

Y(jω) = j5π
[
δ (−ω + 30) e−j(4/3)ω − δ (−ω − 30) e−j(4/3)ω

]

Y(jω) = j5π
[
δ (−ω + 30) e−j40 − δ (ω + 30) ej40

]
∵ δ(−ω − 30) = δ(ω + 30)

Y(jω) = j5π
[
δ (ω − 30) e−j40 − δ (ω + 30) ej40

]

� Example 6.9

Consider the following CT signal.

x(t) = 4 cos 3t
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Determine the FT of the following signals:

(a) y(t) = x(2 − t) + x(−2 − t)
(b) y(t) = x(3t + 5)
(c) y(t) = d2

dt2 x(t − 2)

Solution:

(a) x(t) = 4 cos 3t
From Example 6.5, the FT of x(t) is obtained as

X(jω) = 4π [δ(ω + 3) + δ(ω − 3)]
y(t) = x(2 − t) + x(−2 − t)

x(2 − t)
FT←→ X(−jω)e−j2ω

x(−2 − t)
FT←→ X(−jω)ej2ω

x(2 − t) + x(−t − 2)
FT←→ X(−jω)[ej2ω + e−j2ω]
= X(−jω)2 cos 2ω

X(−jω) = 4π [δ(−ω + 3) + δ(−ω − 3)]
Y(jω) = X(−jω)2 cos 2ω

Y(jω) = 8π cos 2ω [δ (ω + 3) + δ (ω − 3)]

(b)

y(t) = x(3t + 5)

x(t + 5)
FT←→ 4π [δ(ω + 3) + δ(ω − 3)]ej5ω

Using the time scaling property of FT, we get

x(3t + 5)
FT←→ 4

3
π
[
δ
(ω

3
+ 3
)

+ δ
(ω

3
− 3
)]

ej(5/3)ω

= 4π [δ (ω + 9) + δ (ω − 9)] ej(5/3)ω

= 4π
[
δ (ω + 9) e−j15 + δ (ω − 9) ej15]

Y(jω) = 4π
[
δ (ω + 9) e−j15 + δ (ω − 9) ej15

]
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(c) y(t) = d2

dt2 x(t − 2)

x(t − 2)
FT←→ 4π [δ(ω + 3) + δ(ω − 3)]e−j2ω

= 4π [δ(ω + 3)ej6 + δ(ω − 3)e−j6]

Using differentiation property

d2x

dt2
FT←→ (jω)2X(jω)

we get

Y(jω) = 4(jω)2π [δ(ω + 3)ej6 + δ(ω − 3)e−j6]
= 4π [−δ(ω + 3)9ej6 − δ(ω − 3)9e−j6]

Y(jω) = −36π
[
δ (ω + 3) ej6 + δ (ω − 3) e−j6

]

� Example 6.10

A signal has the following FT:

X(jω) = ω2 + j4ω + 2

−ω2 + j4ω + 3

Find the FT of x(−2t + 1).

(Anna University, 2011)
Solution:

X(jω) = ω2 + j4ω + 2

−ω2 + j4ω + 3

By using the time reversal property, the FT of x(−t) = X(−jω) is obtained as

x(−t)
FT←→ ω2 − j4ω + 2

−ω2 − j4ω + 3

By using the time shifting (right shift) property, we get

x(−t + 1)
FT←→

(
ω2 − j4ω + 2

−ω2 − j4ω + 3

)
e−jω
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By using the time scaling property, we get

x(−2t + 1)
FT←→ 1

2
e−jω/2

[
ω2

4 − j2ω + 2
]

[
−ω2

4 − j2ω + 2
]

� Example 6.11

By using differentiation and integration property of FT, determine the FT of x(t) =
sgn(t).

Solution: x(t) = sgn(t) is shown in Fig. 6.20a, and its derivative dx(t)/dt = 2δ(t) is
shown in Fig. 6.20.

dx(t)

dt
= 2δ(t)

FT←→ 2

Using the integration property, we get

X(jω) = 1

jω
FT

[
dx(t)

dt

]
+ πδ(ω)G(0)

= 2

jω

Since the area under the impulse is zero, the initial condition G(0) = 0.

X(jω) = 2

jω

dx(t)
dt

1

g(t)

0 t

2 (t)

x(t)

10

1

)b()a(

tt

t

Fig. 6.20 Signals representing sgn(t) and its derivatives
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� Example 6.12

Consider the signal described by the following signal:

x(t) = 1 + 2|t| |t| ≤ 2

(a) Sketch x(t) and its derivatives.
(b) Using FT integration property, determine X(jω).
(c) Determine the odd and even components of X(jω).

Solution:

(a)

x(t) = 1 + 2|t| |t| ≤ 2

x(t) =

⎧⎪⎪⎨
⎪⎪⎩
1 + 2t 0 ≤ t ≤ 2

1 − 2t −2 ≤ t ≤ 0

0 otherwise

x(t) is sketched as shown in Fig. 6.21a. From Fig. 6.21a, the following equations
are written:

dx(t)

dt
=
{
5δ(t + 2) − 2 −2 ≤ t ≤ 0

−5δ(t − 2) + 2 0 ≤ t ≤ 2

dx(t)/dt is sketched as the sumof g1(t) and g2(t) in Fig. 6.21b and c, respectively.
Thus

dx(t)

dt
= g1(t) + g2(t)

The derivatives of g2(t) is sketched as g3(t) in Fig. 6.21d.
(b) From Fig. 6.21d, the FT of g3(t) is obtained as

G3(jω) = −2[ej2ω + e−j2ω] + 4

G3(0) = −2(1 + 1) + 4

= 0

G3(jω) = −4 cos 2ω + 4

= 4[1 − cos 2ω]
= 8 sin2 ω
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t

2

4

2

g1(t)

g2(t)

t

5

202

5

x(t)
(a) (b)

(d)

0 22

1

5

tt t

t

(c)

0 2
2

2

tt

2

g3(t)
dg2(t)

dt

Fig. 6.21 Representation of x(t) = 1 + 2|t|, |t| ≤ 2 and its derivatives

From Fig. 6.21b

G1(jω) = 5(ej2ω − e−j2ω)

= j10 sin 2ω

G1(0) = 0

Using the integration property, we obtain X(jω) as

X(jω) = G1(jω)

(jω)
+ G3(jω)

(jω)2
+ π [G1(0)δ(ω) + G3(0)δ(ω)]

X(jω) = j10
sin 2ω

jω
+ 8

sin2 ω

(jω)2

X(jω) = 20sinc2ω − 8sinc2ω

X(−jω) = 20sinc2ω − 8sinc2ω
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x(t)(a) (b) x(t)

tt 00 2

1

1 1

Fig. 6.22 a Rectangular time shifted pulse and b Rectangular or gate pulse

X(jω)ev = 1

2

[
X(jω) + X(−jω)

]
= 1

2
[20sinc 2ω − 8sinc2ω + 20sinc 2ω − 8sinc2ω]

X(jω)ev = −8sinc2ω + 20sinc 2ω

X(jω)odd = 1

2

[
X(jω) + X(−jω)

]
= 1

2
[20sinc 2ω − 8sinc2ω − 20sinc 2ω + 8sinc2ω]

X(jω)odd = 0

� Example 6.13

Consider the signal x(t) shown in Fig. 6.22a. The rectangular pulse x̄(t) is shown in
Fig. 6.22b. From X̄(jω), determine X(jω) using shift property.

Solution: In Example 6.2, the FT of x̄(t) has been derived as

X̄(jω) = 2sincω

From Fig. 6.22,

x(t) = x̄(t − 1)

X(jω) = X̄(jω)e−jω

Using shift property, the FT of x(t) is obtained as

X(jω) = 2e−jωsincω
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Fig. 6.23 x(t) signal of
Example 6.14

x(t)

t0 1

1

1t

1

� Example 6.14

Find the Fourier transform of the signal shown in Fig. 6.23 and plot its magnitude
spectrum.

(Anna University, April, 2005)
Solution: Method 1:

x(t) =
{
1 −1 ≤ t ≤ 0

−1 0 ≤ t ≤ 1

Using definition of FT, we get

X(jω) =
∫ 0

−1
e−jωt dt −

∫ 1

0
e−jωt dt

= −1

jω

{[
e−jωt

]0
−1 − [e−jωt

]1
0

}

= −1

jω

[
1 − ejω − e−jω + 1

]

X(jω) = 2

jω
[cosω − 1]

Method 2:

Differentiating the signal in Fig. 6.23, dx(t)
dt is obtained and is represented in Fig. 6.24.

Using the time shifting property, FT of Fig. 6.24 is written as follows:
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Fig. 6.24 Derivative of the
signal represented in Fig.
6.23

dx(t)
dt

t

1

1

1

01

g(t)

2

G(jω) = F

[
dx(t)

dt

]
= [ejω − 2 + e−jω

] = 2[cosω − 1]
G(0) = 2[1 − 1] = 0

Using the time integration property, we get

F[x(t)] = X(jω) = G(jω)

jω
+ πG(0)δ(ω) = 2

jω
[cosω − 1] + πG(0)δ(ω)

X(jω) = 2

jω
[cosω − 1]

To Plot the Magnitude Spectrum

|X(jω)| = 2

ω
[cosω − 1]

= 2

ω

[
cos2

ω

2
− sin2

ω

2
− 1
]

= −4

ω
sin2 ω/2

= −ω

[
sinω/2

ω
2

]2

|X(jω)| =
∣∣∣ω sinc2

ω

2

∣∣∣
The amplitude spectrum of X(jω) is shown in Fig. 6.25.
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X(j )

8 6 4 2 2 4

4/

6 80

Fig. 6.25 Amplitude spectrum of ω sinc2(ω/2)

� Example 6.15

Using Fourier transform properties, find the Fourier transform of the signal shown
in Fig. 6.26a: (a) Time shifting and (b) Differentiation and integration.

(Anna University, December, 2007)

x(t)(a)

)c()b(

t0

A

TT
4

2A

T
2

3T
4

x1(t)

t0

AA

T

t

tt
2

T
2

x2(t)

t0T
4

T
4

Fig. 6.26 a, b and c Decomposition of signal of Example 6.15. d Differentiated signal of x(t)
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Fig. 6.26 (continued)

t
4

A A

A A

T
T4

3T

g(t)
d(t)

(d)
dt

Solution:

Method 1: Time Shifting Property

The given signal x(t) represented in Fig. 6.26a can be decomposed as x1(t) and x2(t)
and represented in Fig. 6.26b and c, respectively. x(t) can be represented as

x(t) = A

[
x1

(
t − T

2

)
+ x2

(
t − T

2

)]

Thus, the FT of x(t) can be obtained using linearity and time shifting. From Exam-
ple 6.2,

X1(jω) = ATsinc
ωT

2

X2(jω) = 1

2
ATsinc

ωT

4

X(jω) = [X1(jω) + X2(jω)]e−j ωT
2

X(jω) = AT

[
sinc

ωT

2
+ 1

2
sinc

ωT

4

]
e−j ωT

2

Method 2: Using Differentiation and Integration Properties

Using differentiation and integration properties of FT, the results obtained using the
conventional method can be obtained in a few steps. Differentiating x(t) shown in
Fig. 6.26a, g(t) = dx/dt can be obtained which are time shifted impulses shown in
Fig. 6.26b. From Fig. 6.26d, the following equation is written as

g(t) = dx

dt

= Aδ(t) + Aδ

(
t − T

4

)
− Aδ

(
t − 3T

4

)
− Aδ(t − T)
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Taking FT on both sides, we get

G(jω) = A[1 + e−jω(T/4) − e−jω(3T/4) − e−jωT ]
G(0) = A[1 + 1 − 1 − 1]

= 0 Note: Ifx(t) is finite for t → ∞,G(0) = 0

G(jω) = Ae−jω(T/2)[(ejω(T/2) − e−jω(T/2)) + (ejω(T/4) − e−jω(T/4))]
= 2Aj

[
sin

ωT

2
+ sin

ωT

4

]
e−jω(T/2)

The FT of x(t) is obtained by integrating G(jω). Thus

X(jω) = 1

jω
G(jω) + πG(0)δ(ω)

= 2A

ω

[
sin

ωT

2
+ sin

ωT

4

]
e−jω(T/2) + 0

= AT

[
sin ωT

2(
ωT
2

) + 1

2

sin ωT
4(

ωT
4

)
]

e−jω(T/2)

= AT

[
sinc

ωT

2
+ 1

2
sinc

ωT

4

]
e−jω(T/2)

� Example 6.16

1. Find the Fourier transform X(jω) of the signal x(t) represented in Fig. 6.27a
using the differentiation property of FT. Verify the same using Fourier integral.

2. Sketch the signal
x(t) = 2|t| |t| ≤ 2

Sketch dx(t)/dt and using the time integration property, find X(jω).

Solution:

1. (a) FT Using Differentiation Property

x(t) = 2t − 1 ≤ t ≤ 1

dx(t)

dt
= 2 − 2δ(t − 1) − 2δ(t + 1) − 1 ≤ t ≤ 1

x(t) is represented in Fig. 6.27a and dx(t)
dt is shown in Fig. 6.27b. In Fig. 6.27b,

x1(t) represents the gate function and x2(t) represents impulse functions.
From Fig. 6.27c, the FT of dx1/dt is obtained as

F

[
dx1
dt

]
= 2[ejω − e−jω]
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x(t)(a) (b) x1(t)
x2(t)

dx(t)
dtt t00
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1

2

1
t 1

1 1

2 2

1

2

dx1
dt(c)

0

2

t

2

1t

t t

t

2

2

20

4

x(t)
(d)

(j)

0 22

1
4

tt

(g)

0 2

2

t

4

g4(t)
dg2(t)

dt

g1(t)

g1(t)

dx1(t)
dt

x2(t)
(f)

02

1
4

t

x1(t)(e)

0 2

4

t

(h)

0 2

2

t

g2(t) (i)

0 2 t

g3(t)

t

t

t

Fig. 6.27 a Representation of x(t) and dx(t)
dt . b Representation of x(t) = 2|t| |t| ≤ 2
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By using integration properties of FT, we get

X1(jω) = 4

jω

[ejω − e−jω]
2

= 4
sinω

ω
= 4sincω

The FT of x2(t) is obtained as

X2(jω) = −2
(
ejω + e−jω

)
= −4

[ejω + e−jω]
2

= −4 cosω

FT

[
dx(t)

dt

]
= X1(jω) + X2(jω)

= 4
sinω

ω
− 4 cosω

X1(0) + X2(0) = 4 − 4

= 0

By using integration properties of FT, we get

X(jω) = 1

jω
[X1(jω) + X2(jω)] + π [X1(0) + X2(0)]δ(ω)

= 4

jω
[sincω − cosω] + 0

X(jω) = 4

jω
[sincω − cosω]

The above result can be obtained using the Fourier integral as explained
below.

(b) FT Using Fourier Integral

x(t) = 2t

X(jω) =
∫ 1

−1
2te−jωt dt

Let u = 2t; du = 2dt and dv = ∫ e−jωt dt; v = −1
jω e−jωt
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X(jω) = uv −
∫

v du

=
[−2t

jω
e−jωt

]1
−1

+ 2

jω

∫ 1

−1
e−jωt dt

=
[−2t

jω
e−jωt + 2

ω2
e−jωt

]1
−1

= 2

[−e−jω

jω
+ 1

ω2
e−jω − 1

jω
ejω − 1

ω2
ejω

]

= 2

[
− 1

jω

(
ejω + e−jω

)− 1

ω2

(
ejω − e−jω

)]

= 4

[
− 1

jω
cosω + 1

jω

sinω

ω

]

X(jω) = 4

jω
[sincω − cosω]

2. Sketch the signal x(t) = 2|t| |t| ≤ 2.

Using differentiation, integration and time reversal properties, find the FT
of X(jω)

x(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2|t| |t| ≤ 2

2t 0 ≤ t ≤ 2

−2t −2 ≤ t ≤ 0

0 otherwise

x(t) is shown in Fig. 6.27d. From Fig. 6.27, the following equations are
written:

x(t) = x1(t) + x2(t)

Let

g1(t) = dx1(t)

dt
g1(t) = g2(t) + g3(t)

g4(t) = d

dt
g2(t)

FT of x1(t) is obtained as explained below using the integration property of
FT
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G4(jω)
FT←→ 2[1 − e−j2ω]

G4(jω) = 2e−jω[ejω − e−jω]
= j4e−jω sinω

G4(0) = 0

Using the time integration properties of FT, we get

G2(jω) = G4(jω)

jω
+ πG4(0)δ(ω)

= j4
jω

e−jω sinω

= 4e−jω sinω

ω

G3(jω) = −4e−j2ω

G1(jω) = G2(jω) + G3(jω)

= 4e−jω sinω

ω
− 4e−j2ω

G1(0) = 4 − 4

G1(0) = 0

[
Lt

ω=0

sinω

ω
= 1

]

g1(t) = dx1(t)

dt

Using the time integration property of FT, we get

X1(jω) = 1

jω
G1(jω) + G1(0)πδ(ω)

= 4e−jω

jω2
sinω − 4e−j2ω

jω
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Using the time reversal property of FT, we get [x1(−t) = x2(t)]

X2(jω) = X1(−jω)

= 4ejω

jω2
sin(−ω) + 4ej2ω

jω

Using the linearity property of FT, we get (Fig. 6.27a)

X(jω) = X1(jω) + X2(jω)

= 4e−jω

jω2
sinω − 4e−j2ω

jω
− 4ejω sinω

jω2
+ 4ej2ω

jω

= 4

jω

sinω

ω

[
e−jω − ejω

]+ 4

jω

[
ej2ω − e−j2ω

]
= −8sincω

sinω

ω
+ 8

sin 2ω

ω

X(jω) = −8sinc2ω + 16sinc2ω

� Example 6.17

Find the Fourier transform of the impulse train shown in Fig. 6.28.

Solution: For Fig. 6.28a,

x(t) =
∞∑

n=−∞
δ(t − nT)

where T is the periodicity. The Fourier series coefficients are determined as

Dn = 1

T

∫ T/2

−T/2
δ(t)e−jnω0t dt

= 1

T

∫ T/2

−T/2
δ(t)e−0 dt

= 1

T

∫ T/2

−T/2
δ(t)dt

= 1

T
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x(t)
(a)

06T 5T 4T 3T 2T 2T 3T 4T 5T 6TT T

(b)

0

X(j )

6
T

4
T

2
T

2
T

2
T

4
T

6
T

Fig. 6.28 a Impulse train and b FT of Impulse train

For a periodic signal

x(t) =
∞∑

n=−∞
Dnejω0nt

where

ω0 = 2π

T

and

X(jω) = 2π
∞∑

n=−∞
Dnδ(ω − nω0)

X(jω) = 2π

T

∞∑
n=−∞

δ

(
ω − 2πn

T

)

The above expression is represented in Fig. 6.28b.

� Example 6.18

For the triangular wave shown in Fig. 6.29a, find the Fourier transform using differ-
entiation and integration properties.
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(a) (b) dx(t)x(t)
dt

t

t

02

2

2
2

2

2
4

g1(t)

t

t

d2x(t)
dt2

(c)

22

202

4

t

g2(t)

t

Fig. 6.29 a Triangular wave; b First derivative and c Second derivative of Example 6.18

Solution: The triangular signal x(t) is represented in Fig. 6.29a. It is mathematically
expressed as

x(t) =
{
2t + 4 −2 ≤ t < 0

4 − 2t 0 ≤ t ≤ 2

dx(t)

dt
=
{
2 −2 ≤ t < 0

−2 0 ≤ t ≤ 2

dx(t)
dt

∣∣
t=0 varies from +2 to −2. dx(t)

dt is represented in Fig. 6.29b.

d2x(t)

dt2
=

⎧⎪⎨
⎪⎩
2δ(t + 2) t = −2

−4 t = 0

2 δ(t − 2) t = 2
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d2x(t)
dt2 = g2(t) is shown inFig. 6.29c. FromFig. 6.29c, using linearity and time shifting

properties of FT, we get

F

[
d2x(t)

dt2

]
= G2(jω) = 2ej2ω − 4 + 2e−j2ω

= 4[cos 2ω − 1]
G2(jω) = −8 sin2 ω

G2(0) = 0

X(jω) is obtained by dividing G1(jω) by (jω)2 and adding initial condition

X(jω) = G2(jω)

(jω)2
+ πG2(0)δ(ω)

= −8

(jω)2
sin2 ω

= 8

[
sinω

ω

]2

X(jω) = 8sinc2 ω

The same result is obtained in Example 6.4 which is obtained directly using Fourier
integral.

� Example 6.19

Consider the signal described below.

x(t) =

⎧⎪⎪⎨
⎪⎪⎩

(t + 2) −2 ≤ t ≤ 2

4 t ≥ 2

0 t ≤ −2

Sketch the signal x(t). Determine X(jω) using differentiation and integration prop-
erties. Also determine even and odd components of X(jω).

Solution:

x(t) =

⎧⎪⎪⎨
⎪⎪⎩

(t + 2) −2 ≤ t ≤ 2

4 t ≥ 2

0 t ≤ −2
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x(t) g1
dx(t)

dt
(a)

0 22

4

2

tt

(b)

22 0

1

t

(c)

1

22

1

tt

t

g2(t)
d2x(t)

dt2

Fig. 6.30 Representation of x(t) and its derivatives of Example 6.19

The signal x(t) corresponding to the above equation is shown in Fig. 6.30a. The signal
corresponding to dx(t)/dt is shown in Fig. 6.30b and d2x(t)/dt2 in Fig. 6.30c.

From Fig. 6.30a,

g2(t) = d2x(t)

dt2

= δ(t + 2) − δ(t − 2)

F

[
d2x

dt2

]
= ej2ω − e−j2ω

G2(jω) = 2j
[ej2ω − e−j2ω]

2j
= 2j sin 2ω

G2(0) = 0

Using the integration property of FT, G1(jω) is obtained as

G1(jω) = 1

jω
G2(jω) + πG2(0)δ(ω)

G1(jω) = 2j

jω
sin 2ω + πG2(0)δ(ω)

= 4
sin 2ω

2ω
G1(0) = 4
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Again using the integration property of FT, X(jω) is obtained as

X(jω) = G1(jω)

jω
+ πG1(0)δ(ω)

X(jω) = 4 sin 2ω

jω(2ω)
+ 4πδ(ω)

X(jω) = 2 sin 2ω

jω2
+ 4πδ(ω)

The real part of X(jω) corresponds to the even component while the imaginary part
corresponds to the odd component. Thus

Xev(jω) = 4πδ(ω)

Xodd(jω) = 2 sin 2ω

jω2

Also, we may obtain this as follows:

X(−jω) = −2
sin 2ω

jω2
+ 4πδ(ω)

Xev(jω) = 1

2
[X(jω) + X(−jω)]

= 1

2

[
2 sin 2ω

jω2
+ 4πδ(ω) − 2 sin 2ω

jω2
+ 4πδ(ω)

]
= 4πδ(ω)

Xodd(jω) = 1

2

[
2 sin 2ω

jω2
+ 4πδ(ω) + 2 sin 2ω

jω2
− 4πδ(ω)

]

= 2 sin 2ω

jω2

� Example 6.20

Consider the following signal:

x(t) =

⎧⎪⎨
⎪⎩

t −2 ≤ t ≤ 2

2 t ≥ 2

−2 t ≤ −2

Sketch the signal. Determine X(jω).
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x(t)
(a)

0 2
2

2

tt

2

x1(t)

x2(t)

x(t)
(b)

0 22

4

2

tt

2

Fig. 6.31 Representation of x(t) of Example 6.20

Solution:

x(t) =

⎧⎪⎨
⎪⎩

t −2 ≤ t ≤ 2

2 t ≥ 2

−2 t ≤ −2

The signal is sketched as shown in Fig. 6.31a. x(t) of Fig. 6.31a can be split up as
x1(t) and x2(t) as shown in Fig. 6.31b.

x(t) = x1(t) + x2(t)

X(jω) = X1(jω) + X2(jω)

X1(jω) is nothing but the FT of the signal shown in Fig. 6.30a which is written as

X1(jω) = 2 sin 2ω

jω2
+ 4πδ(ω)

x2(t) = −2

X2(jω) = −2 × 2πδ(ω)

= −4πδ(ω)

Therefore

X(jω) = 2 sin 2ω

jω2
+ 4πδ(ω) − 4πδ(ω)

= 2 sin 2ω

jω2

It can be easily verified that x(t) shown in Fig. 6.31a is the odd component of x(t)
shown in Fig. 6.30a. −x2(t) is the even component of x(t) of Fig. 6.30a.
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� Example 6.21

Find the Fourier transform of

x(t) = 2a

a2 + t2

using the duality property of FT.

Solution:

Method 1

From Example 6.1(f), the FT of x(t) = e−a|t| is obtained as

x(t) = e−a|t| FT←→ 2a

a2 + ω2

By the application of inverse Fourier transform, we get

e−a|t| = 1

2π

∫ ∞

−∞
2a

a2 + ω2
ejωt dω

2πe−a|t| =
∫ ∞

−∞
2a

a2 + ω2
ejωt dω

Replacing t by −t in the above equation, we get

2πe−a|t| =
∫ ∞

−∞
2a

a2 + ω2
e−jωt dω

Interchanging t and ω in the above equation, we get

2πe−a|ω| =
∫ ∞

−∞
2a

(a2 + t2)
e−jωt dt

The right-hand side of the above equation is nothing but the FT of 2a
a2+t2 .

2πe−a|ω| = F

[
2a

(a2 + t2)

]

[
2a

(a2 + t2)

]
FT←→ 2πe−a|ω|



596 6 Fourier Transform Analysis of Continuous Time Signals

Method 2: The duality property of X(t) = 2πx(−ω). From Example 6.1(f), the FT
of e−|t| is obtained as

e−a|t| FT←→ 2a

a2 + ω2

X(t) = 2a

a2 + t2

x(−ω) = e−a|ω|

X(t)
FT←→ 2πx(−ω)

2a

a2 + t2
FT←→ 2πe−a|ω|

� Example 6.22

For the Fourier transforms shown in Fig. 6.32a, b and c, find the energy of the signals
using Parseval’s theorem

X(j )(a)

(c)

(b)

1 0 1 2

2

22

2

2

1 0 1 22

2

2

X(j )

X(j )

Fig. 6.32 Fourier transformed signal of Example 6.22



6.7 Fourier Transform of Periodic Signal 597

Solution:

(a)

E = 1

2π

∫ ∞

−∞
|X(jω)|2 dω

E = 1

2π

{∫ 1

−2
12 dω +

∫ 1

−1
22 dω +

∫ 2

1
12 dω

}

= 1

2π

{[
ω
]−1

−2
+ 4
[
ω
]1

−1
+
[
ω
]2
1

}

= 1

2π
{−1 + 2 + 4 + 4 + 2 − 1}

E = 5

π

(b)

E = 1

2π

{∫ 0

−2
22 dω +

∫ 2

0
(−2)2 dω

}

= 1

2π

{
4
[
ω
]0

−2
+ 4
[
ω
]2
0

}

E = 8

π

(c)

|X(jω)| =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
2ω + 4 −2 ≤ ω ≤ −1

2 −1 ≤ ω ≤ 1

(4 − 2ω) 1 ≤ ω < 2
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E = 1

2π

{∫ −1

−2
(2ω + 4)2 dω +

∫ 1

−1
(2)2 dω +

∫ 2

1
(4 − 2ω)2 dω

}

= 1

2π

{∫ −1

−2
(4ω2+16ω+16) dω + 4

∫ 1

−1
dω+

∫ 2

1
(4ω2 − 16ω + 16) dω

}

= 1

2π

{[
4

3
ω3 + 8ω2 + 16ω

]−1

−2

+ 4
[
ω
]1

−1
+
[
4

3
ω3 − 8ω2 + 16ω

]2
1

}

= 1

2π

{[
−4

3
+ 8 − 16 + 32

3
− 32 + 32

]
+ [4 + 4]

+
[
32

3
− 32 + 32 − 4

3
+ 8 − 16

]}

E = 16

3π

� Example 6.23

Find the Fourier transform of the following continuous time functions by applying
Fourier transform properties or otherwise.

1. x(t) = δ(t − 2)

2. x(t) = δ(t − 1) − δ(t + 1)

3. x(t) = δ(t + 2) + δ(t − 2)

4. x(t) = u(t + 2) − u(t − 2)

5. x(t) = [u(−t − 3) + u(t − 3)]
6. x(t) = e−3tu(t − 1)

7. x(t) = te−atu(t)

8. x(t) = e−a(t−2)u(t − 2)

9. x(t) = e−a|t−2|

10. x(t) = cos(ω0t + φ)

11. x(t) = sin(ω0t + φ)

12. x(t) = sin
(
2π t + π

4

)
13. x(t) = cos

(
3π t + π

8

)
+ 1

14. x(t) = cos
(
6π t − π

8

)
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15. x(t) = x(4t − 8)

16. x(t) = d2

dt2
x(t − 2)

17. x(t) = x(2 − t) + x(−2 − t)

18. x(t) = rect

(
t + 2

4

)

19. x(t) = tri

(
t − 4

10

)

20. x(t) = d

dt

[
5 rect

t

8

]
21. x(t) = δ(t + 2) + 5δ(t + 1) + δ(t − 1) + 5δ(t − 2)

22. x(t) =
{

ej6|t| |t| ≤ π

0 elsewhere

23. x(t) =
⎧⎨
⎩
0 |t| > 1
(t + 1)

2
−1 ≤ t ≤ 1

24. x(t) =
{

t 0 ≤ t < 1

0 elsewhere

25. x(t) =

⎧⎪⎨
⎪⎩

t 0 ≤ t < 1

1 1 ≤ t ≤ 2

0 elsewhere

26. x(t) =

⎧⎪⎨
⎪⎩
1 |t| < 1

2 − |t| 1 < |t| < 2

0 elsewhere

Solution:

1. x(t) = δ(t − 2)

The impulse is time shifted by t0 = 2.

F[δ(t − 2)] = e−jωt0 F[δ(t)]
= e−j2ω

F[δ(t − 2)] = e−j2ω
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2. x(t) = δ(t − 1) − δ(t + 1)

F[δ(t − 1)] = e−jω

F[δ(t + 1)] = ejω

F[δ(t − 1) + δ(t + 1)] = e−jω − ejω

= −2j sinω

F[δ(t − 1) − δ(t + 1)] = −2j sinω

3. x(t) = δ(t + 2) + δ(t − 2)

F[δ(t + 2)] = ej2ω

F[δ(t − 2)] = e−j2ω

F[δ(t + 2) + δ(t − 2)] = ej2ω + e−j2ω

= 2 cos 2ω

X(jω) = 2 cos 2ω

4. x(t) = u(t + 2) − u(t − 2)

F[u(t + 2)] = 1

jω
ej2ω + πδ(ω)ej2ω

F[u(t − 2)] = 1

jω
e−j2ω + πδ(ω)e−j2ω

F[u(t + 2) − u(t − 2)] = 1

jω

[
ej2ω − e−j2ω

]+ πδ(ω) − πδ(ω)

= 2

ω
sin 2ω

X(jω) = 4sinc 2ω

5. x(t) = [u(−t − 3) + u(t − 3)]. What is X( jω)?

x(t) and
dx(t)

dt
are shown in Fig. 6.33a and b, respectively.
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u( t 3) u(t 3)

(a)

0 3

1

3

x(t)

t

(b)

3 30

1

1

dx(t)

t

dt

t

t

Fig. 6.33 Signal x(t) of Example 6.21.5

From Fig. 6.31b,

F

[
dx(t)

dt

]
= e−j3ω − e+j3ω

= −2j

[
ej3ω − e−j3ω

]
2j

F

[
dx(t)

dt

]
= −2j sin 3ω

Let

dx(t)

dt
FT←→ G(jω)

Using the integration property of FT, we get

X(jω) = 1

jω
G(jω) + πG(0)δ(ω)

where

G(jω) = −2j sin 3ω

G(0) = 0

X(jω) = 1

jω
(−1)2j sin 3ω

= −6

(
sin 3ω

3ω

)

X(jω) = −6sinc 3ω
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6. x(t) = e−3t u(t − 1)

Method 1

F
[
e−3tu(t)

] = 1

(3 + jω)

Using the time shifting property, we get

F
[
e−3(t−1)u(t − 1)

] = e−jω

(3 + jω)

e3F
[
e−3tu(t − 1)

] = e−jω

(3 + jω)

F
[
e−3tu(t − 1)

] = e−(jω+3)

(3 + jω)

Method 2
Using FT definition, from Fig. 6.34, we get

F[x(t)] =
∫ ∞

1
e−3te−jωt dt

=
∫ ∞

1
e−(3+jω)t dt

F[x(t)] = −1

(3 + jω)

[
e−(3+jω)t

]∞
1

F[x(t)] = e−(3+jω)

jω + 3

7. x(t) = te−at u(t)

F[e−atu(t)] = 1

(a + jω)

Using the FT property of differentiation in frequency, we get



6.7 Fourier Transform of Periodic Signal 603

Fig. 6.34 Representation of
x(t) = e−3tu(t − 1)

x(t)

e 3t

0 1

1

t

F
[
te−atu(t)

] = j
d

dω

[
1

(a + jω)

]

= j(−j)

(a + jω)2

X(jω) = 1

(a + jω)2

8. x(t) = e−a(t−2)u(t − 2)

Method 1

x(t)
FT←→ X(jω)

x(t − t0)
FT←→ X(jω)e−jωt0

F
[
e−a(t−2)u(t − 2)

] = 1

(a + jω)
e−j2ω

Method 2

Using the definition of FT, we get

X(jω) =
∫ ∞

2
e−a(t−2)e−jωt dt

= e2a
∫ ∞

2
e−(a+jω)t dt

= −e2a

(a + jω)

[
e−(a+jω)t

]∞
2

= +e2a

(a + jω)
e−(a+jω)2
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X(jω) = e−j2ω

(a + jω)

9. x(t) = e−a|t−2|

x(t) =
{

e−a(t−2) 0 ≤ t ≤ ∞
ea(t+2) −∞ ≤ t < 0

Let |t − 2| = τ

x(τ ) = e−a|τ |

From Example 6.1(e),

F
[
e−a|τ |] = 2a

a2 + ω2

Using the time shifting property,

F
[
e−a|t−2|] = 2a

a2 + ω2
e−j2ω

10. x(t) = cos(ω0 t + φ)

cos(ω0t + φ) = 1

2

[
ej(ω0t+φ) + e−j(ω0t+φ)

]
= 1

2

[
ejφejω0t + e−jφe−jω0t

]
By frequency shifting property,

F
[
ejω0t

] = 2πδ(ω − ω0)

F
[
e−jω0t

] = 2πδ(ω + ω0)

F[x(t)] = X(jω) = 2π

2

[
ejφδ(ω − ω0) + e−jφδ(ω + ω0)

]

X(jω) = π
[
ejφδ(ω − ω0) + e−jφδ(ω + ω0)

]
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11. x(t) = sin(ω0 t + φ)

sin(ω0t + φ) = 1

2j

[
e+j(ω0t+φ) − e−j(ω0t+φ)

]
= 1

2j

[
ejφejω0t − e−jφe−jω0t

]
F[x(t)] = X(jω) = 2π

2j

[
ejφδ(ω − ω0) − e−jφδ(ω + ω0)

]

X(jω) = −jπ
[
ejφδ(ω − ω0) − e−jφδ(ω + ω0)

]

12. x(t) = sin
(

2π t + π

4

)

. (Anna University, December, 2006)

Let ω0 = 2π and φ = π

4

F[x(t)] = −jπ
[
ejφδ(ω − ω0) − e−jφδ(ω + ω0)

]
From Example 6.23.11, we write

X(jω) = −jπ
[
e

jπ
4 δ(ω − 2π) − e− jπ

4 δ(ω + 2π)
]

13. x(t) = cos
(

3π t + π

8

)

+ 1

F[cos(ωt + φ)] = π
[
ejφδ(ω − ω0) + e−jφδ(ω + ω0)

]
Let ω0 = 3π and φ = π

8
. From Example 6.23.10, we write

F
[
cos 3π t + π

8

]
= π

[
ej π

8 δ(ω − 3π) + e−j π
8 δ(ω + 3π)

]
F[1] = 2πδ(ω)

[
cos
(
3π t + π

8

)
+ 1
]

FT←→ π
[
ej π

8 δ(ω − 3π) + e−j π
8 δ(ω + 3π) + 2δ(ω)

]

14. x(t) = cos
(

6π t − π

8

)

Let ω0 = 6π and φ = −π
8
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F[cosω0t + φ] = π
[
ejφδ(ω − ω0) + e−jφδ(ω + ω0)

]

F
[
cos
(
6π t − π

8

)]
= π

[
e−j π

8 δ(ω − 6π) + ej π
8 δ(ω + 6π)

]

15. x(t) = x(4t − 8)

x(t)
FT←→ X(jω)

Using the time shifting property of FT, we write

x(t − 8)
FT←→ e−j8ωX(jω)

Using the time scaling property, we write

x(4t − 8)
FT←→ 1

4
e−j2ωX

(
j
ω

4

)

F[x(4t − 8)] = 1

4
X

(
jω

4

)
e−j2ω

16. x(t) = d2

dt2
x(t − 2)

Using differentiation property, we write

F

[
d2x(t)

dt2

]
= −ω2 X(jω)

For the time delay t0,

F[x(t − t0)] = e−jωt0 X(jω)

Here t0 = 2.

F

[
d2

dt2
x(t − 2)

]
= −ω2e−j2ω X(jω)

17. x(t) = x(2 − t) + x(−2 − t)

x(t) = x1(t) + x2(t)
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where

x1(t) = x(2 − t)

x2(t) = x(−2 − t)

F[x(−t)] = X(−jω)

Using the time shifting property of FT, we get

X1(jω) = F[x(2 − t)] = e−j2ω X(−jω)

X2(jω) = F[x(−2 − t)] = ej2ω X(−jω)

X(jω) = X1(jω) + X2(jω)

= X(−jω)
[
e−j2ω + ej2ω

]

X(jω) = 2X(−jω) cos 2ω

18. x(t) = rect
(
t + 2

4

)

x(t) = rect

(
t

4
+ 0.5

)

From Example 6.2, the following equation is written (Fig. 6.35):

rect

(
t

4

)
FT←→ 2

ω
sin 2ω

Using the time shifting property, we get

rect

(
t

4
+ 0.5

)
FT←→ 2

ω
sin 2ω e+0.5jω

X(jω) = 2

ω
sin 2ω ej0.5ω

19. x(t) = tri
(
t − 4

10

)

tri

(
t − 4

10

)
= tri

(
t

10
− 0.4

)
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t )b()a(

t t2 2.5 00

11

5.12

4rect t 
4rect 0.5

t t

Fig. 6.35 x(t) = rect
( t
4

)

tri(t) = g1(t) )b()a(

0

1

11 t

g2(t)

0 11

1

tt

1

dg1
dt

t1 1

1
1

0

2

(c) g3(t)
dg2(t)

dt

t

t

Fig. 6.36 tri(t) and its derivatives

The signal tri(t) is plotted as g1(t) and is shown in Fig. 6.36a. Its first derivative
is plotted as g2(t) and the second derivative as dg2(t)/dt which are shown in
Fig. 6.36b and c, respectively. From Fig. 6.36c, the FT is obtained as

dg3(t)

dt
FT←→ (ejω + e−jω − 2)

G3(jω) = 2[cosω − 1]
= −4 sin2

ω

2
G3(0) = 0

G2(ω) is obtained by using the integrating property
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G2(jω) = − 4

jω
sin2

ω

2
+ πG3(0)δ(ω)

= − 4

jω
sin2

ω

2

G2(0) = −ω

j

(
sin ω

2
ω
2

)2 (
sin ω

2
ω
2

∣∣∣∣
ω=0

= 1

)
= 0

G1(ω) is obtained using the integrating property

G1(jω) = −4

(jω)(jω)
sin2

ω

2
+ πG2(0)δ(ω)

= 4

ω2
sin2

ω

2

= sinc2
(ω

2

)

Using the time shifting property of FT, we get

tri(t − 0.4)
FT←→ G1(jω)e−j0.4ω

= sinc2
(ω

2

)
e−j0.4ω

Using the time scaling property of FT, we get

tri

(
t

10
− 0.4

)
FT←→ 10sinc25ωe−j4ω

X(jω) = 10sinc25ωe−j4ω

20. x(t) = d
dt

[

5 rect
(
t
8

)]

. What is the FT of y(t) = ∫

x(t)dt?

Figure 6.37a represents 5 rect(t). The time expanded 5 rect
(

t
8

)
is shown in

Fig. 6.37b and its derivative is shown in Fig. 6.37c. From Fig. 6.37c,

X(jω) = 5ej4ω − 5e−j4ω

X(jω) = j10 sin 4ω

X(0) = 5 − 5 = 0
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5rect(t)(a)

0
2

5

1 t

(b)

44 0

5

t

(c)

5

44

5

t

d
dt

t 
85rect

t 
85rect

2
1t t

t

Fig. 6.37 Representation of rectangular wave and its derivatives

Using the integration property, we get

Y(jω) = 1

jω
X(jω) + πX(0)δ(ω)

= j10

jω
sin 4ω

Y(jω) = 40sinc 4ω

21. x(t) = δ(t + 2) + 5δ(t + 1) + δ(t − 1) + 5δ(t − 2)

The given x(t) is represented in Fig. 6.38. By applying the time shifting property
to each impulse, we get

X(jω) = ej2ω + 5ejω + e−jω + 5e−j2ω

22. x(t) =
{

e j6t |t| ≤ π

0 elsewhere

The above signal is represented as a product of a rectangular pulse of width 2π
and a complex sinusoid ej6t .
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x(t)

0

1

1 2

5

t

1

2 1

5

t

Fig. 6.38 Discrete time signal

Fig. 6.39 Representation of
rectangular pulse

y(t)

0

1

tt

x(t) =
{
1 ej6t |t| ≤ π

0 otherwise

For −π ≤ t ≤ π , the rectangular pulse y(t) is shown in Fig. 6.39.

The FT of the rectangular pulse shown in Fig. 6.35 in Example 6.23.18 is

Y(jω) = 2

ω
sinωπ

Using the frequency shifting property

y(t)ej6t FT←→= Y(j(ω − 6))

X(jω) = F
[
y(t)ej6t

]

X(jω) = 2 sin((ω − 6)π)

(ω − 6)
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23. x(t) =
⎧

⎨

⎩

0 |t| > 1

(t + 1)

2
−1 ≤ t ≤ 1

Figure 6.40a gives x(t) and Fig. 6.40b gives dx(t)
dt . From Fig. 6.40b, signals g2(t)

and g3(t) are separated and are shown in Fig. 6.40c and d, respectively.

g1(t) = g2(t) + g3(t)

g4(t) = dg2(t)

dt
G4(jω) = 0.5(ejω − e−jω)

= 2j0.5
(ejω − e−jω)

2j
= j sinω

G4(0) = 0

Using the integration property, we get

G2(jω) = 1

jω
G4(jω) + πG4(0)δ(ω)

= j sinω

jω
= sinω

ω

From Fig. 6.40d, we get

G3(jω) = −e−jω

G1(jω) = G2(jω) + G3(jω)

= sinω

ω
− e−jω

G1(0) = 1 − 1 = 0

By using the integration property, we get

X(jω) = 1

jω
G1(jω) + πG1(0)δ(ω)

= 1

jω

(
sinω

ω
− e−jω

)

X(jω) = 1

jω

[
sinω

ω
− e−jω

]
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0 1
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1 t
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0 t
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dg2(t)
dtg4(t)
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1 0 t
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1
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11

0.5
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Fig. 6.40 Derivatives of the signal x(t) of Example 6.23.23

24. x(t) =
{

t 0 ≤ t < 1
0 otherwise

x(t) = t; 0 ≤ t ≤ 1 is shown in Fig. 6.41a; dx(t)
dt is shown in Fig. 6.41b. The

Fourier transform of the time shifted rectangle is 2 sin(ω/2)
ω

e−jω/2 (see Example
6.2) and that of the negative impulse is −e−jω.

G1(jω) = F

[
dx(t)

dt

]

G1(jω) =
[
2
sin(ω/2)

ω
e− jω

2 − e−jω

]
(see Example 6.2)

G1(0) = 1 − 1 = 0

Using the integration property of FT,

F[x(t)] = 1

jω
F

[
dx(t)

dt

]
+ πG1(0)δ(ω)

X(jω) = 1

jω

[
2 sin(ω/2)

ω
e− jω

2 − e−jω

]
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x(t)(a) (b)

0 1

1

1

1

1t

t

dx(t)
g1(t)dt

Fig. 6.41 Signal representation of Example 6.23.24 and its derivatives

x(t)(a)

0

1

1 2 t

(b)

1

1

20 t

1

dx(t)
dtg1(t)

Fig. 6.42 Signal representation of Example 6.23.25 and its derivatives

25. x(t) =

⎧

⎪⎨

⎪⎩

t 0 ≤ t < 1
1 1 ≤ t ≤ 2
0 elsewhere

The signal x(t) shown in Fig. 6.42a when differentiated takes the shape as shown
in Fig. 6.42b. For the time shifted square pulse, the FT is (see example 6.2)

X1(jω) = 2 sin ω
2

ω
e− jω

2

For the negative impulse, the FT is

X2(jω) = −e−j2ω

G1(jω) = X1(jω) + X2(jω)

=
[
2

ω
sin

ω

2
e− jω

2 − e−j2ω

]
G1(0) = 1 − 1 = 0



6.7 Fourier Transform of Periodic Signal 615

The Fourier transform of the given signal is obtained using the integration prop-
erty.

X(jω) = 1

jω
G1(jω) + πG1(0)δ(ω)

X(jω) = 1

jω

[
2

ω
sin

ω

2
e− jω

2 − e−j2ω

]

26. x(t) =

⎧

⎪⎨

⎪⎩

1 |t| < 1
2 − |t| 1 < |t| < 2
0 elsewhere

The given signal x(t) is represented in Fig. 6.43a. The first and second deriva-
tives are shown in Fig. 6.43b and c, respectively. From Fig. 6.43c, the FT of the
impulses are obtained using the time shifting property.

G(jω) = F

[
d2x(t)

dt2

]
= [ej2ω − (ejω + e−jω) + e−j2ω]
= 2 [cos 2ω − cosω]

G(0) = 1 − 1 − 1 + 1 = 0

Using the integration property of FT, we get

F [x(t)] = 2

(jω)2
F

[
d2x(t)

dt2

]
+ πG(0)δ(ω)

X(jω) = 2

ω2
[cosω − cos 2ω]

� Example 6.24

Find the magnitude spectrum of FT and plot it where

H(jω) = (1 + 2e−jω)

(1 + 1
2e−jω)

(Anna University, April, 2004)
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x(t)(a)

1 10

1

22 t

(c)

1 1

1 10

11

22 t

d2x(t)
dt2

(b)

1

1

210

1

2 t

dx(t)
dtg1(t)

g(t)

t t

t

Fig. 6.43 Signal representation of Example 6.23.26 and its derivatives

Solution:

H(jω) = (1 + 2e−jω)

(1 + 1
2e−jω)

= (1 + 2 cosω) − j2 sinω

(1 + 1
2 cosω) − j

2 sinω

|H(jω)| =
√

(1 + 2 cosω)2 + 4 sin2 ω√
(1 + 1

2 cosω)2 + 1
4 sin

2 ω

=
√
1 + 4 cos2 ω + 4 cosω + 4 sin2 ω√
1 + 1

4 cos
2 ω + cosω + 1

4 sin
2 ω

=
√
5 + 4 cosω√
5
4 + cosω

= 2

|H(jω)| = 2

|H(jω)| is independent of frequency and is shown in Fig. 6.42.
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� Example 6.25

Using the properties of continuous timeFourier transform, determine the timedomain
signal x(t).

If the frequency domain signal is described as given below.

X(jω) = j
d

dω

[
ej2ω

(1 + jω
3 )

]

(Anna University, December, 2007)

Solution: From the inspection of X(jω), the given problem can be solved using
differentiation in frequency, time shifting and scaling in the proper order.

First, the time scaling property is applied. Let

X1(jω) = 1

1 + jω

x1(t) = e−tu(t)

F [x1[3t]] = 3e−3tu(3t)

F
[
3e−3tu(3t)

] = 1[
1 + jω

3

]

F−1

⎡
⎣ 1(

1 + jω
3

)
⎤
⎦ = 3e−3tu(t) [∵ u(t) = u(3t)]

According to the time shifting property,

ej2ωY(jω) = y(t + 2)

F−1

⎡
⎣ ej2ω(

1 + jω
3

)
⎤
⎦ = 3e−3(t+2)u(t + 2)

According to differentiating property,

j
d

dω
X(jω) = tx(t)

Applying the above property, we have
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F−1

⎡
⎣j

d

dω

ej2ω(
1 + jω

3

)
⎤
⎦ = 3te−3(t+2)u(t + 2)

∴ X(jω) = jd

dω

⎡
⎣ ej2ω(

1 + jω
3

)
⎤
⎦

x(t) = 3te−3(t+2)u(t + 2)

� Example 6.26

Find the inverse Fourier transform of the following functions:

1. X(jω) = δ(ω − ω0)

2. X(jω) = jω

(2 + jω)2

3. X(jω) =
{
1 |ω| < 2

0 elsewhere

4. X(jω) = 6

(ω2 + 9)

5. X(jω) = (jω + 2)[
(jω)2 + 4jω + 3

]
6. X(jω) = (jω + 1)[

(jω + 2)2(jω + 3)
]

Solution:

1. X( jω) = δ(ω − ω0)

The IFT of δ(ω) = 1
2π . δ(ω) is frequency-shifted by ω0.

F−1 [X(jω)
] = ejω0t 1

2π

F−1 [δ(ω − ω0)] = 1

2π
ejω0t
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Fig. 6.44 Magnitude
spectrum of H(jω)

H(j )

0

2

The above result can also be got from the first principle of inverse Fourier trans-
form

F−1 [δ(ω − ω0)] = 1

2π

∫ ∞

−∞
δ(ω − ω0)e

jωtdω

Using the sampling property of the impulse functionwhich exists only atω = ω0,
we get (Fig. 6.44)

F−1 [δ(ω − ω0)] = 1

2π
ejω0t

2. X( jω) = jω
(2 + jω)2

F
[
e−2t
] = 1

(2 + jω)

By applying

F
[
te−2t

] = d

dω

1

(2 + jω)

(Applying frequency differentiation)

F
[
te−2t

] = 1

(2 + jω)2

∴ F−1

[
1

(2 + jω)2

]
= te−2t

By applying time differentiation, namely

dx(t)

dt
= jωX(jω)
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Fig. 6.45 Representation of
X(jω)

X(j )

0

1

W W

F−1

[
jω

(2 + jω2)

]
= d

dt

(
te−2t

)

3. X( jω) =
{

1 |ω| < W

0 otherwise

(Anna University, December, 2013)

The frequency spectrum of the above function is shown in Fig. 6.45.

Using the definition of inverse FT, we get

x(t) = 1

2π

∫ W

−W
X(jω)ejωtdω

= 1

2π jt

[
1ejωt

]W
−W

= 1

2π jt

[
ejWt − e−jWt

]
= 1

π t
sinWt

x(t) = W

π
sincWt

4. X( jω) = 6
(ω2+9)

X(jω) = −6

(jω + 3)(jω − 3)

= A1

jω + 3
+ A2

jω − 3

−6 = A1(jω − 3) + A2(jω + 3)
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Let jω = −3

A1 = 1

Let jω = 3

A2 = −1

X(jω) = 1

jω + 3
− 1

jω − 3

x(t) = F−1
[
X(jω)

] = e−3tu(t) + e3tu(−t)

x(t) = e−3tu(t) + e3tu(−t)

5. X( jω) = ( jω+2)

[( jω)2+4 jω+3]

X(jω) = (jω + 2)

(jω + 1)(jω + 3)

= A1

(jω + 1)
+ A2

(jω + 3)

(jω + 2) = A1(jω + 3) + A2(jω + 1)

Let jω = −1,

1 = 2A1

A1 = 1

2

Let jω = −3, A2 = 1
2

X(jω) = 1

2

[
1

jω + 1
+ 1

jω + 3

]

x(t) = 1

2

[
e−t + e−3t

]
u(t)

6. X( jω) = ( jω+1)

( jω+2)2( jω+3)
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X(jω) = A1

(jω + 2)2
+ A2

(jω + 2)
+ A3

(jω + 3)

(jω + 1) = A1(jω + 3) + A2(jω + 2)(jω + 3) + A3(jω + 2)2

Let jω = −2;

−1 = A1

Let jω = −3;

−2 = A3

(jω + 1) = A1(jω + 3) + A2
[
(jω)2 + 5jω + 6

]+ A3
[
(jω)2 + 4jω + 4

]
Compare the coefficients of jω on both sides,

1 = A1 + 5A2 + 4A3

= −1 + 5A2 − 8

A2 = 2

X(jω) = −1

(jω + 2)2
+ 2

(jω + 2)
− 2

(jω + 3)

x(t) = F−1[x(jω)]

x(t) = [−te−2t + 2e−2t − 2e−3t
]

u(t)

� Example 6.27

Consider a causal LTI system with frequency response,

H(jω) = 1

jω + 3

For a particular input x(t), this system is to produce the output

y(t) = e−3tu(t) − e−4tu(t)

Determine x(t).

(Anna University, April, 2008)
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Solution:

y(t) = e−3tu(t) − e−4tu(t)

Y(jω) = 1

(jω + 3)
− 1

(jω + 4)

= 1

(jω + 3)(jω + 4)

H(jω) = Y(jω)

X(jω)

X(jω) = Y(jω)

H(jω)

= (jω + 3)

(jω + 3)(jω + 4)

= 1

(jω + 4)

x(t) = F−1X(jω) = e−4tu(t)

x(t) = e−4tu(t)

� Example 6.28

Find the Fourier transform of the following signals using convolution theorem.

1. x(t) = e−2tu(t) ∗ e−5tu(t)

2. x(t) = d

dt

[
e−2tu(t) ∗ e−5tu(t)

]
3. x(t) = [e−2tu(t) ∗ e−5tu(t − 5)

]
Determine x(t) in all the above cases.

Solution:

1. x(t) = e−2t u(t) ∗ e−5t u(t)

X(jω) = F
[
e−2tu(t)

]
F
[
e−5tu(t)

]
F
[
e−2tu(t)

] = 1

(jω + 2)

F
[
e−5tu(t)

] = 1

(jω + 5)



624 6 Fourier Transform Analysis of Continuous Time Signals

X(jω) = 1

(jω + 2)(jω + 5)

X(jω) = 1

3

[
1

jω + 2
− 1

(jω + 5)

]

x(t) = F−1[X(jω)] = 1

3
[e−2tu(t) − e−5tu(t)]

x(t) = 1

3

[
e−2t − e−5t

]
u(t)

2. x(t) = d
dt

[

e−2t u(t) ∗ e−5t u(t)
]

Let

x1(t) = e−2tu(t) ∗ e−5tu(t)

X1(jω) = 1

(jω + 2)(jω + 5)

Using the time differentiation property of FT, we get

x(t) = d x1(t)

dt
X(jω) = jωX1(jω)

X(jω) = jω

(jω + 2)(jω + 5)

Putting into partial fraction, we get

X(jω) = A1

jω + 2
+ A2

jω + 5

jω = A1(jω + 5) + A2(jω + 2)

Let jω = −2;

A1 = −2

3
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Let jω = −5;

A2 = 5

3

X(jω) = 1

3

[
− 2

jω + 2
+ 5

jω + 5

]

x(t) = F−1
[
X(jω)

] = 1

3

[−2e−2t + 5e−5t
]

u(t)

x(t) = 1

3

[−2e−2t + 5e−5t
]

u(t)

3. x(t) = e−2t u(t) ∗ e−5t u(t − 5)

x(t) = x1(t) ∗ x2(t)

X(jω) = X1(jω)X2(jω)

X1(jω) = 1

(jω + 2)

x2(t) = e−5tu(t − 5)

= e−25e−5(t−5)u(t − 5)

X2(jω) = e−25 1

(jω + 5)

X(jω) = e−25

[
1

(jω + 2)(jω + 5)

]

X(jω) = 1

3
e−25

[
1

jω + 2
− 1

jω + 5

]

x(t) = e−25

3

[
e−2t − e−5t

]
u(t)

� Example 6.29

Consider the following signals x1(t) and x2(t). Find

y(t) = x1(t) ∗ x2(t)
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1.

x1(t) = e−2tu(t)

x2(t) = e3tu(−t)

2.

x1(t) = e2tu(−t)

x2(t) = e4tu(−t)

Solution:

1. x1(t) = e−2t u(t) and x2(t) = e3t u(−t)

X1(jω) = 1

(jω + 2)

X2(jω) = − 1

(jω − 3)

x1(t) ∗ x2(t) = X1(jω)X2(jω)

Y(jω) = 1

(jω + 2)

(−1)

(jω − 3)

Y(jω) = A1

(jω + 2)
+ A2

(jω − 3)

= 1

5

[
1

jω + 2
− 1

jω − 3

]

y(t) = F−1[Y(jω)] = 1

5

[
e−2tu(t) + e3tu(−t)

]

y(t) = 1

5

[
e−2tu(t) + e3tu(−t)

]

2. x1(t) = e2t u(−t) and x2(t) = e4t u(−t)



6.7 Fourier Transform of Periodic Signal 627

X1(jω) = −1

(jω − 2)

X2(jω) = −1

(jω − 4)

x1(t) ∗ x2(t) = X1(jω)X2(jω)

Y(jω) = 1

(jω − 2)(jω − 4)

= A1

(jω − 2)
+ A2

(jω − 4)

= 1

2

[ −1

(jω − 2)
+ 1

(jω − 4)

]

y(t) = F−1[Y(jω)] = 1

2

[
e2t − e4t

]
u(−t)

y(t) = 1

2

[
e2t − e4t

]
u(−t)

� Example 6.30

Find the Fourier transform of the following functions:

1. x(t) = ejω0t u(t)

2. x(t) = cosω0t u(t)

3. x(t) = sinω0t u(t)

4. x(t) = e−at cosω0t u(t); a > 0

5. x(t) = e−at sinω0t u(t); a > 0

6. x(t) = [u(t + 2) − ut − 2] cos 3t

7. x(t) = e−2|t| cos 5t

8. x(t) = e−3|t| sin 2t

Solution:

1. x(t) = e jω0 t u(t)

F [u(t)] = 1

jω
+ πδ(ω)

By using the frequency shifting property, the FT of x(t) is obtained.
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F
[
ejω0tu(t)

] = 1

j(ω − ω0)
+ πδ(ω − ω0)

2. x(t) = cos ω0 tu(t)

cosω0t = 1

2

[
ejω0t + e−jω0t

]
cosω0tu(t) = 1

2

[
ejω0tu(t) + e−jω0tu(t)

]
By using the frequency shifting property, F[x(t)] is obtained.

X(jω) = F[cosω0tu(t)]
= 1

2

[
1

j(ω − ω0)
+ πδ(ω − ω0) + 1

j(ω + ω0)
+ πδ(ω + ω0)

]

X(jω) = 1

2

[
2ω

j(ω − ω2
0)

+ πδ(ω − ω0) + πδ(ω + ω0)

]

X(jω) = jω

(ω2
0 − ω2)

+ 1

2
πδ(ω − ω0) + 1

2
πδ(ω + ω0)

3. x(t) = sin ω0 tu(t)

sinω0t = 1

2j

[
ejω0t − e−jω0t

]
sinω0tu(t) = 1

2j

[
ejω0tu(t) − e−jω0tu(t)

]
By using the frequency shifting property, F[x(t)] is obtained.

F[x(t)] = 1

2j

[
1

j(ω − ω0)
+ πδ(ω − ω0) − 1

j(ω + ω0)
− πδ(ω + ω0)

]

X(jω) =
[

ω0

ω2
0 − ω2

+ π

2j
δ(ω − ω0) − π

2j
δ(ω + ω0)

]

4. x(t) = e−at cos ω0 tu(t)
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cosω0t = 1

2

[
ejω0t + e−jω0t

]
X(jω) =

∫ ∞

0
e−at cosω0te−jωt dt

= 1

2

∫ ∞

0
e−atejω0te−jωt dt + 1

2

∫ ∞

0
e−ate−jω0te−jωt dt

= 1

2

∫ ∞

0
e−(a−jω0+jω)t dt + 1

2

∫ ∞

0
e−(a+jω0+jω)t dt

= 1

2

[ −1

(a − jω0 + jω)
e−(a−jω0+jω)t − e−(a+jω0+jω)t

(a + jω0 + jω)

]∞

0

= 1

2

[
1

(a + jω) − jω0
+ 1

(a + jω) + jω0

]

= 1

2

[a + jω + jω0 + a + jω − jω0]
(a + jω)2 + ω2

0

X(jω) = (a + jω)

(a + jω)2 + ω2
0

Note: The property used to solve this problem is called the “Modulation”
property which states that

x(t) cos ω0 t
FT←→ 1

2
[X(ω − ω0) + X(ω + ω0)]

where x(t) is the modulating signal and cos ω0 t is the carrier signal.
5. x(t) = e−at sin ω0 tu(t)

sinω0t = 1

2j

[
ejω0t − e−jω0t

]
X(jω) = 1

2j

∫ ∞

0
e−atejω0te−jωt dt − 1

2j

∫ ∞

0
e−ate−jω0te−jωt dt

= 1

2j

∫ ∞

0
e−(a−jω0+jω) dt − 1

2j

∫ ∞

0
e−(a+jω0+jω)t dt

= 1

2j

[ −e−(a−jω0+jω)t

(a − jω0 + jω)
+ e−(a+jω0+jω)t

(a + jω0 + jω)

]∞

0

= 1

2j

[
1

(a + jω) − jω0
− 1

(a + jω) + jω0

]

= 1

2j

[
a + jω + jω0 − a − jω + jω0

(a + jω)2 + ω2
0

]
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X(jω) = ω0

[(a + jω)2 + ω2
0]

6. x(t) = [u(t + 2) − u(t − 2)] cos 3t

In Fig. 6.46, [u(t + 2) − u(t − 2)] is represented as

x1(t) = u(t + 2) − u(t − 2) = 1; |t| < 2

X1(jω) =
∫ 2

−2
e−jωt dt

= − 1

jω

[
e−jωt

]2
−2

= − 1

jω

[
e−j2ω − ej2ω

]
= 2

ω

[
ej2ω − e−j2ω

]
2j

X1(jω) = 2

ω
sin 2ω

cos 3t = ej3t + e−j3t

2

F[x(t) cosω0t] = 1

2
[X(ω − ω0) + X(ω + ω0)]

Using the above frequency shifting FT property, we get

F[{u(t + 2) − u(t − 2)} cos 3t] = [sin 2(ω − 3)]
(ω − 3)

+ [sin 2(ω + 3)]
(ω + 3)

X(jω) =
[
sin 2(ω − 3)

(ω − 3)
+ sin 2(ω + 3)

(ω + 3)

]

7. x(t) = e−2|t| cos 5t

F[e−2|t|] = 4

ω2 + 4
[see Example 6.1(f)]

F[x(t) cosω0t] = 1

2
[X(ω − ω0) + X(ω + ω0)]
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Fig. 6.46 x(t) =
[u(t + 2) − u(t − 2)]

1

t22t

x(t)

In the given problem, ω0 = 5

X(jω) = 2

[(ω − 5)2 + 4] + 2

[(ω + 5)2 + 4]

8. x(t) = e−3|t| sin 2t

From the result obtained in Example 6.1(f), we write

F
[
e−3|t|] = 6

(9 + ω2)

As per the modulation property,

x(t) sin ω0t
FT←→ 1

2j
[X(ω − ω0) − X(ω + ω0)]

F
[
e−3|t| sin 2t

] FT←→ 1

2j

[
6

[9 + (ω − 2)2] − 1

[9 + (ω + 2)2]
]

x(jω) = −j24

[9 + (ω − 2)2][9 + (ω + 2)2]

� Example 6.31

Consider the following differential equation. Determine the frequency response.

d2y(t)

dt2
+ 5

dy(t)

dt
+ 6y(t) = dx(t)

dt
+ 4x(t)
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Solution:
Taking FT on both sides of the above differential equation, we get the following
algebraic equation. In the above equation, (jω)2 = d2

dt2 ; (jω) = d
dt are substituted in

the Fourier integral.

(jω)2Y(jω) + 5(jω)Y(jω) + 6Y(jω) = [(jω) + 4]X(jω)

Y(jω)

X(jω)
= H(jω) = (jω + 4)

[(jω)2 + 5jω + 6]

H(jω) = (jω + 4)

(jω + 2)(jω + 3)

|H(jω)| =
√

(ω2 + 16)√
(ω2 + 4)(ω2 + 9)∣∣H(jω) = tan−1 ω

4
− tan−1 ω

2
− tan−1 ω

3

H(jω) is the ratio of the Fourier transform of the output variable to the Fourier
transform of the input variable. It is called “Sinusoidal Transfer Function”.

To draw the frequency response plot (magnitude and phase plot), for−∞ ≤
ω ≤ ∞, different values forω are substituted in H(jω) and

∣∣H(jω) and the following
table is prepared.

ω 0 ±1 ±2 ±4 ±6 ±∞
|H(jω)| 0.667 0.58 0.439 0.29 0.03 0
∠H(jω) 0◦ ∓31◦ ∓52◦ ∓72◦ ∓79◦ ∓90◦

From the above table, the frequency responsemagnitude plot is sketched as shown
in Fig. 6.47a and the phase plot as in Fig. 6.47b.

� Example 6.32

A certain continuous linear time invariant system is described by the following dif-
ferential equation:

dy(t)

dt
+ 5y(t) = x(t)

Determine y(t), using FT for the following input signals:

(a) x(t) = e−2tu(t)
(b) x(t) = 10u(t)
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(a)
H(j )

0 2 4 6246

0.667

0 2 4 6246

(b)
H( j )

90

90

Magnitude plot

Phase plot

Fig. 6.47 Frequency response plot of Example 6.31. a Magnitude plot and b Phase plot

(c) x(t) = δ(t)

Solution:

(a) x(t) = e−2t u(t)

Taking FT on both sides, we get

(jω + 5)Y(jω) = X(jω)

F[e−2tu(t)] = 1

(jω + 2)

Y(jω) = 1

(jω + 2)(jω + 5)

= 1

3

[
1

jω + 2
− 1

jω + 5

]

y(t) = F−1[Y(jω)] = 1

3

[
e−2t − e−5t

]
u(t)
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y(t) = 1

3

[
e−2t − e−5t

]
u(t)

(b) x(t) = 10u(t)

X(jω) = F[10u(t)] =
[
10πδ(ω) + 10

jω

]

Y(jω) = X(jω)

(jω + 5)

=
[
πδ(ω) + 1

jω

]
10

(jω + 5)

= 10πδ(ω)

(jω + 5)
+ 10

jω(jω + 5)

= 10πδ(ω)

(jω + 5)
+ 2

jω
− 2

(jω + 5)

Applying the property X(jω)δ(ω) = X(0)δ(ω) in the above equation, we get

Y(jω) = 10

5
πδ(ω) + 2

jω
− 2

(jω + 5)

= 2

[
πδ(ω) + 1

jω

]
− 2

(jω + 5)

y(t) = F−1Y(jω) = 2
[
u(t) − e−5tu(t)

]

y(t) = 2
[
1 − e−5t

]
u(t)

Note:

F−1
[

πδ(ω) + 1
jω

]

= u(t).

The above response is called “Step Response” because the input u(t) is a
step signal.

(c) x(t) = δ(t)

X(jω) = 1

Y(jω) = 1

jω + 5

y(t) = F−1[Y(jω)] = e−5t u(t)

y(t) = e−5t u(t)
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The above response is called “Impulse Response of the System” because the
input δ(t) is an impulse.

� Example 6.33

Consider an LTI system with the differential equation.

d2y(t)

dt2
+ 4

dy(t)

dt
+ 3y(t) = dx(t)

dt
+ 2x(t)

Find the frequency response and impulse response.

(Anna University, December, 2006)
Solution:
Taking FT on both sides of the above equation, we get

[(jω)2 + 4jω + 3]Y(jω) = (jω + 2)X(jω)

H(jω) = Y(jω)

X(jω)
= (jω + 2)

[(jω)2 + 4jω + 3]
= (jω + 2)

(jω + 1)(jω + 3)

|H(jω)| =
√

(ω2 + 4)√
(ω2 + 1)(ω2 + 9)

∣∣H(jω) = tan−1 ω

2
− tan−1 ω − tan−1ω

3

The above expressions give the magnitude and phase of the frequency response.

To draw the magnitude and phase of the frequency response plot, different values
for ω are substituted in H(jω) and ∠H(jω) and the following table is prepared.

ω 0 ±2 ±4 ±6 ±∞
|H(jω)| 0.667 0.35 0.216 0.155 0
∠H(jω) 0◦ ∓15.3◦ ∓65.7◦ ∓72.4◦ ∓90◦

From the above table, the frequency responsemagnitude plot is sketched as shown
in Fig. 6.48a and the phase plot as in Fig. 6.48b.
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(a)
H(j )

0 2 4 6246

0.667

0 2 4 6246

(b)
H( j )

90

90

Magnitude plot

Phase plot

Fig. 6.48 Frequency response plot of Example 6.33. a Magnitude plot and b Phase plot

To find the impulse response,

x(t) = δ(t)

F[x(t)] = F[δ(t)]
= 1

Y(jω) = (jω + 2)

(jω + 1)(jω + 3)

= A1

(jω + 1)
+ A2

(jω + 3)

(jω + 2) = A1(jω + 3) + A2(jω + 1)

Let jω = −1;

1 = 2A1 or A1 = 1

2
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Let jω = −3;

−1 = −2A2 or A2 = 1

2

Y(jω) = 1

2

[
1

(jω + 1)
+ 1

(jω + 3)

]

Taking inverse FT, we get

y(t) = F−1[Y(jω)] = 1

2

[
e−t + e−3t

]
u(t)

y(t) = 1

2

[
e−t + e−3t

]
u(t)

� Example 6.34

An LTI continuous time system is described by the following differential equation:

d2y(t)

dt2
+ 2

dy(t)

dt
+ 2y(t) = x(t)

Determine the impulse response of the system using FT and inverse FT.

Solution:
Taking FT on both sides, we get the following equation:

[
(jω)2 + 2jω + 2

]
Y(jω) = X(jω)

For an impulse input x(t) = δ(t),

X(jω) = 1

Y(jω) = 1

(jω)2 + 2jω + 2

= 1

(jω + 1 + j)(jω + 1 − j)

= A1

(jω + 1 + j)
+ A2

(jω + 1 − j)

1 = A1(jω + 1 − j) + A2(jω + 1 + j)
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Let jω = −(1 + j)

1 = A1(−1 − j − 1 − j)

A1 = −1

2j
; A2 = A∗

1 = 1

2j

Y(jω) = 1

2j

[ −1

jω + (1 + j)
+ 1

jω + (1 − j)

]

Taking inverse FT, we get

y(t) = 1

2j

[−e−(1+j)t + e−(1−j)t
]

= e−t

[
ejt − e−jt

2j

]

y(t) = e−t sin t

� Example 6.35

Find the unit step response of the circuit shown in Fig. 6.49. Use the Fourier transform
method.

(Anna University, December, 2007)
Solution: For the circuit shown in Fig. 6.49, the following equation is written:

L
di(t)

dt
+ Ri(t) = x(t)

5
di(t)

dt
+ 10i(t) = x(t)

Fig. 6.49 Time response of
R-L circuit

i

x(t)

y(t)

L 5 H

R 10 
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Taking FT on both sides, we get

[5 jω + 10]I(jω) = X(jω)

I(jω) = 0.2X(jω)

(jω + 2)

For a step input,

X(jω) = πδ(ω) + 1

jω

I(jω) = 0.2πδ(ω)

(jω + 2)
+ 0.2

jω(jω + 2)

Applying the property X(jω)δ(ω) = X(0) δ(ω), the above equation is written as

I(jω) = 0.1πδ(ω) + 0.1

[
1

jω
− 1

jω + 2

]

= 0.1

[
πδ(ω) + 1

jω

]
− 0.1

jω + 2

i(t) = 0.1
[
u(t) − e−2tu(t)

]
y(t) = i(t)R

y(t) = [1 − e−2t
]

u(t)

Summary

1. Periodic signals are represented by Fourier series as a sum of complex
sinusoids or exponentials. However, FS is not applicable to aperiodic sig-
nals. Fourier transform gives spectral representation to aperiodic signal.
Thus, FT is applicable to periodic and non-periodic signals as well as to
transform time domain signal x(t) to frequency domain signalX(jω). Here
the frequency domain representation is continuous.

2. It is possible to transform time domain specifications to frequency domain
specifications and vice versa. The former is called Fourier transform and
the latter is called inverse Fourier transform which are denoted as F[x(t)]
and F−1[X(jω)], respectively, and they are called Fourier transform pair.
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3. Fourier transform does not exist for some useful signals. For example, for
x(t) = eatu(t) FT does not converge.

4. Fourier and Laplace were contemporaries and great mathematicians who
were encouraged by the French ruler Napoleon Bonaparte. Laplace, by
introducing an exponential decay in the everlasting exponential, made
many functions converge while FT failed in these cases. Further, the
Laplace transform is more powerful especially in getting the solution of
differential equations compared to FT.

5. FT is a special case of LT which is obtained in many cases by replacing s
by jω. But this is not always true. For example, in the case of a step signal,
this is not applicable.

6. Fourier transform has many useful properties. By applying these prop-
erties, one can easily get the FT pair of even complex signals. They are
powerful tools for manipulating signals in time and frequency domains.

Exercises
I. Short Answer Type Questions

1. What do you understand by Fourier transform pair? What is called
analysis equation and what is called synthesis equation?
When the time function x(t) is transformed to frequency function X(jω),
the function x(t) is said to be Fourier transformed. When the frequency
function X(jω) is transformed to x(t), then the function X(jω) is said to
be inverse Fourier transformed. These transformations are, respectively,
defined as follows:

X(jω) =
∫ ∞

−∞
x(t)e−jωtdt

x(t) = 1

2π

∫ ∞

−∞
X(jω)ejωtdω

The above two equations are called FT pair. The first equation is called
the analysis equation while the second equation is called the synthesis
equation.

2. How is the Fourier transform different from Fourier series?
Fourier series is applicable to periodic signals. Fourier transform is appli-
cable to periodic and aperiodic signals as well.

3. How is FT developed from Fourier series?
When the aperiodic signal is considered as a periodic signal with its fun-
damental period tending to infinity, the fundamental frequency decreases
and the higher harmonics become closer. The frequency components form
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a continuum, and the Fourier series sum becomes a Fourier integral which
is defined as the Fourier transform.

4. How is Parseval’s Energy theorem defined for the frequency domain
signal?
According to Parseval’s theorem (French mathematician of the late eigh-
teenth and early nineteenth centuries), the energy of the frequency domain
is defined as

E = 1

2π

∫ ∞

−∞
|X(jω)|2 dω

5. What is the connection between the Fourier transform and the Laplace
transform?
The connection between the Fourier transform and the Laplace transform
is that the Fourier transform is the Laplace transform with s = jω. The
Laplace transform of x(t) = e−atu(t) is X(s) = 1

(s+a)
and its Fourier trans-

form isX(jω) = 1
(jω+a)

. However, this is not generally true of signalswhich
are not absolutely integrable. The Laplace transform of a step signal is
X(s) = 1

s . The Fourier transform of the step signal isX(jω) = πδ(ω) + 1
jω

and not simply 1
jω .

6. What do you understand by frequency response?
If y(t) is the output, x(t) the input and h(t) is the impulse response, then
they are related as

y(t) = x(t) ∗ h(t)

By using tne convolution property, we get

Y(jω) = X(jω)H(jω)

Y(jω)

X(jω)
= H(jω)

The function H(jω) is called the frequency response.
7. What is the condition required for the convergence of the Fourier

transform?
If the signal x(t) has finite energy or if it is square integrable such that

∫ ∞

−∞
|x(t)|2 dt < ∞

then the Fourier transform X(jω) converges.
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8. What is the Fourier transform of

x(t) = d2

dt2
x(t + 1)

F[x(t)] = (jω)2ejωX(jω)

9. What is the FT of x(t) = [δ(t + 5) − δ(t − 5)]?

X(jω) = 2j sin 5ω

10. Find the FT of x(t) = 2[u(t + 6) − u(t − 6)]?

X(jω) = 4

ω
sin 6ω = 24sinc6ω

11. What is the CTFT of a DC signal of amplitude 1?

1
FT←→ 2πδ(ω)

12. What is the CTFT of x(t) = u(t)?

u(t)
FT←→ 1

jω
+ πδ(ω)

13. What is integration property of CTFT?

∫ t

−∞
x(d)

FT←→ 1

jω
X(jω) + πX(0)δ(ω)

14. What is the differentiation property of CTFT?

dx(t)

dt
FT←→ jωX(jω)

15. If X( jω) is the CTFT of x(t), what is the CTFT of x∗(−t)?

x∗(−t)
FT←→ X∗(−jω)

16. State Parseval’s energy intensity.

E =
∫ ∞

−∞
|x(t)|2dt = 1

2π

∫ ∞

−∞
|X(jω)|2dω
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The energy content of the CT signal x(t) can be determined either by inte-
grating |x(t)|2 over all time t or by integrating |X(jω)|2 over all frequencies
ω.

17. What are Dirichlet’s conditions for the CTFT?
Dirichlet’s conditions for the existence of CTFT are as follows:

(a) The signal x(t) should be absolutely integrable, that is,

∫ ∞

−∞
|x(t)|dt < ∞

(b) x(t) should have finite number of maxima and minima over a finite
interval of time.

(c) x(t) should have finite number of discontinuities in the finite time
interval.

18. What is the CTFT of x(t) = eat u(−t)?

eatu(−t)
FT←→ −1

(jω − a)

where a or real part of a > 0.
19. Is x(t) = u(t) absolutely integrable using analysis equation of CTFT?

X(jω) =
∫ ∞

0
1e−jωtdt

= − 1

jω
[e−jωt]∞0

The integral becomes indeterminate when the upper limit is applied.
20. If

X( jω) = ( jω + 1)

( jω + 3)

find x(t).
x(t) = δ(t) − 2e−3tu(t)

21. If X( jω) = δ(ω − 2), find x(t).

x(t) = 1

2π
ej2t

22. If X( jω) = πδ(ω + 2π), find x(t).

x(t) = 1

2
e−j2π t
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23. y(t) = x(2 − t) + x(−t − 2). Find Y( jω).

Y(jω) = 2X(−jω) cos 2ω

24. y(t) = x(2 − t) − x(−t − 2). Find Y( jω).

Y(jω) = −2j sin 2ωX(−jω)

25. y(t) = x(t + 2) − x(t − 2). Find Y( jω).

Y(jω) = 2j sin 2ωX(jω)

26.

y(t) = d2x(t + 2)

dt2

Find Y( jω).
Y(jω) = e2jω(−ω2)X(jω)

27. y(t) = x(5t + 10). Find Y( jω).

Y(jω) = 1

5
e2jωX

(
jω

5

)

II. Long Answer Type Questions

1. Consider the following continuous time signal.

x(t) = e−5|t|

Find the FT. Hence determine the FT of t x(t).

X(jω) = 10

(25 + ω2)

F
[
te−5|t|] = −j20ω

(25 + ω2)2

2. For the signal X( jω) shown in Fig. 6.50,determine x(t).

x(t) = 5
sin 5t
π t
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X(j )

0 55

5

t

Fig. 6.50 Frequency spectrum of x(t) of question 2

Fig. 6.51 Representation of
the signal x(t) for question 3

x(t)

0 1

1

2

1 tt

3. Consider the signal shown in Fig. 6.51. Find X( jω). What is the FT for
x(t − 1)?

X(jω) = 2 sinω

jω2
+ 2πδ(ω)

F[x(t − 1)] = X(jω)e−jω

= 2 sinω

jω2
e−jω + 2πδ(ω)

4. Using Parseval’s theorem, evaluate energy in the frequency domain.

x(t) = e−4|t|

p = 1

4

5.

x(t) = e−2t u(t)

and

h(t) = e−4t u(t)

y(t) = x(t) ∗ h(t)
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Using the time convolution property, find Y( jω) and y(t).

Y(jω) = 1

(jω + 2)(jω + 4)

y(t) = 1

2

[
e−2t − e−4t

]
u(t)

6.

x(t) = e−2t u(t)

h(t) = e−2t u(t)

y(t) = x(t) ∗ h(t)

Find Y( jω) and hence y(t).

Y(jω) = 1

(jω + 2)2

y(t) = te−2tu(t)

7. A certain LTIC system is described by the following differential equation
(Fig.6.52):

d y(t)
dt

+ 2 y(t) = x(t)

Determine the Frequency response and the Impulse response.

H(jω) = 1

(jω + 2)

h(t) = e−2tu(t)

(a)
X(j )

3
2

0

(b)
X( j )

/2

/4

/4

/2

Fig. 6.52 Frequency spectra of Eq. 11
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Fig. 6.53 Square wave of
amplitude A

x(t)

2
0 tt

A

A
2
A

8. Consider the following differential equation (Fig.6.53):

d2 y(t)
dt2

+ 8
d y(t)
dt

+ 15y(t) = dx(t)
dt

+ 4x(t)

(a) Find the frequency response.
(b) Find the impulse response.
(c) Find the response y(t) due to the input x(t) = e−3t u(t).

(a) H(jω) = (jω + 4)

(jω + 3)(jω + 5)

(b) h(t) = 1

2

[
e−3t + e−5t

]
u(t)

(c) y(t) = 1

4

[
2te−3t + e−3t − e−5t

]
u(t)

9. Determine the impulse response h(t) of the system given by the differential
equation

d2y(t)

dt2
+ 3

dy(t)

dt
+ 2y(t) = x(t)

Assume all initial conditions to be zero.
(Anna University, 2013)

y(t) = (e−t − e−2t)u(t)

10. The system produces output y(t) = e−tu(t) for the input x(t) = e−2tu(t).
Determine

(i) Frequency response.
(ii) Magnitude and phase of the response.

(iii) The impulse response.

(Anna University, 2013)
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(i) H(jω) = (jω + 2)

(jω + 1)

(ii) |H(jω)| =
√

(ω2 + 4)

(ω2 + 1)∣∣H(jω) = tan−1 ω

2
− tan−1 ω

(iii) h(t) = δ(t) + e−tu(t)

11. Obtain the frequency response of a CT-LTI system defined by

dy(t)

dt
+ 2y(t) = 3x(t)

and hence draw the magnitude and phase spectra.
(Anna University, 2009)

H(jω) = 3

jω + 2

|H(jω)| = 3√
ω2 + 4∣∣H(jω) = − tan−1 ω

2

12. Find the CTFT of

x(t) = 1

2

[
y(t + 1) + y

(
t + 1

2

)
+ y

(
t − 1

2

)
+ y(t − 1)

]

(Anna University, 2011)

X(jω) =
[
cosω + cos

ω

2

]
Y(jω)

13. Find the CTFT of a square wave of amplitude “A”.

X(jω) = 2A

ω
sin

A

2
ω

14. The input signal x(t) = e−2tu(t) is applied to a relaxed LTI system. The
response of the system is
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y(t) = 2

3
[e−t + e−2t − e−3t]u(t)

Find the system function using CTFT.

H(jω) = 2

3

(−ω2 + j6ω + 7)

(jω + 1)(jω + 3)



Chapter 7
Fourier Transform Analysis of Discrete
Time Signals and Systems—DTFT, DFT
and FFT

Learning Objectives

� To represent aperiodic discrete time signal by Fourier integral.
� To define Fourier transform for discrete time signal.
� To derive the conditions for the existence of Discrete Time Fourier Transform

(DTFT).
� To find DTFT for typical discrete time signals.
� To establish the properties of the DTFT.
� To solve the difference equations using DTFT.
� To define DFT and IDFT.
� To determine the properties of DFT.
� To find the circular convolution using circle method.
� To establish the fundamental principle of FFT algorithm.

7.1 Introduction

In Chap.4, we represented continuous time periodic signals as a sum of everlasting
exponentials byFourier series. Similarly, inChap. 5, the discrete time periodic signals
was represented by discrete time Fourier series using a parallel development of
continuous time system. The Fourier series representations of CT and DT signals in
these chapters are however applicable only if the signal is periodic. If the signal is non-
periodic, then applying a limiting process the aperiodic continuous time signal was
expressed as a continuous sumof everlasting exponential or sinusoids and thismethod
was termed as Fourier transform of continuous time signal which was discussed in
Chap.6. On similar line, the discrete time periodic signal represented as a sum of
everlasting exponential by Fourier series in Chap. 5, by applying limiting process to
aperiodic signal x[n], it can be expressed as a sum of everlasting exponentials. The
spectrum X[�] so obtained is called Discrete Time Fourier Transform (DTFT). If the
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spectrum obtained by DTFT is sampled for one period of the Fourier transform at a
finite number of frequency points, such a transformation is called Discrete Fourier
Transform (DFT) which is a very powerful computational tool for the evaluation of
FT.Some special algorithms are developed for the easy implementationofDFTwhich
result in saving of considerable computation time. Such algorithms are called Fast
Fourier Transform (FFT). The detailed study of DTFT, DFT and FFT are discussed
in this chapter with sufficient illustrated examples.

7.2 Representation of Discrete Time Aperiodic Signals

Consider the aperiodic signal x[n] shown in Fig. 7.1a. The periodic signal xN0 [n] is
constructed by repeating the signal x[n] every N0 units as shown in Fig. 7.1b. The
period N0 is chosen large enough to avoid overlapping. If we put N0 −→ ∞, the
signal repeats after an infinite interval and therefore

Lt
N0→∞ xN0 [n] = x[n]

From Eq. (5.4), for a discrete signal, the FS can be written as

x[n] =
∑

k=[N0]
Dkejk�0n

x[n]

n0N N

xN0
[n]

n0

(a)

(b)

NN0 N0N

Fig. 7.1 Extension of aperiodic signal to periodic signal
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xN0 [n] =
∑

k=[N0]
Dkejk�0n (7.1)

where �0 = 2π
N0

and

Dk = 1

N0

∞∑

n=−∞
x[n]e−jk�0n (7.2)

With � as continuous function let us define

X(�) =
∞∑

n=−∞
x[n]e−j�n (7.3)

Substituting Eq. (7.3) in Eq. (7.2), we get

Dk = 1

N0
X(k�0) (7.4)

Equation (7.4) shows that the Fourier coefficients Dk are 1
N0

times the samples of
X(�). As N0 → ∞, the fundamental frequency �0 → 0 and Dk → 0 and the spec-
trum becomes continuous. Now consider Eq. (7.3)

X(�) =
∞∑

n=−∞
x[n]e−jk�0n (7.5)

Equation (7.1) can be expressed using Eq. (7.2) as

xN0 [n] = 1

N0

∑

k=[N0]
X(k�0)e

jk�0n

=
∑

k=[N0]
X(k�0)e

jk�0n

(
�0

2π

)
(7.6)

As N0 → ∞, �0 → 0 and xN0 [n] → x[n]

x[n] = Lt
�0→0

∑

k=N0

[
X(k�0)

�0

2π

]
ejk�0n (7.7)

Since �0 is small, it can be replaced by �. Thus,
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�� = 2π

N0
(7.8)

x[n] = Lt
��0→0

1

2π

∑

k=N0

X(k��)ejk��n�� (7.9)

k = N0 implies N0�� = 2π . Hence, Eq. (7.9) becomes the integral

x[n] = 1

2π

∫

2π
X(�)ejn�d� (7.10)

The spectrum X(�) is given by

X(�) =
∞∑

n=−∞
x[n]e−j�n (7.11)

Equation (7.10) is called the Fourier integral and X(�) is called the Discrete Time
Fourier Transform (DTFT). They are called DFTF pair. Symbolically, they are rep-
resented as

x[n] = IDTFT{X(�)}
X(�) = DTFT{x[n]} (7.12)

Or

x[n] DTFT←→ X(�)

The Fourier transform X(�) is nothing but the description of x[n] in the
frequency domain. From Eq. (7.11), it is proved that the spectrum of a discrete
time signal is periodic with fundamental period N0.

As in the case of continuous time signal, the sufficient condition for the conver-
gence of X(�) is that x[n] is either absolutely summable. That is

∞∑

n=−∞
|x[n]| < ∞

or the sequence has finite energy, that is

∞∑

n=−∞
|x[n]|2 < ∞. (7.13)
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7.3 Connection Between the Fourier Transform and the
z-Transform

From Eq. (7.11)

X(�) =
∞∑

n=−∞
x[n]e−j�n (7.14)

The z-transform of x[n] is given by

X[z] =
∞∑

n=−∞
x[n]z−n (7.15)

From Eqs. (7.14) and (7.15), we see that if the ROC of X[z] contains unit circle, then
X(�) equals X[z] evaluated on the unit circle. That is

X(�) = X[z]
∣∣∣∣
z=ej�

(7.16)

Note: Using Eq. (7.16), one can obtain Fourier transform by substituting z = ej�

provided x[n] is summable. If x[n] is not summable, as in the case of u[n], one
cannot obtain X(�) form X[z].

WhenFourier transformand z-transformare connected,X(�) is denotedbyX(ej�)

or X(ejω).

� Example 7.1

Find the FT of the following DT signals:

1. x[n] = δ[n]
2. x[n] = anu[n]
3. x[n] = −anu[−n − 1]
4. x[n] = u[n]
5. x[n] = (a)|n| |a| < 1

Solution

1. x[n] = δ[n]

F{δ[n]} =
∞∑

−∞
δ[n]e−j�n

δ[n] =
{
1 n = 0

0 n �= 0
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F{δ[n]} = 1

2. x[n] = anu[n]

X[�] =
∞∑

n=−∞
anu[n]e−j�n

u[n] =
{
1 n ≥ 0 since x[n] is causal
0 n < 0

X[�] =
∞∑

n=0

anue−j�n

=
∞∑

n=0

[ae−j�]n

By using the summation formula we get

X[�] = 1

(1 − ae−j�)
|a| < 1

3. x[n] = −anu[−n − 1]

X[�] =
−1∑

n=−∞
−anu[−n − 1]e−j�n

=
−1∑

n=−∞
−ane−j�n

=
∞∑

n=1

−a−nej�n

= −
∞∑

n=1

(a−1ej�)n

= −{a−1ej� + (a−1ej�)2 + (a−1ej�)3 + · · · }
= −a−1ej�

[
1 + (a−1ej�) + (a−1ej�)2 + · · · ]

= − a−1ej�

(1 − a−1ej�)
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X(�) = 1

(1 − ae−j�)
|a| > 1

4. x[n] = u[n]
Let x[n] = u[n] ←→ X(�)

X(�) =
∞∑

n=0

u[n]e−j�n

X(�) =
∞∑

n=0

(e−j�)n

�= 1

(1 − e−j�)

which is obtained using summation formula because |ej�0 | = 1 and X(�) is not
summable. The following procedure is followed to evaluate the FT of a causal
step sequence.

δ[n] = u[n] − u[n − 1]
1 = [1 − e−j�]X(�)

For � = 0, (1 − e−j�) = 0. Therefore, X(�) must be written in the following
form:

X(�) = Cδ(�) + 1

(1 − e−j�)

where C is any constant. The step sequence u[n] can be expressed in terms of odd
and even components as

xe[n] = 1

2
+ 1

2
δ[n]

x0[n] = x[n] − xe[n]
= x[n] − 1

2
− 1

2
δ[n]

F[x0[n]] = Cδ(�) + 1

(1 − e−j�)
− πδ(�) − 1

2

From the property of FT, the FT of an odd sequence must be imaginary. To satisfy
the condition, C = π



658 7 Fourier Transform Analysis of Discrete Time Signals …

F[x0[n]] = 1

(1 − e−j�)
− 1

2

F[xe[n]] = πδ[�] + 1

2
F[x[n]] = F[xe[n]] + F[x0[n]]

= πδ(�) + 1

2
+ 1

(1 − e−j�)
− 1

2

u[n] ←→ πδ(�) + 1

(1 − e−j�)

5. x[n] = (a)|n| |a| < 1

X(�) =
∞∑

n=−∞
(a)|n|e−j�n

=
1∑

n=−∞
a−ne−j�n +

∞∑

n=0

ane−j�n

= X1(�) + X2(�)

X2(�) = 1

(1 − ae−j�)
a < 1

X1(�) =
∞∑

n=1

(aej�)n

= aej� + (aej�)2 + (aej�)3 + · · ·
= aej�[1 + aej� + (aej�)2 + · · · ]
= aej�

(1 − aej�)
a < 1

X(�) = aej�

(1 − aej�)
+ 1

(1 − ae−j�)

X(�) = (1 − a2)

(1 − 2a cos� + a2)
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7.4 Properties of Discrete Time Fourier Transform

The properties of DTFT are very similar to those of CTFT and these properties are
very useful to determine the Fourier transform and inverse Fourier transforms very
quickly. They are discussed below with proofs.

7.4.1 Linearity

If

x1[n] DTFT←→ X1(�) and x2[n] DTFT←→ X2(�)

then

Ax1[n] + Bx2[n] DTFT←→ AX1(�) + BX2(�)

Proof

X1(�) =
∞∑

n=−∞
x1[n]e−j�n

X2(�) =
∞∑

n=−∞
x2[n]e−j�n

{Ax1[n] + Bx2[n]} DTFT←→
∞∑

n=−∞
Ax1[n]e−j�n +

∞∑

n=−∞
Bx2[n]e−j�n

= AX1(�) + BX2(�)

{Ax1[n] + Bx2[n]} DTFT←→ AX1(�) + BX2(�)

7.4.2 Time Shifting Property

If

x[n] DTFT←→ X(�)
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then

x[n − n0] DTFT←→ X(�)e−jn0�

Proof

x[n] DTFT←→ X(�)

X(�) =
∞∑

n=−∞
x[n]e−j�n

x[n − n0] DTFT←→
∞∑

n=−∞
x[n − n0]e−j�n

Let (n − n0) = m

x[n − n0] =
∞∑

m=−∞
x[m]e−j�(m+n0)

=
∞∑

m=−∞
e−j�n0x[m]e−j�m

= e−j�n0X(�)

x[n − n0] DTFT←→ e−j�n0X(�)

7.4.3 Frequency Shifting

If

x[n] DTFT←→ X(�)

then

ej�0nx[n] DTFT←→ X(� − �0)

Proof

X(�) =
∞∑

n=−∞
x[n]e−j�n
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X(� − �0) =
∞∑

n=−∞
x[n]e−j(�−�0)n

= ej�0n
∞∑

n=−∞
x[n]e−j�n

The right-hand side of the above equation is the DTFT of x[n]ej�0n. Therefore,

ej�0nx[n] DTFT←→ X(� − �0)

7.4.4 Time Reversal

If

x[n] DTFT←→ X(�)

then

x[−n] DTFT←→ X(−�)

Proof

X(�) =
∞∑

n=−∞
x[n]e−j�n

For the time reversal signal x[−n]

X(�) =
∞∑

n=−∞
x[−n]e−j�n

Let −n = m

X(�) =
∞∑

m=−∞
x[m]e−j(−�)m

= X(−�)

x[−n] DTFT←→ X(−�)

Folding in the time domain corresponds to folding in the frequency domain.
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7.4.5 Time Scaling

If

x[n] DTFT←→ X(�)

then

x[an] DTFT←→ X

(
�

a

)

Proof

X(�) =
∞∑

n=−∞
x[an]e−j�n

Let an = p

X(�) =
∞∑

p=−∞
x[p]e−j �

a p

= X

(
�

a

)

x[an] DTFT←→ X

(
�

a

)

7.4.6 Multiplication by n

If

x[n] DTFT←→ X(�)

then

nx[n] DTFT←→ j
dX(�)

d�Proof

X(�) =
∞∑

n=−∞
x[n]e−j�n

Differentiating both sides with respect to �
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dX(�)

d�
=

∞∑

n=−∞
−jnx[n]e−j�n

j
dX(�)

d�
=

∞∑

n=−∞
{nx[n]}e−j�n

{nx[n]} DTFT←→ j
dX(�)

d�

7.4.7 Conjugation

If

x[n] DTFT←→ X(�)

then

x∗[n] DTFT←→ X∗(−�)Proof

X(�) =
∞∑

n=−∞
x[n]e−j�n

X∗(�) =
[ ∞∑

n=−∞
x[n]e−j�n

]∗

=
∞∑

n=−∞
x∗[n]ej�n

=
∞∑

n=−∞
x∗[n]e−j(−�)n

= X∗(−�)

x∗[n] DTFT←→ X∗(−�)
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7.4.8 Time Convolution

If

x1[n] DTFT←→ X1(�)

x2[n] DTFT←→ X2(�)

then

x1[n] ∗ x2[n] DTFT←→ X1(�)X2(�)

Proof When the two signals x1[n] and x2[n] are convolved,

y[n] = x1[n] ∗ x2[n]
Y(�) =

∞∑

m=−∞
x1[m]

∞∑

n=−∞
x2[n − m]e−j�n

Let p = n − m

Y(�) =
∞∑

m=−∞
x1[m]

∞∑

p=−∞
x2[p]e−j�(p+m)

=
∞∑

m=−∞
x1[m]e−j�m

∞∑

p=−∞
x2[p]e−j�p

= X1(�)X2(�)

x1[n] ∗ x2[n] DTFT←→ X1(�)X2(�)

7.4.9 Parseval’s Theorem

∞∑

n=−∞
|x[n]|2 DTFT←→ 1

2π

∫

2π
|X(�)|2d�

The above relation states that the average power in a DT periodical signal is equal
to the squared magnitude of X(�).
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Proof

X∗(�) =
∞∑

n=−∞
x∗[n]ej�n

Now

∞∑

n=−∞
|x[n]|2 =

∞∑

n=−∞
x∗[n]x[n]

=
∞∑

n=−∞
x∗[n]

[
1

2π

∫

2π
X(�)ej�nd�

]

= 1

2π

∫

2π
X(�)

[ ∞∑

n=−∞
x∗[n]ej�n

]
d�

= 1

2π

∫

2π
X(�)X∗(�)d�

= 1

2π

∫

2π
|X(�)|2d�

7.4.10 Modulation Property

x[n] cos(�cn + θ)
DTFT←→ 1

2
{X(� − �c)e

jθ + X(� + �c)e
−jθ }

Proof From frequency shifting property, the following equation is written

x[n]ej�cn DTFT←→ X(� − �c)

Multiplying both sides by ejθ , we get

x[n]ej(�cn+θ) DTFT←→ X(� − �c)e
jθ

The above equations is generalized as

x[n] cos(�cn + θ)
DTFT←→ 1

2
{X(� − �c)e

jθ + X(� + �c)e
−jθ }

The properties of DTFT are given in Table7.1.
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Table 7.1 Properties of DTFT

Operation x[n] X(�)

1. Linearity Ax1[n] + Bx2[n] AX1(�) + BX2(�)

2. Time shifting x[n − n0] X(�)e−jn0

3. Frequency shifting ej�0nx[n] X(� − �0)

4. Time reversal x[−n] X(−�)

5. Time scaling x[an] X
(

�
a

)

6. Multiplication by n nx[n] j
dX(�)

d�
7. Conjugation x∗[n] X∗(�)

8. Time convolution x1[n] ∗ x2[n] X1(�)X2(�)

9. Parseval’s theorem
∑∞

n=−∞ |x[n]|2 1

2π

∫
2π |X(�)|2d�

10. Modulation x[n] cos(�cn + θ)
1

2
{X(� − �c)ejθ + X(� +

�c)e−jθ }

� Example 7.2

Find the discrete time Fourier transform of the following sequences:

1. x[n] = ej�0n

2. x[n] = 1 all n

3. x[n] = cos�0n |�0| ≤ π

4. x[n] = u[n] − u[n − N]

5. x[n] =
{
1 |n| ≤ N

0 |n| > N

6. x[n] = a−nu[−n] |a| > 1

7. x[n] = 10

(
1

6

)−n

u[−n]

8. x[n] = 10

(
1

6

)n

u[n]

9. x[n] = n

(
1

2

)n

u[n]
10. x[n] = {2, −1, 2, −2}

11. x[n] =
{
1 0 ≤ n ≤ 5

0 otherwise

12. y[n] =
(
1

2

)n

u[n] ∗
(
1

3

)n

h[n]



7.4 Properties of Discrete Time Fourier Transform 667

13. x[n] = (n + 1)anu[n]
14. x[n] = u[n − 1] − u[n − 4]
15. x[n] =

(
1

3

)n−1

u[n − 1]

16. x[n] =
(
1

4

)|n−1|
u[n − 1]

17. x[n] = δ[n − 2] + δ[n + 2]
18. x[n] = δ[n + 2] − δ[n − 2]
19. x[n] = sin

(π

4
n + π

3

)

20. x[n] =
(
1

4

)−n

u[−n − 1]

21. x[n] = 10 + cos
(π

4
n − π

5

)

22. x[n] = x[2 − n] + x[−2 − n]
23. y[n] = (n − 1)2x[n]
24. x[n] =

(
1

2

)n

u[n + 1]

Solution

1. x[n] = e j�0n

Consider the following DTFT

X(�) = 2πδ(� − �0) |�|, |�0| ≤ π

The inverse DTFT is obtained from

x[n] = 1

2π

∫ π

−π

X(�)ej�nd�

= 1

2π

∫ π

−π

2πδ(� − �0)e
j�nd�

Using the property
∫∞
−∞ �(�)δ(� − �0)d� = �(�0), we get

x[n] = 1

2π
[2πej�0n]

= ej�0n

ej�0n DTFT←→ 2πδ(� − �0) |�|, |�0| ≤ π
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2. x[n] = 1 all n

ej�0n DTFT←→ 2πδ(� − �0)

Substitute �0 = 0 and x[n] = 1

1
DTFT←→ 2πδ(�)

3. x[n] = cos �0n |�0| ≤ π

cos�0n = 1

2
[ej�0n + e−j�0n]

ej�0n DTFT←→ 2πδ(� − �0)

e−j�0n DTFT←→ 2πδ(� + �0)

cos�0n
DTFT←→π [δ(� − �0) + δ(� + �0)] |�|, |�0| ≤ π

4. x[n] = u[n] − u[n − N]

X(�) =
N−1∑

n=0

x[n]e−j�n

Using the summation formula

N−1∑

n=0

an = (1 − aN )

(1 − a)

we get

X(�) = 1 − e−j�N

1 − e−j�

=
e−j �N

2

[
ej �N

2 − e−j �N
2

]

e−j �
2

[
ej �

2 − e−j �
2

]

X(�) = e−j� (N−1)
2

sin
(

�N
2

)

sin
(

�
2

)
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5. x[n] =
{

1 |n| ≤ N

0 |n| > N

X(�) =
N∑

−N

e−j�n

=
−1∑

−N

e−j�n +
N∑

0

e−j�n

= ej�

[
(1 − ej�N )

(1 − ej�)

]
+
[
(1 − e−j�(N+1))

(1 − e−j�)

]

X(�) =
[

ej� − ej�(N+1)

(1 − e−j�)

]
+
[
1 − ej�(N+1)

(1 − e−j�)

]

= [ej� − 1 − ej�(N+1) + ej�N + 1 − e−j�(N+1) − ej� + e−j�N ]
1 − (ej� + e−j�) + 1

= 2 cos�N − 2 cos�(N + 1)

2(1 − cos�)

= sin
(
N + 1

2

)
� sin �

2

sin2 �
2

X(�) = sin
(
N + 1

2

)
�

sin
(

�
2

)

6. x[n] = a−nu[−n] |a| < 1

X(�) =
0∑

n=−∞
a−ne−j�n

=
∞∑

n=0

(aej�)n

Using summation formula, we get

X(�) = 1

(1 − aej�)
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7. x[n] = 10
( 1

6

)−n
u[−n]

X(�) =
0∑

n=−∞
10

(
1

6

)−n

e−j�n

= 10
∞∑

n=0

(
1

6
ej�n

)n

X(�) = 10(
1 − 1

6ej�
)

8. x[n] = 10
( 1

6

)−n
u[n]

X(�) =
∞∑

n=0

10

(
1

6
ej�

)−n

=
∞∑

n=0

10
(
6e−j�

)n

RHS of the equation is not summable and x[n] does not have DTFT.
9. x[n] = n

( 1
2

)n
u[n] (Using multiplication property by n)

(
1

2

)n
DTFT←→ 1

1 − (
1
2

)
e−j�

= ej�

(ej� − 0.5)

n

(
1

2

)n

u[n] DTFT←→ j
d

d�

[
ej�

(ej� − 0.5)

]

= j(ej� − 0.5)ej�(j) − ej�ej�(j)

(ej� − 0.5)2

= 0.5ej�

(ej� − 0.5)2

n

(
1

2

)n

u[n] DTFT←→ 0.5ej�

(ej� − 0.5)2
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10. x[n] = {2, −1, 2, −2}

x(�) = {2 − e−j� + 2e−j2� − 2e−j3�}

11. x[n] =
{

1 0 ≤ n ≤ 5
0 otherwise

(Anna University, April, 2005).

X(�) = sin�
(
N + 1

2

)

sin �
2

where N = 5

X(�) = sin 5.5�

sin 0.5�

12. y[n] = ( 1
2

)n
u[n] ∗ ( 1

3

)n
u[n]

X(�) = 1(
1 − 1

2e−j�
)

H(�) = 1(
1 − 1

3e−j�
)

Y(�) = X(�)H(�)

Y(�) = 1(
1 − 1

2e−j�
) (
1 − 1

3e−j�
)

To find y[n], put Y(�) in partial fraction and take IDTFT.
13. x[n] = (n + 1)anu[n]

x[n] = nanu[n] + anu[n]
nanu[n] DTFT←→ aej�

(ej� − a)2

anu[n] DTFT←→ ej�

(ej� − a)

x[n] DTFT←→ aej�

(ej� − a)2
+ ej�

(ej� − a)

= ej�(a + ej� − a)

(ej� − a)2
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= ej2�

(ej� − a)2

= 1

(1 − ae−j�)2

(n + 1)anu[n] DTFT←→ 1

(1 − ae−j�)2

14. x[n] = u[n − 1] − u[n − 4]

X(�) = e−j� + e−j2� + e−j3�

15. x[n] = ( 1
3

)n−1
u[n − 1]

(
1

3

)n

u[n] DTFT←→ 1

1 − 1
3e−j�

Using right shift time shifting property, we get

(
1

3

)n−1

u[n − 1] DTFT←→ e−j�

(
1 − 1

3e−j�
) = 1(

ej� − 1
3

)

(
1

3

)n−1

u[n − 1] DTFT←→ 1(
ej� − 1

3

)

16. x[n] = ( 1
4

)|n−1|
u[n − 1]

From Example 7.1.5,

x[n] = (a)|n| DTFT←→ (1 − a2)

(1 − 2a cos� + a2)

Substitute |a| = 1
4

(
1

4

)|n|
DTFT←→ (15/16)

(17/16) − 0.5 cos�

= 15

17 − 8 cos�
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Using right shift time shifting property, we get

(
1

4

)|n−1|
DTFT←→ 15e−j�

17 − 8 cos�

17. x[n] = δ[n − 2] + δ[n + 2]

δ[n − 2] + δ[n + 2] DTFT←→ e−j2� + ej2�

δ[n − 2] + δ[n + 2] DTFT←→ 2 cos 2�

18. x[n] = δ[n + 2] + δ[n − 2]

δ[n + 2] − δ[n − 2] DTFT←→ ej2� − e−j2�

= j2 sin 2�

δ[n + 2] − δ[n − 2] DTFT←→ j2 sin 2�

19. x[n] = sin
(

π
4 n + π

3

)

sin
(π

4
n + π

3

)
= ej( π

4 n+ π
3 ) − e−j( π

4 n+ π
3 )

2j

= 1

2j
[ej π

3 ej π
4 n − e−j π

3 e−j π
4 n]

From Example 7.2.1, it is derived that

ej�0n DTFT←→ 2πδ(� − �0)

∴ ej π
4 n DTFT←→ 2πδ

(
� − π

4

)

e−j π
4 n DTFT←→ 2πδ

(
� + π

4

)

sin
(π

4
n + π

3

)
DTFT←→ 2π

2j

[
ej π

3 δ
(
� − π

4

)
− e−j π

3 δ
(
� + π

4

)]

sin
(π

4
n + π

3

)
DTFT←→ π

j

[
ej π

3 δ
(
� − π

4

)
− e−j π

3 δ
(
� + π

4

)]
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20. x[n] = ( 1
4

)−n
u[−n − 1]

x[n] = 1

4

(
1

4

)−n−1

u[−n − 1]

Using the reversal and left time shift, we get

(
1

4

)−n−1

u[−n − 1] DTFT←→ ej�

1 − 1
4ej�

= 1(
e−j� − 1

4

)

(
1

4

)−n

u[−n − 1] DTFT←→ 1

4

1(
e−j� − 1

4

)

21. x[n] = 10 + cos
(

π
4 n − π

5

)

cos
(π

4
n − π

5

)
= 1

2
[e−j π

5 ej π
4 n + ej π

5 e−j π
4 n]

ej π
4 n DTFT←→ 2πδ

(
� − π

4

)

e−j π
4 n DTFT←→ 2πδ

(
� + π

4

)

10
DTFT←→ 20πδ (�)

10+ cos
(π

4
−π

5

)
DTFT←→ 20πδ (�) +π

[
e−j π

5 δ
(
�−π

4

)
+ej π

5 nδ
(
�+π

4

)]

22. x[n] = x[2 − n] + x[−2 − n]

x[2 − n] DTFT←→ X(�)e−j2� (Right shift)

x[−2 − n] DTFT←→ X(�)ej2� (Left shift)

{x[2 − n] + x[−2 − n]} DTFT←→ X(�)[e−j2� + ej2�]
= 2X(�) cos 2�

{x[2 − n] + x[−2 − n]} DTFT←→ 2X(�) cos 2�
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23. y[n] = (n − 1)2x[n] (Anna University, April, 2008)

y[n] = (n2 − 2n + 1)x[n]
= n2x[n] − 2nx[n] + x[n]

n2x[n] DTFT←→ (j)2
d2X(�)

d�2

nx[n] DTFT←→ j
dX(�)

d�

Y(�) = −d2X(�)

d�2
− 2j

dX(�)

d�
+ X(�)

24. x[n] = ( 1
2

)n
u[n + 1]

x[n] = 2

(
1

2

)n+1

u[n + 1]

Making left shift of ( 12 )
n we get

(
1

2

)n+1

u[n + 1] DTFT←→ ej�

(
1 − 1

2e−j�
)

X(�) = 2ej�

(
1 − 1

2e−j�
)

The above result can be obtained from first principle as follows (Figs. 7.2
and 7.3):

X(�) =
∞∑

n=−1

(
1

2

)n

e−j�n

=
(
1

2

)−1

ej� +
∞∑

n=0

(
1

2

)n

e−j�n

= 2ej� +
∞∑

n=0

(
1

2ej�

)n

= 2ej� + 1(
1 − 1

2e−j�
)
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Fig. 7.2 DT sequence of
Example 7.2.4

x[n]

n0 1 2 3 (N 1)

Fig. 7.3 Rectangular pulse
x[n] for Example 7.2.5

x[n]

n0

1

NN

= 2ej� − 1 + 1(
1 − 1

2e−j�
)

X(�) = 2ej�

(
1 − 1

2e−j�
)

7.5 Inverse Discrete Time Fourier Transform (IDTFT)

If x[n] is given, the discrete time Fourier transform is obtained using Eq. (7.11) which
is given below.

X(�) =
∞∑

n=−∞
x[n]e−j�n (7.17)

If X(�) is given, then the sequence x[n] is obtained from Eq. (7.10) which is given
as
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Table 7.2 DTFT pair

No. x[n] X(�)

1. δ[n] 1

2. u[n] πδ(�) + 1

(1 − e−j�)

3. anu[n] 1

(1 − ae−j�)
|a| < 1

4. −anu[−n − 1] 1

(1 − ae−j�)
|a| > 1

5. a|n| (1 − a2)

(1 − 2a cos� + a2)
6. 1 2πδ(�)

7. cos�0n π [δ(� − �0) + δ(� +
�0)] |�|, |�0| ≤ π

8. sin�0n jπ [δ(� + �0) − δ(� −
�0)] |�|, |�0| ≤ π

9. u[n] − u[n − N] e
−j�

(
N−1
2

)
sin(�(N/2))

sin(�/2)

10. rect pulse
sin

((
N + 1

2

)
�

)

sin(�/2)

x[n] = 1

2π

∫

2π
X(�)ej�nd� (7.18)

x[n] is also obtained by putting X(�) by partial fraction and making use of DTFT
pair in Table7.2. The process of getting x[n] from X(�) is called IDTFT. This is
illustrated in the following examples.

� Example 7.3

Find x[n] for the X(�) given below.

1. X(�) = 8πδ(�) + 10πδ
(
� − π

4

)
+ 10πδ

(
� + π

4

)

2. X(�) =
{

j 0 < � ≤ π

−j −π < � ≤ 0

3. X(�) =
{
2 0 ≤ |�| < π

3

0 π
3 ≤ |�| ≤ π

and ∠X(�) = −4

3
�

4. X(�) = 6 + 4e−j� + 7e−j2�
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5. x[n] =
(
1

2

)n

u[n]

h[n] =
(
1

3

)n

u[n]
y[n] = x[n] ∗ h[n]

6. X(�) = j�

Solution

1. X(�) = 8πδ(�) + 10πδ
(
� − π

4

) + 10πδ
(
� + π

4

)
2πδ(�)

IDTFT←→ 1

πδ
(
� − π

4

)
+ πδ

(
� + π

4

)
DTFT←→ cos

π

4
n

x[n] = 4 + 10 cos
π

4
n

2. X(�) =
{
j 0 < � ≤ π

− j −π < � ≤ 0

x[n] = 1

2π

{∫ 0

−π

−jej�nd� +
∫ π

0
jej�nd�

}

= j

2π

{[
− 1

jn
ej�n

]0

−π

+
[
1

jn
ej�n

]π

0

}

= j

2π

{
− 1

jn
+ 1

jn
e−jπn + 1

jn
ejπn − 1

jn

}

= 1

2πn

{−2 + ejπn + e−jπn
}

= 1

πn
{−1 + cosπn}

x[n] = − 2

nπ
sin2

nπ

2

3. X(�) =
{

2 0 ≤ |�| < π
3

0 π
3 ≤ |�| ≤ π

and ∠X(�) = − 4
3�
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∠X(�) = −4

3
�

= e−j 43�

x[n] = 2

2π

{∫ 0

− π
3

e−j 43�ej�nd� +
∫ π

3

0
e−j 43�ej�nd�

}

= 1

π

{∫ 0

− π
3

ej(n− 4
3 )�d� +

∫ 4
3

0
ej(n− 4

3 )�d�

}

= 1

jπ

1(
n − 4

3

)
[
ej(n− 4

3 )�
]0

− π
3

+
[
ej(n− 4

3 )�
] π

3

0

= 1

jπ
(
n − 4

3

)
[
1 − e−j(n− 4

3 ) π
3 − 1 + ej(n− 4

3 ) π
3

]

x[n] = 2

π
(
n − 4

3

) sin
(

n − 4

3

)
π

3

4. X(�) = 6 + 4e− j� + 7e− j2�

x[n] = {6, 4, 7}

5. x[n] = ( 1
2

)n
u[n]

h[n] = ( 1
3

)n
u[n]

y[n] = x[n] ∗ h[n]

X(�) = 1(
1 − 1

2e−j�
)

H(�) = 1(
1 − 1

3e−j�
)

Y(�) = 1(
1 − 1

2e−j�
) (
1 − 1

3e−j�
)

= A1(
1 − 1

2e−j�
) + A2(

1 − 1
3e−j�

)

1 = A1

(
1 − 1

3
e−j�

)
+ A2

(
1 − 1

2
e−j�

)
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Substitute e−j� = 2; we get A1 = 3 and substitute e−j� = 3; we get A2 = −2

Y(�) = 3(
1 − 1

2e−j�
) − 2(

1 − 1
3e−j�

)

Taking inverse Fourier transform, we get

Y [n] = 3

(
1

2

)n

u[n] − 2

(
1

3

)n

u[n]

6. X(�) = j�

x[n] = 1

2π

∫ π

−π

j�ej�nd�

= 1

2π

[
j�

jn
ej�n

]π

−π

= 1

2πn

[
πejπn + πe−jπn

]

= 1

n
cosπn

x[n] = (−1)n

n
n �= 0

7.6 LTI System Characterized by Difference Equation

LTIDT systems are described by linear constant coefficients differential equations
of the form

N∑

k=0

aky[n − k] =
M∑

k=0

bkx[n − k] (7.19)

where M ≤ N . Taking Fourier transform of both sides of Eq. (7.19) and using the
time shifting property, we get

N∑

k=0

ake−jk�Y(�) =
M∑

k=0

bke−jk�X(�) (7.20)

H(�) = Y(�)

X(�)
=
∑M

k=0 bke−jk�

∑N
k=0 ake−jk�

(7.21)
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In Eq. (7.21) H(�) is called the system transfer function and for any input X(�),
the output y[n] can be obtained by taking IDTFT. Further, H(�) gives the frequency
responds of DT system which is periodic and is expressed as

H(�) = H(� + 2π) (7.22)

Unlike continuous time system, for a DT system the frequency response is observed
for the frequency range 0 ≤ � < 2π or −π ≤ � < π .

� Example 7.4

Consider the system consisting of the cascade of two LTI systems with frequency
responses

H1(e
jω) = 2 − ejω

(
1 + 1

2e−jω
)

and

H2(e
jω) = 1(

1 − 1
2e−jω + 1

4e−j2ω
)

Find the difference equation describing the overall system.

(Anna University, April, 2008)

Solution Note: As stated earlier, symbols used here are different from the symbols
used in this text book. Their equivalence are

� = ω

H(�) = H(ejω)

H(ejω) = H1(e
jω)H2(e

jω)

= (2 − e−jω)(
1 + 1

2e−jω
) (
1 − 1

2e−jω + 1
4e−j2ω

)

Y(ejω)

X(ejω)
= 2 − e−jω

(
1 + 1

8e−j3ω
)

(
1 + 1

8
e−j3ω

)
Y(ejω) = (2 − e−jω)X(ejω)

y[n] + 1

8
y[n − 3] = 2x[n] − x[n − 1]
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� Example 7.5

Find the impulse response of the discrete time system described by the difference
equation

y[n − 2] − 3y[n − 1] + 2y[n] = x(n − 1)

(Anna University, April, 2005)

Solution Taking Fourier transform for the both sides of given difference equation,
we get

[e−j2� − 3e−j� + 2]Y(�) = e−j�X(�)

Y(�) = e−j�X(�)

[e−j2� − 3e−j� + 2]
For an impulse X(�) = 1

[e−j2� − 3e−j� + 2]Y(�) = (e−j� − 1)(e−j� − 2)

Y(�) = e−j�

(e−j� − 1)(e−j� − 2)

= A1

(e−j� − 1)
+ A2

(e−j� − 2)

e−j� = A1(e
−j� − 2) + A2(e

−j� − 1)

Put e−j� = 1

1 = A1(1 − 2); A1 = −1

Put e−j� = 2

2 = A2(2 − 1); A2 = 2

Y(�) = −1

(e−j� − 1)
+ 2

(e−j� − 2)

= 1

(1 − e−j�)
+ 1(

1 − 1
2e−j�

)

Taking inverse discrete Fourier transform, we get
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y[n] =
[
1 −

(
1

2

)n]
u[n]

� Example 7.6

Find the DTFT of

x[n] =
(
1

2

)n

u[n]

and plot the spectrum.

(Anna University, April, 2005)

Solution

X(�) = 1(
1 − 1

2e−j�
)

= 1(
1 − 1

2 cos� + 1
2 j sin�

)

= 1∠− tan−1 sin�/(1 − 1
2 cos�)

√(
1 − 1

2 cos�
)2 + 1

4 sin
2 �

= 1∠− tan−1 sin�/(1 − 1
2 cos�)

√(
5
4 − cos�

)

� −π − π
2 0 π

2 π

|X(�)| 0.667 0.894 2 0.894 0.667
∠X(�) 0 26.6◦ 0 −26.6◦ 0

The frequency spectrum is shown in Fig. 7.4.

� Example 7.7

Use Fourier transform to find the output of the system whose impulse response
h[n] = (

1
3

)n
u[n] and the input to the system is x[n] = (

1
2

)n
u[n].

(Anna University, May, 2007)

Solution

H(�) = 1(
1 − 1

3e−j�
)
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X( )
(a)

0

2

/2 /2

X( )
(b)

0

26.6°

26.6°

/2 /2

Fig. 7.4 Frequency spectra for Example 7.5. a Amplitude spectrum and b Phase spectrum

X(�) = 1(
1 − 1

2e−j�
)

H(�) = Y(�)

X(�)

Y(�) = H(�)X(�)

= 1(
1 − 1

3e−j�
) (
1 − 1

2e−j�
)

= A1(
1 − 1

3e−j�
) + A2(

1 − 1
2e−j�

)

1 = A1

(
1 − 1

2
e−j�

)
+ A2

(
1 − 1

3
e−j�

)

Put e−j� = 3

1 = A1

(
−1

2

)
; A1 = −2

Put e−j� = 2

1 = A2

(
1

3

)
; A2 = 3

Y(�) = −2(
1 − 1

3e−j�
) + 3(

1 − 1
2e−j�

)
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y[n] =
[
−2

(
1

3

)n

+ 3

(
1

2

)n]
u[n]

� Example 7.8

Given

x[n] = {1, 2, 0, 2} −→ Input↑
h[n] = {5, A, 3} −→ Impulse response↑
y[n] = x[n] ∗ h[n]

= {5, 12, 7, 16, 4, 6} −→ Output↑

Find the value of A.

(Anna University, May, 2007)
Solution

x[n] = {1, 2, 0, 2}↑
X(�) = [ej2� + 2ej� + 0 + 2e−j�]

h[n] = {5, A, 3}
↑

H(�) = [5ej� + A + 3e−j�]
y[n] = x[n] ∗ h[n]

Y(�) = X(�)H(�)

= [ej2� + 2ej� + 0 + 2e−j�][5ej� + A + 3e−j�]
= 5ej3� + (10 + A)ej2� + (3 + 2A)ej�

+10 + 2Ae−j� + 6e−j2�] (7.23)

Given

y[n] = {5, 12, 7, 16, 4, 6}↑
y(�) = 5ej3� + 12ej2� + 7ej� + 16 + 4e−j� + 6e−j2� (7.24)

Equate Eqs. (7.23) and (7.24). Equating the coefficients of ej2�, we get

10 + A = 12; A = 2

Equating the coefficients of ej�, we get
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h
2
[n]

h[n]x[n]

System-I

System-II

h1[n] (  )h1[n]3
1

Fig. 7.5 Block diagram representation for Example 7.9

3 + 2A = 7; A = 2

Equating the coefficients of e−j�, we get

2A = 4; A = 2

The value is A is

A = 2

� Example 7.9

Two systems connected in parallel are shown in Fig. 7.5. The impulse response of
system I is

h1[n] =
(
1

3

)n

u[n].

The impulse response function of the combined system

H(�) = (−18 + 5e−j�)

(6 − 5e−j� + e−j2�)

Find the transfer function of system II.
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Solution

H(�) = (−18 + 5e−j�)

(6 − 5e−j� + e−j2�)

=
(−3 + 5

6e−j�
)

(
1 − 5

6e−j� + 1
6e−j2�

)

=
(−3 + 5

6e−j�
)

(
1 − 1

2e−j�
) (
1 − 1

3e−j�
)

h1[n] =
(
1

3

)n

u[n]

H1(�) = 1(
1 − 1

3e−j�
)

From Fig. 7.5, H2(�) can be written as

H2(�) = H(�) − H1(�)

=
(−3 + 5

6e−j�
)

(
1 − 1

2e−j�
) (
1 − 1

3e−j�
) − 1(

1 − 1
3e−j�

)

=
(−4 + 4

3e−j�
)

(
1 − 1

2e−j�
) (
1 − 1

3e−j�
)

= −4
(
1 − 1

3e−j�
)

(
1 − 1

2e−j�
) (
1 − 1

3e−j�
)

= −4(
1 − 1

2e−j�
)

h2[n] = −4

(
1

2

)n

u[n]

7.7 Discrete Fourier Transform (DFT)

The Fourier transform described above transforms the sequence x[n] to X(�) which
is continuous and periodic. The DTFT is defined for sequences with infinite and
finite length. A slightly modified transform technique is known as Discrete Fourier
Transform (DFT) for finite duration discrete signals. This is a very powerful tool
for the analysis and synthesis of discrete signals and systems. The method is ideally
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suited for use in digital computer or specially designed digital hardware. The DFT
is obtained by sampling one period of DTFT only at a finite number of frequency
points. It has the following features:

1. The original finite duration signal can be easily recovered from its DFT since
there exists one to one correspondence between x[n] and the Fourier transformed
discrete signal.

2. For the calculation of the DFT of finite duration sequences, a very efficient and
fast techniques known as First Fourier Transform (FFT) has been developed.

3. As far as realization in digital computer is concerned, DFT is the appropriate
representation since it is discrete and of finite length in both the time and frequency
domains.

4. DFT is closely related to discrete Fourier series, the Fourier transform, convolu-
tion, correlation and filtering.

7.7.1 The Discrete Fourier Transform Pairs

Consider the sequence x[n] of length N . The Fourier transform of x[n] is given by

X(�) =
∞∑

n=−∞
x[n]e−j�n (7.25)

In Eq. (7.25), X(�) is the continuous function of �. The range of � is fromm −π

to π or 0 to 2π . Hence calculating X(�) on digital computer or DSP is impossible.
It is, therefore, necessary to compute X(�) at discrete values of �. When Fourier
transform X(�) is calculated at only discrete points k it is called Discrete Fourier
Transform (DFT). TheDFT is denoted byX(k). For finite discrete pointsN , Eq. (7.25)
is written as

X(k) =
N−1∑

n=0

x[n]e−j2πkn/N (7.26)

where k = 0, 1, 2, . . . , (N − 1).X(k) is computed at k = 0, 1, 2, . . . , (N − 1) discrete
points.X(k) is the sequence ofN samples. The sequence x[n] is obtained back fromm

X[n] = 1

N

N−1∑

k=0

X(k)ej2πkn/N (7.27)

Let us define WN = e−j2π/N , where WN is called Twiddle factor. Equations (7.26)
and (7.27) are called DFT and IDFT or simply discrete Fourier transform pair. They
can be represented in terms of twiddle factor as given below
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X(k) =
N−1∑

n=0

x[n]Wkn
N (7.28)

x[n] = 1

N

N−1∑

k=0

X(k)W−kn
N (7.29)

Let the sequence x[n] be resentenced as a vector xN of N samples as

xN =
n = 0
n = 1

...
n = N − 1

⎡

⎢⎢⎢⎣

x(0)
x(1)
...

x(N − 1)

⎤

⎥⎥⎥⎦

N×1

(7.30)

and X(k) be represented as a vector XN of N samples as

XN =
k = 0
k = 1

...
k = N − 1

⎡

⎢⎢⎢⎣

X(0)
X(1)
...

X(N − 1)

⎤

⎥⎥⎥⎦

N×1

(7.31)

The twiddle factor Wkn
N is represented as a matrix with k rows and n column as

WN =

k = 0

k = N − 1

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

W0
N W0

N W0
N · · · W0

N

W0
N W1

N W2
N · · · WN−1

N

W0
N W2

N W4
N · · · W2(N−1)

N

...
...

...
...

...

W0
N WN−1

N W2(N−1)
N · · · W (N−1)(N−1)

N

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

N×N

(7.32)

Thus, Eqs. (7.28) and (7.29) can be written with matrix form as

XN = [WN ]xN (7.33)

xN = 1

N
[W∗

N ]XN (7.34)

where W∗
N = W−kn

N

WN = e−j 2πN

= 1∠−2π/N (7.35)

From Eq. (7.35), the magnitude of the twiddle factor is 1 and the phase angle is− 2π
N .

It lies on the unit circle in the complex plane from 0 to 2π angle and it gets repeated
for every cycle.
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7.7.2 Four Point, Six Point and Eight Point Twiddle Factors

As in Eq. (7.35), themagnitude of the twiddle factor is 1 and the angle−2π is equally
divided in the interval N . The most commonly used intervals are N = 4 and N = 8.
For N = 4, the angle between any N = 0 and N = 1 is π

2 .

7.7.2.1 Four Point Twiddle Factor

For N = 4

n = 0 1 2 3

WN =
k = 0

1

2

3

⎡

⎢⎢⎢⎣

W0
4 W0

4 W0
4 W0

4

W0
4 W1

4 W2
4 W3

4

W0
4 W2

4 W4
4 W6

4

W0
4 W3

4 W6
4 W9

4

⎤

⎥⎥⎥⎦ (7.36)

Note: W4
4 = W0

4 ; W6
4 = W2

4 and W9
4 = W1

4 . From Eq. (7.35)

W1
4 = 1∠−π/2

For N = 4, the unit circle is divided into four equal segments in the clockwise
sequence and labeled as W0

4 , W1
4 , W2

4 and W3
4 . From Fig. 7.6, the twiddle factor

are obtained as

W0
4 = 1; W1

4 = −j; W2
4 = −1; W3

4 = j

Equation (7.36) is written as

WN =

⎡

⎢⎢⎣

1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤

⎥⎥⎦ (7.37)

Equation (7.37) represents the twiddle factor to express DFT of any sequence x[n].
Twiddle factors for 6-points DFT and 8-points DFT are derived below.

7.7.2.2 Six Point Twiddle Factor

For N = 6, the unit circle is divided into six equal segments and in the clockwise
sequence labeled asW0

6 , W1
6 , W2

6 , W3
6 , W4

6 andW5
6 noting thatW6

6 = W0
6 , W7

6 = W1
6

and so on. This is shown in Fig. 7.7. Each segment is shifted by −60◦ on the unit
circle. For N = 6, W6 is obtained by multiplying the rows and columns of W6 and is
given below.
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1

j

3
4

Im WN

Re WN

W

2
4W

1
4W

0

1

Unit Circle

4W

j

Fig. 7.6 Representation of W−nk
4

1

4
6

Im WN

Re WN

W 5
6W

0.5 j 0.866

0.5 j 0.8660.5 j 0.866

0.5 j 0.866

1
6W

3
6W

2
6W

0

1

Unit Circle

6W

Fig. 7.7 Representation of W−nk
6
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WN =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

W0
6 W0

6 W0
6 W0

6 W0
6 W0

6

W0
6 W1

6 W2
6 W3

6 W4
6 W5

6

W0
6 W2

6 W4
6 W6

6 W8
6 W10

6

W0
6 W3

6 W6
6 W9

6 W12
6 W15

6

W0
6 W4

6 W8
6 W12

6 W16
6 W20

6

W0
6 W5

6 W10
6 W15

6 W20
6 W25

6

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.38)

W0
6 = W6

6 = W12
6 = W18

6 = W24
6 = 1

W1
6 = W7

6 = W13
6 = W19

6 = W25
6 = 1e−j π

3 = 0.5 − j0.866

W2
6 = W8

6 = W14
6 = W20

6 = W26
6 = 1e−j 2π3 = −0.5 − j0.866

W3
6 = W9

6 = W15
6 = W21

6 = W27
6 = −1

W4
6 = W10

6 = W16
6 = W22

6 = W28
6 = 1ej 2π3 = −0.5 + j0.866

W5
6 = W11

6 = W17
6 = W23

6 = W29
6 = 1ej π

3 = 0.5 + j0.866

Substituting the values of the elements of the matrix W6, we get

W6 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1

1 0.5 − j0.866 −0.5 − j0.866 −1 −0.5 + j0.866 0.5 + j0.866

1 −0.5 − j0.866 −0.5 + j0.866 1 −0.5 − j0.866 −0.5 + j0.866

1 −1 1 −1 1 −1

1 −0.5 + j0.866 −0.5 − j0.866 1 −0.5 + j0.866 −0.5 − j0.866

1 0.5 + j0.866 −0.5 + j0.866 −1 −0.5 − j0.866 0.5 − j0.866

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.39)

7.7.2.3 Eight Point Twiddle Factor

W8 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W0
8 W0

8 W0
8 W0

8 W0
8 W0

8 W0
8 W0

8

W0
8 W1

8 W2
8 W3

8 W4
8 W5

8 W6
8 W7

8

W0
8 W2

8 W4
8 W6

8 W8
8 W10

8 W12
8 W14

8

W0
8 W3

8 W6
8 W9

8 W12
8 W15

8 W18
8 W21

8

W0
8 W4

8 W8
8 W12

8 W16
8 W20

8 W24
8 W28

8

W0
8 W5

8 W10
8 W15

8 W20
8 W25

8 W30
8 W35

8

W0
8 W6

8 W12
8 W18

8 W24
8 W30

8 W36
8 W42

8

W0
8 W7

8 W14
8 W21

8 W28
8 W35

8 W42
8 W49

8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.40)
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1

5

6

8

Im WN

jW8

Re WN

W
7
8W

j
1
8W

4
8W

2
8W

3
8W

0

1

8W

Unit Circle

 j 1
2√

 j j

4

1
2√

1
2√

1
2√

1
2√

 j1
2√

1
2√

1
2√

Fig. 7.8 Representation of W−kn
8

W8 =⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

1 1√
2

− j 1√
2

−j − 1√
2

− j 1√
2

−1 − 1√
2

+ j 1√
2

j 1√
2

+ j 1√
2

1 −j −1 j 1 −j −1 j

1 − 1√
2

− j 1√
2

j 1√
2

− j 1√
2

−1 1√
2

+ j 1√
2

−j − 1√
2

+ j 1√
2

1 −1 1 −1 1 −1 1 −1

1 − 1√
2

+ j 1√
2

−j 1√
2

+ j 1√
2

−1 1√
2

− j 1√
2

j − 1√
2

− j 1√
2

1 j −1 −j 1 j −1 −j

1 1√
2

+ j 1√
2

j − 1√
2

+ j 1√
2

−1 − 1√
2

− j 1√
2

−j 1√
2

− j 1√
2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.41)

� Example 7.10

Compute the DFT of the sequence x[n] = {1, j, −1, −j} for N = 4 (Fig. 7.8).

(Anna University, November, 2006)
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Solution Method 1

W4 =

⎡

⎢⎢⎢⎣

1 1 1 1

1 −j −1 j

1 −1 1 −1

1 j −1 −j

⎤

⎥⎥⎥⎦ ; X4 =

⎡

⎢⎢⎢⎣

1

j

−1

−j

⎤

⎥⎥⎥⎦

From Eq. (7.33)

X4 = W4x4

X4 =

⎡

⎢⎢⎢⎣

1 1 1 1

1 −j −1 j

1 −1 1 −1

1 j −1 −j

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

1

j

−1

−j

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

1 + j − 1 − j

1 + 1 + 1 + 1

1 − j − 1 + j

1 − 1 + 1 − 1

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

0

4

0

0

⎤

⎥⎥⎥⎦

X(0) = 0

X(1) = 4

X(2) = 0

X(3) = 0

Method 2

X(k) =
3∑

n=0

x[n]e−j 2πkn
4 ; k = 0, 1, 2, 3, . . .

For k = 0

X(0) =
3∑

n=0

x[n]

= x[0] + x[1] + x[2] + x[3]
= 1 + j − 1 − j = 0

For k = 1
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X(1) =
3∑

n=0

x[n]e−j πn
2

= x[0] + x[1]e−j π
2 + x[2]e−jπ + x[3]e−j 3π2

= 1 + j(−j) + (−1)(−1) + (−j)(j)

= 1 + 1 + 1 + 1 = 4

For k = 2

X(2) =
3∑

n=0

x[n]e−jπn

= x[0] + x[1]e−jπ + x[2]e−j2π + x[3]e−j3π

= 1 + j(−1) + (−1)(1) + (−j)(−1)

= 1 − j − 1 + j = 0

For k = 3

X(3) =
3∑

n=0

x[n]e−j 3πn
2

= x[0] + x[1]e− 3π
2 + x[2]e−j3π + x[3]e−j 9π2

= 1 + j(j) + (−1)(−1) + (−j)(−j)

= 1 − 1 + 1 − 1 = 0

X(0) = 0

X(1) = 4

X(2) = 0

X(3) = 0

Method 1 is simpler and quicker.

� Example 7.11

Find 8-point DFT of x[n] = {1, −1, 1, −1, 1, −1, 1, −1}.
(Anna University, April, 2004)

Solution

XN = WN xN

= W8x8 (7.42)
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W8 is given in Eq. (7.41)

x8 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−1

1

−1

1

−1

1

−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

X(0) is obtained by multiplying x8with the first row of W8. Thus,

X(0) = 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 = 0

X(1) = 2nd row ofW8to multiplyx8

= 1 − 1√
2

+ j
1√
2

− j + 1√
2

+ j
1√
2

− 1 + 1√
2

− j
1√
2

+ j = 0

X(2) = 3rd row ofW8to multiplyx8
= 1 + j − 1 − j + 1 + j − 1 − j = 0

X(3) = 1 + 1√
2

+ j
1√
2

+ j − 1√
2

+ j
1√
2

− 1 − 1√
2

− j
1√
2

− j + 1√
2

− j
1√
2

= 0

X(4) = 5th row ofW8to multiplyx8
= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 8

X(5) = 6th row ofW8to multiplyx8

= 1 + 1√
2

− j
1√
2

− j − 1√
2

− j
1√
2

− 1 − 1√
2

+ j
1√
2

+ j + 1√
2

+ j
1√
2

= 0

X(6) = 1 − j − 1 + j + 1 − j − 1 + j = 0

X(7) = 1 − 1√
2

− j
1√
2

+ j + 1√
2

− j
1√
2

− 1 + 1√
2

+ j
1√
2

− j − 1√
2

+ j
1√
2

= 0

X8 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

8

0

0

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



7.7 Discrete Fourier Transform (DFT) 697

7.7.3 Zero Padding

In evaluating the DFT, we assumed that the length of the DFT which is N is equal
to the length L of the sequence x[n]. If N < L, time domain aliasing occurs due to
under sampling and in the process we could miss out some important details and get
misleading information. To avoid this N , the number of samples of x[n] is increased
by adding some dummy samples of 0 value. This addition of dummy samples is
known as zero padding. The zero padding not only increases the number of samples
but also helps in getting a better idea of the frequency spectrum of X(�).

� Example 7.12

Compute the 4-point DFT of the sequence

x[n] = 1 0 ≤ n < 2

Solution For the given sequence L = 3 and N = 4. By adding a dummy samples of
0 values (zero padding), the given sequence becomes

x[n] = {1, 1, 1, 0}

xN =

⎡

⎢⎢⎢⎣

1

1

1

0

⎤

⎥⎥⎥⎦

W4 is given in Eq. (7.37).

X4 = W4x4

=

⎡

⎢⎢⎢⎣

1 1 1 1

1 −j −1 j

1 −1 1 −1

1 j −1 −j

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

1

1

1

0

⎤

⎥⎥⎥⎦

X(0) = [1 + 1 + 1 + 0] = 3

X(1) = [1 − j − 1 + 0] = −j

X(2) = [1 − 1 + 1 + 0] = 1

X(3) = [1 + j − 1 + 0] = j

X4 =

⎡

⎢⎢⎢⎣

3

−j

1

j

⎤

⎥⎥⎥⎦
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� Example 7.13

Compute the 4-points DFT of the following sequences:

(1) x[n] = {1, 1, 1, 1}
(2) x[n] = {1, 1, 0, 0}
(3) x[n] = cosπn

(4) x[n] = sin
nπ

2

(Anna University, April, 2004; November, 2007)
Solution

(1) x[n] = {1, 1, 1, 1}

x4 =

⎡

⎢⎢⎢⎣

1

1

1

1

⎤

⎥⎥⎥⎦

X4 = W4x4

=

⎡

⎢⎢⎢⎣

1 1 1 1

1 −j −1 j

1 −1 1 −1

1 j −1 −j

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

1

1

1

1

⎤

⎥⎥⎥⎦

X(0) = 1 + 1 + 1 + 1 = 4

X(1) = 1 − j − 1 + j = 0

X(2) = 1 − 1 + 1 − 1 = 0

X(3) = 1 + j − 1 − j = 0

X4 =

⎡

⎢⎢⎢⎣

4

0

0

0

⎤

⎥⎥⎥⎦

(2) x[n] = {1, 1, 0, 0}

X4 = W4x4

X4 =

⎡

⎢⎢⎢⎣

1 1 1 1

1 −j −1 j

1 −1 1 −1

1 j −1 −j

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

1

1

0

0

⎤

⎥⎥⎥⎦

X(0) = 1 + 1 + 0 + 0 = 2

X(1) = 1 − j + 0 + 0 = (1 − j)
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X(2) = 1 − 1 + 0 + 0 = 0

X(3) = 1 + j + 0 + 0 = (1 + j)

X4 =

⎡

⎢⎢⎢⎣

2

1 − j

0

1 + j

⎤

⎥⎥⎥⎦

(3) x[n] = cos πn; where n = 0, 1, 2, 3, . . .

x[n] = {1, −1, 1, −1}
X4 = W4x4

=

⎡

⎢⎢⎢⎣

1 1 1 1

1 −j −1 j

1 −1 1 −1

1 j −1 −j

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

1

−1

1

−1

⎤

⎥⎥⎥⎦

X(0) = 1 − 1 + 1 − 1 = 0

X(1) = 1 + j − 1 − j = 0

X(2) = 1 + 1 + 1 + 1 = 4

X(3) = 1 − j − 1 + j = 0

X4 =

⎡

⎢⎢⎢⎣

0

0

4

0

⎤

⎥⎥⎥⎦

(4) x[n] = sin nπ
2 ; where n = 0, 1, 2, 3, . . .

x[n] = {0, 1, 0, −1}
X4 = W4x4

=

⎡

⎢⎢⎢⎣

1 1 1 1

1 −j −1 j

1 −1 1 −1

1 j −1 −j

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

0

1

0

−1

⎤

⎥⎥⎥⎦

X(0) = 0 + 1 + 0 − 1 = 0

X(1) = 0 − j + 0 − j = −j2

X(2) = 0 − 1 + 0 + 1 = 0

X(3) = 0 + j + 0 + j = j2
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X4 =

⎡

⎢⎢⎢⎣

0

−j2

0

j2

⎤

⎥⎥⎥⎦

� Example 7.14

Find the N-point DFT of the following sequences for 0 ≤ n ≤ N − 1.

(1) x[n] = δ[n]
(2) x[n] = an

Solution

(1) x[n] = δ[n]

X(k) =
N−1∑

n=0

x[n]e−j 2πkn
N

x[n] =
{
1 n = 0

0 n �= 0

X(k) = 1

(2) x[n] = an

X(k) =
N−1∑

n=0

ane−j 2πkn
N

=
N−1∑

n=0

(
ae−j 2πkn

N

)n

Using the summation formula

N2∑

n=N1

ak = aN1 − aN2+1

(1 − a)

we get

X(k) =
(

ae−j 2πk
N

)0 −
(

ae−j 2πk
N

)N

(
1 − ae−j 2πk

N

)
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X(k) = (1 − aN )(
1 − ae−j 2πk

N

) [e−j2πk = 1]

� Example 7.15

Find the IDFT of the following functions with N = 4.

(1) X(k) = {1, 0, 1, 0}
(2) X(k) = {6, (−2 + j2), −2, (−2 − j2)}

Solution

(1) X(k) = {1, 0, 1, 0}

From Eq. (7.34)

xN = 1

N
[W∗

N ]XN

XN =

⎡

⎢⎢⎢⎣

1

0

1

0

⎤

⎥⎥⎥⎦

W∗
N =

⎡

⎢⎢⎢⎣

1 1 1 1

1 j −1 −j

1 −1 1 −1

1 −j −1 j

⎤

⎥⎥⎥⎦

For N = 4

xN = 1

4

⎡

⎢⎢⎢⎣

1 1 1 1

1 j −1 −j

1 −1 1 −1

1 −j −1 j

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

1

0

1

0

⎤

⎥⎥⎥⎦

x[0] = 1

4
[1 + 0 + 1 + 0] = 0.5

x[1] = 1

4
[1 + 0 − 1 + 0] = 0

x[2] = 1

4
[1 + 0 + 1 + 0] = 0.5

x[3] = 1

4
[1 + 0 − 1 + 0] = 0
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x[n] = {0.5, 0, 0.5, 0}

(2) x[n] = {6, (−2 + j2), −2, (−2 − j2)}

xN = 1

4

⎡

⎢⎢⎢⎣

1 1 1 1

1 j −1 −j

1 −1 1 −1

1 −j −1 j

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

6

−2 + j2

−2

−2 − j2

⎤

⎥⎥⎥⎦

x[0] = 1

4
[6 − 2 + j2 − 2 − 2 − j2] = 0

x[1] = 1

4
[6 − j2 − 2 + 2 + j2 − 2] = 1

x[2] = 1

4
[6 + 2 − j2 − 2 + 2 + j2] = 2

x[3] = 1

4
[6 + j2 + 2 + 2 − j2 + 2] = 3

x[n] = {0, 1, 2, 3}

7.8 Properties of DFT

7.8.1 Periodicity

If x[n] is the input sequence and X(k) is the N-point DFT of x[n], then the periodicity
of x[n] and X(k) are defined as

x[n + N] = x[n] (7.43)

X(k + N) = X(k) (7.44)

7.8.2 Linearity

Let x1[n] and x2[n] be two N-point sequences whose DFTs are X1(k) and X2(k).
Then

a1x1[n] + a2x2[n] DFT←→
N -points

a1X1(k) + a2X2(k)
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7.8.3 Complex Conjugate Symmetry

If

x[n] DFT←→ X(k)

then

x∗[n] DFT←→ X(N − k) (7.45)Proof

x∗[n] DFT←→ =
N−1∑

n=0

x∗[n]e−j2πkn/N

=
[

N−1∑

n=0

x[n]ej2πkn/N

]∗

=
[

N−1∑

n=0

x[n]e−j 2πN (N−k)n

]∗

x∗[n] DFT←→ = X∗(N − k)

7.8.4 Circular Time Shifting

If

x[n] DFT←→ X(k)

then

x[(n − m)]N
DFT←→ e−j 2πkm

N X(k) (7.46)

7.8.5 Circular Frequency Shifting

If

x[n] DFT←→ X(k)

then

x[n]ej 2πnl
N

DFT←→ X(k − l)N (7.47)
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7.8.6 Circular Correlation

If

x[n] DFT←→ X(k)

and

y[n] DFT←→ Y(k)

then

ry
DFT←→ Rxy(k) = X(k)Y∗(k)

where

rxy =
N−1∑

n=0

x[n]y∗(n − l)N (7.48)

7.8.7 Multiplication of Two DFTs

The multiplication of two DFTs is equal to circular convolution of two sequences
in time domain. Let x1[n] and x2[n] be finite duration sequences of length N
with their DFTs as X1(k) and X2(k), respectively. The sequence x1[n] when cir-
cularly convolves with x2[n] sequence, the circular convolution is represented as
x1[n]©N x2[n]. The DFT of circular convolution is

x1[n] ©N x2[n] DFT←→ X1(k)X2(k) (7.49)

7.8.8 Parseval’s Theorem

If

x[n] DFT←→ X(k)

and

y[n] DFT←→ Y(k)

then
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N−1∑

n=0

x[n]y∗[n] = 1

N

N−1∑

k=0

X(k)Y∗(k) (7.50)

7.9 Circular Convolution

To determine the circular convolution of any two sequences, x1[n] and x2[n] of length
N , the following methods are discussed:

1. Circle Method.
2. Matrix multiplication method.
3. DFT-IDFT Method.

7.9.1 Circular Convolution—Circle Method

The circular convolution of two sequences is symbolically represented as

y[n] = x1[n] ©N x2[n] (7.51)

The following steps are followed to find y[n]:
1. Draw two concentric circles of two different diameters. The data points of x1[n]

are placed on the outer circle in the counter-clockwise direction at equidistance.
2. The data points of x2[n] are placed on the inner circle in the clockwise direction

at equidistance.
3. The first data value of both the sequences should be in alignment.
4. Multiply the corresponding values in both the circles and add them. This corre-

sponds to first data value of the circular convolution.
5. Rotate the inner circle in the counter-clockwise direction by one sample and repeat

step 4. This corresponds to the second data value of the circular convolution.
6. Repeat step 5 until one revolution is complete. Each time repeat step 4 to get the

data value of the circular convolution.

� Example 7.16

Consider the following two sequences:

x1[n] = {2, 1, 4, −3}
x2[n] = {−1, 2, 3, −2}

Find the circular convolution
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y[n] = x1[n] ©N x2[n]

Use circle method.

Solution

1. x1[n] is marked in the outer circle in the anticlockwise direction and x2[n] is
marked in the inner circle in the clockwise direction as shown in Fig. 7.9a.

y[0] = x1[0]x2[0] + x1[1]x2[3] + x2[2]x2[2] + x1[3]x2[1]
= 2(−1) + 1(−2) + 4(3) + (−3)2 = 2

2. The outer circle is kept fixed and the inner circle is rotated in the anticlockwise
direction by one sample. This is shown in Fig. 7.9b.

y[1] = x1[0]x2[1] + x1[1]x2[0] + x1[2]x2[3] + x1[3]x2[2]
= 2 × 2 + 1(−1) + 4(−2) + (−3)3 = −14

3. Keeping the outer circle of Fig. 7.9b fixed, the inner circle is rotated in the anti-
clockwise direction by one sample. This is shown in Fig. 7.9c.

y[2] = 2 × 3 + 1 × 2 + 4(−1) + (−3)(−2) = 10

4. The outer circle of Fig. 7.9c is kept fixed and the inner circle is rotated by one
sample in the anticlockwise direction by one sample. This is shown in Fig. 7.9d
(Fig. 7.10).

y[3] = 2(−2) + 1 × 3 + 4 × 2 + (−3)(−1) = 10

5.

y[n] = [2, −14, 10, 10]

7.9.2 Circular Convolution-Matrix Multiplication Method

In this method, the circular convolution of two sequences x1[n] and x2[n] are obtained
by representing these sequences in matrix form as given below.
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Fig. 7.9 a–d Circular
convolution-circle method x1[1]

x2[3]

x2[1]

x1[3]

x1[2] x2[2]

x1[0]x2[0]

1
(a)

(b)

2

3

1
4 3

2

2

x1[1]

x2[0]

x2[2]

x1[3]

x1[2] x2[3]

x1[0]

1

1

2

x2[1]

2

3

4

3

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2[0] x2[N − 1] · · · x2[2] x2[1]
x2[1] x2[0] · · · x2[3] x2[2]
x2[2] x2[1] · · · x2[4] x2[3]
...

...
...

...
...

x2[N − 2] x2[N − 3] · · · x2[0] x2[N − 1]
x2[N − 1] x2[N − 2] · · · x2[1] x2[0]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1[0]
x1[1]
x1[2]
...

x1[N − 2]
x1[N − 1]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

y[0]
y[1]
y[2]
...

y[N − 2]
y[N − 1]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.52)
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Fig. 7.9 (continued)

x1[1]

x2[2]

x2[0]

x1[3]

x1[2] x2[1]

x1[0]

1
(d)

1

22

x2[3]

3

4

3

2

(c)
x1[1]

x2[1]

x2[3]

x
1
[3]

x1[2] x2[0]

x1[0]

1

2

1 x2[2]

3

3

2

4

2

� Example 7.17

Consider the following two sequences:

x1[n] = {2, 1, 4, −3} and x2[n] = {−1, 2, 3, −2}

Find the circular convolution

y[n] = x1[n] ©N x2[n]

Use matrix multiplication method.

Solution The following matrices are formed using x1[n] and x2[n]
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3

2

4

0

1
1

3

1

4

5

1
0

3

0

4

2

25

21
1

5

3

5

4

1

22

20
1

2

(a)

(c)

(b)

(d)

Fig. 7.10 Circular convolution by circle method for Example 7.19

⎡

⎢⎢⎢⎣

2 −3 4 1

1 2 −3 4

4 1 2 −3

−3 4 1 2

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

−1

2

3

−2

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

−2 − 6 + 12 − 2 = 2

−1 + 4 − 9 − 8 = −14

−4 + 2 + 6 + 6 = 10

3 + 8 + 3 − 4 = 10

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

2

−14

10

10

⎤

⎥⎥⎥⎦

y[n] = {2, −14, 10, 10}

7.9.3 Circular Convolution-DFT-IDFT Method

According to the DFT property given in Eq. (7.49), the circular convolution is,

x1[n] ©N x2[n] DFT←→ X1(k)X2(k)
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For the given x1[n] and x2[n], X1(k) and X2(k) are found and for this product IDFT
is found to get y(k). Use of twiddle factor is to be preferred.

� Example 7.18

Consider the following two sequences:

x1[n] = {2, 1, 4, −3} and x2[n] = {−1, 2, 3, −2}

Find the circular convolution

y[n] = x1[n] ©N x2[n]

Use DFT-IDFT method.

Solution

X4 = W4x4 where N = 4

W4 =

⎡

⎢⎢⎢⎣

1 1 1 1

1 −j −1 j

1 −1 1 −1

1 j −1 −j

⎤

⎥⎥⎥⎦

X1(k) =

⎡

⎢⎢⎢⎣

1 1 1 1

1 j −1 −j

1 −1 1 −1

1 −j −1 j

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

2

1

4

−3

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

4

−2 − j4

8

−2 + j4

⎤

⎥⎥⎥⎦

X2(k) =

⎡

⎢⎢⎢⎣

1 1 1 1

1 j −1 −j

1 −1 1 −1

1 −j −1 j

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

−1

2

3

−2

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

2

−4 − j4

2

−4 + j4

⎤

⎥⎥⎥⎦

Y(k) = X1(k)X2(k)

= [4 − 2 − j4 8 − 2 + j4][2 − 4 − j4 2 − 4 + j4]
= {8 (−8 + j24) 16 (−8 − j24)}

y[n] = 1

4
W∗

4 Y4

= 1

4

⎡

⎢⎢⎢⎣

1 1 1 1

1 j −1 −j

1 −1 1 −1

1 −j −1 j

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

8

−8 + j24

16

−8 − j24

⎤

⎥⎥⎥⎦
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y[n] = {2, −14, 10, 10}

� Example 7.19

Consider the following two sequences:

x1[n] = {2, 3, 1, 4}
x2[n] = {5, 2, 1}

Find the circular convolution

y[n] = x1[n] ©N x2[n]

by the following methods. (1) Circle method; (2) Matrix multiplication method and
(3) DFT-IDFT method.

Solution

1. Circle Method

x1[n] = {2, 3, 1, 4}
x2[n] = {5, 2, 1}

The length of x2[n] should be equal to the length of x1[n] sequence. This is done
by zero padding. Thus,

x2[n] = {5, 2, 1, 0}

The outer circle which is fixed represents x1[n] in a 4-point DFT. The inner circle
which is rotated by one sample at a time represents x2[n] sequence as shown in
Fig. 7.9.

y[0] = 5 × 2 + 3 × 0 + 1 × 1 + 4 × 2 = 19 (From Fig. 7.9a)

y[1] = 2 × 2 + 3 × 5 + 1 × 0 + 4 × 1 = 23 (From Fig. 7.9b)

y[2] = 2 × 2 + 3 × 2 + 1 × 5 + 4 × 0 = 13 (From Fig. 7.9c)

y[3] = 2 × 0 + 3 × 1 + 1 × 2 + 4 × 5 = 25 (From Fig. 7.9d)

y[n] = {19 23 13 25}

2. Matrix Method: The following matrices are formed with x1[n] and x2[n]
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y[n] =

⎡

⎢⎢⎢⎣

2 4 1 3

3 2 4 1

1 3 2 4

4 1 3 2

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

5

2

1

0

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

10 + 8 + 1

15 + 4 + 4

5 + 6 + 2

20 + 2 + 3

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

19

23

13

25

⎤

⎥⎥⎥⎦

y[n] = {19 23 13 25}

3. DFT-IDFT Method
For a 4-point DFT

W4 =

⎡

⎢⎢⎢⎣

1 1 1 1

1 −j −1 j

1 −1 1 −1

1 j −1 −j

⎤

⎥⎥⎥⎦

XN = W4xn

X1(k) =

⎡

⎢⎢⎢⎣

1 1 1 1

1 j −1 j

1 −1 1 −1

1 j −1 −j

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

2

3

1

4

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

10

1 + j

−4

1 + j

⎤

⎥⎥⎥⎦

X2 = W4x4

X2(k) =

⎡

⎢⎢⎢⎣

1 1 1 1

1 −j −1 j

1 −1 1 −1

1 j −1 −j

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

5

2

1

0

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

8

4 − j2

4

4 + j2

⎤

⎥⎥⎥⎦

Y(k) = X1(k)X2(k)

= [10 (1 + j) − 4 (1 − j)][8 (4 − j2) 4 (4 + j2)]
= {80 (6 + j2) − 16 (6 − j2)}

y[n] = 1

4
W∗

4 Y4

W∗
N =

⎡

⎢⎢⎢⎣

1 1 1 1

1 j −1 −j

1 −1 1 −1

1 −j −1 j

⎤

⎥⎥⎥⎦

y[n] = 1

4

⎡

⎢⎢⎢⎣

1 1 1 1

1 j −1 −j

1 −1 1 −1

1 −j −1 j

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

80

6 + j2

−16

6 − j2

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

19

23

13

25

⎤

⎥⎥⎥⎦

y[n] = {19, 23, 13, 25}
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7.10 Fast Fourier Transform

For spectral analysis of DT signals, DFT approach is very straight forward. For larger
values of N which is greater than 128 points, DFT becomes tedious because of the
huge number of mathematical operations required to perform. Several algorithms
have been developed to ease the implementation of DFT. The algorithm developed
byCooley and Turkey in 1965 is themost efficient one and its application is discussed
here.

Consider Eqs. (7.26) and (7.27) which are given below

X(k) =
N−1∑

n=0

x[n]e−j2πkn/N

x[n] = 1

N

N−1∑

k=0

X(k)Wkn
N

In direct evaluation of spectral components, the number of complex multiplication
and addition required are N2 and N(N − 1) respectively. Such a huge number of
mathematical operations limit the bandwidth of digital signal processors. Classical
DFT approach does not use the two important properties of twiddle factor, namely
symmetry and periodicity properties which are given as

Wk+N/2
N = −Wk

N (7.53)

Wk+N
N = Wk

N (7.54)

Radix-2 FFT algorithm exploits these two properties thereby removing redundant
mathematical operations. This results in the required number of complex multipli-
cation for an N-point FFT approximately as N

2 log2 N . However, the results obtained
using FFT is exactly the same as that of DFT. The efficiency of the FFT algorithm
increases as the number N is increased. For example, if N = 512, DFT requires
nearly 110 times more multiplications than FFT algorithm.

The basic principle of FFT algorithm is to decompose DFT into successively
smaller DFTs. The number of points N must be equal to 2k where k is some positive
integer. The FFT algorithms have been developed in (1) Decimation in time and (2)
Decimation in frequency.

7.10.1 FFT Algorithm-Decimation in Time

In Radix-2 FFT each DFT is divided into two smaller DFTs and in Radix-4, each
DFT is divided into four smaller DFTs. The N-point DFT is given by the following
equation:
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X(k) =
N−1∑

n=0

x[n]e−j2πkn/N

=
N−1∑

n=0

x[n]Wkn
N (7.55)

The input sequence x[n] is divided into groups of even and odd indexed elements.
Hence, Eq. (7.55) can be split up into two parts and represented as given below

X(k) =
N−1∑

n=0

x[n]Wkn
N +

N−1∑

n=0

x[n]Wkn
N (7.56)

(n = even) (n = odd)

Let us introduce the new variable

m =
{

n
2 n = even
(n−1)

2 n = odd
(7.57)

Now

X(k) =
N
2 −1∑

m=0

xe[2m]W2km
N +

N−1∑

m=0

xo[2m + 1]W (2m+1)k
N (7.58)

In the second summation, taking out the factor Wk
N we get

X(k) =
N
2 −1∑

m=0

xe[2m]W2km
N + Wk

N

N−1∑

m=0

xo[2m + 1]W2mk
N (7.59)

But

W2
N = e−j2π2/N = e−j2π/( N

2 )

= WN/2

Equation (7.59) can therefore be written as

X(k) =
N
2 −1∑

m=0

xe[m]Wkm
N/2 + Wk

N

N
2 −1∑

m=0

xo[m]Wkm
N/2 (7.60)

= Xe(k) ± Wk
N Xo(k) (7.61)
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x[0]
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DFT
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point

DFT
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N

Fig. 7.11 N-point DFT realization using two N
2 point DFTs

x[0] X(0)

X(1)x[2]

x[N 2] X(   1)2
N

X(   1)2
N

X(   1)N

X(   )2
N

point
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point
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N

x[1]

x[3]

x[N 1]

0
NW

2
NW
N/2 1
NW

N 1
NW

N/2 1
NW

N/2
NW

Fig. 7.12 Data flow graph for N-point FFT using N
2 points DFTs

Equation (7.61) is represented as shown in Fig. 7.11. Figure7.12 shows the data flow
graph.

In Eq. (7.61) for the first N
2 point, transforms are obtained by summing up the

weighted outputs of Xe(k) and Xo(k). In view of the symmetry property of twiddle
factor Wk+(N/2)

N = −Wk
N , the remaining N

2 transforms are obtained by differencing
the weighted outputs.

The N
2 point DFT is further divided into two groups so that we get N

4 -point DFTs
and so on until only two points DFTs are used to realize the N-point FFT. This is
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x[N 3]

x[N 1]

Fig. 7.13 Decimation in time Radix-2 FFT algorithm

the reason to put the constraint that the number of points in FFT are chosen as the
power of 2. This is called Radix-2 FFT (Fig. 7.13).

The upper N
2 point FFT can be further subdivided into two N

4 point DFTs with
their odd and even components as

Xe(m) =
N
2 −1∑

n=0

xe[2n]Wnm
N/2 =

N
4 −1∑

n=0

xee[4n]W2nm
N/2

N
4 −1∑

n=0

xeo[4n + 2]W (2n+1)m
N/2 (7.62)

Substituting W2nm
N/2 = Wnm

N/2, Eq. (7.62) is written as
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Xe(0) X(0)  Xe (0)  W8
0 Xo (0)

X(4)  Xe (0)  W8
0 Xo (0)Xo(0)

W8
0 

Fig. 7.14 Flow graph for X(0) and X(4) in Eq. (7.65)

Xe(m) =
N
4 −1∑

n=0

xee[4n]Wnm
N/4 + Wm

N/2

N
4 −1∑

n=0

xeo[4n + 2]Wnm
N/4 (7.63)

X0(m) =
N
4 −1∑

n=0

xoe[4n + 1]Wnm
N/4 +

N
4 −1∑

n=0

xoe[4n + 3]Wnm
N/4 (7.64)

where xee[4n] is the DFT for m = 4n, n = 0, 1, . . . , N
4 − 1.

To illustrate the decimation in time, consider an 8-point FFT. Equation (7.61)
becomes

X(k) =
{

Xe(k) + Wk
8Xo(k) for 0 ≤ k ≤ 3

Xe(k) − Wk
8Xo(k) for 4 ≤ k ≤ 7

For different values of k, we get

X(0) = Xe(0) + W0
8 Xo(0); X(1) = Xe(1) + W1

8 Xo(1)

X(2) = Xe(2) + W2
8 Xo(2); X(3) = Xe(3) + W3

8 Xo(3)

X(4) = Xe(0) + W0
8 Xo(0); X(5) = Xe(1) + W1

8 Xo(1)

X(6) = Xe(2) + W2
8 Xo(2); X(7) = Xe(8) + W3

8 Xo(3) (7.65)

From Eq. (7.65), it is obvious that X(0) and X(4) have the same inputs. This is
represented in Fig. 7.14.

Using the above representation, it can be extended to 8-point FFT. The 8-point
FFT flow graph using 4-point DFTs is shown in Fig. 7.15.

Now the 4-point DFT can be further decomposed into two 2-point DFTs with the
odd and even inputs of the respective 4-points DFTs Xe(k) and Xo(k) are obtained
using Eqs. (7.63) and (7.64), respectively. Thus,
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0
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3
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1
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Fig. 7.15 Flow graph for 8-point FFT using 4-point DFTs

Xe(0) = Xee(0) − W0
8 Xeo(0)

Xe(1) = Xee(1) − W2
8 Xeo(1)

Xe(2) = Xee(0) − W0
8 Xeo(0)

Xe(3) = Xee(1) − W2
8 Xeo(1) (7.66)

where Xee is the two points DFT of the even index of xe[n]. X0e is the 2-point DFT
of the odd index of xe[n]. Equation (7.66) is represented by the flow chart as shown
in Fig. 7.16.

The final 2-point DFT (first stage) involves only addition and subtraction since
the twiddle factor present here are W0

8 and W4
8 respectively. Therefore

Xee(0) = x(0) + W0
8 x(4) = x(0) + x(4)

Xee(1) = x(0) + W4
8 x(4) = x(0) − x(4)

and so on. The signal flow graph for the 8-point FFT is shown in Fig. 7.17.
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Fig. 7.16 Signal flow graph for 8-point FFT using four 2-point FFTs
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Fig. 7.17 Signal flow chart for 8-point FFT
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� Example 7.20

Compute the 8-point DFT using FFT algorithm for the following sequence

x[n] = {0.5, 0.5, 0.5, 0.5, 0, 0, 0, 0}
(Anna University, December, 2007)

Solution Pass-1

0.5 0 0.5x(0) 0.5

x(4) 0 0.5 0 0.5

0.5 0 0.5x(2) 0.5

x(6) 0 0.5 0 0.5

0.5 0 0.5x(1) 0.5

x(5) 0 0.5 0 0.5

0.5 0 0.5x(3) 0.5

x(7) 0 0.5 0 0.5

W   1

1

1

1

1

0
2

W   1
0
2

W   1
0
2

W   1
0
2

W   1
1
2

W   1
1
2

W   1
1
2

W   1
1
2
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Pass-2
0.5 0.5 1

0.5 0.5 0

0.5 j 0.5

0.5 j 0.5

0.5 0.5 1

0.5 0.5 0

0.5 j 0.5

0.5 j 0.5

1

1

1

1
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

W   1
0
4

W   1
0
4

W   j
1
4

W   j
1
4
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Pass-3

0.5 j 1.2

0.5 j 0.2

0.5 j 0.2

1

1

1

1
0.5 j 1.2

2

0

0

0

0.5 j .5

0.5 j .5

0.5 j .5

0.5 j .5

0

1

0

1

W   
0
8

W   
0
8

W   
1
8

W   
3
8

X(k) = {2, (0.5 − j1.2), 0, (0.5 − j0.2), 0, (0.5 + j0.2), 0, (0.5 + j1.2)}

7.10.2 FFT Algorithm-Decimation in Frequency

In the decimation in time (DIT) FFT algorithm, the input sequence is divided into
even and odd indexed elements. In the decimation in frequency (DIF) FFT algorithm,
the input sequence is divided into groups as first half of the sequence and second half
of the sequence. The subsequent steps lead to grouping the spectral components into
even indexed and odd indexed elements.

The DFT of the sequence x[n] is expressed as

X(k) =
N−1∑

n=0

x[n]Wkn
N (7.67)

Now divide the input sequence into two groups as

X(k) =
N
2 −1∑

n=0

x[n]Wkn
N +

N−1∑

n= N
2

x[n]Wkn
N

=
N
2 −1∑

n=0

x[n]Wkn
N +

N
2 −1∑

n=0

x

[
n + N

2

]
W(n+ N

2 )k
N (7.68)
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=
N
2 −1∑

n=0

x[n]Wkn
N + W

N
2 k

N

N
2 −1∑

n=0

x

[
n + N

2

]
Wkn

N (7.69)

since W
N
2 k

N = (−1)k , the above equation is written as

X(k) =
N
2 −1∑

n=0

x[n]Wkn
N + (−1)k

N
2 −1∑

n=0

x

[
n + N

2

]
Wkn

N

=
N
2 −1∑

n=0

[
x[n] + (−1)kx

[
n + N

2

]
Wkn

N

]
(7.70)

Now dividing X(k) into even and odd indexed elements we get, for even indexed
elements

X(2k) =
N
2 −1∑

n=0

[
x[n] + x

(
n + N

2

)]
W2kn

N k = 0, 1, . . . ,

(
N

2
− 1

)

Since W2kn
N = Wkn

N
2
and (−1)k = 1, the above equation written as

X(2k) =
N
2 −1∑

n=0

[
x[n] + x

(
n + N

2

)]
Wkn

N k = 0, 1, . . . ,

(
N

2
− 1

)
(7.71)

Similarly, the odd indexed elements of X(k) are expressed as

X(2k + 1) =
N
2 −1∑

n=0

[
x[n] − x

(
n + N

2

)]
W (2k+1)n

N

=
N
2 −1∑

n=0

[
x[n] − x

(
n + N

2

)
Wn

N

]
Wkn

N
2

(7.72)

The signal flow graph for DIF-FFT algorithm is shown in Fig. 7.18.
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x[0] X(0)

X(4)

X(2)

X(6)

X(1)

X(5)

X(3)

X(7)

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

Pass 1

1

1

1

1

111

1 1

1

Pass 2 Pass 3

W 0
8

W 0
4

W 1
4

W 0
4

W 1
4

W 1
8

W 2
8

W 3
8

1

1

Fig. 7.18 Signal flow graph of 8-point DIF-FFT algorithm. W0
8 = 1; W1

8 = 1√
2

− j 1√
2
; W2

8 =
−j; W3

8 = − 1√
2
(1 + j); W0

4 = 1; W1
4 = −j

� Example 7.21

Compute the 8-point DFT using FFT algorithm in decimation in frequency for the
following frequency

x[n] = {0.5, 0.5, 0.5, 0.5, 0, 0, 0, 0}

(Anna University, December, 2007)
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Solution
Step 1.

x[0] X(0)

X(4)

X(2)

X(6)

X(1)

X(5)

X(3)

X(7)

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

Pass 1

1

1

1

1

111

1 1

1

Pass 2 Pass 3

W 0
8

W 0
4

W 1
4

W 0
4

W 1
4

W 1
8

W 2
8

W 3
8

1

1
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Step 2.

0.5

0.5

(0.5 0)(1) 0.5

(0.5 0)( j)

(0.5 0)(   )(1 j)

0.5

0.5

0

0

0.5

0.5

0

0
1

0.5

0.5

1
2

(0.5 0)(     )(1 j)1
21

2
(1 j)

1
2

(1 j)

j

W
0
8

W
1
8

W
2
8

W
3
8

X(k) = {1, 1, 0, 0, (0.5 − j0.5), −j0.7, (0.5 + j0.5), −j0.7}
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(0.5 0.5) 1

0.5

0.5

0.5

0.5

1

0

0

1

1

1

j

0.5

j 0.5

1

1

1

j

0.35 j 0.35

0.35 j 0.35

0.5 j 0.5

0.5 j 0.5

(0.35 j 0.35)
( 0.35 j 0.35) j 0.7

(0.35 j 0.35)
( 0.35 j 0.35)( j) j 0.7

0 X(4)

1
1

1
1

2 X(0)

0 X(6)

0
1

1
0

0 X(2)

0.5 j 0.5 (0.5 j 0.5) (  j 0.7) 0.5 j 1.2 X(1)

(0.5 j 0.5) (  j 0.7) 0.5 j 0.2 X(5)j 0.7

1

1

1

1

0.5 j 0.5 (0.5 j 0.5) (  j 0.7) 0.5 j 0.2 X(3)

(0.5 j 0.5) (  j 0.7) 0.5 j 1.2 X(7)j 0.7

1

1
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X(k) = {2, (0.5 − j1.2), 0, (0.5 − j0.2), 0, (0.5 + j0.2), 0, 0.5 + j1.2}

� Example 7.22

Find the response of an LTI system with impulse response

h[n] = {1, 2}

for the input

x[n] = {1, 2, 1}

using DIT-FFT algorithm.

(Anna University, April, 2005)

Solution

h[n] = {1, 2}
x[n] = {1, 2, 1}

The sequences should be of equal 2k length. After zero padding, the given sequences
are written as

x[n] = {1, 2, 1, 0, } and h[n] = {1, 2, 0, 0}

Step 1.

x(0) 1

1

1
2

2

2

0x(2) 1

x(1) 2

x(4) 0

0
2W  1

0
2W  1

2 2 4

0 2(  j) 2j

0 2(  j) j2

0
0
4W  1

1
4W  j
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Step 2.

1

1

1

1

2

2

h(0) 1

h(2) 0

h(1) 2

h(4) 0

0
2W  1

0
2W  1

1 2 3

1 2(  j1) j2

1  j2

1
1

1

0
4W  1

1
4W  j

Step 3.

y[n] = x[n] ∗ h[n]

and

Y(k) = X(k)H(k)

= [4 − j2 0 j2]

⎡

⎢⎢⎣

3
1 − j2
−1

1 + j2

⎤

⎥⎥⎦

Y(k) = {12, (−4 − j2), 0, (−4 + j2)}

Step 4. To find y[n]
Y*(0) 12

Y*(1) 4 j 2 ( 4 j 2) ( 4 j 2) 8

( 4 j 2) ( 4 j 2) j4Y*(3) 4 j 2

1

1

1

1

12

12Y*(2) 0
0
2W  1

0
2W  1

Y∗(k) = {12, (−4 + j2), 0, (−4 − j2)}
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1

1

8

12

12 12

12 8 4

12 ( 8) 20

12 j4( j) 8

0
4W  1

1
4W  j

j4

1

Y*(K)
y*[n]

N

FFT

The output sequence y[n] = 1
N [Ny∗[n]]

y[n] = {1, 3, 5, 2}

Summary

1. The Fourier transform is nothing but the description of x[n] in the frequency
domain. The transformed spectrum is periodic.

2. Discrete Time Fourier Transform (DTFT) and Inverse Discrete Time
Fourier Transform (IDTFT) are defined.

3. The connection between the DTFT and the z-transform is that if the ROC
of z-transform contains unit circle, the DTFT is evaluated on the unit circle.
This is equivalent to substituting z = ej� in the z-transform to get DTFT
provided x[n] is summable.

4. A certain properties ofDTFThave been derived. These properties are useful
to determine the DTFT and IDTFT very quickly.

5. Using DTFT and IDTFT, it is possible to solve LTI systems characterized
by difference equation.

6. The DTFT is used to transform x[n] to a continuous periodic spectrum.
This short of representation is not very much suited for use in digital com-
puter. The DTFT is sampled at finite number of frequency points in one
period. This is called Discrete Fourier Transform (DFT) which has many
advantages over that of DTFT.

7. Similar to DTFT pair, DFT pair is also defined.
8. The number of computations required to perform DFT is significantly

reduced by an algorithm known as Fast Fourier Transform (FFT).
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9. FFT using decimation in time and decimation in frequency are explained
with numerical examples illustrated.

Exercises

I. Short Answer Type Questions

1. Define DTFT pair.
The discrete time Fourier transform is defined as

X(�) =
∞∑

n=−∞
x[n]e−j�n

The inverse discrete time Fourier transform is defined as

x[n] = 1

2π

∫

2π
X(�)ejn�d�

2. What are the necessary and sufficient conditions for the existence of
DTFT?
The necessary and sufficient conditions for the existence of DTFT is that
the sequence x[n] should be absolutely summable. That is

∞∑

n=−∞
|x[n]| < ∞

Alternatively, if the sequence x[n] has finite energy

E =
∞∑

n=−∞
|x[n]|2 < ∞

then DTFT exists.
3. Define DFT pair.

The discrete Fourier transform pair is defined as follows. The DFT is given
by



732 7 Fourier Transform Analysis of Discrete Time Signals …

X(k) =
N−1∑

n=0

x[n]e−j2πkn/N

The IDTFT is given by

x[n] = 1

N

N−1∑

k=0

X(k)ej2πkn/N

4. Is the IDFT of DFT periodic or not? Give your comment.

x[n] = 1

N

N−1∑

k=0

X(�)W−kn
N

where WN = 1∠−2π/N . WN lies on the unit circle in the complex plane
and gets repeated for every 2π . Hence, IDFT is periodic with period 2π .

5. What is the DFT of an?

an DTFT←→ (1 − aN )

(1 − ae−j 2πk
N )

6. What is the connection between the z-transform and the DTFT?
When the ROC for X[z] includes the unit circle, substituting z = ej� in X[z]
gives the DTFT X(�).

7. Find the system transfer function for the following difference
equation?

y[n] − 0.8 y[n − 1] = x[n]

H[�] = 1

(1 − 0.8e−j�)

8. Find the frequency responses for the following difference equation?

y[n] − 0.1 y[n − 1] = x[n]

H[�] = 1∠− tan−1 0.1 sin�
(1−0.1 cos�)√

(1 − 0.1 cos�)2 + 0.01 sin2 �

9. What is the DTFT of unit step response?
The DTFT of unit step response is



7.10 Fast Fourier Transform 733

X(�) = πδ(�) + 1

(1 − e−j�)

10. What is the DTFT of x[−n]?
The DTFT of x[−n] is X(−�)

11. What do you understand by zero padding?
In evaluating DFT we assume that the length of the DFT which is N which
is equal to the length L of the sequence x[n]. IfN < L, time domain aliasing
occurs. To avoid this dummy samples are added with value 0 in X[k]. This
is called zero padding.

12. Find DTFT and DFT of δ[n] = 1?

δ[n] DTFT←→ 1

δ[n] DFT←→ 1

13. Find the inverse DTFT of X[�] = δ[�]?

δ[�] IDTFT←→ 1

2π
− π < � < π

14. Find Y(�).

x[n] =
(

−1
3

)n

u[n]

h[n] =
(

1
3

)n

u[n]
y[n] = x[n] ∗ h[n]

Y(�) = 1(
1 + 1

3e−j�
) (
1 − 1

3e−j�
)

15. Find X(�).

x[n] = u[n] − u[n − 3]

X(�) = 1 + e−j� + e−j2�
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II. Long Answer Type Questions

1. Find the DTFT of

x[n] = (0.5)nu[n] − 2−nu[−n − 1]

(Anna University, December, 2007)
DTFT for 2−nu[−n − 1] does not converge and hence does not exist.

2. Find the DTFT of

x[n] = (0.5)nu[n] − (.5)−nu[−n − 1]

X(�) = (2 − 2.5e−j�)

(1 − 0.5e−j�)(1 − 2e−j�)

3. Find the DTFT of

x[n] =
(

1
3

)n

u[n + 2]

X(�) = 9ej2�

(
1 − 1

3e−j�
)

4. Find the DTFT of

x[n] = n
(

1
4

)n

u[n]

X(�) = 0.25ej�

(
ej� − 0.25

)2

5. Find the DTFT of x[n]

x[n] =
{

1 0 ≤ |n| ≤ 8
0 otherwise

X(�) = sin 8.5�

sin 0.5�
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6. Find Y(�).

x[n] =
(

1
6

)n

u[n]
h[n] = − (3)n u[−n − 1]
y[n] = x[n] ∗ h[n]

Y(�) = 1(
1 − 1

6e−j�
) (
3e−j� − 1

)

7. Find X(�).

x[n] = (n + 2)

(
1
2

)n

u[n]

X(�) = 2(1 + 1.25e−j�)

(1 − 0.5e−j�)2

8. Find X(�).

x[n] =
(

1
3

)|n−1|
u[n − 1]

X(�) = 8e−j�

9 − cos�

9. Find X(�).

x[n] = (n − 2)2x[n]

X(�) = −d2X(�)

d�2
− 4j

dX(�)

d�
+ 4X(�)

10. Solve the following difference equation.

y[n − 2] − 1
6
y[n − 1] − 1

6
y[n] = x[n]

where x[n] = ( 1
4

)n
u[n]
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y[n] =
[
6

5

(
1

2

)n

+ 8

35

(
−1

3

)n

− 3

7

(
1

4

)n]
u[n]

11. Where ∠X(�) = �, find x[n].

X(�) =
{

5 0 ≤ |�| < π

0 |�| > π

x[n] = 5

π(n − 1)
sin(n − 1)π

= 5 sinc (n − 1)π

12. Find the 4-point DFT of x[n] = {0, 1, 2, 3}. (Anna University, April, 2005)

X(0) = 6; X(1) = −2 + j2; X(2) = −2; X(3) = −2 − j2

13. Find the IDFT of the following functions with N = 4

X(k) = {1, 2, 3, 2}

x[n] = {−2, −0.5, 0, −0.5}

14. Consider the following two sequences:

x1[n] = {1, 2, 2, 1} and x2[n] = {2, 1, 1, 2}

Find the circular convolution y[n] = x1[n] ©N x2[n]

y[n] = {9, 10, 9, 8}



Chapter 8
The Laplace Transform Method for the
Analysis of Continuous Time Signals and
Systems

Learning Objectives

� To develop a new transform method, the Laplace transform (LT) which is appli-
cable for the analysis of continuous time signals and systems.

� To determine the range of signals to which the LT is applicable.
� To derive the properties of LT.
� To determine the LT of typical Continuous Time (CT) signals.
� To develop inverse LT method and illustrate it with examples.
� To solve differential equations with and without initial conditions using LT and

inverse LT and also by classical method.
� To realize the structure of linear time invariant continuous time systems using LT.

8.1 Introduction

TheContinuous Time Fourier Transform (CTFT) is a powerful tool for the analysis of
CT signals and systems. However, the method has its limitation in that some useful
signals do not have CTFT because these signals do not converge. Marquis Pierre
Simon de Laplace (1749–1827), the great French mathematician and Astronomer
and the contemporary of Fourier (1768–1830), Louis de Lagrange and the French
ruler Napoleon, developed a new transform technique which overcame the problem
of convergence in CTFT. Laplace, first presented the transform and its applications to
solve linear differential equations in a paper published in the year 1779, when he was
just 30 years of age. For his excellent contributions to probability theory, astronomy,
special functions and celestial mechanics, Laplace was honored by Napoleon, as a
policy of honoring and promoting scientists of high caliber, by appointing him as a
minister in the French Government. However, Laplace, a born genius, showed more
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interest in his research activities and totally neglected the administrative work in the
government. It was no surprise that soon Laplace was sacked from the ministerial
post by his admirer, Napoleon.

The CTFT expresses signals as linear combinations of complex sinusoids. Some
useful signals, when expressed as a combination of complex sinusoids, do not con-
verge and they do not have Fourier transform (FT). However, Laplace made a small
modification in his transform technique from time domain to frequency domain by
expressing time signals as linear combinations of complex exponential instead of
complex sinusoids. LT is more general since complex sinusoids are a special case
of complex exponentials. Thus, LT can describe functions that FT cannot describe.
Both the FT and LT using mathematical operations, convert the time signal x(t) to
frequency function X(jω) and X(s), respectively, where s = σ + jω. By introduc-
ing σ in LT method, most of the signals become damped waves and convergence
becomes possible. However, it is to be noted that there exists a class of signals which
do not converge in LT also, and for these signals, LT does not exist.

The LT, even though a very powerful tool in the analysis and design of linear time
invariant signals and systems today, did not catch on until nearly a century later. We
discuss the development of the LT in the following sections.

8.2 Definition and Derivations of the LT

The time signal x(t) is expressed as a linear combination of complex sinusoids of the
form ejωt by the FT. Here, jω takes only imaginary value of ω which is associated
with the frequency f as ω = 2π f . Thus, some of the useful time functions such
as x(t) = eat do not coverage as per the FT. By changing the complex sinusoid to
complex exponential of the form est , the FT can be generated and is termed as the
LT, and is defined as

L[x(t)] = X(s) =
∫ ∞

−∞
x(t)e−stdt (8.1)

The complex variable s has a real part and an imaginary part and is expressed as

s = σ + jω (8.2)

If the real part σ = 0, then Eq. (8.1) becomes a special case and it becomes the FT.
By substituting s = (σ + jω), Eq. (8.1) can be written as follows:

X(s) =
∫ ∞

−∞
x(t)e−(σ+jω)tdt

=
∫ ∞

−∞
[x(t)e−σ t]e−jωtdt (8.3)
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In Eq. (8.3), the real exponential convergence factor e−σ t enables some of the
time functions x(t) to converge in the complex s plane. Equation (8.1) is called the
two-sided (or bilateral) LT. The signal x(t) is obtained from X(s) by taking inverse
LT which is derived as

x(t) = L−1X(s) = 1

2π j

∫ σ+j∞

σ−j∞
X(s)estds (8.4)

Equations (8.1) and (8.4) are called two-sided or bilateral LT pair. The symbol
L−1 is used when X(s) is inverse Laplace transformed. The following notations are
used to represent LT and inverse LT:

X(s) = L[x(t)]

or

x(t)
L←→ X(s)

x(t) = L−1[X(s)]
X(s) = L−1←→ x(t) (8.5)

It is to be noted that the time function is represented by small case letter and
the s function by upper case letter.

8.2.1 LT of Causal and Non-causal Systems

In Eq. (8.1), the transformation of x(t) to X(s) is done for the following conditions:

• x(t) is anti-causal where t < 0,
• x(t) is an impulse where t = 0,
• x(t) is causal where t > 0.

The unilateral LT is a special case of LT and is defined as follows:

X(s) =
∫ ∞

0
x(t)e−stdt (8.6)

It is to be noted here that Eq. (8.6) is valid only for causal signals and systems. For
non-causal signals and systems, the limits of integration have to be changed. The
following two examples illustrate the method to determine the LT for causal and
non-causal signals.
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� Example 8.1

For the following signal, determine the LT

x(t) = e−atu(t)

Solution:The given signal x(t) is a causal signal. The limit of integration is, therefore,
from 0 to ∞. Hence

X(s) =
∫ ∞

0
e−ate−stdt

=
∫ ∞

0
e−(s+a)tdt

= − 1

(s + a)

[
e−(s+a)t

]∞
0 = − 1

(s + a)

[
e−(s+a)∞ − e−(s+a)0

]

X(s) = 1

(s + a)

The above integration converges when the upper limit ∞ is applied if (s + a) > 0
or s > −a. If (s + a) < 0, then e(s+a)∞ does not converge. In such a case, LT does
not exist.

� Example 8.2

Consider the following signal

x(t) = e−atu(−t)

Determine the LT.

Solution: The given signal x(t) is a non-causal signal. Hence, the limit of integration
is from −∞ to 0.

X(s) =
∫ 0

−∞
x(t)e−stdt

=
∫ 0

−∞
e−ate−stdt

=
∫ 0

−∞
e−(s+a)dt

= −1

(s + a)

[
e−(s+a)t

]0
−∞
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X(s) = −1

(s + a)

The above integration converges when the lower limit −∞ is applied if (s + a) < 0
or s < −a. The above two examples illustrate that for the same time signal x(t), the
LT is also the same with a change of sign. However, the mode of convergence is
different which is an important thing to note. This will be discussed in detail in the
sections to follow.

8.3 The Existence of LT

Consider the one-sided LT given below.

X(s) =
∫ ∞

0
x(t)e−stdt

Substituting s = σ + jω in the above equation, we get

X(s) =
∫ ∞

0

[
x(t)e−σ t

]
e−jωtdt

Since |e−jωt| = 1, the above integral can be written as

X(s) =
∫ ∞

0

[
x(t)e−σ t

]
dt (8.7)

The integral in Eq. (8.7) converges if

∫ ∞

0

[
x(t)e−σ t

]
dt < ∞ (8.8)

In other words, the LT of (8.7) exists if the integral of Eq. (8.8) is finite for some
value of σ > σ0 or Re(s), which is σ should be greater than σ0, which is expressed
as

σ > σ0

8.4 The Region of Convergence

One of the limitations of CTFT as mentioned earlier is that, some useful functions
whether causal or non-causal do not have FT. By making the complex variable s as
expressed in Eq. (8.2) and defining LT as in Eq. (8.1), it is possible to overcome
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Fig. 8.1 Plot of
x(t) = Aeatu(t)

t

A

x(t)

this limitation of non-convergence of FT. For example, consider the following causal
signal.

x(t) = Aeatu(t) a > 0 (8.9)

The plot of Eq. (8.9) as a function of time is shown in Fig. 8.1. From Fig. 8.1, it is
evident that x(t) increases without bound as t increases. It can be easily shown that
FT does not exist for the above x(t). However, the LT exists for the above x(t) with
certain constraints and it is derived as follows. Substituting x(t) = Aeat in (8.1), the
following equation is obtained.

X(s) =
∫ ∞

−∞
Aeate−stu(t)dt (8.10)

For a causal signal (also called right-sided signal), changing the limit of integration,
we get

X(s) =
∫ ∞

0
Aeate−stdt (8.11)

= A
∫ ∞

0
e−(s−a)tdt (8.12)

= −A

(s − a)

[
e−(s−a)t

]∞
0 (8.13)

X(s) = A

(s − a)
(8.14)

Equation (8.13) converges if (s − a) > 0. In other words, Re s > a. In that case,
when the upper limit of t = ∞ is applied, X(s) = 0 and when the lower limit of
t = 0 is applied, X(s) is finite. Thus, Eq. (8.13) is simplified and given in Eq. (8.14).



8.4 The Region of Convergence 743

Fig. 8.2 Pole-zero plot and

ROC of X(s) = A

(s − a)

a

j

σ
0

s-plane

ROC

The LT of x(t) of (8.9) exists or Eq. (8.12) converges if σ > a in the complex
s-plane. This is called the region of convergence.

The region of convergence which is denoted as ROC is, therefore, defined as the
set of values of s of the real part of s for which part the integral of Eq. (8.1)
converges.

The ROC of x(t) in Eq. (8.9) is illustrated in Fig. 8.2. It is to be noted here that
X(s) in Eq. (8.14) becomes infinity at s = a. Therefore, the points in the s-plane at
which the function X(s) becomes infinity are called poles and are marked by a small
cross ×. Now consider a function X(s) = (s + a). The function X(s) becomes zero
at s = −a. Therefore, the points in the s-plane at which the function X(s) becomes
zero are called zeros and are marked by a small circle O.

Now consider the following non-causal signal or otherwise called left-sided signal
shown in Fig. 8.3.

x(t) = Ae−atu(−t) (8.15)

The LT of the above signal is obtained from

X(s) =
∫ 0

−∞
x(t)e−stdt

=
∫ 0

−∞
Ae−ate−stdt (8.16)

=
∫ 0

−∞
Ae−(s+a)tdt
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0–t t

x(t)

A

Fig. 8.3 Plot of x(t) = Ae−atu(−t)

= −A

(s + a)

[
e−(s+a)t

]0
−∞ (8.17)

It is evident from Eq. (8.17) that the integral given in Eq. (8.16) will converge
if (s + a) < 0 when the lower limit of t = −∞ is applied to (8.17). Thus, X(s) is
obtained as

X(s) = − A

(s + a)

The ROC for the left-sided signal is Re s < −a. The ROC is shown in Fig. 8.4.
From the above examples illustrated, for the same X(s), different time signals x(t)

exist, and therefore, the inverse LT is not unique. Hence, it is necessary to specify the
ROC while determining LT and inverse LT. However, for unilateral LT, there exists
one-to-one correspondence between the LT pair. For the bilateral or two-sided LT, it
is essential to specify the ROC to avoid any ambiguity.

8.4.1 Properties of ROCs for LT

Property 1: The ROC of X(s) consists of parallel strips to the imaginary axis.
Property 2: The ROC of LT does not include any pole of X(s).
Property 3: If x(t) is a finite duration signal, and is absolutely integrable then the

ROC of X(s) is the entire s-plane.
Property 4: For the right-sided (causal) signal if the Re(s) = σ0 and is in ROC,

then for all the values of s for which Re(s) > σ0 is also in ROC.
Property 5: If x(t) is a left-sided (non-causal) signal and if Re(s) = σ0 is in ROC,

then for all the values of s for which Re(s) < σ0 is also in ROC.
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j

ROC

Left sided ROC

–a 0
σ

s-plane

Fig. 8.4 ROC of X(s) = A

(s + a)

Property 6: If x(t) is two-sided signal and if Re(s) = σ0 and is in ROC, then the
ROC of X(s) will consist of a strip in the s-plane which will include
Re(s) = σ0.

The following examples illustrate the above properties of ROC and pole-zero
locations of X(s) in the s-plane.

� Example 8.3

Determine the LT of the following signal. Mark the poles and ROC in the s-plane.
x(t) = Ae−atu(t) + Be−btu(−t) where a > 0, b > 0 and |a| > |b|.
Solution:

1. The given signal x(t) consists of causal and anti-causal signals and can be writ-
ten as

x(t) = x1(t) + x2(t)

where

x1(t) = Ae−atu(t)

x2(t) = Be−btu(−t)

2. X1(s) is found as follows for a right-sided signal.
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X1(s) =
∫ ∞

0
Ae−ate−stdt

= A
∫ ∞

0
e−(s+a)tdt

= −A

(s + a)

[
e−(s−a)t

]−∞
0

= A

(s + a)

The ROC is Re(s) > −a.
3. X2(s) is found as follows for a left-sided signal.

X2(s) =
∫ 0

−∞
Be−bte−stdt

= B
∫ 0

−∞
e−(s+b)tdt

= −B

(s + b)

[
e−(s+b)t

]0
−∞

= − B

(s + b)
[1 − 0]

= −B

(s + b)

The ROC is Re(s) < −b.
4.

X(s) = X1(s) + X2(s)

= A

(s + a)
− B

(s + b)

5. The poles and ROC are marked as shown in Fig. 8.5b. In Fig. 8.5b, |a| > |b|.
Vertical lines passing through −a and −b are drawn. For X1(s), the ROC is right
sided and for X2(s) the ROC is left sided. A strip where −a <Re s < −b is
drawn and hatched and the ROC is identified.

6. Consider the case where |b| > |a|. The poles are located as shown in Fig. 8.5c.
Vertical line passing through −a and −b are drawn. For X1(s), the ROC is right
sided and a strip where Re(s) > −a is drawn and hatched. For X2(s), the ROC
is left sided. A vertical strip to the left of −b is formed and hatched. It is to be
noted that the ROC s of x1(t) and x2(t) do not overlap and hence x(t)
does not have LT.
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0–t t

B

Ax2(t)

x1(t)

(a) (b)

x(t)

σ

j

–a –bROC

s-plane

–a–b

ROC

j

s-plane

Left sided ROC Right sided ROC

(c)

σ

ROC

Fig. 8.5 a Representation of x(t). b ROC and poles of X(s) |a| > |b|. c Poles and ROC of X(s) for
|b| > |a|. ROC for right and left sided signals

� Example 8.4

Determine the LT of
x(t) = e−2tu(t) + e−3tu(t)

and sketch the ROC in the s-plane.

(Anna University, May, 2007)
Solution:

1. x(t) is completely a right-sided signal, and hence the limit of the LT integration
is from t = 0 to t = ∞. Thus, the following equation is written for X(s)
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σ

j

–3 –2.5 –2 0

s-plane

Right sided ROC

ROC

Fig. 8.6 Poles and zeros and ROC of X(s) = 2(s + 2.5)

(s + 2)(s + 3)

X(s) =
∫ ∞

0
e−2te−stdt +

∫ ∞

0
e−3te−stdt

=
∫ ∞

0
e−(s+2)tdt +

∫ ∞

0
e−(s+3)tdt

= 1

(s + 2)
+ 1

(s + 3)

= (2s + 5)

(s + 2)(s + 3)

X(s) = 2(s + 2.5)

(s + 2)(s + 3)

2. The poles are at s = −2 and s = −3 and a zero is at s = −2.5 and are marked
in Fig. 8.6,

3. For the pole 1
s+2 , the ROC is right sided to the vertical line passing through

σ = −2. For the pole 1
s+3 , the ROC is also right sided passing through σ = −3.

If ROC where σ > −2 is satisfied then ROC where σ > −3 is automatically
satisfied. Further, no pole of X(s) will be inside the ROC,

4. A strip to the right of σ = −2 is created and shaded. The strip is enlarged to ∞
in the direction of real and imaginary axis,

5. Thus, the ROC of a causal signal is to the right of the right most pole of
X(s).
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� Example 8.5

Determine the LT of
x(t) = e−2tu(−t) + e−3tu(−t)

Locate the poles and zero of X(s) and also the ROC in the s-plane.

Solution:

1. The given signal is fully a left-sided signal, and hence the limit of LT integration
is from −∞ to 0. The LT of x(t) is obtained as follows:

X(s) =
∫ 0

−∞
e−2te−stdt +

∫ 0

−∞
e−3te−stdt

=
∫ 0

−∞
e−(s+2)tdt +

∫ 0

−∞
e−(s+3)tdt

= −1

(s + 2)

[
e−(s+2)t

]0
−∞ − 1

(s + 3)

[
e−(s+3)t

]0
−∞

X(s) = − 1

(s + 2)
− 1

(s + 3)
ROC Re s < −3

X(s) = −2(s + 2.5)

(s + 2)(s + 3)

2. The poles are at s = −2 and s = −3 and a zero is at s = −2.5 and are marked
in Fig. 8.7.

3. For the pole 1
(s+2) , the ROC is left sided to the vertical line passing through

σ = −2. For the pole 1
s+3 , the ROC is also left sided to the vertical line passing

through σ = −3. If ROC, where σ = −3, is satisfied, then ROC where σ = −2
is also satisfied. Further, no pole of X(s) will be inside the ROC.

4. A vertical strip to the left of σ = −3 is created and shaded. The strip is enlarged
to ∞ in the direction of real and imaginary axis.

5. Thus, theROCof anon-causal signal is to the left of the leftmost pole of X(s).

� Example 8.6

Consider the following signal

x(t) = e−2tu(−t) + e−3tu(t)

Determine the LT and locate the poles and zeros and the ROC in the s-plane.
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j

–3 –2.5 –2

s-plane

Left sided ROC

σ

ROC

Fig. 8.7 Poles and zeros and ROC of X(s) = −2(s + 2.5)

(s + 2)(s + 3)

Solution:

1. The given signal is a combination of left- and right-sided. The integration is
performed as given below.

X(s) =
∫ 0

−∞
e−2te−stdt +

∫ ∞

0
e−3te−stdt

=
∫ 0

−∞
e−(s+2)tdt +

∫ ∞

0
e−(s+3)tdt

= 1

(s + 2)

[
e−(s+2)t

]0
−∞ − 1

(s + 3)

[
e−(s+3)t

]∞
0

= − 1

(s + 2)
+ 1

(s + 3)

X(s) = −1

(s + 2)(s + 3)
ROC − 3 < Re s < −2

2. The pole locations are shown in Fig. 8.8. For the left-sided signal, the ROC is Re
s < −2 and for the right-sided signal, the ROC is Re s > −3. The resultant ROC
is a strip in between the vertical lines passing through σ = −2 and σ = −3. The
strip is shaded as shown in Fig. 8.8. It is enlarged in the vertical direction. The
poles are at s = −2 and s = −3. There is no zero for this function.
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σ

j

Left-Right ROC strip

s-plane

–2–3

ROC

Fig. 8.8 Poles and zeros of X(s) = −1

(s + 2)(s + 3)
and the ROC

� Example 8.7

Determine the LT and locate the poles and zeros and ROC in the s-plane for the
following signal.

x(t) = Au(t)

Solution:

1. The given signal is right-sided signal. Its LT is obtained as follows:

X(s) =
∫ ∞

0
Ae−stdt

= −A

s

[
e−st

]∞
0

X(s) = A

s
ROC Re s > 0.

2. For the given signal, a pole at the origin exists and it is marked in Fig. 8.9b,
3. The LT converges only if σ > 0. Thus, the ROC is the entire right half of s-plane.
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t0

A

x(t)

j

Rσ
ROC

Right sided ROC

x(t) = Au(t)

(a)

X(s) = 

(b)

s-plane

A
s⎯ and ROC

0

Fig. 8.9 Representation of x(t) and ROC

8.5 The Unilateral Laplace Transform

The unilateral LT is a special case of bilateral LT and is defined as

X(s) =
∫ ∞

0
x(t)e−stdt (8.18)

The unilateral LT has the following features

1. The unilateral LT simplifies the system analysis considerably.
2. The signals are restricted to causal signals.
3. There is one-to-one correspondence between LT and inverse LT.
4. In view of the above advantages, Laplace transform means unilateral LT as

defined in Eq. (8.18), unless otherwise it is specifically mentioned that the signal
is anti-causal.

Before we go for the determination of LT of some of the commonly used signals,
we give below some of the properties of LT which will be useful to determine X(s)
from x(t) and vice versa in a simplified way.
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8.6 Properties of Laplace Transform

8.6.1 Linearity

x1(t)
L←→ X1(s)

x2(t)
L←→ X2(s)

[a1x1(t) + a2x2(t)] L←→[a1X1(s) + a2X2(s)] (8.19)

8.6.2 Time Shifting

Let x(t) be time shifted to the right (time delay) by a real constant t0. The delayed
time function is written as x(t − t0). As per the time shifting property

x(t)
L←→ X(s)

x(t − t0)
L←→ X(s)e−st0 (8.20)

Proof By definition of LT

L[x(t − t0)] =
∫ ∞

0
x(t − t0)e

−stdt (8.21)

Let

t − t0 = λ

dt = dλ

For the integration of Eq. (8.21), the lower and upper limits are determined as
follows:

When t = 0, λ = −t0 and when t = ∞, then λ = ∞. Thus, Eq. (8.21) is written
as follows:

L[x(t − t0)] =
∫ ∞

−t0

x(λ)e−s(λ+t0)dλ (8.22)

For a causal signal, x(t) = 0 for t < 0 and the lower limit of integration is zero. Now
Eq. (8.22) is written as follows:
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L[x(λ)] = e−st0

∫ ∞

0
x(λ)e−sλdλ

= e−st0X(s)

Thus

x(t − t0)
L←→ X(s)e−st0 t0 > 0 (8.23)

8.6.3 Frequency Shifting

According to frequency shifting property, if

x(t)
L←→ X(s)

x(t)es0t L←→ X(s − s0)

Proof

L[x(t)es0t] =
∫ ∞

0
x(t)es0te−stdt

L[x(t)es0t] =
∫ ∞

0
x(t)e−(s−s0)tdt

= X(s − s0)

x(t)es0t L←→ X(s − s0) (8.24)

8.6.4 Time Scaling

The time scaling property states that, if

x(t)
L←→ X(s)

x(at)
L←→ 1

|a|X
( s

a

)

Proof
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L[x(at)] =
∫ ∞

0
x(at)e−stdt (8.25)

Let
λ = at and dλ = adt

For the lower limit of integration of Eq. (8.25), when t = 0, λ = 0 and for the upper
limit of integrationwhen t = ∞, thenλ = ∞. Hence, Eq. (8.25) iswritten as follows:

L[x(at)] =
∫ ∞

0
x(λ)e− λs

a
1

a
dλ

= 1

|a|
∫ ∞

0
x(λ)e− s

a λdλ

= 1

a
X

( s

a

)

x(at)
L←→ 1

a
X

( s

a

)
(8.26)

8.6.5 Frequency Scaling

According to frequency scaling property, if

x(t)
L←→ X(s)

1

a
x

(
t

a

)
L←→ X(as)

Proof According to time scaling property

x(at)
L←→ 1

a
X

( s

a

)

Let

b = 1

a

x

(
t

b

)
L←→ bX(bs)

Replacing b by a, we get
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1

a
x

(
t

a

)
L←→ X(as) (8.27)

8.6.6 Time Differentiation

x(t)
L←→ X(s)

dx(t)

dt
L←→ sX(s) − x(0−)

d2x(t)

dt2
L←→ s2X(s) − sx(0−) − d

dt
x(0−)

Proof

X(s) =
∫ ∞

0
x(t)e−stdt (8.28)

The above integral is evaluated by parts using

∫
udv = uv −

∫
vdu

Let u = x(t) and dv = e−stdt; du = d
dt x(t)dt and v = − 1

s e−st

∫ ∞

0
x(t)e−stdt =

[−1

s
x(t)e−st

]∞

0

−
∫ ∞

0
−1

s
e−st d

dt
x(t)dt

or

X(s) = 1

s
x(0) + 1

s

∫ ∞

0
e−st d

dt
x(t)dt.

But

L

[
d

dt
(x(t))

]
=

∫ ∞

0

d

dt
(x(t))e−stdt

∴ L
d

dt
(x(t))

L←→ sX(s) − x(0−) (8.29)

The time differentiation twice is proved as follows:

d2

dt2
(x(t)) = d

dt

(
d

dt
(x(t))

)
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Using the property
d

dt
(x(t))

L←→ sX(s) − x(0−)

we get

L

[
d2(x(t))

dt2

]
= sL

[
d

dt
(x(t))

]
− d

dt
(x(0−))

∣∣∣∣
t=0

d2(x(t))

dt2
L←→ s2X(s) − sx(0−) − d

dt
(x(0−))

In general

dnx(t)

dtn

L←→ snX(s) − sn−1x(0−) − sn−2x(0−) · · · xn−1(0−)

OR
dnx(t)

dtn

L←→ snX(s) −
n∑

k=1
snxk−1(0−)

(8.30)

8.6.7 Time Integration

The time integration property states that, if

x(t)
L←→ X(s)∫ t

0
x(τ )dτ

L←→ X(s)

s

Proof We define

f (t) =
∫ t

0
x(τ )dτ .

Differentiating the above equation, we get

df (t)

dt
= x(t) and x(0−) = 0

if

f (t)
L←→ F(s)

X(s) = L

[
d

dt
f (t)

]
= sF(s) − f (0−) = sF(s) if f (0−) = 0
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F(s) = X(s)

s

∫ t

0
x(τ )dτ

L←→ X(s)

s
(8.31)

8.6.8 Time Convolution

The time convolution property states that, if

x1(t)
L←→ X1(s)

x2(t)
L←→ X2(s)

x1(t) ∗ x2(t)
L←→ X1(s)X2(s) (8.32)

Proof

L[x1(t) ∗ x2(t)] =
∫ ∞

−∞
e−st

[∫ ∞

−∞
x1(τ )x2(t − τ)dτ

]
dt

=
∫ ∞

−∞
x1(τ )

[∫ ∞

−∞
e−stx2(t − τ)dt

]
dτ

The inner integral is the LT of x2(t − τ) with a time delay τ . Substituting

∫ ∞

−∞
e−stx2(t − τ)dt = X2(s)e

−τ s

in the above equation, we get

L[x1(t) ∗ x2(t)] =
∫ ∞

−∞
x1(τ )X2(s)e

−τ sdτ

= X2(s)
∫ ∞

−∞
x1(τ )e−τ sdτ

= X2(s)X1(s)

[x1(t) ∗ x2(t)] L←→ X1(s)X2(s)
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8.6.9 Complex Frequency Differentiation

According to this property

− tx(t)
L←→ d

ds
(X(s)) (8.33)

Proof By definition of LT,

X(s) =
∫ ∞

0
x(t)e−stdt

Differentiating both sides with respect to s

d

ds
(X(s)) = d

ds

∫ ∞

0
x(t)e−stdt

= −
∫ ∞

0
tx(t)e−stdt

= −L[tx(t)]

∴ −tx(t)
L←→ d

ds
(X(s))

8.6.10 Complex Frequency Shifting

According to this property

[es0tx(t)] L←→ X(s − s0) (8.34)

L[es0tx(t)] =
∫ ∞

0
es0tx(t)e−stdt where s0 is a constant

=
∫ ∞

0
x(t)e−(s−s0t)dt = X(s − s0)

[es0tx(t)] L←→ X(s − s0)
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8.6.11 Conjugation Property

According to this property, if x(t)
L←→ X(s), then

x∗(t) L←→ X∗(−s) (8.35)

Proof By definition of LT

L[x∗(t)] =
∫ ∞

0
x∗(t)e−stdt

=
∫ ∞

0
[x(t)e−(−s)tdt]∗

= X∗(−s)

x∗(t) L←→ X∗(−s)

8.6.12 Initial Value Theorem

According to this theorem

Lt
t→0

x(t) = Lt
s→∞ sX(s) (8.36)

Proof

L

[
d

dt
x(t)

]
=

∫ ∞

0

d

dt
(x(t))e−stdt = sX(s) − x(0)

Let s → ∞; then

Lt
s→∞

∫ ∞

0

d

dt
(x(t))e−stdt = Lt

s→∞[sX(s) − x(0)]
0 = Lt

s→∞[sX(s) − x(0)]

Since x(0) = Lt
t→0

x(t)

Lt
t→0

x(t) = Lt
s→∞ sX(s)
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8.6.13 Final Value Theorem

According to this theorem
Lt

t→∞ x(t) = Lt
s→0

sX(s) (8.37)

Proof The LT of d
dt (x(t)) could be written as

∫ ∞

0

d

dt
(x(t))e−stdt = [sX(s) − x(0)]

Taking Lt
s→0

on both sides of the above equation, we get

∫ ∞

0

d

dt
(x(t))dt = Lt

s→0
[sX(s) − x(0)]

Lt
t→∞[x(t) − x(0)] = Lt

s→0
[sX(s) − x(0)]

Lt
t→∞ x(t) = Lt

s→0
sX(s)

The above theorem is valid if X(s) has no poles in RHP of s-plane Table 8.1 gives
the summary of properties of LT.

The following examples illustrate the method of determining LT.

� Example 8.8

Determine the LT of unit impulse function δ(t) shown in Fig. 8.10.

Solution: The unit impulse function is represented as

δ(t) = 1 for t = 0

= 0 otherwise

L[δ(t)] =
∫ ∞

0−
δ(t)e−stdt

=
∫ 0+

0−
e−stdt

= 1

δ(t)
L←→ 1 ROC : all s (8.38)
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Table 8.1 Summary of properties of LT

S.No Property Time function
x(t)

Frequency function
X(s)

1. Linearity a1x1(t) + a2x2(t) a1X1(s) + a2X2(s)

2. Time shifting x(t − t0) X(s)e−st0

3. Frequency shifting x(t)eat X(s − a)

4. Time scaling x(at)
1

a
X

( s

a

)

5. Frequency scaling
1

a
x

(
t

a

)
X(as)

6. Time differentiation
d

dt
(x(t)) sX(s) − x(0−)

d2

dt2
(x(t)) s2X(s) − sx(0−) −

ẋ(0−)

dn

dtn
(x(t)) snX(s)

− ∑n
k=1 snx(k−1)(0−)

7. Time integration
∫ t
0 x(τ )dτ

X(s)

s
8. Time convolution x1(t) ∗ x2(t) X1(s)X2(s)

9. Complex frequency
differentiation

−tx(t)
d

ds
(X(s))

tnx(t) (−1)n dn

dsn
X(s)

10. Complex frequency
shifting

e−atx(t) X(s + a)

11. Conjugation x∗(t) X∗(−s)

12. Initial value theorem Lt
t→0

x(t) Lt
s→∞ sX(s)

13. Final value theorem Lt
t→∞ x(t) Lt

s→0
sX(s)

14. Shift theorem x(t − a) X(s)e−as

Fig. 8.10 The unit impulse
(or delta) function

t0

1

x(t)

(t)
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Fig. 8.11 Ramp (or
velocity) function

t

R

1

x(t)

� Example 8.9

Determine the LT of a ramp function of slope R which is shown in Fig. 8.11.

Solution: The ramp function of slope R is represented in Fig. 8.11 and it is mathe-
matically expressed as

x(t) = Rt u(t) t ≥ 0

Taking LT, the following equation is written.

L[Rt] =
∫ ∞

0
Rt e−stdt

The above integration is solved by the well-known integration by parts using the
following relationship ∫

udv = uv −
∫

vdu

Let u = Rt and du = Rdt; dv = e−stdt and v = ∫
e−stdt = − e−st

s

∴ L[Rt] = R

[
te−st

(−s)

]∞

0

− R
∫ ∞

0

e−st

(−s)
dt

= R[0 − 0] + R

[
e−st

−s2

]∞

0

= R

s2
(8.39)

L(Rt)
L←→ R

s2

ROC: The entire right half s-plane (RHP) except for the origin.
The LT of unit ramp (R = 1) is
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Fig. 8.12 Acceleration
function

t

x(t)

1
2
at2 

L(t) ←→ 1

s2

� Example 8.10

Determine the LT of the acceleration function shown in Fig. 8.12.

Solution: The acceleration function is expressed by the following equation

x(t) = 1

2
at2u(t) t ≥ 0.

Taking LT for the above function, we get

L

[
1

2
at2

]
=

∫ ∞

0

1

2
at2e−stdt

The above integration is solved using integration by parts as described below

u = 1
2at2 and du = at

dv = ∫
e−stdt and v = e−st

(−s)

L

[
1

2
at2

]
= uv −

∫ ∞

0
vdu =

[
1

2
at2

e−st

(−s)

]∞

0

−
∫ ∞

0

ate−st

(−s)
dt

= 0 + 0 + a

s

∫ ∞

0
te−stdt.

The integration in the right-hand side of the equation is nothing but a ramp signal
whose LT is 1

s2 . Hence



8.6 Properties of Laplace Transform 765

Fig. 8.13 Exponential decay

t0

1

x(t)

e at

L

[
1

2
at2

]
= a

s3
(8.40)

The ROC is the entire RHP except for the origin of the s-plane.

� Example 8.11

Determine the LT of an exponential decay which is shown in Fig. 8.13.

Solution: The exponential decay is represented by

x(t) = e−atu(t) t ≥ 0.

Taking LT for the above function, we get

L[e−atu(t)] =
∫ ∞

0
e−ate−stdt

=
∫ ∞

0
e−(s+a)tdt

L[e−atu(t)] = − 1

(s + a)

[
e−(s+a)t

]∞
0

= 1

(s + a)
with ROC: Re s > −a

L[e−atu(t)] = 1

(s + a)
(8.41)
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0t

x(t)

A sin 0t

0 2 3

A

A

Fig. 8.14 A sine function

� Example 8.12

Determine the LT of a sine function which is shown in Fig. 8.14.

Solution: A sinusoidal function shown in Fig. 8.14 is mathematically expressed as
follows:

x(t) = A sinω0t u(t) t ≤ 0

The given sinusoidal function is written as follows using Euler’s identity.

sinω0t = 1

2j
(ejω0t − e−jω0t)

L[A sinω0t] = A

2j
[L(ejω0t) − Le−jω0t]

From Eq. (8.41), the above equation is written as

L[A sinω0t] = A

2j

[
1

s − jω0
− 1

s + jω0

]

= A

2j

2jω0

(s2 + ω2
0)

L[A sinω0t] = Aω0

(s2 + ω2
0)

ROC: Re s > 0. (8.42)
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x(t)

A cos 0t

0 3
2

A

A

2
5
2

0t

Fig. 8.15 A cosine function

� Example 8.13

Determine the LT of a cosine function which is shown in Fig. 8.15.

Solution: A cosine function shown in Fig. 8.15 is mathematically expressed as fol-
lows:

x(t) = A cosω0tu(t) t ≥ 0.

Using Euler’s identity, the above equation is written as follows:

A cosω0t = A

2
(ejω0t + e−jω0t)

Taking LT for x(t), the following equation is written

L[A cosω0tu(t)] = A

2
[Lejω0tu(t) + Le−jω0tu(t)]

Using the results obtained in Eq. (8.41), we get

L[A cosω0tu(t)] = A

2

[
1

(s + jω0)
+ 1

(s − jω0)

]

= As

(s2 + ω2
0)

L[A cosω0tu(t)] = As

(s2 + ω2
0)

ROC: Res > 0. (8.43)
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� Example 8.14

Determine the LT of hyperbolic sine function

x(t) = sin hω0t.

Solution:

sin hω0t = 1

2
[eω0t − e−ω0t]

L[sin hω0t] = 1

2
L[eω0t] − 1

2
L[e−ω0t]

Using the results obtained in (8.41), we get

L[sin hω0t] = 1

2(s − ω0)
− 1

2(s + ω0)

L[sin hω0t] = ω0

s2 − ω2
0

ROC: Re s > ω0. (8.44)

� Example 8.15

Determine the Laplace transform of hyperbolic cosine function

x(t) = cos hω0t.

Solution:

cos hω0t = 1

2
[eω0t + e−ω0t]

Taking LT on both sides, we get

L[cos hω0t] = 1

2
L[eω0t] + 1

2
L[e−ω0t]

= 1

2

[
1

s − ω0
+ 1

s + ω0

]

= s

(s2 − ω2
0)
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L[cos hω0t] = s

(s2 − ω2
0)

ROC: Re s > ω0. (8.45)

� Example 8.16

Determine the LT of
x(t) = tnu(t).

Solution: Using the definition of LT for the given function, we get

L[x(t)] =
∫ ∞

0
tne−stdt

Let

u = tn and du = ntn−1dt

dv =
∫

e−stdt and v = e−st

(−s)

Using the property ∫
udv = uv −

∫
vdu

we get

L[tn] =
[

tn e−st

(−s)

]∞

0

−
∫ ∞

0

e−st

(−s)
ntn−1dt

= 0 + n

s

∫ ∞

0
tn−1e−stdt.

It can be shown that
∫ ∞

0
tn−1e−stdt = (n − 1)

s

∫ ∞

0
tn−2e−stdt.

Thus, L[tn] is written as

L[tn] = n

s

(n − 1)

s

(n − 2)

s
· · · 2

s

1

s

= n(n − 1)(n − 2) . . . 2

sn

1

s

= ∠n

sn+1
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L[tn] = ∠n

sn+1
ROC: Re s > 0. (8.46)

� Example 8.17

Using the complex shifting property of LT, determine the LT of

x(t) = e−at sinω0t.

Solution:
L[sinω0t] = ω0

(s2 + ω2
0)

From Table 8.2, the complex shifting property is

L[e−atx(t)] = X(s + a)

Applying the above property, we get

L[e−at sinω0t] = ω0

(s + a)2 + ω2
0

(8.47)

ROC: Re s > −a.

� Example 8.18

By applying the complex differentiation property, determine the LT of

x(t) = t sinω0t.

Solution:
L[sinω0t] = ω0

(s2 + ω2
0)

According to the complex differentiation property

L[−tx(t)] = d

ds
X(s)

∴ L[sinω0t] = d

ds

ω0

(s2 + ω2
0)

L[t sinω0t] = 2ω0s

(s2 + ω2
0)

2
(8.48)
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Fig. 8.16 x(t) = u(t − 3)

t3

1

x(t)

� Example 8.19

Determine the LT of
x(t) = cos at sin bt.

Solution: The given x(t) is written in the following form

x(t) = 1

2
[sin(a + b)t − sin(a − b)t]

L[cos at sin bt] = 1

2
[L sin(a + b)t − L sin(a − b)t]

L[cos at sin bt] = 1

2

[
(a + b)

s2 + (a + b)2
− (a − b)

s2 + (a − b)2

]
(8.49)

� Example 8.20

Consider the following time function x(t) = u(t − 3). Determine the LT using shift
theorem.

Solution: From Fig. 8.16, for step input, the LT is

L[u(t)] = 1

s

When the signal is shifted by t = 3, using time shifting property

L[u(t − 3)] = 1

s
e−3s
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Table 8.2 Laplace transform tables

S.No x(t) X(s)

1 δ(t) 1

2 u(t)
1

s

3 tu(t)
1

s2

4 tnu(t)
∠n

sn+1

5 eatu(t)
1

(s − a)

6 e−atu(t)
1

(s + a)

7 cos at u(t)
s

(s2 + a2)
8 sin at u(t)

a

(s2 + a2)

9 e−bt cos at u(t)
(s + b)

(s + b)2 + a2

10 e−bt sin at u(t)
a

(s + b)2 + a2

11 δ(t − a) e−as

12 u(t − a)
e−as

s

13 t sin at u(t)
2as

(s2 + a2)2

14 sin h at
a

(s2 + a2)
15 cos h at

s

s2 + a2

16 sin(at + θ)
s sin θ + a cos θ

(s2 + a2)

17 cos(at + θ)
s cos θ − a sin θ

(s2 + a2)

Table 8.2 gives the LT of some time functions.

� Example 8.21

Determine the LT for the following time function

x(t) = sin(at + θ)

Solution: The given x(t) can be expanded and written as follows:

x(t) = sin(at + θ)

= sin at cos θ + cos at sin θ

L[sin(at + θ)] = L[sin at cos θ ] + L[cos at sin θ ]
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Substituting L[sin at] and L[cos at] from Table 8.2, we get

L[sin(at + θ)] = a cos θ

(s2 + a2)
+ s sin θ

(s2 + a2)
(8.50)

� Example 8.22

Determine the LT for the following time function

x(t) = cos(at + θ)

Solution: x(t) can be expanded and written as follows:

x(t) = cos at cos θ − sin at sin θ

L[cos(at + θ)] = cos θL[cos at] − sin θL[sin at]
= s cos θ

(s2 + a2)
− a sin θ

(s2 + a2)

L[cos(at + θ)] = (s cos θ − a sin θ)

(s2 + a2)
(8.51)

� Example 8.23

Determine the LT for the following time function

x(t) = δ(t − 2) − δ(t − 5).

Solution: The given time function consists of two impulses occurring at t = 2 and
t = 5. By applying shift theorem, we get

L[δ(t − 2)] = e−2s

L[δ(t − 5)] = e−5s

L[δ(t − 2) − δ(t − 5)] = e−2s − e−5s

� Example 8.24

Determine the LT for the following time function
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x(t) = u(t − 2) − u(t − 5).

Solution:The given time function x(t) consists of two step functions shifted by t = 2
and t = 5. By applying shift theorem, we get

L[u(t − 2)] = e−2s

s

L[u(t − 5)] = e−5s

s

∴ L[u(t − 2) − u(t − 5)] = 1

s
[e−2s − e−5s]

� Example 8.25

Consider the following function

X(s) = (5s + 4)(s + 6)

s(s + 2)(3s + 1)

Find the initial and final values of x(t).

Solution: The initial value is given by

Lt
t→0

x(t) = x(0) = Lt
s→∞ sX(s)

= Lt
s→∞

s(5 + 4
s )(1 + 6

s )

s(1 + 2
s )(3 + 1

s )

= 5 × 1

1 × 3
= 5

3

x(0) = 5

3

The final value of x(t) is given by

x(t)
t→∞

= x(∞) = Lt
s→0

sX(s)

= Lt
s→0

s(5s + 4)(s + 6)

s(s + 2)(3s + 1)

= 4 × 6

2 × 1
= 12
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(a)

t

x(t)

2

3

(b)

t

u(t)

2

(c)

t

u(t 3)

2

3

Fig. 8.17 LT of a pulse

x(∞) = 12

� Example 8.26

Consider the pulse shown in Fig. 8.17a. Determine the LT.

Solution:

Method 1: The given signal x(t), which is shown in Fig. 8.17a, could be split up
of step signals as shown in Fig. 8.17b, c. Thus, the following equation is written

x(t) = u(t) − u(t − 3)

Taking LT on both sides, we get

X(s) = U(s) − U(s)e−3s

= [1 − e−3s]U(s)

But U(s) = 2

s
(for a step input).

∴ X(s) = 2

s
[1 − e−3s]

Method 2: By definition of LT, the following equation is written for Fig. 8.17a

X(s) =
∫ 3

0
2e−stdt

= 2

(−s)

[
e−st

]3
0



776 8 The Laplace Transform Method for the Analysis …

Fig. 8.18 A sine wave

t

2

x(t)

X(s) = 2

s
[1 − e−3s]

� Example 8.27

For the wave form shown in Fig. 8.18, determine the LT.

Solution: For Fig. 8.18, the following equation is written

x(t) = 2 sin t 0 ≤ t ≤ π

= 0 t > π

The LT of the above signal is obtained from the following equation

X(s) =
∫ π

0
2 sin t e−stdt

Let u = 2 sin t and du = 2 cos tdt; dv = e−stdt and v = − 1
s e−st . Applying

∫
udv =

uv − ∫
vdu, we get

X(s) =
[
−2

s
sin te−st

]π

0

+
∫ π

0

2

s
cos te−stdt

= 0 + 2

s

∫ π

0
cos te−stdt

Let u = cos t and du = − sin tdt; dv = e−stdt and v = − 1
s e−st . Substituting the

above in equation for X(s), we get

X(s) = 2

s

{[
−1

s
cos te−st

]π

0

−
∫ π

0

1

s
sin te−stdt

}

= 2

s

[{
e−πs + 1

} 1

s
− 1

2s
X(s)

]
since

∫ π

0
sin te−stdt = X(s)

2
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sX(s)

2
+ 1

2s
X(s) = (e−πs + 1)

s
(s2 + 1)X(s)

2s
= (e−πs + 1)

s

X(s) = 2(e−πs + 1)

(s2 + 1)

� Example 8.28

Determine the LT of the saw tooth wave form shown in Fig. 8.19a.

(Anna University, April, 2005)
Solution: The saw tooth wave form shown in Fig. 8.19 is expressed as

x(t) = 3

2
t 0 ≤ t ≤ 2

= 0 otherwise

Taking LT for the time function x(t), we get

X(s) =
∫ 2

0

3

2
te−stdt

Let

u = 3

2
t and du = 3

2
dt

dv = e−stdt and v = −1

s
e−st

Using
∫

udv = uv − ∫
vdu, we get

X(s) =
[
3

2
t

(
−1

s

)
e−st

]2

0

+ 3

2

∫ 2

0

1

s
e−stdt

= −3

s
e−2s + 3

2s2
[−1e−st

]2
0

= −3

s
e−2s − 3

2s2
e−2s + 3

2s2

X(s) = 3

2

1

s2
−

(
3

s
+ 3

2s2

)
e−2s
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(a)

t

dx(t)
  dt 3/2

2
0

(b)

(c)

3

3

t

dx1(t)
  dt 3/2

2
0

(d)

t

dx2(t)
  dt

0
2

3/2

3/2

(e)

t

d2x1(t)
  dt2

0
2

t2

3

x(t)

(a)

Fig. 8.19 a Saw tooth wave form

Method 2:

When x(t) represented in Fig. 8.19a is differentiated we obtain dx(t)/dt and is shown
in Fig. 8.19b. Figure 8.19b can be drawn as a sum of the signals shown in Fig. 8.19c,
d. Further the signals shown in Fig. 8.19 can be further differentiated and is shown in
Fig. 8.19e. From Fig. 8.19d, using integration and time shifting properties of Laplace
transform, we get

X2(s) = −3

s
e−2s
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Fig. 8.20 Triangular wave
form

t2 4O

3
A

B

x(t)

From Fig. 8.19e, we get

X1(s) = 1

s2
3

2

[
1 − e−2s

]
X(s) = X1(s) + X2(s)

X(s) = 3

2s2
[
1 − e−2s

] − 3

s
e−2s

� Example 8.29

Consider the triangular wave form shown in Fig. 8.20. Determine the LT.

Solution: For the straight line OA, the slope is 3
2 and passes through the origin.

Hence, the following equation is written

x1(t) = 3

2
t 0 ≤ t ≤ 2

For the straight line AB, the slope is negative and it is − 3
2 . The following equation

is written

x2(t) = −3

2
t + C

when t = 2, x2(t) = 3. Hence

3 = −3

2
× 2 + C

or C = 6

x2(t) = −3

2
t + 6 2 ≤ t ≤ 4
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From Example 8.28, X1(s) is written as

X1(s) = 3

2s2
−

(
3

s
+ 3

2s2

)
e−2s

Now X2(s) is written as

X2(s) =
∫ 4

2

(
6 − 3

2
t

)
e−stdt

Let

u =
(
6 − 3

2
t

)
and du = −3

2
dt

dv =
∫

e−stdt and v = −1

s
e−st

Using
∫

udv = uv − ∫
vdu, we get

X2(s) =
[(

6 − 3

2
t

) (
−1

s

)
e−st

]4

2

− 3

2s

∫ 4

2
e−stdt

=
[
3

s
e−2s

]
+ 3

2s2
[
e−st

]4
2

= 3

s
e−2s + 3

2s2
e−4s − 3

2s2
e−2s

X(s) = X1(s) + X2(s)

= 3

2s2
−

(
3

s
+ 3

2s2

)
e−2s + 3

s
e−2s + 3

2s2
e−4s − 3

2s2
e−2s

X(s) = 3

2s2
−

(
3

s2
e−2s

)
+ 3

2s2
e−4s
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Fig. 8.21 a A rectangular
wave

t2 4

3

3

x(t)

t
0

42

3

6

3

(b)

(a)

dx(t)
  dt

� Example 8.30

Consider the rectangular wave form shown in Fig. 8.21a. Determine the LT.

Solution: Consider the rectangular wave shown in Fig. 8.21 for the time interval

x1(t) = 3 0 ≤ t ≤ 2.

The LT of x1(t) is found from the equation

X1(s) =
∫ 2

0
3e−stdt

= −3

s

[
e−st

]2
0

= 3

s
[1 − e−2s]

Consider rectangular wave
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x2(t) = −3 2 ≤ t ≤ 4

Using shift theorem X2(s) is obtained as

X2(s) = −X1(s)e
−2s

∴ X(s) = X1(s) + X2(s)

= 3

s
(1 − e−2s) − 3

s
(1 − e−2s)e−2s

= 3

s
(1 − e−2s)(1 − e−2s)

X(s) = 3

s
(1 − e−2s)2

(b)
The differentiated wave form of Fig. 8.21a is shown in Fig. 8.21b. The Laplace
transform of the wave form shown in Fig. 8.21b is obtained as

L

[
dx(t)

dt

]
= 3 − 6e−2s + 3e−4s

using differentiation property of LT, we get

X(s) = 3

s
(1 − 2e−2s + e−4s)

X(s) = 3

s
(1 − e−2s)2

� Example 8.31

Consider the wave form shown in Fig. 8.22a. Determine the LT.

Solution: The mathematical description of the wave form shown in Fig. 8.22 is
written as follows:

x(t) = (3t − 6) 2 ≤ t ≤ 3

= 3 3 ≤ t ≤ 5

The LT of x(t) is written as
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3 4 52

3

x(t)(a)

t

dx(t)
  dt 3

2 3 5
0

(b) (c)

(d)

t

3

2 3
0

dx1(t)
  dt

(e)

t

d2x1(t)
  dt2

0
3

2

3
tdx2(t)

  dt 0
5

3

3

3

Fig. 8.22 a A triangular pulse rectangular wave

X(s) =
∫ 3

2
x1(t)e

−stdt +
∫ 5

3
x2(t)e

−stdt

= X1(s) + X2(s)

where

X2(s) = 3

(−s)

[
e−st

]5
3 = 3

s
[e−3s − e−5s]



784 8 The Laplace Transform Method for the Analysis …

X1(s) is determined as follows:
For the triangle x1(t) is written as follows:

x1(t) = 3t + C

When t = 2, x1(t) = 0

0 = 3 × 2 + C or C = −6

x1(t) = (3t − 6)

X1(s) =
∫ 3

2
(3t − 6)e−stdt

Let
u = (3t − 6) and du = 3dt

dv = ∫
e−stdt and v = − 1

s e−st

X1(s) =
[
(3t − 6)

(
−1

s

)
e−st

]3

2

− 3

s2
[
e−st

]3
2

= −3

s
e−3s − 3

s2
(e−3s − e−2s)

X(s) = X1(s) + X2(s)

= −3

s
e−3s − 3

s2
(e−3s − e−2s) + 3

s
(e−3s − e−5s)

X(s) = −3

s
e−5s − 3

s2
(e−3s − e−2s)

Method (b):
The signal represented in Fig. 8.22a when differentiated is obtained as shown in
Fig. 8.22b. The different signal dx(t)/dt is split up into dx1(t)/dt and dx2(t)/dt and
are represented in Fig. 8.22c and d, respectively. The signal dx1(t)/dt when further
differentiated is shown in Fig. 8.22e. From Fig. 8.22d, using integration property of
Laplace transform, we get

X2(s) = −3

s
e−5s

From Fig. 8.22e, we get
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t

x(t)

x1(t) x2(t)

2

2

x3(t)

Fig. 8.23 Full wave rectifier

X1(s) = 3

s2
[
e−2s − e−3s

]
X(s) = X1(s) + X2(s)

= −3

s
e−5s + 3

s2
(e−2s − e−3s)

8.7 Laplace Transform of Periodic Signal

If a signal x(t) is a periodic signal with period T , then the LT of X(s) is given as

X(s) = X1(s)
[
1 + e−Ts + e−2Ts + . . .

] = X1(s)

(1 − e−Ts)

Here, x1(t) is the signal which is repeated for every T .

� Example 8.32

Consider the output of a full wave rectifier shown in Fig. 8.23. Determine the LT.

Solution: In Example 8.27, X1(s) is determined as

X1(s) = 2(e−πs + 1)

(s2 + 1)

If X(s) is the LT of the full wave rectifier

X(s) = X1(s) + X1(s)e
−Ts + X1(s)e

−2Ts + . . .

where T = π . For X1(s) see Example 8.27
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Fig. 8.24 Saw tooth wave

t

x(t)

2

3

4 6

= X1(s) + X1(s)e
−πs + X1(s)e

−2πs + . . .

= X1(s)[1 + e−πs + e−2πs + . . .]
= X1(s)

(1 − e−πs)

= 2(e−πs + 1)

(1 − e−πs)

1

(s2 + 1)

X(s) = 2(1 + e−πs)

(1 − e−πs)(1 + s2)

� Example 8.33

Consider the saw tooth wave shown in Fig. 8.24. Determine the LT.

Solution: The mathematical description of x(t) for 0 ≤ t ≤ 2 is given as x1(t). In
Example 8.28, X1(s) is determined as

X1(s) = 3

2s2
−

(
3

s
+ 3

2s2

)
e−2s

from Fig. 8.24

X(s) = X1(s)[1 + e−2s + e−4s + . . .] = X1(s)

(1 − e−2s)

X(s) = 3

2(1 − e−2s)

[
1

s2
−

(
2

s
+ 1

s2

)
e−2s

]
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t

x(t)

3

2 4 6 8

Fig. 8.25 A periodic rectangular wave

� Example 8.34

Consider the rectangular periodic wave shown in Fig. 8.25. Determine the LT.

Solution: The mathematical description of the periodic wave with period 4 is written
as follows:

x(t) = 3 0 ≤ t ≤ 2

= −3 2 ≤ t ≤ 4

Let X1(s) be the LT of x(t) for the time 0 ≤ t ≤ 4. X1(s) in Example 8.30 has been
determined as

X1(s) = 3

s
(1 − e−2s)2

X(s) = X1(s)[1 + e−4s + e−8s + . . .] = X1(s)

(1 − e−4s)

X(s) = 3(1 − e−2s)2

s(1 − e−4s)
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8.8 Inverse Laplace Transform

The time signal x(t) is the Inverse LT of X(s). This is represented by the following
mathematical equation.

x(t) = 1

2π j

∫ σ+j∞

σ−j∞
X(s)estds (8.52)

Use of Eq. (8.52) to obtain x(t) from X(s) is really a tedious process. The alternative
is to express X(s) in polynomial form both in the numerator and the denominator.
Both these polynomials are factorized as

X(s) = (s + z1)(s + z2) . . . (s + zm)

(s + p1)(s + p2) · · · (s + pn)
(8.53)

The points in the s-plane at which X(s) = 0 are called zeros. Thus, (s + z1), (s +
z2), . . . , (s + zm) are the zeros of X(s) in Eq. (8.53). Similarly, the points in the
s-plane at which X(s) = ∞ are called poles of X(s) in Eq. (8.53).

The zeros are identified by a small circle O and the poles by a small cross× in the
s-plane. For m < n the degree of the numerator polynomial is less than the degree
of the denominator polynomial. Under this condition, X(s) in Eq. (8.53) is written
in the following partial fraction form.

X(s) = A1

s + p1
+ A2

s + p2
+ A3

s + p3
+ · · · + An

s + pn
(8.54)

In Eq. (8.54), A1, A2, . . . ,An are called the residues and are determined by any
convenient method. Once the residues are determined, then by using Table 8.2, one
can easily obtain x(t) which is the required inverse LT of X(s).

8.8.1 Graphical Method of Determining the Residues

The residues in Eq. (8.54) are determined by analytical as well as graphical method.
The graphical method has the following advantages:

• It is less time-consuming.
• It does not require any graph to be drawn.
• The results are obtained in a compact form very quickly even if the poles and zeros
are complex and repeated.
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Both analytical and graphical methods are given wherever necessary. The following
simple example illustrates both analytical and graphical methods.

� Example 8.35

X(s) = 10(s + 2)(s − 3)

s(s + 4)(s − 5)

Find x(t).

Solution: The given X(s) is expressed in partial fraction form as follows:

X(s) = A1

s
+ A2

(s + 4)
+ A3

(s − 5)

Method 1. Analytical Method

1. The poles and zeros of X(s) are represented in Fig. 8.26. X(s) is expressed in
the following form:

X(s) = A1(s + 4)(s − 5) + A2s(s − 5) + A3s(s + 4)

s(s + 4)(s − 5)

The numerator polynomial of X(s) should be the same, and therefore, the fol-
lowing equation is written.

10(s + 2)(s − 3) = A1(s + 4)(s − 5) + A2s(s − 5) + A3s(s + 4)

2. Substitute s = 0 in the above equation which will eliminate A2 and A3. Thus

10(2)(−3) = A1(4)(−5) + 0 + 0

A1 = 60

20
= 3

Substitute s = −4 in X(s). This eliminates A1 and A3. Thus

10(−4 + 2)(−4 − 3) = 0 − A24(−4 − 5) + 0

10(−2)(−7) = A236

A2 = 140

36
= 35

9

Substitute s = 5 in X(s). This eliminates A1 and A2. Thus

10(5 + 2)(5 − 3) = 0 + 0 + A3(5)(5 + 4)

A3 = 140

45
= 28

9
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3. With the values of residues obtained in step 2, X(s) is expressed as follows:

X(s) = 3

s
+ 35

9

1

(s + 4)
+ 28

9

1

(s − 5)

4. From the Table 8.2, the inverse Laplace transform is obtained for 1
s ,

1
(s+4) and

1
s−5 .

5. To check whether the residues determined are correct, the following procedure
is followed

X(s) = 10(s + 2)(s − 3)

s(s + 4)(s − 5)
= 3

s
+ 35

9(s + 4)
+ 28

9(s − 5)

Choose any value of s, so that, X(s) does not become zero or infinity. Let us
choose s = 1

10(3)(−2)

1(5)(−4)
= 3

1
+ 35

9 × 5
+ 28

9(−4)

3 = 3 + 7

9
− 7

9
= 3

LHS = RHS.

Hence, A1, A2 and A3 determined are correct.

x(t) =
(
3 + 35

9
e−4t + 28

9
e5t

)
u(t)

Method 2. Graphical Method of Determining the Residues

1. According to the graphical method, the residue A at any pole is obtained from

A = Constant term × Directed Vector distances drawn from all zeros to the concerned point

Directed vector distances drawn from all poles to the concerned point

2. For the given problem, refer to the pole-zero diagramof Fig. 8.26. From the figure,
we obtain A1 by drawing vectors from poles and zeros of X(s) to s = 0.

A1 = 10(2)(−3)

4(−5)
= 3

A2 is determined by drawing vectors from poles and zeros of X(s) to s = −4.

A2 = 10(−2)(−7)

(−4)(−9)
= 35

9
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j
s-plane

σ
–4 –2 A1

A3A2

+5+3

Fig. 8.26 Poles and zeros of X(s) (pole-zero diagram)

A3 is obtained by drawing vectors from poles and zeros of X(s) to s = 5.

A3 = 10(7)(2)

(5)(9)
= 28

9

It is to be noted that the directed distances drawn from any pole or zero drawn
toward right, a+ve sign is added and for the directed distance drawn toward left,
a-ve sign in each case has to be included.

3. It is seen that the residues determined by the analytical method and graphical
method are the same. Hence, inverse LT of X(s) is written as

x(t) =
(
3 + 35

9
e−4t + 28

9
e5t

)
u(t)

In the expression for x(t), it is necessary to include u(t) on the right side of the
equation. This indicates that the inverse LT is right sided or unilateral. It is also to
be noted that the pole-zero diagram of Fig. 8.26 need not be drawn to any scale.
The mere location of poles and zeros with the appropriate values is enough.

� Example 8.36

Find the inverse LT of

X(s) = 10e−3s

(s − 2)(s + 2)
.

Solution: Consider the function

X1(s) = 10

(s − 2)(s + 2)

Putting this into partial fraction, we get
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X1(s) = A1

(s − 2)
+ A2

(s + 2)

= A1(s + 2) + A2(s − 2)

(s − 2)(s + 2)
10 = A1(s + 2) + A2(s − 2)

Substitute s = −2

10 = 0 + A2(−2 − 2)

A2 = −2.5

Substitute s = 2

10 = A1(2 + 2) + 0

A1 = 2.5

X1(s) = 2.5

[
1

s − 2
− 1

s + 2

]

Taking inverse LT we get

x1(t) = 2.5[e+2t − e−2t]u(t)

According to time shifting property of LT

X(s) = X1(s)e
−3s

x(t) = 2.5[e2(t−3) − e−2(t−3)]u(t − 3)

� Example 8.37

Find the inverse LT of

X(s) = (s + 1) + 3e−4s

(s + 2)(s + 3)
.

Solution: The given function is written in the following form:

X(s) = (s + 1)

(s + 2)(s + 3)
+ 3e−4s

(s + 2)(s + 3)
= X1(s) + X2(s)

X1(s) = (s + 1)

(s + 2)(s + 3)



8.8 Inverse Laplace Transform 793

= A1

(s + 2)
+ A2

(s + 3)

= A1(s + 3) + A2(s + 2)

(s + 2)(s + 3)
(s + 1) = A1(s + 3) + A2(s + 2)

Put s = −3

(−3 + 1) = 0 + A2(−3 + 2)

A2 = 2

Put s = −2

(−2 + 1) = A1(−2 + 3) + 0

A1 = −1

X1(s) = − 1

s + 2
+ 2

s + 3
x1(t) = (−e−2t + 2e−3t)u(t).

Now consider X2(s) without delay as X3(s)

X3(s) = 3

(s + 2)(s + 3)

= A1

(s + 2)
+ A2

(s + 3)
3 = A1(s + 3) + A2(s + 2)

Put s = −2
3 = A1

Put s = −3
3 = A2(−3 + 2)

A2 = −3

X3(s) = 3

[
1

s + 2
− 1

s + 3

]

X2(s) = X3(s)e
−4s

x3(t) = 3[e−2t − e−3t]u(t)

x2(t) = 3[e−2(t−4) − e−3(t−4)]u(t − 4)

x(t) = x1(t) + x2(t)
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x(t) = [−e−2t + 2e−3t
]

u(t) + 3
[
e−2(t−4) − e−3(t−4)

]
u(t − 4)

� Example 8.38

Find the inverse LT of

(1) X(s) = (s + 1)(s + 3)

(s + 2)(s + 4)

(2) X(s) = (s + 1)(s + 3)e−2s

(s + 2)(s + 4)

Solution:

(1)

X(s) = (s + 1)(s + 3)

(s + 2)(s + 4)

Here, both numerator polynomial and denominator polynomial have the same
degree, and therefore, it is an improper function. Now X(s) is written in the
polynomial form as given below:

X(s) = (s2 + 4s + 3)

(s2 + 6s + 8)

By synthetic division, we get

1

s2 + 6s + 8
)

s2 + 4s + 3

s2 + 6s + 8

−2s − 5

∴ X(s) = 1 − (2s + 5)

(s + 2)(s + 4)

Now consider

X1(s) = (2s + 5)

(s + 2)(s + 4)

= A1

(s + 2)
+ A2

(s + 4)
(2s + 5) = A1(s + 4) + A2(s + 2)

Put s = −4
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(−8 + 5) = 0 + A2(−4 + 2)

A2 = 3

2

Put s = −2

(−4 + 5) = A1(−2 + 4) + 0

A1 = 1

2

X1(s) = 1

2

[
1

(s + 2)
+ 3

(s + 4)

]

X(s) = 1 − 1

2

[
1

(s + 2)
+ 3

(s + 4)

]

Taking inverse LT, we get

x(t) = δ(t) − [
0.5e−2t + 1.5e−4t

]
u(t)

(2) Now consider

X(s) = (s + 1)(s + 3)e−2s

(s + 2)(s + 4)

Using the time shifting property the results obtained in the previous example is
modified and written as

x(t) = δ(t − 2) − [
0.5e−2(t−2) + 1.5e−4(t−2)

]
u(t − 2)

� Example 8.39

Find the inverse LT of the following function.

X(s) = 10(s + 4)

s2(s + 2)

Solution: The given function X(s) is written in the partial fraction form as follows:

X(s) = A1

s2
+ A2

s
+ A3

s + 2
10(s + 4) = A1(s + 2) + A2s(s + 2) + A3s2

Put s = 0
40 = 2A1 or A1 = 20
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Put s = −2

10(−2 + 4) = 0 + 0 + A34

A3 = 20

4
= 5

Comparing the coefficients of s term, we get

10 = (A1 + 2A2)

10 = 20 + 2A2

A2 = −5

X(s) = 20

s2
− 5

s
+ 5

s + 2

x(t) = (20t − 5 + e−2t)u(t)

� Example 8.40

Find the inverse LT of the following function

X(s) = 2

s(s2 + 2s + 2)

Solution:

Method 1.

(s2 + 2s + 2) = (s + 1 + j)(s + 1 − j)

X(s) = A1

s
+ A2

s + 1 + j
+ A3

s + 1 − j

2 = A1(s
2 + 2s + 2) + A2s(s + 1 − j) + A3s(s + 1 + j)

Put s = 0
2 = A12 or A1 = 1

Put s = −1 + j

2 = 0 + 0 + A3(−1 + j)(−1 + j + 1 + j)

= A3(−1 + j)2j

A3 = 1

(−1 + j)j
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But (−1 + j) is expressed in polar form as

(−1 + j) = √
2∠135◦

A3 = 1√
2∠135◦ + 90◦

= 0.707∠+135◦

= 0.707e+j135◦

A2 is the conjugate of A3

A2 = 0.707∠−135◦ = 0.707e−j135◦

X(s) = 1

s
+ 0.707

[
e−j135◦ 1

(s + 1 + j)
+ e+j135◦

s + 1 − j

]

Taking inverse LT, we get

x(t) = 1 + 0.707[e−j135◦
e−(+1+j)t + e+j135◦

e−(1−j)t)]
= 1 + 1.414e−t

[
ej(135◦+t) + e−j(135◦+t)

2

]

= 1 + 1.414e−t cos(135◦ + t)

= 1 − 1.414e−t sin(t + 45◦)

x(t) = 1 − 1.414e−t sin
(

t + π

4
rad

)

Method 2. Graphical Method
From the pole-zero configuration of X(s) shown in Fig. 8.27, we get

A1 = 2√
2∠45◦√2∠−45◦ = 1

A2 = 2√
2∠−135◦2∠−90◦

= 0.707∠−135◦

A3 = conjugate of A2

A3 = 0.707∠135◦

By graphical method, the residues A1, A2 and A3 are obtained with ease. Substituting
these values in X(s) and taking inverse LT, the following result is obtained as in
Method 1
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σ

A3

A1

A2

–1+ j

–1– j

j

s-plane
–45°

45°

45° 

√2

√2

Fig. 8.27 Pole-zero configuration of Example 8.39

x(t) = 1 − 1.414e−t sin
(

t + π

4
rad

)

� Example 8.41

Find the inverse LT of the following function

X(s) = (3s2 + 8s + 23)

(s + 3)(s2 + 2s + 10)
.

(Anna University, April, 2005)
Solution:

s2 + 2s + 10 = (s + 1 + j3)(s + 1 − j3)

The given X(s) is put into partial fraction as follows:

X(s) = A1

(s + 3)
+ A2

(s + 1 + j3)
+ A3

(s + 1 − j3)

(3s2 + 8s + 23) = A1(s
2 + 2s + 10) + A2(s + 3)(s + 1 − j3)

+A3(s + 3)(s + 1 + j3)
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Let s = −3

27 − 24 + 23 = A1(9 − 6 + 10)

A1 = 26

13
= 2

Put s = −1 − j3

3(+1 + j3)2 − 8(1 + j3) + 23 = A2(−1 − j3 + 3)(−j6)

3(−8 + j6) − 8 − 24j + 23 = A2(j6 − 18 − j18)

(−24 − 8 + 23) + j18 − 24j = A2(−18 − j12)

−9 − j6 = −A2(18 + j12)

A2 = (3 + j2)

(6 + j4)
= 3.6∠33.7◦

7.2∠33.7◦
= 0.5

A3 = conjugate of A2

= 0.5

X(s) =
[

2

s + 3
+ 0.5

s + 1 + j3
+ 0.5

s + 1 − j3

]

Taking inverse LT, we get

x(t) = 2e−3t + 0.5
{
e−(1+j3)t + e−(1−j3)t

}

= 2e−3t + e−t {e−j3t + ej3t}
2

x(t) = 2e−3t + e−t cos 3t

� Example 8.42

Find the inverse LT of

X(s) = 3s2 + 8s + 6

(s + 2)(s2 + 2s + 1)
.

(Anna University, December 2007)



800 8 The Laplace Transform Method for the Analysis …

Solution:

(s2 + 2s + 1) = (s + 1)2

X(s) = (3s2 + 8s + 6)

(s + 2)(s + 1)2

= A1

(s + 2)
+ A2

(s + 1)2
+ A3

(s + 1)

= A1(s2 + 2s + 1) + A2(s + 2) + A3(s + 1)(s + 2)

(s + 2)(s + 1)2

3s2 + 8s + 6 = A1(s
2 + 2s + 1) + A2(s + 2) + A3(s + 1)(s + 2)

Put s = −2

12 − 16 + 6 = A1(4 − 4 + 1) + 0 + 0

A1 = 2

3s2 + 8s + 6 = (A1 + A3)s
2 + (2A1 + A2 + 3A3)s + (A1 + 2A2 + 2A3)

Comparing the coefficients of s2, we get

3 = A1 + A3

A3 = 3 − A1 = 3 − 2

A3 = 1

Comparing the coefficients of s, we get

8 = 2A1 + A2 + 3A3

= 4 + A2 + 3

A2 = 1

Substituting the values of A1, A2 and A3 in X(s), we get

X(s) = 2

(s + 2)
+ 1

(s + 1)2
+ 1

(s + 1)

Taking inverse LT of X(s), we get

x(t) = (2e−2t + te−t + e−t)u(t)
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� Example 8.43

Find the inverse LT of the following function.

X(s) = 10s2

(s + 2)(s2 + 4s + 5)

Solution:

Method 1.

(s2 + 4s + 5) = (s + 2 + j)(s + 2 − j)

X(s) = 10s2

(s + 2)(s + 2 + j)(s + 2 − j)

= A1

(s + 2)
+ A2

(s + 2 + j)
+ A3

(s + 2 − j)

10s2 = A1(s
2 + 4s + 5) + A2(s + 2)(s + 2 − j)

+A3(s + 2)(s + 2 + j)

Put s = −2
40 = A1(4 − 8 + 5) + 0 + 0

A1 = 40

Put s = −2 − j

10(−2 − j)2 = 0 + A2(−2 − j + 2)(−2 − j + 2 − j) + 0

10(4 − 1 + 4j) = A2(−j)(−2j)

−10(3 + 4j) = 2A2

A2 = −5(3 + 4j)

= 25∠−126.88
◦ = 25e−j126.88

◦

A3 = conjugate of A2

A3 = 25∠+126.88
◦ = ej126.88

◦

X(s) = 40

(s + 2)
+ 25e−j126.88

◦

(s + 2 + j)
+ 25ej126.88

◦

(s + 2 − j)

Taking inverse LT, we get
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σ

2 j

2 j

2

A3

A1

A2

j

√5

√5

26.56° 

153.44° 

Fig. 8.28 Pole-zero diagram of X(s) of Example 8.43

x(t) = 40e−2t + 25
{

e−j126.88
◦
e−(2+j)t + ej126.88

◦
e−(2−j)t

}

= 40e−2t + e−2t50
{e−j(t+126.88

◦
) + e+j(126.88

◦ +t)}
2

x(t) = [40e−2t + 50e−2t cos(t + 126.88◦)]

x(t) = [40 − 50 sin(t + 0.644 rad)]e−2tu(t)

Method 2. Graphical Method

Thepole-zero configuration ofX(s) is shown inFig. 8.28. FromFig. 8.28, the residues
A1, A2 and A3 are obtained as follows:

A1 = 10(−2)(−2)

1∠90◦1∠−90◦ = 40

A3 = 10
√
5∠153.44◦√5∠153.44◦

1∠90◦ 2∠90◦

= 25∠126.88
◦ = 25ej126.88

◦

A2 = conjugate of A3

A2 = 25∠−126.88
◦ = 25e−j126.88

◦
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The residues A1, A2 and A3 obtained by graphical method are same as obtained by
analytical method. Thus, by proceeding as in Method 1, the inverse LT is obtained as

x(t) = [40 − 50 sin(t + 0.644 rad)]e−2tu(t)

8.9 Solving Differential Equation

Laplace transform is a very powerful tool in the analysis of linear time invariant
dynamic system. It provides

• Solutions to LTI dynamic systems described by linear differential equations by
converting the differential equation to algebraic equation.

• For test signals of different kinds, solutions are obtained for the differential equa-
tions with and without initial conditions.

• The dynamic systems are represented in terms of a transfer function which is
nothing but the ratio of the LT of the output variable to the LT of the input variable.

• The transfer function is made use of to determine the frequency response of the
system.

• The transfer function is also made use of to determine the stability of the system
using the well-known Routh-Hurwitz criterion and Nyquist stability criterion.

• The structure of the dynamic system is realized using the transfer function.

Now we give below the method of solving differential equation using LT.

8.9.1 Solving Differential Equation without Initial
Conditions

1. If y(t) is the output variable and x(t) is the input variable, convert the differential
equation to algebraic equation which is obtained by simple multiplication of
Laplace complex variable s.

2. These algebraic equations are obtained using the following LT when the initial
conditions are zero.

L[y(t)] = Y(s)

L

[
dy

dt

]
= sY(s)

L

[
d2y

dt

]
= s2Y(s)
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L

[
d3y

dt3

]
= s3Y(s)

...

L

[
dny

dtn

]
= snY(s)

Similarly, for the input x(t),, we convert

L[x(t)] = X(s)

L

[
dx

dt

]
= sX(s)

L

[
d2x

dt2

]
= s2X(s)

...

L

[
dnx

dtn

]
= snX(s)

The following examples illustrate the method of solving differential equation using
LT when the initial conditions are zero for the input as well as the output.

� Example 8.44

Consider an LTIC system with the following differential equation with zero initial
conditions for the input and output.

d2y(t)

dt2
+ 4

dy(t)

dt
+ 3y(t) = dx(t)

dt
+ 2x(t)

Find the impulse response of the system.

(Anna University, December 2006)
Solution:

Taking LT on both sides of the given differential equation, we get

(s2 + 4s + 3)Y(s) = (s + 2)X(s)

The transfer function is obtained as

H(s) = Y(s)

X(s)
= (s + 2)

(s2 + 4s + 3)

= (s + 2)

(s + 1)(s + 3)
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Y(s) = (s + 2)X(s)

(s + 1)(s + 3)

From Table 8.1, for an impulse input x(t) = δ(t), X(s) = 1. Substituting this in the
above equation, we get

Y(s) = (s + 2)

(s + 1)(s + 3)

= A1

(s + 1)
+ A2

(s + 3)
(s + 2) = A1(s + 3) + A2(s + 1)

Put s = −1

(−1 + 2) = A1(−1 + 3) + 0

A1 = 0.5

Put s = −3

(−3 + 2) = 0 + A2(−3 + 1)

A2 = 0.5

∴ Y(s) = 0.5

(s + 1)
+ 0.5

(s + 3)

Taking inverse LT, we get

y(t) = 0.5
[
e−t + e−3t

]
u(t)

� Example 8.45

Using LT, find the impulse response of an LTI system described by the following
differential equation.

d2y(t)

dt2
− dy(t)

dt
− 2y(t) = x(t)

Assume zero initial conditions.

(Anna University, April, 2004)
Solution: Taking LT on both sides of the given differential equation, we get

(s2 − s − 2)Y(s) = X(s)

Y(s) = X(s)

(s2 − s − 2)
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= X(s)

(s + 1)(s − 2)

For an impulse X(s) = 1

Y(s) = 1

(s + 1)(s − 2)

= A1

(s + 1)
+ A2

(s − 2)
1 = A1(s − 2) + A2(s + 1)

Put s = −1

A1 = −1

3

Put s = 2

A2 = 1

3

Y(s) = 1

3

[
1

s − 2
− 1

s + 1

]

y(t) = 1

3

[
e2t − e−t

]
u(t)

� Example 8.46

Consider the LTI system with the following differential equation with zero initial
conditions.

d2y(t)

dt2
+ 5

dy(t)

dt
+ 6y(t) = x(t)

where x(t) = e−4tu(t). Find an expression for y(t) using LT method.

Solution: The given differential equation is written as follows:

d2y

dt2
+ 5

dy

dt
+ 6y = e−4tu(t)

Taking LT on both sides, we get
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(s2 + 5s + 6)Y(s) = 1

(s + 4)

Y(s) = 1

(s + 4)(s2 + 5s + 6)

= 1

(s + 3)(s + 2)(s + 4)

= A1

(s + 3)
+ A2

(s + 2)
+ A3

(s + 4)
1 = A1(s + 2)(s + 4) + A2(s + 3)(s + 4) + A3(s + 3)(s + 2)

Put s = −3

1 = A1(−3 + 2)(−3 + 4)

A1 = −1

Put s = −2

1 = A2(−2 + 3)(−2 + 4)

A2 = 1

2
= 0.5

Put s = −4

1 = A3(−4 + 3)(−4 + 2)

A3 = 1

2
= 0.5

Y(s) = −1

(s + 3)
+ 0.5

(s + 2)
+ 0.5

(s + 4)

y(t) = (−e−3t + 0.5e−2t + 0.5e−4t
)

u(t)

� Example 8.47

Consider the following differential equation with zero initial conditions.

d2y(t)

dt
+ 2

dy(t)

dt
+ 2y(t) = dx(t)

dt
+ x(t)

For x(t) = u(t), a unit step input find the response y(t) of the system.
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Solution:

Method 1

Taking LT on both sides of the differential equation, we get

(s2 + 2s + 2)Y(s) = (s + 1)X(s)

Y(s) = (s + 1)

(s2 + 2s + 2)
X(s)

For unit step X(s) = 1
s . Substituting this in the above equation, we get

Y(s) = (s + 1)

s(s2 + 2s + 2)

(s2 + 2s + 2) = (s + 1 + j)(s + 1 − j)

∴ Y(s) = (s + 1)

s(s + 1 + j)(s + 1 − j)

= A1

s
+ A2

(s + 1 + j)
+ A3

(s + 1 − j)

(s + 1) = A1(s
2 + 2s + 2) + A2s(s + 1 − j) + A3s(s + 1 + j)

Put s = 0
1 = 2A1 or A1 = 0.5

Put s = −(1 + j)

(−1 − j + 1) = 0 + A2(−1 − j)(−1 − j + 1 − j) + 0

−j = A2(−1 − j)(−2j)

= A2(2j − 2) = 2A2(j − 1)

A2 = 0.5j

1 − j
= 0.5√

2

∠90
◦

∠−45◦

= 0.354∠135
◦ = 0.354ej135

◦

A3 = conjugate of A2

= 0.354e−j135◦

Y(s) = 0.5

s
+ 0.354ej135

◦

s + 1 + j
+ 0.354e−j135

◦

(s + 1 − j)
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σ

1 j

1 j

A3

A1

A2

j

√2

√2

45° 

135° 

Fig. 8.29 Pole-zero diagram of Example 8.47

y(t) = 0.5 + 0.354ej135
◦
e−(1+j)t + 0.354e−j135

◦
e−(1−j)t

= 0.5 + 0.708e−t [ej(135
◦ −t) + e−j(135◦−t)]

2
= 0.5 + 0.708e−t cos(135

◦ − t)

= 0.5 − 0.708e−t sin(45
◦ − t)

y(t) =
[
0.5 + 0.708e−t sin

(
t − π

4
rad

)]
u(t)

Method 2

The pole-zero diagram of Y(s) is shown in Fig. 8.29. The residues A1, A2 and A3 are
determined as follows:

A1 = 1∠0
◦

√
2∠45◦√2∠−45◦ = 0.5

A2 = 1∠−90
◦

√
2∠225◦2∠−90◦

= 0.354∠135
◦

A3 = conjugate of A2

= 0.354∠−135◦

The residues determined by graphical method is same as determined by analytical
method. Therefore, y(t) is written as
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y(t) =
[
0.5 + 0.708e−t sin

(
t − π

4
rad

)]
u(t)

8.9.2 Solving Differential Equation with the Initial
Conditions

1. When the initial conditions are specified for the given differential equation, they
have to be accounted for when LT is taken to convert the differential equation to
algebraic equation. Thus

L

[
dy

dt

]
= sY(s) − y(0−)

L

[
d2y

dt2

]
= s2Y(s) − sy(0−) − ẏ(0−)

L

[
d3y

dt3

]
= s3Y(s) − s2y(0−) − sẏ(0−) − ÿ(0−)

The initial conditions y(0−), ẏ(0−) and ÿ(0−), are meant that the system initial
conditions are given just before the input is applied to the system.
The initial condition y(0+) indicates that the initial condition is given to the system
after the input is applied which is not realistic. Unless otherwisementioned, y(0−)

means y(0) and y(0) is not y(0+).
2. The zero initial conditions explained in step 1 is applicable to the input also. Thus

dx

dt
= sX(s) − x(0−)

3. The initial conditions for an input multiplied by u(t) imply that the signals are
zero prior to t = 0.

4. The solution of the differential equation contains two components. The first com-
ponent is the response due to the initial conditions onlywhere the input is assumed
to be absent. The response is called the zero input response. The second com-
ponent is the response due to the input alone and the initial conditions here are
assumed to be zero. Such response is called zero state response.

5. The total response = zero state response+ zero input response.
6. If one is interested to find out the zero initial conditions for verification of the

results, only the zero input response has to be considered andnot the total response.
The total response satisfies the initial conditions at t = 0+.
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The following examples illustrate the method of obtaining total response which is
due to initial conditions and the input.

� Example 8.48

A certain system is described by the following differential equation

d2y(t)

dt2
+ 7

dy(t)

dt
+ 12y(t) = x(t)

Use LT to determine the response of the system to unit step input applied at t = 0.
Assume the initial conditions are y(0−) = −2 and dy(0−)

dt = 0.

(Anna University, May 2007)
Solution: Taking LT on both sides of the given equation, we get

s2Y(s) − sy(0−) − ẏ(0−) + 7Y(s) − 7y(0−) + 12Y(s) = X(s)

(s2 + 7s + 12)Y(s) + 2s + 14 = 1

s

(s2 + 7s + 12)Y(s) = −2s − 14 + 1

s

= (−2s2 − 14s + 1)

s

Y(s) = (−2s2 − 14s + 1)

s(s2 + 7s + 12)

= (−2s2 − 14s + 1)

s(s + 3)(s + 4)

= A1

s
+ A2

(s + 3)
+ A3

(s + 4)

−2s2 − 14s + 1 = A1(s + 3)(s + 4) + A2s(s + 4) + A3s(s + 3)

Put s = 0

1 = A1(12)

A1 = 1

12

Put s = −3
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−18 + 42 + 1 = A2(−3)(−3 + 4)

A2 = −25

3

Put s = −4

−32 + 56 + 1 = A3(−4)(−4 + 3)

A3 = 25

4

Y(s) = 1

12

1

s
− 25

3

1

(s + 3)
+ 25

4

1

(s + 4)

The total response is obtained by taking inverse LT

y(t) =
[
1

12
− 25

3
e−3t + 25

4
e−4t

]
u(t)

� Example 8.49

Solve
d2y(t)

dt2
+ 4

dy(t)

dt
+ 4y(t) = dx(t)

dt
+ x(t)

if the initial conditions are y(0+) = 9
4 ; ẏ(0+) = 5, if the input is e−3tu(t).

(Anna University, December 2007)
Solution: Taking LT on both sides of the equation, we get

s2Y(s) − sy(0+) − ẏ(0+) + 4sY(s) − 4y(0+) + 4Y(s) = sX(s) + X(s) − x(0+)

If the initial conditions are given at t = 0+ for the output, then the initial conditions
must be applied to the input also

L

[
d

dt
x(t) + x(t)

]
= sX(s) − x(0+) + X(s)

x(t) = e−3t

X(s) = 1

(s + 3)

Since x(0+) = Lt
t→0

e−3t = 1
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(s + 1)X(s) − x(0+) = (s + 1)

s + 3
− 1

= (s + 1 − s − 3)

(s + 3)

= −2

(s + 3)

Alternatively

x(t) = e−3t

dx(t)

dt
= −3e−3t

L

[
dx(t)

dt

]
= −3

s + 3

L[x(t)] = 1

(s + 3)

∴ L

[
dx(t)

dt
+ x(t)

]
= 1

s + 3
[−3 + 1]

= −2

(s + 3)

Substituting y(0+) and ẏ(0+) in the given equation, we get

(s2 + 4s + 4)Y(s) − 9

4
s − 5 − 9 = −2

(s + 3)

(s2 + 4s + 4)Y(s) = 9

4
s + 14 − 2

(s + 3)

Y(s) = (9s2 + 83s + 160)

4(s + 3)(s2 + 4s + 4)

= (9s2 + 83s + 160)

4(s + 3)(s + 2)2
(a)

= A1

(s + 3)
+ A2

(s + 2)2
+ A3

(s + 2)
(b)
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1

4
[9s2 + 83s + 160] =A1(s + 2)2 + A2(s + 3) + A3(s + 2)(s + 3)

Put s = −3

1

4
[81 − 249 + 160] = A1 or A1 = −2

Put s = −2

1

4
[36 − 166 + 160] = A2 or A2 = 7.5

Compare the coefficients of s2 on both sides

9

4
= A1 + A3 = −2 + A3 or A3 = 4.25

Y(s) = −2

s + 3
+ 7.5

(s + 2)2
+ 4.25

(s + 2)

Taking inverse LT, we get

y(t) = −2e−3t + 7.5te−2t + 4.25e−2t t ≥ 0

To check whether the residues are correctly determined.
Choose any value of s such that, when substituted in X(s), it does not become zero

or infinitive. Find the value of Y(s) in (a) and (b). If both are the same, the residues
determined are correct.

For s = 0

160

4 × 3 × 4
= −2

3
+ 7.5

4
+ 4.25

2
40

12
= −8 + 22.5 + 25.5

12
= 40

12
LHS = RHS

Hence, the values of A1, A2 and A3 determined are correct.

8.9.3 Zero Input and Zero State Response

As described earlier, the response of the system due to the input x(t) with all initial
conditions are zero is called zero state response. The response of the system due to
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the initial conditions with zero input is called zero input response. The total response
of the system is the sum of the zero state response and zero input response. This is
illustrated in the following example.

� Example 8.50

Consider the following differential equation:

d2y(t)

dt2
+ 6

dy(t)

dt
+ 8y(t) = dx(t)

dt
+ 3x(t)

x(t) = u(t)

y(0−) = 1 and ẏ(0−) = 2

Find the zero state, zero input and total response. Verify, from the expression for the
response, the initial conditions given.

Solution:

Zero State Response

For zero state response, the initial conditions are assumed to be zero. Under this
condition, the output is denoted as yi(t).

Taking LT on both sides of the given differential equation, we get

(s2 + 6s + 8)Yi(s) = (s + 3)X(s)

Substituting X(s) = 1
s and (s2 + 6s + 8) = (s + 2)(s + 4), we get

Yi(s) = (s + 3)

s(s + 2)(s + 4)

= A1

s
+ A2

(s + 2)
+ A3

(s + 4)
(s + 3) = A1(s + 2)(s + 4) + A2s(s + 4) + A3s(s + 2)

Put s = 0

3 = A18 or A1 = 3

8

Put s = −2

(−2 + 3) = A2(−2)(−2 + 4)

A2 = −1

4

Put s = −4



816 8 The Laplace Transform Method for the Analysis …

(−4 + 3) = A3(−4)(−4 + 2)

A3 = −1

8

Yi(s) = 3

8

1

s
− 1

4

1

(s + 2)
− 1

8

1

(s + 4)

yi(t) =
(
3

8
− 1

4
e−2t − 1

8
e−4t

)
u(t)

Zero Input Response

Under zero input condition the output is denoted as ys(t). The given differential
equation becomes

d2ys(t)

dt2
+ 6

dys(t)

dt
+ 8ys(t) = 0

Taking LT with initial conditions, we get

s2Ys(s) − sys(0
−) − ẏs(0

−) + 6Ys(s) − 6ys(0) + 8Ys(s) = 0

(s2 + 6s + 8)Ys(s) = (s + 2 + 6) = (s + 8)

Ys(s) = (s + 8)

(s + 2)(s + 4)

= A1

(s + 2)
+ A2

(s + 4)
(s + 8) = A1(s + 4) + A2(s + 2)

Put s = −2

(−2 + 8) = A1(−2 + 4)

A1 = 3

Put s = −4

(−4 + 8) = A2(−4 + 2)

A2 = −2

Ys(s) = 3

s + 2
− 2

s + 4
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ys(t) = (
3e−2t − 2e−4t

)
u(t)

Total Response

The total response is denoted by the letter y(t).

y(t) = yi(t) + ys(t)

=
(
3

8
− 1

4
e−2t − 1

8
e−4t

)
u(t) + (3e−2t − 2e−4t)u(t)

y(t) =
[
3

8
+ 11

4
e−2t − 17

8
e−4t

]
u(t)

To verify the initial condition, consider the zero input response ys(t)

ys(t) = 3e−2t − 2e−4t

ys(0) = y(0) = 3 − 2 = 1

ẏ(0) = dys(t)

dt

∣∣∣∣
t=0

= −6e−2t + 8e−4t

∣∣∣∣
t=0

= −6 + 8

ẏ(0) = 2

The given initial conditions are satisfied. On the other hand, consider the expression
for the total response

y(t) = 3

8
+ 11

4
e−2t − 17

8
e−4t

y(0) = 3

8
+ 11

4
− 17

8
= 1

ẏ(t) = dy(t)

dt
= −22

4
e−2t + 68

8
e−4t

ẏ(0) = −22

4
+ 68

8
ẏ(0) = 3

The result obtained is erroneous.Therefore, the initial conditions are verified from
zero input response and not the total response.
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8.9.4 Natural and Forced Response Using LT

Consider the differential equation of Example 8.50 which is given below

d2y(t)

dt2
+ 6

dy(t)

dt
+ 8y(t) = d

dx
x(t) + 3x(t)

Taking LT on both sides of the above equation with zero conditions, we get

(s2 + 6s + 8)Y(s) = (s + 3)X(s)

(s + 2)(s + 4)Y(s) = (s + 3)X(s)

The transfer function is the ratio of Y(s) to X(s) and is written as

Y(s)

X(s)
= (s + 3)

(s + 2)(s + 4)

In the above equation, s2 + 6s + 8 = 0 is called characteristic equation and s = −2
and s = −4 are called characteristic roots or Eigen values. In the total response of
y(t), corresponding to these Eigen values, the characteristic modes are found. In
the above example, the characteristic modes are e−2t and e−4t . In the total response
of the system, which is composed of zero input response and zero state response,
if we can lump together all the terms corresponding to the characteristic mode, it
is called natural response yn(t). The remaining non-characteristic mode terms are
lumped together and the response is called forced response and is denoted by yf (t).
Thus, in Example 8.49, the Eigen values are s = −2 and s = −4. The characteristic
modes are e−2t and e−4t . Thus

y(t) = 3

8
+ 11

4
e−2t − 17

8
e−4t

The natural response

yn(t) = 11

4
e−2t − 17

8
e−4t

The forced response

yf (t) = 3

8

� Example 8.51

Find the forced response of the following differential equation
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d2y(t)

dt2
+ 6

dy(t)

dt
+ 8y(t) = dx

dt
+ x(t)

where x(t) = t2.

Solution: Taking LT of the given differential equation, we get

(s2 + 6s + 8)Y(s) = (s + 1)X(s)

(s2 + 6s + 8) = (s + 2)(s + 4)

The Eigen values are s = −2 and s = −4. The characteristic modes are e−2t and
e−4t . The terms involving these characteristic mode will correspond to the natural
response of the system. The remaining terms will correspond to forced response of
the system. Substituting X(s) = 2

s3 , we get

Y(s) = 2(s + 1)

(s + 2)(s + 4)s3

= A1

(s + 2)
+ A2

(s + 4)
+ A3

s3
+ A4

s2
+ A5

s

2(s + 1) = A1s3(s + 4) + A2s3(s + 2) + A3(s + 2)(s + 4)

+A4s(s + 2)(s + 4) + A5s2(s + 2)(s + 4)

Put s = 0

2 = 8A3 or A3 = 1

4

Compare the coefficients of s

2 = 6A3 + 8A4

A4 = 1

16

Compare the coefficients of s2

0 = A3 + 6A4 + 8A5

= 1

4
+ 6

16
+ 8A5

A5 = − 10

128
= − 5

64

The residues A1 and A2 are determined as follows: Put s = −2

2(−2 + 1) = A1(−8)(−2 + 4) + 0 + 0 + 0 + 0

A1 = 1

8
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Put s = −4

2(−4 + 1) = A264(−4 + 2)

A2 = 3

64

Y(s) = 1

8

1

(s + 2)
+ 3

64

1

s + 4
+ 1

4

1

s3
+ 1

16

1

s2
− 5

64

1

s

Taking inverse LT, we get

y(t) = 1

8
e−2t + 3

64
e−4t

︸ ︷︷ ︸
Natural response

+ 1

8
t2 + 1

16
t − 5

64︸ ︷︷ ︸
Forced response

The natural responsewhich is due to the characteristicmodes e−2t and e−4t is given by

yn(t) = 1

8
e−2t + 3

64
e−4t t ≥ 0

The forced response is the response which does not contain the characteristic mode.
Thus

yf (t) = 1

8
t2 + 1

16
t − 5

64
t ≥ 0

8.10 Time Convolution Property of the Laplace Transform

If
x1(t)

L←→ X1(s)

and
x2(t)

L←→ X2(s)

then
x1(t) ∗ x2(t)

L←→ X1(s)X2(s)

This property of LT is used to determine

y(t) = x1(t) ∗ x2(t)
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The following examples illustrate this.

� Example 8.52

Using the convolution property of the LT determine y(t) = x1(t) ∗ x2(t), where
x1(t) = e−2tu(t) and x2(t) = e−3tu(t).

Solution:

X1(s) = L[e−2tu(t)] = 1

(s + 2)

X2(s) = L[e−3tu(t)] = 1

(s + 3)

Y(s) = X1(s)X2(s)

= 1

(s + 2)

1

(s + 3)

= 1

(s + 2)
− 1

(s + 3)

y(t) = [
e−2t − e−3t

]
u(t)

� Example 8.53

Given
x1(t) = e−2tu(t)

x2(t) = (1 + e−3t)u(t)

Determine y(t) = x1(t) ∗ x2(t).

Solution:

X1(s) = L[x1(t)] = 1

(s + 2)

X2(s) = L[x2(t)] =
[
1

s
+ 1

s + 3

]

Y(s) = X1(s)X2(s)

= 1

(s + 2)

[
1

s
+ 1

s + 3

]
= (2s + 3)

s(s + 2)(s + 3)

= A1

s
+ A2

s + 2
+ A3

s + 3
(2s + 3) = A1(s + 3)(s + 2) + A2s(s + 3) + A3s(s + 2)

Put s = 0



822 8 The Laplace Transform Method for the Analysis …

3 = A1(2)(3)

A1 = 1

2

Put s = −2

(−4 + 3) = A2(−2)(−2 + 3)

A2 = 1

2

Put s = −3

(−6 + 3) = A3(−3)(−3 + 2)

A3 = −1

Y(s) = 1

2s
+ 1

2(s + 2)
− 1

(s + 3)

y(t) =
(
1

2
+ 1

2
e−2t − e−3t

)
u(t)

� Example 8.54

Find y(t) by Convolution method

x1(t) = ea1tu(t)

x2(t) = ea2tu(−t)

y(t) = x1(t) ∗ x2(t)

Solution:

X1(s) = 1

(s − a1)

X2(s) = −1

(s − a2)
Y(s) = X1(s)X2(s)

= −1

(s − a1)(s − a2)
= A1

(s − a1)
+ A2

(s − a2)
−1 = A1(s − a2) + A2(s − a1)

Put s = a1
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−1 = A1(a1 − a2)

A1 = 1

a2 − a1

Put s = a2

−1 = A2(a2 − a1)

A2 = −1

(a2 − a1)

Y(s) = 1

(a2 − a1)

[
1

(s − a1)
− 1

(s − a2)

]

y(t) = 1

(a2 − a1)

[
ea1tu(t) + ea2tu(−t)

]

� Example 8.55

Given

x1(t) = e3tu(−t) and x2(t) = u(t − 2)

Determine y(t) = x1(t) ∗ x2(t).

Solution:

X1(s) = L[x1(t)] = −1

(s − 3)

X2(s) = L[x2(t)] = e−2s

s

Y(s) = X1(s)X2(s) = −e−2s

s(s − 3)

= 1

3

[
1

s
− 1

s − 3

]
e−2s

Let

Y1(s) = 1

3

[
1

s
− 1

s − 3

]

y1(t) = L−1[Y1(s)]
= 1

3
[u(t) + e3tu(−t)]

By using shifting property
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y(t) = y1(t − 2)

y(t) = 1

3

[
u(t − 2) + e3(t−2)u(−t + 2)

]

8.11 Network Analysis Using Laplace Transform

An electrical network consists of passive elements like resistors, capacitors and
inductors. They are connected in series, parallel and series parallel combinations.
The currents through and voltages across these elements are obtained by solving
integro-differential equations using LT technique. Alternatively, the elements in the
network are transformed from time domain and an algebraic equation is obtained
which is expressed in terms of input and output. The commonly used inputs are
impulse, step, ramp, sinusoids, exponentials etc. The desired response is expressed as
a function of time for the given input. When writing the integro-differential equation
for a given network, the initial conditions must be taken into account. The energy
storing elements such as inductor and a capacitor have initial conditions. At time
t = 0, the capacitor is initially charged and has the initial voltage vc(0). Similarly, at
t = 0, the current through the inductor is denoted as iL(0). These initial conditions
are expressed vc(0−) vc(0+) and iL(0−) and iL(0+). The input is assumed to start
at t = 0 which is considered as the reference point. The condition just before the
input is applied (t = 0−) is denoted as vc(0−) and the condition just after the input
is applied (t = 0+) is denoted as vc(0+). In many cases, vc(0−) and vc(0+) are same
but not always. Unless otherwise it is specified, vc(0) or iL(0) has to be taken as
vc(0−) or iL(0−) which is more practical.

8.11.1 Mathematical Description of R-L-C- Elements

(a) Resistor
Consider the resistor connected across the voltage source vi(t). The loop equation
for the above circuit is written as follows:

vi(t) =i(t)R (8.57a)

vR(t) =i(t)R

(b) Inductor
Consider the inductor connected across thevoltage source vi(t) as shown inFig. 8.30b.
The loop equation for the above circuit is written as follows:
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Fig. 8.30 a Circuit with a
Resistor. b Circuit with an
Inductor. c Circuit with a
Capacitor

R vR(t)

i(t)

vi(t)

(a)

L vL(t)

i(t)

vi(t)

(b)

C

vi(t)
vC(t)

i(t)(c)

vi(t) = L
di(t)

dt

vL(t) = L
di(t)

dt

Taking LT on both sides of the above equation, with the initial current i(t) = i(0−),
we get

Vi(s) = LsI(s) − Li(0−) (8.57b)

(c) Capacitor
For the capacitor circuit shown in Fig. 8.30c, the following equation is written.

vi(t) = 1

C

∫
i(t)dt

Taking LT on both sides of the above equation with the capacitor initially charged
with vc(0−), the following equation is obtained
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Fig. 8.31 R-L-C series
circuit

R

CL

vi(t) v0(t)

i(t)

Vi(s) = 1

Cs
I(s) + vc(0

−) (8.57c)

Equations 8.57a–c are called integro- differential equations. If the initial conditions
are zero, these equations can, respectively, be written as

Vi(s) = I(s)R

Vi(s) = I(s)Ls

Vi(s) = 1

Cs
I(s) (8.58)

Equation (8.58) is called algebraic equation. These equations can be written in the
frequency domain with the impedance function for the resistor, inductor and capac-
itor, respectively, as R,Ls and 1

Cs .

8.11.2 Transfer Function and Pole-Zero Location

Consider the R-L-C series circuit shown in Fig. 8.31. vi(t) is the input, v0(t) is the
output and i(t) is the current flowing through the series circuit. For Fig. 8.31, the
following integro- differential equation is written.

vi(t) = L
di(t)

dt
+ 1

C

∫
i(t)dt + Ri(t)

v0(t) = i(t)R (8.59)

Taking LT on both sides of the above equations, we get the following algebraic
equation.

Vi(s) = LsI(s) − Li(0−) + 1

Cs
I(s) + vc(0

−) + RI(s)

V0(s) = RI(s) (8.60)

In Eq. (8.60), if the initial conditions i(0−) and vc(0−) are zero, the following equa-
tions could be written.
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Vi(s) =
(

Ls + 1

Cs
+ R

)
I(s)

V0(s) = RI(s)

Dividing one by the other, we get

V0(s)

Vi(s)
= R

Ls + 1
Cs + R

(8.61)

= RCs

LCs2 + RCs + 1

Denoting V0(s)
Vi(s)

= G(s), the above equation can be written in the following form

G(s) = RCs

LCs2 + RCs + 1
(8.62)

Equation (8.62) is called the transfer function of the given electric circuit.

Transfer function:Transfer function is therefore defined as the ratio of the LT of
the output variable to the LT of the input variable with all the initial conditions
being assumed to be zero.

In Eq. (8.62), if we putL = 1,C = 1 andR = 2.5, the transfer function is obtained
as

G(s) = 2.5s

(s2 + 2.5s + 1)

= 2.5s

(s + 2)(s + 0.5)
(8.63)

The transfer function G(s) becomes zero at s = 0.
The points at which the transfer function becomes zero in the s-plane are called
zeros and are marked with a circle 0 in the s-plane.

The transfer function G(s) becomes infinity at points s = −2 and s = −0.5 in the
s-plane. These points are called poles of the transfer function and are marked with a
small cross × in the s-plane.

The poles of the transfer function are defined as the points in the s-plane at
which the transfer function becomes infinity.

The zeros of the transfer function are obtained by factorizing the numerator poly-
nomial and putting each factor to zero. The poles of a transfer function are obtained
by factorizing the denominator polynomial and putting each factor to zero. It is to
be noted that the transfer function is not defined if the initial conditions are not zero.
The poles and zeros of Eq. (8.63) are shown in Fig. 8.32. The s-plane is a complex
plane whose real axis is represented by σ and the imaginary axis by jω.
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σ

j

s-plane

–2 –0.5 0

Fig. 8.32 Pole-zero locations of G(s) = 2.5s

(s + 2)(s + 0.5)

The following examples illustrate electric circuit analysis using LT method.

� Example 8.56

Consider the R.L.C. series circuit shown in Fig. 8.31 with L = 1H,C = 1F and
R = 2.5 ohms. Derive an expression for the output voltage v0(t) if the input is an (a)
impulse (b) unit step. Assume zero initial conditions.

Solution:With zero initial conditions, for the circuit shown in Fig. 8.31, the following
equation is obtained.

L
di(t)

dt
+ 1

C

∫
dt + Ri(t) = vi(t)

v0(t) = i(t)R.

Taking LT on both sides and substituting the numerical values for R, L and C, we get

V0

Vi
(s) = 2.5s

(s + 2)(s + 0.5)

(a) Impulse Response of the System

For an impulse input Vi(s) = 1

∴ V0(s) = 2.5s

(s + 2)(s + 0.5)

= A1

(s + 2)
+ A2

(s + 0.5)
2.5s = A1(s + 0.5) + A2(s + 2)



8.11 Network Analysis Using Laplace Transform 829

Put s = −2

(2.5)(−2) = A1(−2 + 0.5)

A1 = 5

1.5
= 10

3

Put s = −0.5

(2.5)(−0.5) = A2(−0.5 + 2)

A2 = 1.25

1.5
= −5

6

∴ V0(s) = 10

3

1

(s + 2)
− 5

6

1

(s + 0.5)

Taking inverse LT, we get

v0(t) =
(
10

3
e−2t − 5

6
e−0.5t

)
u(t)

(b) Step Response of the System

V0

Vi
(s) = 2.5s

(s + 2)(s + 0.5)

For unit step input, Vi(s) = 1
s

∴ V0(s) = 2.5s

s(s + 2)(s + 0.5)

= 2.5

(s + 2)(s + 0.5)

= A1

(s + 2)
+ A2

(s + 0.5)
2.5 = A1(s + 0.5) + A2(s + 2)

Put s = −2

2.5 = A1(−2 + 0.5)

A1 = −2.5

1.5
= −5

3

Put s = −0.5
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2.5 = A2(−0.5 + 2)

A2 = 2.5

1.5
= 5

3

∴ V0(s) = 5

3

(
− 1

(s + 2)
+ 1

(s + 0.5)

)

v0(t) = 5

3
(−e−2t + e−0.5t)u(t)

Note: For an impulse input Vi(s) = 1 and for a step input Vi(s) = 1
s . By integrating

the impulse response, one can get the step response. Similarly, by differentiating the
step response, the impulse response can be obtained.

In the above example, consider the step response.

v0(t) = 5

3
(−e−2t + e−0.5t)u(t)

dv0(t)

dt
= 5

3
(2e−2t − 0.5e−0.5t)u(t)

=
(
10

3
e−2t − 5

6
e−0.5t

)
u(t)

The above response is nothing but the impulse response.

� Example 8.57

Consider the R.L.C circuit shown in Fig. 8.33. The circuit parameters areR = 3 ohm;
L = 1H and C = 1

2F. The capacitor C is initially charged with a voltage of vc(0−) =
5Volts. The initial current i(0−) before the input is applied is 2 amps. Find the current
in the R-L-C circuit if the input is a unit step. Also, find the voltages across these
elements for the above case.

Solution: For the Circuit shown in Fig. 8.33, the loop equations is

L
di

dt
+ Ri + 1

C

∫
i(t)dt = x(t)

Taking LT on both sides of the equation, we get the following transformation term
by term

L

[
L

di

dt

]
= LsI(s) − Li(0)

= (sI(s) − 2)

L[Ri] = RI(s)



8.11 Network Analysis Using Laplace Transform 831

vC(0) 5 volts

R 3 

C F

xu(t)

L 1HS

1
2

i(t)

Fig. 8.33 R.L.C. Series Circuit with initial conditions

= 3I(s)

L

[
1

C

∫
i(t)dt

]
= 1

Cs
I(s) + vc(0−)

s

= 2I(s)

s
+ 5

s

Thus, the differential equation after taking LT is written as

sI(s) − 2 + 3I(s) + 2I(s)

s
+ 5

s
= X(s)

[
s + 3 + 2

s

]
I(s) = 2 − 5

s
+ X(s)

(s2 + 3s + 2)

s
I(s) = 2s − 5 + sX(s)

s

Step Response

For step input X(s) = 1
s

I(s) = (2s − 5) + s 1
s

(s + 1)(s + 2)

= (2s − 4)

(s + 1)(s + 2)

= A1

(s + 1)
+ A2

(s + 2)
(2s − 4) = A1(s + 2) + A2(s + 1)
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Put s = −1

(−2 − 4) = A1(−1 + 2)

A1 = −6

Put s = −2

(−4 − 4) = A2(−2 + 1)

A2 = 8

I(s) = −6

(s + 1)
+ 8

s + 2

Taking inverse LT we get

i(t) = (−6e−t + 8e−2t)u(t)

The voltage across the resistor is given by

vR(t) = i(t)R

= 3i(t)

vR(t) = (−18e−t + 24e−2t)u(t)

The voltage across the inductor is given by

vL(t) = L
di(t)

dt

= di(t)

dt

vL(t) = (6e−t − 16e−2t)u(t)

The voltage across the capacitor is given by

vc(t) = 1

C

∫
i(t)dt

= 2
∫

(−6e−t + 8e−2t)dt

= 12e−t − 8e−2t + C.

At t = 0, vc(0) = 5
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10V

i(t)

R 0.5 

L 1 H

S

C F1
4

Fig. 8.34 R-L-C- Circuit of Example 8.66

5 = 12 − 8 + C or C = 1

vc(t) = (12e−t − 8e−2t + 1)u(t)

� Example 8.58

Consider the R-L-C circuit shown in Fig. 8.34 with the numerical values given. The
initial current through the inductor and the initial voltage across the capacitor at
t = 0+ is zero. Derive an expression for the source current as a function of time for
t ≥ 0 when the switch S is closed.

Solution: The expression for i(t) is obtained by writing the algebraic equation rather
than the integro-differential equation when the initial conditions are zero.

1. The impedance function for the inductor L is taken as Z1(s).

Z1(s) = Ls

= s

2. The impedance function for the capacitor C is taken as Z2(s).

Z2(s) = 1

Cs
= 4

s

3. Z1(s) and Z2(s) are in parallel. Let Z3(s) be impedance of the parallel combination
of Z1(s) and Z2(s). Thus
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Z3(s) = Z1(s)Z2(s)

Z1(s) + Z2(s)

=
4
s s

4
s + s

= 4s

s2 + 4

4. R and Z3(s) are in series. Let Z(s) be the impedance of the series combination of
R and Z3(s). Thus

Z(s) = R + Z3(s)

Z(s) = 0.5 + 4s

s2 + 4

Z(s) = (0.5s2 + 4s + 2)

s2 + 4

5.

I(s) = V(s)

Z(s)

For a step input V(s) = V
S = 10

s

I(s) = 10

s

(s2 + 4)

(0.5s2 + 4s + 2)

= 20(s2 + 4)

s(s2 + 8s + 4)

But (s2 + 8s + 4) = (s + 7.464)(s + 0.536).
6. Putting I(s) into partial fraction, we get

I(s) = A1

s
+ A2

(s + 7.464)
+ A3

(s + 0.536)

20(s2 + 4) = A1(s
2 + 8s + 4) + A2s(s + 0.536) + A3s(s + 7.464)

Put s = 0

80 = 4A1

A1 = 20

Put s = −7.464



8.11 Network Analysis Using Laplace Transform 835

Fig. 8.35 R.L. series circuit

L 5 H

i(t)
y(t)

x(t)

R 10 

(1114.23 + 80) = A2(−7.464)(−7.464 + 0.536)

A2 = 23.1

Put s = −0.536

(5.746 + 80) = A3(−0.536)(−0.536 + 7.464)

A3 = −23.1

I(s) = 20

s
+ 23.1

s + 7.464
− 23.1

s + 0.536

7. Taking inverse LT, we get

i(t) = (
20 + 23.1e−7.464t − 23.1e−0.536t

)
u(t)

� Example 8.59

Find the unit step response of the circuit shown in Fig. 8.35.

(Anna University, December 2007)
Solution:

1. Since the initial condition is zero, the total impedance of the circuit is written as

Z(s) = R + Ls

= 10 + 5s

2. The current through the series circuit is

I(s) = X(s)

Z(s)
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x(t)

2

1

t

C 2 F

t 0

x(t)

(a) (b)

vC(t)

R 5 S

Fig. 8.36 a R.C. Circuit and b x(t) = u(t) − u(t − 2)

Since X(s) = 1
s for unit step

I(s) = 1

sZ(s)
= 1

s(10 + 5s)

3. The output Y(s) = I(s)R

= 10

s(10 + 5s)
= 2

s(s + 2)

= 1

s
− 1

s + 2

4. Taking inverse LT, we get

i(t) = L−1I(s) = (1 − e−2t)u(t)

� Example 8.60

Consider the R-C-Circuit shown in Fig. 8.36. The input x(t) = u(t) − u(t − 2).
Derive an expression for the voltage output across the capacitor C as a function
of time when the switch S is closed at t = 0. Assume zero initial condition.

Solution:

1.

x(t) = u(t) − u(t − 2)

X(s) =
[
1

s
− 1

s
e−2s

]

2. Since the initial condition is zero, the impedance of the circuit is written as
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Z(s) = R + 1

Cs

= 5 + 1

2s

= (10s + 1)

2s

3. The current in the circuit is

I(s) = X(s)

Z(s)

=
[
1

s
− 1

s
e−2s

]
2s

(10s + 1)

= (1 − e−2s)
2

(10s + 1)

4. The impedance of the capacitor C is

Zc(s) = 1

Cs

= 1

2s

5. The output voltage across the capacitor C is given by

Vc(s) = I(s)Zc(s)

= (1 − e−2s)
2

(10s + 1)

1

2s

= (1 − e−2s)0.1

s(s + 0.1)

= 0.1

s(s + 0.1)
− 0.1e−2s

s(s + 0.1)

6.

vc(t) = L−1Vc(s)

vc(t) = L−1

[
0.1

s(s + 0.1

]
− L−1

[
0.1e−2s

s(s + 0.1)

]

Now consider 0.1
s(s+0.1) , which can be expressed as 1

s − 1
s+0.1 . Thus

L−1

[
1

s
− 1

s + 0.1

]
= (1 − e−0.1t)u(t)
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L 2 H

S

x(t)

i(t)

R 10 

x(t)

2 40

3

t
(a) (b)

Fig. 8.37 a R-L-series circuit; b x(t)

Using shift theorem, L−1
[

0.1e−2s

s(s+0.1)

]
= (1 − e−0.1(t−2))u(t − 2). Thus

vc(t) = (1 − e−0.1t)u(t) − (1 − e−0.1(t−2))u(t − 2)

� Example 8.61

Consider the R.L. series circuit shown in Fig. 8.37a. At t = 0, the switch S is closed.
Derive an expression for the current in the series circuit as a function of time. The
mathematical description of the input is given by

x(t) = 3

2
t 0 ≤ t ≤ 2

=
(
6 − 3

2
t

)
2 ≤ t ≤ 4

Solution:

1. The mathematical description of x(t) is represented as a triangular wave and is
shown in Fig. 8.37b.

2. For Fig. 8.37b, the LT is determined (see Example 8.28) as

X(s) =
[
3

2

1

s2
− 3

s2
e−2s + 3

2s2
e−4s

]

3. For the circuit shown in Fig. 8.37a, the impedance function is

Z(s) = (R + Ls)

= (10 + 2s)

= 2(s + 5)
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4. The current through the series circuit is

I(s) = X(s)

Z(s)

=
[
3

2

1

s2
− 3

s2
e−2s + 3

2

1

s2
e−4s

]
1

2(s + 5)

5.

i(t) = L−1I(s)

= L−1

[
3

4

1

s2(s + 5)
− 3

2s2
e−2s

(s + 5)
+ 3

4s2
e−4s

(s + 5)

]

1

s2(s + 5)
= A1

s2
+ A2

s
+ A3

(s + 5)

1 = A1(s + 5) + A2s(s + 5) + A3s2

Put s = 0

A1 = 1

5

Put s = −5

1 = A325

A3 = 1

25

Compare the coefficients of s2.

A2 + A3 = 0

A2 = −A3

= − 1

25

6.

L−1

[
3

4

1

s2(s + 5)

]
= 3

4
L−1

[
1

5s2
− 1

25s
+ 1

25(s + 5)

]
(a)

= 3

4

[
1

5
t − 1

25
+ 1

25
e−5t

]
u(t)

L−1

[
−3

2

e−2s

s2(s + 5)

]
= −3

2

[
1

5
(t − 2) − 1

25
+ 1

25
e−5(t−2)

]
u(t − 2) (b)
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L 2 H

i(t)2

1
S

R2 10 

R1 5 

40V

Fig. 8.38 Circuit of Example 8.70

L−1

[
3

4

e−4s

s2(s + 5)

]
= 3

4

[
1

5
(t − 4) − 1

25
+ 1

25
e−5(t−4)

]
u(t − 4) (c)

7.

i(t) = (a) + (b) + (c)

i =
[
3

4

{
1

5
t − 1

25
+ 1

25
e−5t

}
u(t)

−3

2

{
1

5
(t − 2) − 1

25
+ 1

25
e−5(t−2)

}
u(t − 2)

+3

4

{
1

5
(t − 4) − 1

25
+ 1

25
e−5(t−4)

}
u(t − 4)

]

� Example 8.62

Consider the circuit shown in Fig. 8.38. Initially, the switch is in position 1. At t = 0,
the switch is moved to position 2. Find the expression for the current in the inductor
L as a function of time t.

Solution:

1. When the switch S is in position 1, the current i passing through the inductor at
steady state is decided by the source voltage and resistance R2.

i = 40

10
= 4 amp.

2. When the switch S is in position 2, the following dynamic equation for the
R1 − R2 − L series circuit is written

L
di

dt
+ (R1 + R2)i = 0
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L 5 H
C 0.05 F

i(t)

R 10 

S

100V

Fig. 8.39 Circuit for Example 8.71

3. Taking LT on both sides of the above equation, we get

sLI(s) − Li(0+) + (R1 + R2)I(s) = 0

Substituting the numerical values, we get

(2s + 15)I(s) = 2 × 4 = 8

I(s) = 8

2s + 15

= 4

s + 7.5

4. Taking inverse LT, we get

i(t) = 4e−7.5tu(t)

� Example 8.63

Consider the circuit shown in Fig. 8.39. The switch S is initially closed. Derive an
expression for the current through the inductor as a function of time when the switch
S is suddenly opened at t = 0.

Solution:

1. When the switch S is closed, the current is passing through R, and L and C is
open circuited. Under this condition the initial current is limited by R only. Thus

i(0) = 100

10
= 10 Amps.

2. The initial charge across the capacitor is zero because the entire voltage is applied
across R only. Therefore, the following Loop equation for L.C. circuit is written
when the switch S is open.
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L
di

dt
− Li(0) + 1

C

∫
i(t)dt + vc(0) = 0

3. Taking LT and substituting i(0) = 10 and vc(0) = 0, we get

[
Ls + 1

Cs

]
I(s) = Li(0)

(
5s + 1

0.05s

)
I(s) = 50

(5s2 + 20)I(s) = 50s

(s2 + 4)I(s) = 10s

(s + j2)(s − j2)I(s) = 10s

I(s) = A1

(s + j2)
+ A2

(s − j2)
10s = A1(s − j2) + A2(s + j2)

Put s = −j2

10(−j2) = 4A1(−j)

A1 = 5

A2 = A∗
1 = 5

I(s) = 5

[
1

s + j2
+ 1

s − j2

]

4. Taking inverse LT, we get

i(t) = 5[e−j2t + ej2t]

i(t) = 10 cos 2t

� Example 8.64

Find the transfer function of LTI system described by the differential equation

d2y(t)

dt2
+ 3

dy(t)

dt
+ 2y(t) = 2

dx(t)

dt
− 3x(t)

(Anna University, May, 2008)
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Solution: Taking LT on both sides assuming zero initial conditions, we get

(s2 + 3s + 2)Y(s) = (2s − 3)X(s)

The transfer function is Y(s)
X(s)

Y(s)

X(s)
= (2s − 3)

(s2 + 3s + 2)

� Example 8.65

Consider an LTI system with input x(t) = e−tu(t) and impulse response h(t) =
e−2tu(t)

• Determine the LT of x(t) and h(t).
• Using the convolution property, determine the LT Y(s) of the output y(t).
• From the LT of y(t) as obtained in part (2) determine y(t).
• Verify your result in part (2) by explicitly convolving x(t) and h(t).

(Anna University, May 2008)
Solution:

1.
x(t) = e−tu(t)

From LT table

X(s) = 1

(s + 1)
ROC: Re(s) > −1

h(t) = e−3tu(t)

From LT table

H(s) = 1

(s + 3)
ROC: Re(s) > −3

2.
Y(s) = X(s)H(s)

Y(s) = 1

(s + 1)(s + 3)
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3.

Y(s) = 1

(s + 1)(s + 3)

= A1

(s + 1)
+ A2

(s + 3)
1 = A1(s + 3) + A2(s + 1)

Put s = −1

1 = A1(−1 + 3)

A1 = 1

2

Put s = −3

1 = A2(−3 + 2)

A2 = −1

2

Y(s) = 1

2

[
1

s + 1
− 1

s + 3

]

y(t) = L−1Y(s) = 1

2
[e−t − e−3t]u(t)

y(t) = 1

2
[e−t − e−3t]u(t)

4.

x(t) = e−t

x(t − τ) = e−(t−τ)

h(τ ) = e−3τ

Since x(t) and h(t) are causal, the limit of integration varies from 0 to t. Thus

y(t) =
∫ t

0
e−(t−τ)e−3τ dτ

= e−t
∫ t

0
e−2τ dτ

= e−t

(−2)

[
e−2τ

]t

0
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y(t) = 1

2

[
e−t − e−3t

]
u(t)

� Example 8.66

Determine the impulse response h(t) of the system whose input-output is related by
the differential equation; where x(t) is the input, y(t) is the output

d2y(t)

dt2
+ 3

dy(t)

dt
+ 2y(t) = x(t)

with all initial conditions to be zeros.

(Anna University, April, 2004)
Solution:

1. Taking LT on both sides of the given differential equation, we get

(s2 + 3s + 2)Y(s) = X(s)

s2 + 3s + 2 = (s + 1)(s + 2)

For an impulse

X(s) = 1

Y(s) = 1

(s + 1)(s + 2)

2. Putting into partial fraction, we get

Y(s) = A1

(s + 1)
+ A2

(s + 2)
1 = A1(s + 2) + A2(s + 1)

Put s = −1

1 = A1(−1 + 2)

A1 = 1

Put s = −2

1 = A2(−2 + 1)

A2 = −1

Y(s) = 1

s + 1
− 1

s + 2
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3. Taking inverse LT, we get

y(t) = (e−t − e−2t)u(t)

For impulse input y(t) = h(t)

h(t) = (e−t − e−2t)u(t)

� Example 8.67

Determine the output response of the system whose impulse response

h(t) = e−atu(t)

for the step input.

(Anna University, April, 2004)
Solution:

1.

H(s) = L[h(t)] = L[e−atu(t)]
= 1

s + a

H(s) = Y(s)

X(s)

For step input X(s) = 1
s .

2. Substituting in H(s), we get

Y(s) = 1

s(s + a)

The residues are obtained by intuition

Y(s) =
[
1

s
− 1

s + a

]
1

a

3. Taking inverse LT, we get

y(t) = 1

a
[1 − e−at]u(t)



8.11 Network Analysis Using Laplace Transform 847

� Example 8.68

Consider an LTI systemwhose response to the input x(t) = (e−t + e−3t)u(t) is y(t) =
(2e−t − 2e−4t)u(t). Find the system’s impulse response.

(Anna University, December, 2007)
Solution:

1. The LT of x(t) is X(s)

X(s) = L[e−t + e−3t] = 1

(s + 1)
+ 1

(s + 3)
= 2(s + 2)

(s + 1)(s + 3)

The LT of y(t) is Y(s)

Y(s) = L[2e−t − 2e−4t] = 2

[
1

s + 1
− 1

s + 4

]
= 6

(s + 1)(s + 4)

2. The transfer function is

H(s) = Y(s)

X(s)
= 6

(s + 1)(s + 4)

(s + 1)(s + 3)

2(s + 2)

= 3(s + 3)

(s + 2)(s + 4)

3. For an impulse X(s) = 1. Now, Y(s) can be put into partial fraction as given
below.

Y(s) = 3(s + 3)

(s + 2)(s + 4)

= A1

(s + 2)
+ A2

(s + 4)
3(s + 3) = A1(s + 4) + A2(s + 2)

Put s = −2

3(−2 + 3) = A1(−2 + 4)

A1 = 3

2

Put s = −4
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3(−4 + 3) = A2(−4 + 2)

A2 = 3

2

Y(s) = 3

2

(
1

s + 2
+ 1

s + 4

)

4. Taking inverse LT of Y(s), we get

y(t) = L−1Y(s)

= 3

2
L

(
1

s + 2
+ 1

s + 4

)

y(t) = 3

2
(e−2t + e−4t)u(t)

� Example 8.69

Determine the response of the systemwith impulse response h(t) = u(t) for the input
x(t) = e−2tu(t).

(Anna University, April 2004)
Solution: Method 1:

1. Taking LT for h(t) and x(t), we get

H(s) = L(u(t)) = 1

s

X(s) = L[e−2tu(t)] = 1

(s + 2)

2.

y(t) = x(t) ∗ h(t)

Y(s) = X(s)H(s)

= 1

s(s + 2)

3. Putting into partial fraction and by intuition the residues are obtained. Thus, Y(s)
is written as

Y(s) = 1

2

(
1

s
− 1

s + 2

)
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4. Taking Laplace inverse for Y(s), we get y(t)

y(t) = L−1Y(s)

= L−1 1

2

(
1

s
− 1

s + 2

)

y(t) = 1

2
(1 − e−2t)

Method 2: y(t) can be Derived by using Convolution Integral

1. Both h(t) and x(t) are causal. Hence, the following convolution integral is written
for y(t)

y(t) =
∫ t

0
h(τ )x(t − τ)dτ

=
∫ t

0
e−2(t−τ)dτ

= e−2t
∫ t

0
e2τ dτ

= e−2t

2

[
e2τ

]t

0

= e−2t

2
[e2t − 1]

y(t) = 1

2
[1 − e−2t]

� Example 8.70

Find the output of an LTI system with impulse response h(t) = δ(t − 3) for the input
x(t) = cos 4t + cos 7t.

(Anna University, April, 2004)
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Solution:

h(t) = δ(t − 3)

H(s) = e−3s

X(s) = L[cos 4t + cos 7t]
Y(s) = H(s)X(s) = L[cos 4t + cos 7t]e−3s

y(t) = cos 4(t − 3) + cos 7(t − 3)

� Example 8.71

Find the initial and final values for

X(s) = (s + 5)

(s2 + 3s + 2)

(Anna University, June, 2007)
Solution:

1. Initial value of x(0). According to initial value theorem

x(0) = Lt
s→∞ sX(s)

= Lt
s→∞

s2 + 5s

s2 + 3s + 2

= Lt
s→∞

1 + 5
s

1 + 3
s + 2

s2

x(0) = 1

2.
(s2 + 3s + 2) = (s + 1)(s + 2)

Here the poles are at s = −1 and s = −2 and are in LHP. No pole of X(s) is in
RHP. Hence, the application of initial value theorem is correct.

3. Final value of x(∞). According to final value theorem

x(∞) = Lt
s→0

sX(s)

= Lt
s→0

s2 + 5s

s2 + 3s + 2
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x(∞) = 0

� Example 8.72

Find the step response of the system whose impulse response is given as

h(t) = u(t + 1) − u(t − 1)

(Anna University, June, 2007)
Solution:

1. By taking LT for h(t), using time shifting property, we get

H(s) = L[h(t)]
= 1

s
es − 1

s
e−s

= 1

s
[es − e−s]

2.

H(s) = Y(s)

X(s)
= 1

s
[es − e−s]

For step input X(s) = 1
s

Y(s) = 1

s2
[es − e−s]

= Y1(s)[es − e−s]

where

Y1(s) = 1

s2

3.

y1(t) = L−1Y1(s)

= L−1 1

s2
= t

4.
y(t) = y1(t)[u(t + 1) − u(t − 1)]
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y(t) = (t + 1)u(t + 1) − (t − 1)u(t − 1)

� Example 8.73

Find the response of the system whose impulse response is

h(t) = e−3tu(t)

x(t) = u(t − 3) − u(t − 5)

(Anna University, June 2007)
Solution:

1. The LT of h(t) is

H(s) = L[e−3tu(t)]
= 1

(s + 3)

2. The LT of the input x(t) is

X(s) = L[u(t − 3) − u(t − 5)]
= 1

s
[e−3s − e−5s]

3.

H(s) = Y(s)

X(s)
Y(s) = H(s)X(s)

= 1

s(s + 3)
[e−3s − e−5s]

= Y1(s)[e−3s − e−5s]

where Y1(s) = 1
s(s+3) .

4. Now Y1(s) can be put into partial fraction as

Y1(s) = 1

3

[
1

s
− 1

s + 3

]

y1(t) = L−1Y1(s)

= 1

3
[1 − e−3t]

5. The response y(t) is obtained from y1(t) and applying time shifting property
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(t)

u(t)

u(t 2)

u(t)

t

(t 2)

t t2 0

t t

1

1

1

2
(a)

(b)

Fig. 8.40 Time shifted unit sample and unit step

y(t) = 1

3
[1 − e−3(t−3)]u(t − 3) − 1

3
[1 − e−3(t−5)]u(t − 5)

y(t) = 1

3
[1 − e−3(t−3)]u(t − 3) − 1

3
[1 − e−3(t−5)]u(t − 5)

� Example 8.74

Draw the wave forms δ(t − 2) and u(t + 2).

Solution:

1. The unit sample is shown in Fig. 8.40a. The time delayed signal (right shifted
by t = 2) is shown by its side.

2. The unit step signal is shown in Fig. 8.40b. The unit step signal is left shifted by
t = −2 and is shown in the figure shown by its side.

� Example 8.75

A system has the transfer function

H(s) = (3s − 1)

(s + 3)(s − 2)
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Find the impulse response assuming the system is stable and causal.

(Anna University, December, 2007)
Solution:

1.

H(s) = (3s − 1)

(s + 3)(s − 2)

= A1

(s + 3)
+ A2

(s − 2)
(3s − 1) = A1(s − 2) + A2(s + 3)

Put s = −3

(−9 − 1) = A1(−3 − 2)

A1 = 2

Put s = 2

(6 − 1) = A2(2 + 3)

A2 = 1

H(s) = 2

(s + 3)
+ 1

(s − 2)

2. The poles of H(s) are at s = 2 and s = −3. If the system is stable, the pole at
s = 2 contributes to the left-sided term to the impulse response and the pole at
s = −3 contributes right-sided term. Thus, we have

h(t) = 2e−3tu(t) − e2tu(−t)

3. If the system is causal, then both the poles should contribute right-sided term to
the impulse response which is obtained as

h(t) = [2e−3t + e2t]u(t)

Due to e2tu(t) the system is not stable.
4. Hence, the given system cannot be both stable and causal due to the pole at

s = 2.
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8.12 Connection Between Laplace Transform and
Fourier Transform

The bilateral LT of a signal x(t) as defined earlier is written as follows:

X(s) =
∫ ∞

−∞
x(t)e−stdt (8.64)

Substituting s = jω in the above equation, we get

X(jω) =
∫ ∞

−∞
x(t)e−jωtdt (8.65)

Thus, the FT is a special case of LT which is obtained by putting X(s)|s=jω with the
following constraints.

• x(t) is absolutely integrable.
• ROC of X(s) includes the jω axis.

Many commonly used signals have x(t) = 0 for t ≤ 0 and ROC of the LT includes
the jω axis. Under this condition

X(jω) = X(s)|s=jω

Consider the following signals

x(t) = e−2tu(t)

X(s) = 1

(s + 2)
ROC: Re(s) > −2

Put s = jω

X(jω) = 1

jω + 2
.

Now by FT method, we get

X(jω) =
∫ ∞

0
e−2te−jωtdt

= 1

(jω + 2)

In the above case, ROC includes the jω axis.
Now consider the step function u(t). The LT of a step function is

L[u(t)] = 1

s
.
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But the FT of u(t) is obtained as

F[u(t)] = πδ(ω) + 1

jω

Thus, the FT of u(t) cannot be obtained from its LT as it is not absolutely integrable.

8.13 Causality of Continuous Time Invariant System

A linear time invariant continuous time system is said to be causal if the impulse
response h(t) of the system is zero for t < 0. Thus, the systemwhich possesses right-
sided impulse response is said to be causal. For this, the ROC of the system transfer
function H(s) which is rational, should be in the right half plane and to the right of
the rightmost pole.

Consider the following impulse response function

h(t) = e−2tu(t)

H(s) = 1

(s + 2)
ROC: Re(s) > −2

The above transfer function is rational because the degree of the denominator poly-
nomial is greater than the degree of the numerator polynomial. The ROC is to the
right of the rightmost pole s = −2. Hence, the system is causal. The ROC is shown
in Fig. 8.41a. Now consider the following impulse response function

h(t) = e−|t|

The above function can be written as

h(t) = e−t t ≥ 0

= et t ≤ 0

H(s) =
∫ 0

−∞
ete−stdt +

∫ ∞

0
e−te−stdt

= − 1

(s − 1)
+ 1

(s + 1)
= −2

(s − 1)(s + 1)

The transfer function is rational. The ROC is shown in Fig. 8.41b. The rightmost
pole is at s = 1. The ROC is not to the right of the rightmost pole. Hence, the system
is not causal.
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σ
σ11

j

j

(a) (b)

2

Fig. 8.41 a ROC of h(t) = e−2t (causal); b ROC of h(t) = e−|t| (non-causal)

8.14 Stability of Linear Time Invariant Continuous System

As already derived a linear time invariant system is said to be stable if the area
under the impulse response h(t) curve is finite (absolutely integrable). The impulse
response of a causal system is absolutely integrable if the response curve decays
exponentially as time increases. Consider the transfer function of an LTIC system.

H(s) = bnsn + bn−1sn−1 + · · · + b0
ansm + am−1sm−1 + · · · + a0

For a rational function H(s), m > n. The above transfer function can be written in
terms of factors.

H(s) = A1

(s + p1)
+ A2

(s + p2)
+ · · · + An

(s + pm)

The impulse response of H(s) is obtained by taking inverse LT.

h(t) = L−1H(s) = A1e−p1t + A2e−p2t + · · · + Ame−pmt

For h(t) to be absolutely integrable, the following conditions are to be satisfied.

• All the poles of H(s) should lie in the left half of the s-plane;
• No repeated pole should be in the imaginary axis. Under these conditions, the
system is said to be stable;

• The stability is also assessed by ROC. The ROC of H(s) should include jω axis.
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� Example 8.76

A Certain causal linear time invariant system has the following transfer function.
Test whether the system is stable.

(a) H(s) = (s − 4)

(s + 2)(s − 1)

(b) H(s) = (s − 4)

s2(s + 1)

(c) H(s) = (s − 4)

s(s + 1)(s + 4)

(d) H(s) = (s − 4)

(s − 3)(s + 4)
ROC: − 4 < Re(s) < 3

Solution:

(a) Since the system is causal, the pole s = 1, which lies in RHP makes the system
unstable.

(b) There are two poles repeated at the origin. The system is unstable.
(c) All the poles are in LHP. The system is stable. It is to be noted that the locations

of zeros do not have any influence on the system stability.
(d) This is a non-causal system. ROC strip is enclosing the jω axis. Hence, the

system is stable.

8.15 The Bilateral Laplace Transform

The unilateral LT is applicable for causal signals and/or systems. However, for non-
causal signals and systems, the LT pair is defined as follows:

L[x(t)] = X(s) =
∫ ∞

−∞
x(t)e−stdt (8.66)

L−1[X(s)] = x(t) = 1

2π j

∫ c+∞

c−j∞
X(s)estds (8.67)

It is to be noted here that the unilateral LT pair defined earlier is the special case of
bilateral LT.
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x(t)

(a)

t t0 t 0 t

(c)

x2(t)

t 0
(b)

x1(t)

t

Fig. 8.42 a Signal x(t); b Causal Signal; c Anti-Causal signal

8.15.1 Representation of Causal and Anti-causal Signals

The signal x(t) shown in Fig. 8.42a is a non-causal signal which has two components.
x(t) can be split up into two components as x(t) = x1(t) + x2(t). The signal x1(t) is a
causal signal (positive time) and is also called as right-sided signal. This is shown in
Fig. 8.42b. The signal x2(t) is called non-causal or anti-causal (negative time) signal.
It is also called left-sided signal. x2(t) is shown in Fig. 8.42c. These signals are given
the following mathematical description.

x1(t) = x(t)u(t) − 0 < t < ∞ (8.68)

x2(t) = x(t)u(−t) − ∞ < t < −0 (8.69)

The LT of x1(t), the causal component is

X1(s) = L[x1(t)] =
∫ ∞

0−
x1(t)e

−stdt (8.70)

The LT of x2(t), the non-causal component is

X2(s) = L[x2(t)] =
∫ 0−

−∞
x2(t)e

−stdt (8.71)

It is to be noted that if x(t) has any impulse or its derivatives at the origin they
should be included in the causal signal x1(t) and x2(t) = 0 at the origin.
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8.15.2 ROC of Bilateral Laplace Transform

Consider the following signal

x(t) = e−2tu(t) + e3tu(−t)

x1(t) = e−2tu(t)

X1(s) = 1

(s + 2)
ROC: Re s > −2

x2(t) = e3tu(−t)

X2(s) =
∫ −0

−∞
e3te−stdt

=
∫ −0

−∞
e−(s−3)tdt

= − 1

(s − 3)

[
e−(s−3)t

]0−

−∞

= − 1

(s − 3)
[−e−(s−3)(−∞) + 1]

e−(s−3)(−∞) converges if (s − 3) < 0 or s < 3. Hence, the ROC of the left sided
(anti-causal signal) is to the left of the pole at s = 3

X2(s) = − 1

(s − 3)
ROC: Re s < 3

∴ X(s) = X1(s) + X2(s)

X(s) = 1

(s + 2)
− 1

s − 3
ROC: − 2 < Re s < 3

Unless the ROC is mentioned, the inverse LT is not unique. In the above case, the
ROC is a strip between −2 < Re s < 3 and is shown in Fig. 8.43.

� Example 8.77

Consider the following function.

X(s) = 10

(s + 4)(s − 2)

Find x(t) if the ROC is (a) Re s > 2; (b) Re s < −4; (c) −4 < Re s > 2.
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Fig. 8.43 ROC of x(t)

ROC

32 0

j s-plane

Solution:

X(s) = 10

(s + 4)(s − 2)

= A1

(s + 4)
+ A2

s − 2
10 = A1(s − 2) + A2(s + 4)

Put s = −4

10 = A1(−4 − 2)

A1 = −5

3

Put s = 2

10 = A2(2 + 4)

A2 = 5

3

X(s) = 5

3

[ −1

s + 4
+ 1

s − 2

]

(a) ROC > 2.
Here the ROC is right sided for both the poles at s = −4 and s = 2. Hence, the
system is causal.

x(t) = 5

3
[−e−4t + e2t]u(t)

(b) ROC Re s < −4 (Fig. 8.44).
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Fig. 8.44 ROCs of

X(s) = 10

(s + 4)(s − 2)
j

s-plane

0 2

(a)

4

ROC

j

s-plane

2

(b)

4

ROC

j

s-plane

ROC

2

(c)

4

Here the system poles s = −4 and s = 2 are both left sided since they lie left to the
ROC. Both are non-causal.

X(s) = 5

3

[ −1

(s + 4)
+ 1

s − 2

]
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x(t) = 5

3
(e−4t − e2t)u(−t)

(c) ROC −4 < Re s < 2.
Here the pole s = −4 is to the left of the ROC and it is a right-sided signal. It is,
therefore, causal. The pole s = 2 is to the right of the ROC, and hence it is a left-sided
signal. It is non-causal. Hence

x(t) = 5

3

[−e−4tu(t) − e2tu(−t)
]

� Example 8.78

The impulse response function of a certain system is

H(s) = 10

s − 5
ROC: Re s < 5

The system is excited by x(t) = e−3tu(t). Derive an expression for the output y(t) as
a function of time.

Solution:

H(s) = 10

(s − 5)
ROC: Re s < 5

X(s) = L−1[e−3tu(t)]
= 1

(s + 3)
ROC: Re s > −3

Y(s) = H(s)X(s)

= 10

(s − 5)(s + 3)
ROC: − 3 < Re s < 5

Putting into partial fraction, we get

Y(s) = A1

s − 5
+ A2

s + 3
10 = A1(s + 3) + A2(s − 5)

Put s = 5

10 = A1(5 + 3)

A1 = 5

4

Put s = −3
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Fig. 8.45 ROC of

Y(s) = 10

(s − 5)(s + 3)

σ

j

3 5

s-plane

ROC

10 = A2(−3 − 5)

A2 = −5

4

Hence, Y(s) = 5
4

(
1

s−5 − 1
s+3

)
.

The ROC is shown in Fig. 8.45. From the ROC, the pole 1
(s−5) is left sided (right to

the ROC) and the pole 1
(s+3) is right sided (left to the ROC). Hence,

1
(s−5) is non-causal

and 1
(s+3) is causal. y(t) is obtained by taking inverse LT.

y(t) = 5

4

(−e5tu(−t) − e−3tu(t)
)

� Example 8.79

The impulse response function of a certain system is given by

H(s) = 1

(s + 10)
ROC: Re s > −10

The system is excited by the following input.

x(t) = −2e−2tu(−t) − 3e−3tu(t)

Derive an expression for the output y(t) as a function of time.

Solution: By taking LT for x(t), we get

X(s) = L[−2e−2tu(−t) − 3e−3tu(t)]
= 2

(s + 2)
− 3

(s + 3)
ROC: − 3 < Re s < −2
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s-plane

j

2 0310

Fig. 8.46 ROC of Example 8.87

= 2s + 6 − 3s − 6

(s + 2)(s + 3)

= −s

(s + 2)(s + 3)

H(s) = 1

(s + 10)
ROC: Re s > −10

Y(s) = −s

(s + 2)(s + 3)(s + 10)
ROC: − 3 < Re s < −2

The ROC of Y(s) is shown in Fig. 8.46. The ROC of H(s) is automatically satisfied
if ROC Re s > −3. Putting Y(s) into partial fraction, we get

Y(s) = A1

(s + 2)
+ A2

(s + 3)
+ A3

(s + 10)
−s = A1(s + 3)(s + 10) + A2(s + 2)(s + 10) + A3(s + 2)(s + 3)

Put s = −2

2 = A1(−2 + 3)(−2 + 10)

A1 = 1

4

Put s = −3

3 = A2(−3 + 2)(−3 + 10)

A2 = −3

7
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Put s = −10

10 = A3(−10 + 2)(−10 + 3)

A3 = 5

28

Hence

Y(s) = 1

4

1

(s + 2)
− 3

7

1

(s + 3)
+ 5

28

1

(s + 10)

From Fig. 8.46, it is evident that the pole 1
(s+10) of the system and the pole 1

(s+3) of
the input are right sided (to the left of ROC), and hence causal. On the other hand,
the pole 1

(s+2) is left sided (right to the ROC), and hence non-causal. Thus, y(t) is
obtained by taking inverse LT.

y(t) = −1

4
e−2tu(−t) − 3

7
e−3tu(t) + 5

28
e−10tu(t)

� Example 8.80

The impulse response of a certain system is given by h(t) = δ(t) + e−3|t|. The system
is excited by the following signal x(t) = e−4tu(t) + e−2tu(−t). Find the response of
the system y(t).

Solution:

H(s) = L[h(t)]
= L(δ(t)) + L(e−3|t|)
= 1 + L(e−3|t|)

L(e−3|t|) =
∫ 0−

−∞
e+3te−stdt +

∫ ∞

0−
e−3te−stdt

= − 1

(s − 3)
+ 1

s + 3

H(s) = 1 − 1

(s − 3)
+ 1

(s + 3)
ROC: − 3 < Re s < 3

= (s2 − 15)

(s − 3)(s + 3)

X(s) = L[e−4tu(t) + e−2tu(−t)]
= 1

(s + 4)
− 1

s + 2

= −2

(s + 2)(s + 4)
ROC: − 4 < Re s < −2
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H(s) = Y(s)

X(s)
Y(s) = H(s)X(s)

= (s2 − 15)(−2)

(s − 3)(s + 3)(s + 2)(s + 4)

= A1

s − 3
+ A2

s + 3
+ A3

s + 2
+ A4

(s + 4)

(15 − s2)2 = A1(s + 3)(s + 2)(s + 4) + A2(s − 3)(s + 2)(s + 4)

+A3(s − 3)(s + 3)(s + 4) + A4(s − 3)(s + 3)(s + 2)

Put s = 3

2(15 − 9) = A1(6)(5)(7)

A1 = 2

35

Put s = −3

2(15 − 9) = A2(−6)(−1)(1)

A2 = 2

Put s = −2

2(15 − 4) = A3(−5)(1)(2)

A3 = −11

5

Put s = −4

2(15 − 16) = A4(−7)(−1)(−2)

A4 = 1

7

Y(s) = 2

35

1

s − 3
+ 2

s + 3
− 11

5

1

(s + 2)
+ 1

7

1

(s + 4)

The ROC for Y(s) is shown in Fig. 8.47. From Fig. 8.47, the poles 1
(s+4) and

1
(s+3)

are right sided, and hence causal. However, the poles 1
(s+2) and

1
(s−3) are left sided,

and hence non-causal. Taking the ROC into account y(t) is obtained as given below
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s-plane

j

2 0

ROC

34 3

Fig. 8.47 ROC of Example 8.88

ROC

3 2 41

R 3 

C F

L 1H

1
2

i(t)

j

x(t)

s-plane

(a) (b)

Fig. 8.48 a R.L.C Circuit; b ROC of Example 8.89

y(t) =
[(

2e−3t + 1

7
e−4t

)
u(t) +

(
− 2

35
e3t + 11

5
e−2t

)
u(−t)

]

� Example 8.81

Consider the R.L.C series circuit shown in Fig. 8.48a. The excitation voltage
x(t) = e−3tu(t) + e4tu(−t). Derive the expression for the current in the series circuit.
Assume zero initial conditions.

Solution:

1. The impedance of the R.L.C circuit is
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Z(s) = R + Ls + 1

Cs

= 3 + s + 2

s

= (s2 + 3s + 2)

s
= (s + 1)(s + 2)

s

2. The excitation voltage

x(t) = e−3tu(t) + e4tu(−t)

X(s) = 1

(s + 3)
− 1

(s − 4)

= −7

(s + 3)(s − 4)
ROC: − 3 < Re s < 4

3. The current flowing in the circuit is

I(s) = X(s)

Z(s)

I(s) = −7s

(s + 1)(s + 2)(s + 3)(s − 4)

The correspondingROC: − 1 < Re s < 4. The aboveROC satisfies the previous
ROC also.

I(s) = A1

(s + 1)
+ A2

(s + 2)
+ A3

(s + 3)
+ A4

(s − 4)
−7s = A1(s + 2)(s + 3)(s − 4) + A2(s + 1)(s + 3)(s − 4)

+A3(s + 1)(s + 2)(s − 4) + A4(s + 1)(s + 2)(s + 3)

Put s = −1

7 = A1(−1 + 2)(−1 + 3)(−1 − 4)

A1 = − 7

10

Put s = −2

14 = A2(−1)(1)(−6)

A2 = 7

3

Put s = −3
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21 = A3(−2)(−1)(−7)

A3 = −3

2

Put s = 4

−28 = A4(5)(6)(7)

A4 = − 2

15

I(s) = −7

10

1

(s + 1)
+ 7

3

1

s + 2
− 3

2

1

(s + 3)
− 2

15

1

(s − 4)

The poles 1
s+1 ,

1
s+2 and 1

s+3 are right sided as seen in ROC of Fig. 8.48b. The
pole 1

s−4 is left sided, and hence non-causal. Taking inverse LT for I(s), we get

i(t) =
(−7

10
e−t + 7

3
e−2t − 3

2
e−3t

)
u(t) + 2

15
e4tu(−t)

8.16 System Realization

Realization of system transfer function is a synthesis problem and it is realized in
many ways and is not unique. Consider the most general form of transfer function
which is given below

H(s) = b0sn + b1sn−1 + b2sn−2 + . . . + bn−1s + bn

sn + a1sn−1 + a2sn−2 + . . . + an−1s + an
(8.72)

The transfer functionH(s) is expressed in terms of numerator polynomial and denom-
inator polynomial. The denominator polynomial is a monic polynomial (polyno-
mial with the coefficient of sn is unity). The above transfer function is realized
using integrators or differentiators together with adders and multipliers. For system
realization, the differentiators are not used because they enhance the noise level.
The symbols used to represent an ideal integrator, adder and multiplier are shown in
Fig. 8.49a–c, respectively.

The following methods of realization are described here:

• Direct Form-I
• Direct Form-II
• Cascade Form
• Parallel Form
• Transposed Form
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(a) (b) (c)

a

1
s

X(s) Y(s) X(s)

Y(s)

X(s) Y(s)
aX(s)X(s) Y(s)

Fig. 8.49 a Pure intergrator. b Adder. c Multiplier. Symbols for integrator, adder and summer

8.16.1 Direct Form-I Realization

Consider the transfer function with third degree polynomial in the numerator and
denominator. Thus, Eq. (8.72) is written as follows:

H(s) = b0s3 + b1s2 + b2s + b3
s3 + a1s2 + a2s + a3

(8.73)

H(s) can be expressed as given below after dividing the numerator and denominator
by s3.

H(s) = H1(s)H2(s)

where

H1(s) =
(

b0 + b1
s

+ b2
s2

+ b3
s3

)

H2(s) = 1(
1 + a1

s
+ a2

s2
+ a3

s3

) (8.74)

Equation (8.74) can be realized with a transfer functions H1(s) and H2(s) in cascade
as shown in Fig. 8.50.

From Fig. 8.50, the following equation is written.

W(s) = H1(s)X(s)

=
[

b0 + b1
s

+ b2
s2

+ b3
s3

]
X(s) (8.75)

Y(s) = W(s)H2(s)

X(s)
H1(s) H2(s)

W(s) Y(s)

Fig. 8.50 Transfer function in cascade
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W(s) = Y(s)
1

H2(s)

= Y(s)
[
1 + a1

s
+ a2

s2
+ a3

s3

]

= Y(s) +
(a1

s
+ a2

s2
+ a3

s3

)
Y(s)

Y(s) = W(s) −
(a1

s
+ a2

s2
+ a3

s3

)
Y(s) (8.76)

Now we realize H1(s) which is given by Eq. (8.75) and is described below

1. X(s) is multiplied by b0,
2. X(s) is integrated and multiplied by b1,
3. X(s) is integrated twice

(
1
s2

)
and multiplied by b2,

4. X(s) is integrated thrice
(
1
s3

)
and multiplied by b3,

5. Steps 1, 2, 3, and 4 are sent through summers and W(s) is realized. This is shown
in Fig. 8.51a.

Realization of H2(s) is described below. Consider Eq. (8.76).

1. W(s) is taken as reference,
2. Y(s) is integrated once and multiplied by −a1,
3. Y(s) is integrated twice and multiplied by −a2,
4. Y(s) is integrated thrice and multiplied by −a3,
5. Steps 1, 2, 3 and 4 are added through summers to get Y(s) as per Eq. (8.76).

Thus, H2(s) is realized and is shown in Fig. 8.51b.
Now

H(s) = H1(s)H2(s)

Figure 8.51a, b are connected in cascade at point W(s) where W(s) is the output of
H1(s) and input of H2(s). The cascaded Direct Form-I, with third degree polynomial
of H(s) is shown in Fig. 8.51c, which is the combination of Fig. 8.51a, b.

The above procedure can be generalized to realize the transfer function H(s) of
an nth order system. This is shown in Fig. 8.51d.

The following examples illustrate Direct Form-I realization.

� Example 8.82

Consider the following transfer function

H(s) = (4s2 + 6s + 14)

(2s2 + 5s + 8)

Realize Direct Form-I structure.

Solution: The denominator polynomial is not a monic polynomial. Therefore, divide
the numerator and denominator by a factor 2. The given transfer is written as follows:
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X(s)
W(s)

b0

b1

b2

b3

1
s

1
s

1
s

(a)

W(s)

(b)

Y(s)

a1

a2

a3

1
s

1
s

1
s

Fig. 8.51 a Realization of H1(s) and b Realization of H2(s). c Direct Form-I Realization of third
order system. d Direct Form-I Realization of nth order system
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1
s 1

s

1
s

1
s

1
s

1
s

b1

b0

b2

b3

a1

a2

a3

X(s) W(s)

(c)

Fig. 8.51 (continued)

H(s) = (2s2 + 3s + 7)

s2 + 5
2 s + 4

Here b0 = 2; b1 = 3; b2 = 7; a1 = 5
2 and a2 = 4.

These values of H(s) are substituted in Fig. 8.51d and is shown in Fig. 8.52. For
a second order system, there should be two integrators on each side which amounts
to a total of 4 integrators.

� Example 8.83

Consider the following differential equation

d2y(t)

dt2
+ 5dy(t)

dt
+ 4y(t) = dx(t)

dt

Realize Direct Form-I structure.
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1
s 1

s

1
s

1
s

1
s

1
s

b1

b0

b2

bn

a1

a2

an

X(s) W(s) Y(s)

(d)

Fig. 8.51 (continued)

Solution: Taking LT on both sides of the given differential equation, we get

(s2 + 5s + 4)Y(s) = sX(s)

H(s) = Y(s)

X(s)
= s

(s2 + 5s + 4)

Here H1(s) = s and H2(s) = 1
(s2+5s+4) ; b0 = 0; b1 = 1 and b2 = 0; a1 = 5 and a2 =

4.
To realize H1(s) one integrator is needed. To realize H2(s) two integrators are

needed. The Direct Form-I structure is shown in Fig. 8.53.
From the examples illustrated above, it is clear that for a transfer function with

numerator polynomial and denominator polynomial of nth degree, Direct Form-I
realization requires 2n integrators which increases the cost. To avoid this Direct
Form-II, structure is suggested and is discussed below.
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2

3

7 4

5/2

X(s) W(s) Y(s)

1
s

1
s

1
s

1
s

Fig. 8.52 Realization of Direct Form-I structure for H(s) = (4s2 + 6s + 14)

(2s2 + 5s + 8)

X(s) W(s)

1

5

4

Y(s)

1
s 1

s

1
s

Fig. 8.53 Direct Form-I realization of H(s) = s

(s2 + 5s + 4)
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8.16.2 Direct Form-II Realization

InDirect Form-I, realizationH1(s), which represents the zeros ofH(s), is represented
first followed by H2(s), which represents the poles of H(s). In Director Form-II, the
process is reversed. Here H2(s), which represents the poles is realized first (left half
section) followed by the realization of H1(s), which represents the zeros of H(s).
H1(s) is realized in the right half section. This is shownas a block diagram inFig. 8.54.

Consider Eq. (8.76). Let

X(s)
H2(s) H1(s)

V(s) Y(s)

X(s) V(s)

a1

a2

an

1
s

1
s

1
s

(a)

Fig. 8.54 Block diagram representation of Direct Form-II. a Realization of H2(s) =
1(

1 + a1
s

+ a2
s2

+ . . . + an

sn

) . b Realization of H1(s) =
(

b0 + b1
s

+ . . . + bn

sn

)
. c Structure real-

ization by Direct Form-II
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Fig. 8.54 (continued)

V(s) Y(s)b0

b1

b2

bn

1
s

1
s

1
s

(b)

H1(s) = b0sn + b1sn−1 + · · · + bn−1s + bn

H2(s) = 1

sn + a1sn−1 + · · · + an−1s + an

Dividing H1 and H2 by sn we can rewrite H1(s) and H2(s) as follows:

H1(s) = b0 + b1
s

+ b2
s2

+ · · · + bn

sn

H2(s) = 1

1 + a1
s

+ a2
s2

+ · · · + an

sn

From Fig. 8.54
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X(s) V(s) Y(s)a0 b0

a1 b1

a2 b2

an bn

1
s

1
s

1
s

(c)

Fig. 8.54 (continued)

V(s) = H2(s)X(s)

= X(s)[
1 +

(a1
s

+ a2
s2

+ . . . + an

sn

)]

V(s)
[
1 +

(a1
s

+ a2
s2

+ . . . + an

sn

)]
= X(s)

V(s) = X(s) −
(a1

s
+ a2

sn
+ . . . + an

sn

)
V(s) (8.77)

Equation (8.77) is realized as shown in Fig. 8.54a.
Now consider

H1(s) = b0 + b1
s

+ . . . + bn

sn

Y(s) =
(

b0 + b1
s

+ . . . + bn

sn

)
V(s) (8.78)
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Equation (8.79) is realized and is shown in Fig. 8.54b.
From Fig. 8.54a and b, it is evidenced that they can be connected in a cascade

where V(s) is common. This is shown in Fig. 8.54c.
From Fig. 8.54c, it is clear that, for an nth degree polynomial, either in the numer-

ator or in the denominator, the realization requires only n integrators, whereas in
Direct Form-I, structure 2n integrators are necessary. For an nth order system, n inte-
grators will suffice for structure realization in Direct Form-II. Such a realization is
said to be canonic realization where the number of integrators required is equal
to the order of the system. Direct Form-I realization is not canonic.

� Example 8.84

Draw the Direct Form-II realization of the system described by the following differ-
ential equation.

d2y(t)

dt2
+ 5

dy(t)

dt
+ 4y(t) = dx(t)

dt

(Anna University, May, 2005)
Solution: Taking LT on both sides of the given differential equation, we get

(s2 + 5s + 4)Y(s) = sX(s)

H(s) = Y(s)

X(s)
= s

(s2 + 5s + 4)

Since the order of the system is two, we require two integrators. In H(S), b0 = 0;
b1 = 1; b2 = 0; a1 = 5 and a2 = 4. Direct Form-II structure is shown in Fig. 8.55.

� Example 8.85

Find the transfer function of LTI system described by the differential equation

d2y(t)

dt2
+ 3

dy(t)

dt
+ 2y(t) = 2

dx(t)

dt
− 3x(t)

Also realize the Direct Form-II structure.

Solution: By taking LT on both sides of the given differential equation, we get

H(s) = Y(s)

X(s)
= (2s − 3)

(s2 + 3s + 2)

Here two integrators are required. For the given H(s), b0 = 0; b1 = 2; b2 = −3
a1 = 3 and a2 = 2.

The Direct Form-II structure is shown in Fig. 8.56.
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X(s)

Y(s)5 b1 1

4

1
s

1
s

Fig. 8.55 Realization of H(s) = s

s2 + 5s + 4
by DF-II

X(s)

Y(s)3

2 3

2

1
s

1
s

Fig. 8.56 Structure realization of H(s) = (2s − 3)

(s2 + 3s + 2)
by DF-II

� Example 8.86

Realize the following differential equation as a Direct Form-II structure.

d3y(t)

dt3
+ 4

d2y(t)

dt2
+ 7

dy(t)

dt
+ 8y(t) = 5

d2x(t)

dt
+ 4

dx(t)

dt
+ 7x(t)

(Anna University, June, 2007)
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X(s)

7

8 7

4

1
s

1
s

1
s

Y(s)4 5

Fig. 8.57 Realization of H(s) = (5s2 + 4s + 7)

s3 + 4s2 + 7s + 8
by DF-II

Solution: Taking LT on both sides of the given differential equation, we get

H(s) = Y(s)

X(s)
= (5s2 + 4s + 7)

(s3 + 4s2 + 7s + 8)

This is a third order system, and therefore, three integrators are required. For the
given H(s), b0 = 0; b1 = 5; b2 = 4; b3 = 7; a1 = 4; a2 = 7 and a3 = 8.

The Direct Form-II structure is shown in Fig. 8.57.

8.16.3 Cascade Form Realization

The nth order transfer function can be expressed as the product of n first order
transfer functions. Each transfer function is realized in a Direct Form-II structure and
connected in cascade to obtain the realization of total transfer function. Consider the
following T.F. H(s) which can be expressed as the product of n first order T.F H1(s),
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X(s)
H1(s) H2(s) Hn(s)

Y(s)

Fig. 8.58 Representation of H(s) in block diagram

ba

1
s

Y(s)X(s)

Fig. 8.59 Realization of H1(s) = (s + b)

(s + a)

H2(s), . . . ,Hn(s). Thus, the following equation can be written.

H(s) = H1(s)H2(s)H3(s), . . . ,Hn(s) (8.79)

Equation (8.79) is represented in Fig. 8.58.
Now, consider H1(s) in the following form.

H1(s) = (s + b)

(s + a)

The above T.F. can be realized by Direct Form-II with a single integrator. This is
shown in Fig. 8.59.

On a similar line, H2(s), . . . ,Hn(s) can be realized and they can be connected in
cascade. The following examples illustrate the cascade method of structure realiza-
tion.

� Example 8.87

Consider the following T.F

H(s) = (3s + 17)

(s3 + 9s2 + 23s + 15)

realize the structure in cascade form.

Solution: For the realization cascade structure, the given transfer function should
be expressed in terms of poles and zeros. Thus, the denominator polynomial can be
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17

3

1 3 1 15

1
s

1
s

1
s

X(s) Y(s)

H1(s) H2(s) H3(s)

Fig. 8.60 Realization of H(s) = (3s + 17)

(s3 + 9s2 + 23s + 15)
by cascade connection

factorized and put in the following form

(s3 + 9s2 + 23s + 15) = (s + 1)(s + 3)(s + 5)

The given T.F. is written in the following form

H(s) = (3s + 17)

(s + 1)(s + 3)(s + 5)

Let

H1(s) = (3s + 17)

(s + 1)

H2(s) = 1

(s + 3)

H3(s) = 1

(s + 5)

H1(s), H2(s) and H3(s) are realized by Direct Form-II as shown in Fig. 8.60. It is to
be noted here that in cascade form there are different ways of grouping the factors
in the numerator and denominator and hence the realization is not unique.

8.16.4 Parallel Structure Realization

In parallel structure realization, the given T.F. H(s) is expressed as a sum of “n” first
order equations. The “n” poles are realized by Direct Form-II and they are finally
summed up to get the final structure. Here H(s) is expressed in the following form.

H(s) = A1

(s + p1)
+ A2

(s + p2)
+ · · · + An

(s + pn)
(8.80)



8.16 System Realization 885

p1

A1

1
s

p2

A2

An

1
s

pn

1
s

X(s) Y(s)

Fig. 8.61 Parallel Realization of H(s)

In Eq. (8.79), A1, A2, . . . ,An are the residues of H(s). 1
(s+p1)

, 1
(s+p2)

, . . . , 1
(s+pn)

are
individually realized by Direct Form-II and summed up. Here the poles may be real,
complex and repeated. The Parallel connection realization is represented in Fig. 8.61.

The following examples illustrate the parallel realization.

� Example 8.88

Consider the following T.F.

H(s) = 10(s + 1)

s(s + 2)(s + 3)

Solution: The given T.F. is written in the following form

H(s) = 10(s + 1)

s(s + 2)(s + 3)

= A1

s
+ A2

(s + 2)
+ A3

(s + 3)
10(s + 1) = A1(s + 2)(s + 3) + A2(s + 3)s + A3s(s + 2)

Put s = 0
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10 = A16

A1 = 5

3

Put s = −2

10(−2 + 1) = A2(−2)(−2 + 3)

A2 = 5

Put s = −3

10(−3 + 1) = A3(−3)(−1)

A3 = −20

3

H(s) = Y(s)

X(s)
= 5

3

1

s
+ 5

1

(s + 2)
− 20

3

1

(s + 3)

The parallel realization is shown in Fig. 8.62.

� Example 8.89 Complex Poles

Consider the following T.F, whose poles are complex.

H(s) = 10(s + 2)

(s + 1)(s2 + 2s + 2)

realize the T.F by parallel structure.

Solution:
(s2 + 2s + 2) = (s + 1 + j)(s + 1 − j)

The given T.F. is written in partial fraction form as given below

H(s) = Y(s)

X(s)
= 10(s + 2)

(s + 1)(s + 1 + j)(s + 1 − j)

= A1

(s + 1)
+ A2

(s + 1 + j)
+ A3

(s + 1 − j)

10(s + 2) = A1(s
2 + 2s + 2) + A2(s + 1)(s + 1 − j)

+A3(s + 1)(s + 1 + j)

Put s = −1
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5/3

20/3

1
s

2

5

3

X(s) Y(s)

1
s

1
s

Fig. 8.62 Parallel Realization of H(s) = 10(s + 1)

s(s + 2)(s + 3)

10(−1 + 2) = A1(1 − 2 + 2)

A1 = 10

Put s = −(1 + j)

10(−1 − j + 2) = A2(−1 − j + 1)(−1 − j + 1 − j)

10(1 − j) = A22

A2 = −5 + j5

= 7.07∠3π/4

A3 = conjugateofA2

= 7.07∠−3π/4

−(+1 + j) = √
2∠−3π/4

−(1 − j) = √
2∠3π/4
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Y(s)

X(s)

1

1
s

(1 j)

5 j5

10

1
s

(1 j)

1
s

5 j5

(7.07 3 /4)

(7.07  3 /4)

(√2  3 /4) 

(√2  3 /4) 

Fig. 8.63 Parallel realization of H(s) = 10(s + 2)

(s + 1)(s2 + 2s + 2)

The parallel form of structure realization is shown in Fig. 8.63. The parameters are
expressed both in j form as well as polar form.

� Example 8.90

Repeated Poles
Consider the following T.F, where two poles are repeated.

H(s) = (10s2 + 27s + 18)

(s + 3)(s + 4)2

By parallel realization construct the structure of H(s).
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Solution: The given T.F. H(s) is written in the following form

H(s) = (10s2 + 27s + 18)

(s + 3)(s + 4)2

= A1

(s + 3)
+ A2

(s + 4)2
+ A3

(s + 4)

10s2 + 27s + 18 = A1(s + 4)2 + A2(s + 3) + A3(s + 3)(s + 4)

Put s = −3

90 − 27(3) + 18 = A1(−3 + 4)2

A1 = 27

Put s = −4

10(16) − 27(4) + 18 = A2(−4 + 3)

A2 = −70

Compare the coefficients of s2 on both sides

10 = A1 + A3 = 27 + A3

A3 = −17

H(s) = 27

(s + 3)
− 70

(s + 4)2
− 17

(s + 4)

Let

H1(s) = 27

(s + 3)

H2(s) = − 17

(s + 4)

H3(s) = − 70

(s + 4)2

H1(s) and H2(s) are realized by Direct Form-II. The output of H2(s) is applied as the
input of T.F. − 70

(s+4) and thus H3(s) = − 70
(s+4) is realized. The parallel realization of

the T.F. with repeated roots is shown in Fig. 8.64.
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4

17

27

1
s

3

1
s

4

70

1
s

X(s)

Y(s)

H1(s)

H2(s)

H3(s)

Fig. 8.64 Parallel realization of H(s) = (10s2 + 27s + 18)

(s + 3)(s + 4)2

8.16.5 Transposed Realization

A transposed realization is the realization which has the same transfer function. Here
the two realizations are said to be equivalent. The given realization is changed to its
transpose by following the steps given below:

• Replace X(s) with the output Y(s) and vice versa,
• Reverse all the arrow directions without changing the values of the multiplier,
• Replace pick off nodes by adders and vice versa.
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Fig. 8.65 a Direct Form-II
Realization of H(s). b
Transposed Realization of
H(s)

A
B

4

(a) 

(b) 

3

C

D

1
s

X(s) Y(s)

A
B

4 3

C

D

1
s

Y(s) X(s)

The following examples illustrate the above procedure.

� Example 8.91

Consider the following T.F

H(s) = (s + 3)

(s + 4)

Draw the Direct Form-II realization and its transpose.

Solution:

1. For the given T.F. H(s), the Direct Form-II structure is shown in Fig. 8.65a.
2. To get the transposed realization, X(s) and Y(s) are interchanged.
3. The direction of the arrows are reversed.
4. At points A and C, there are summers. These summers are replaced by take off

points. B and D are take off points. These points are replaced by summers.
5. From Fig. 8.65b, the following equations are written.
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Y(s) = X(s) + 3
1

s
X(s) − 4

1

s
Y(s)

Y(s)

[
1 + 4

s

]
=

[
1 + 3

s

]
X(s)

H(s) = Y(s)

X(s)
= (s + 3)

(s + 4)

Thus, the transposed realization has the same T.F. as that of the original system.

� Example 8.92

Realize

H(s) = s(s + 2)

(s + 1)(s + 3)(s + 4)

• in Direct Form-I • Direct Form-II
• Cascade Form • Parallel Form
• Transposed Form

(Anna University, December 2007)
Solution:

1. Direct Form-I realization: The given T.F. H(s) can be written as given below.

H(s) = s(s + 2)

(s + 1)(s + 4)(s + 3)

= s2 + 2s

(s3 + 8s2 + 19s + 12)

Here b0 = 0; b1 = 1; b2 = 2; b3 = 0; and a1 = 8; a2 = 19; a3 = 12 with the
values as given above, the Direct Form-I structure is shown in Fig. 8.66a. It
requires five integrators.

2. Realization by Direct Form-II:

H(s) = s2 + 2s

(s3 + 8s2 + 19s + 12)

The order of the system is three and three integrators are required to realize
this. b1 = 1; b2 = 2; a1 = 8; a2 = 19; and a3 = 12. With these values, Direct
Form-II structure is shown in Fig. 8.66b.

3. Realization in Cascade Form: The given T.F. is written in the following form

H(s) = s

(s + 1)

(s + 2)

(s + 3)

1

(s + 4)
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s

1
s

1
s

X(s)
W(s) Y(s)

2

1

19

8

12

1
s

1
s

1
s

Y(s)X(s) V(s)

(a)

(b)

Fig. 8.66 a Direct Form-I realization of H(s) = s(s + 2)

(s + 1)(s + 4)(s + 3)
. b Structure realiza-

tion by Direct Form-II H(s) = s(s + 2)

(s + 1)(s + 3)(s + 4)
. c Realization by Cascade Form H(s) =

s(s + 2)

(s + 1)(s + 3)(s + 4)
. d Parallel Form realization H(s) = s(s + 2)

(s + 1)(s + 3)(s + 4)
. e Transpose

Form realization of H(s) = s(s + 2)

(s + 1)(s + 3)(s + 4)
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1

1
s

3 2

1
s

4

1
s

H1(s) H2(s) H3(s)
Y(s)

X(s)

1

1
s

3

4 8/3

3/2

6
1

1
s

1
s

X(s) Y(s)

(c)

(d)

Fig. 8.66 (continued)

Let

H1(s) = s

s + 1
; H2(s) = (s + 2)

(s + 3)
; H3(s) = 1

(s + 4)

H1(s), H2(s) and H3(s) are individually realized by Direct Form-II and they are
connected in Cascade. The cascade realized structure is shown in Fig. 8.66c.

4. Realization in Parallel Form: For Parallel Form of realization, the T.F. H(s) is
expressed in partial fraction form as given below
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X(s) Y(s)

(e)

Fig. 8.66 (continued)

H(s) = s(s + 2)

(s + 1)(s + 3)(s + 4)

= A1

(s + 1)
+ A2

(s + 3)
+ A3

(s + 4)

s2 + 2s = A1(s + 3)(s + 4) + A2(s + 1)(s + 4) + A3(s + 1)(s + 3)

Put s = −1

(1 − 2) = A1(−1 + 3)(−1 + 4)

A1 = −1

6

Put s = −3

(9 − 6) = A2(−3 + 1)(−3 + 4)

A2 = −3

2

Put s = −4

(16 − 8) = A3(−4 + 1)(−4 + 3)

A3 = 8

3
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The parallel form realization is shown in Fig. 8.66d.
5. Transpose Realization: Consider Fig. 8.66b, where the transfer function is

realized by Direct Form-II. By following the rules of transposed realization,
Direct Form-II is converted into transposed realization and is shown in Fig. 8.66e.

Summary

1. TheLT is a tool to represent any arbitrary signal x(t) in termsof exponential
components.

2. The LT is defined as follows:

X(s) =
∫ ∞

−∞
x(t)e−stdt

The Laplace inverse transform which converts X(s) into x(t) is expressed
as

x(t) = 1

2π j

∫ σ+j∞

σ−j∞
X(s)estds

The above two equations are called LT pair.
3. Fourier transform is a special case of LT. Fourier transform is obtained by

substituting s = jω in LT in many practical cases even though it is not true
always.

4. The LT of a causal signal and system is called unilateral LT. The LT of
non-causal signal and system is called bilateral LT.

5. The region in the complex s-plane where the LT converges is called the
region of convergence which is written in abbreviated form as ROC. For
a causal signal, the ROC exists to the right of the rightmost pole of the
transfer function. For a non-causal signal, the ROC exists to the left of the
leftmost pole of the transfer function. The ROC will not enclose any pole.

6. The unilateral LT is a special case of bilateral LT. Their properties are
discussed in detail.

7. The inverse LT is conveniently obtained using partial fraction method.
Analytical, aswell as graphicalmethods, are used to determine the residues
in the partial fraction.

8. The integro-differential equation of LTIC system can be converted into
algebraic equations using LT and the solution is obtained with the case.

9. By knowing the transfer function using LT, one can easily obtain impulse
response and step response. Using LT, it is also possible to get zero state
response, zero input response, natural response, forced response and total
response of the system.

10. The solutions of differential and integro-differential equations are obtained
using LT. The initial conditions are applied for zero input. The differen-
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tial equation can also be solved using the classical method. However, in
the classical method, the zero initial conditions are applied for the total
response. The classical method is restricted to a certain class of input and
not applicable to any input. In the classical method, the total response is
expressed in terms of natural response and forced response.

11. Using LT, the electrical network which consists of passive elements can
be analyzed.

12. Using time convolution property of LT, it is possible to get the system
response y(t).

13. Using LT it’s possible to obtain the causality and stability of LTIC system.
14. Non-causal signals and/or systems can be analyzed by the bilateral (two-

sided) Laplace transform. Here, the ROC is mostly in the form of a strip.
Bilateral Laplace transform can also be used for linear system analysis.

15. The transfer function of an nth order system can be realized using integra-
tors, summers and multipliers. The following form of realization which is
a synthesis problem have been discussed and illustrated with examples.

(a) Direct Form-I
(b) Direct Form-II
(c) Cascade Form
(d) Parallel Form
(e) Transposed Form.

Exercises
I. Short Answer Type Questions

1. What is Laplace Transform?
The representation of a continuous time signal x(t) in terms of com-
plex exponential est is termed as Laplace transform. Mathematically, it
is expressed as

L[x(t)] = X(s) =
∫ ∞

−∞
x(t)e−stdt

where s is a complex variable expressed as s = σ + jω. Thus by LT the
time function x(t) is expressed as a frequency function.

2. What do you understand by LT pair?
The LT and inverse LT are called Laplace transform pair. Mathematically,
they are expressed as

X(s) =
∫ ∞

−∞
x(t)e−stdt

x(t) = 1

2π j

∫ σ+∞

σ−∞
X(s)estds
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3. What is bilateral Laplace transform?
The LT to handle non-causal signals and systems is called bilateral LT. It
is mathematically expressed as

X(s) =
∫ ∞

−∞
x(t)e−stdt

4. What is unilateral Laplace transform?
The LT to handle causal signals and systems is called unilateral LT. Math-
ematically, it is expressed as

X(s) =
∫ ∞

0−
x(t)e−stdt

5. What do you understand by LT of right-sided and left-sided signals?
The LT of a causal signal is called the right-sided LT and ismathematically
described as

X(s) =
∫ ∞

0−
x(t)e−stdt

The LT of a non-causal signal is called the left-sided LT and is mathemat-
ically expressed as

X(s) =
∫ 0−

−∞
x(t)e−stdt

6. What is the connection between LT and FT?
The FT is a special case of LT which is obtained by putting X(s)|s=jω with
the constraints that x(t) is absolutely integrable and ROC of X(s) includes
the jω axis of the s-plane. Thus, the FT X(jω) is obtained from LT of X(s)
by substituting s = jω. It is evaluated on the jω axis in the s-plane.

7. What do you understand by Region of convergence?
The region in the s-plane for which the LT integral

X(s) =
∫ ∞

−∞
x(t)e−stdt

converges is called the region of convergencewhich is written in the abbre-
viated form as ROC.

8. How do you identify the ROC of a causal signal?
The ROC of a causal (or right sided) signal is identified in the s-plane in
the region to the right of the rightmost pole of the T.F. H(s).



8.16 System Realization 899

9. How do you identify the ROC of a non-causal (left sided) signal?
The ROC of a non-causal signal is identified in the s-plane in the region
to the left of the left most pole of the T.F. H(s).

10. How do you identify the ROC of a bilateral Laplace transform?
The region to the right of the rightmost pole of the causal signal and the
region to the left of the leftmost pole of the non-causal signal are identified
as the ROC of bilateral LT. ROC should not include any pole. The ROC
is a strip. If ROC does not overlap, LT does not exist.

11. State any three properties of ROC.
The three properties of ROC are

(a) The ROC of LT does not include any pole of X(s),
(b) For the right-sided (causal) signal, ROC exists to the right of rightmost

pole of X(s),
(c) For the left-sided (non-causal) signal, ROC exists to the left of left most

pole of X(s).

12. Identify the ROCs for the following signals and sketch them in the
s-plane? (Fig. 8.67)

(a) x(t) = e−2tu(t)
(b) x(t) = e−3tu(−t)
(c) x(t) = e−2tu(t) + e3tu(−t)
(d) x(t) = e−2|t|
(e) x(t) = e2|t|

13. Sketch the ROC of the following T.F. of a certain causal system and
mark the poles and zeros? (Fig. 8.68)

14. Sketch the ROC of a non-causal system whose T.F. is given as

H(s) = (s + 2)(s − 2)
s(s + 1)(s − 3)

Mark the poles and zeros of H(s) (Fig. 8.69).

15. What are initial and final value theorems?
Initial value theorem is used to determine the initial value of x(t) (as t → 0)
from the LT X(s) which is given below

x(0+) = Lt
s→∞ sX(s)

provided x(t) and dx(t)
dt are both Laplace transformable and X(s) is proper.
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The final value theorem is used to determine x(t) as t tends to infinity. This
can be determined from X(s) using final value theorem as given below.

x(∞) = Lt
s→0

sX(s)

provided that x(t) and dx(t)
dt are both Laplace transformable and sX(s) has

no poles in the RHP or on the imaginary axis.
16. Find the initial and final values of x(t) whose LT is given by

X(s) = (s + 5)
(s2 + 3s + 2)

(Anna University, June 2007)
Initial Value

x(0+) = Lt
s→∞

s(s + 5)

(s2 + 3s + 2)

= Lt
s→∞

s2(1 + 5/s)

s2(1 + 3
s + 2

s2 )

x(0+) = 1

Final value

x(∞) = Lt
s→∞

s(s + 5)

(s2 + 3s + 2)

x(∞) = 0

17. Define transfer function.
The transfer functionof a linear time invariant continuous system is defined
as the ratio of the LT of the output variable to the LT of the input variable
with all initial conditions being assumed to be zero. Thus

T.F. H(s) = Laplace transform of zero state response

Laplace transform of input signal

Transfer function does not exist for non-linear and time-varying systems.
18. Define poles and zeros of the transfer function.

The pole of a transfer function is defined as the value of s in the s-plane
at which the T.F. becomes infinity. The poles are represented by a small
cross×. The poles are the roots of the denominator polynomial of the T.F.
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The zero of a transfer function is defined as the value of s in the s-
plane atwhich theT.F. becomes zero. They are represented by a small circle
“O” in the s-plane. The zeros are the roots of the numerator polynomial
of T.F.

19. What do you understand by eigenfunction of a system?
The input for which the system response is also of the same form is called
eigenfunction or characteristic function.

20. What do you understand by causality of a LTIC system?
ALTIC systemwith rational T.F. is said to be causal if the impulse response
is right sided. For such a system, the ROC is in RHP and to the right of
rightmost pole. An ROC to the right of the rightmost pole does not simply
guarantee the causality of the system. The ROC should be in RHP also.

21. What do you understand by stability of a LTIC system?
The LTIC system is said to be stable if the area under the impulse response
h(t) curve is finite. In other words, the impulse response h(t) should be
absolutely integrable. In terms of ROC, the T.F of a stable LTIC system
includes the jω axis of the s-plane.

An LTIC system which is causal is said to be stable if all the poles
of the transfer function H(s) lie in the LHP and no repeated poles are at
the origin of the s-plane.

22. What do you understand by impulse response and step response of a
system?
The response of the system for the impulse input is defined as

δ(t) = 1 t = 0

= 0 elsewhere

is called impulse response of the system. The response of the system for
the step input is defined as

x(t) = u(t) t ≥ 0

= 0 t < 0

is called step response of the system.
23. What do you understand by zero state response and zero input

response?
The system response when the system is in zero state (all the initial con-
ditions are zero) is called zero state response. Here, the response is made
up of characteristic mode or the Eigen values of the system.

The zero input response of the system is the response due to the
initial conditions only. Here the input is made zero. For a LTIC system,
the total response is
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Total response = zero state response + zero input response

24. What do you understand by the natural response and forced response
of a system?
The total response of a LTIC system can be expressed in terms of zero
input component and zero state component. If we lump together all the
characteristicmode terms in the total response, such a response is called the
natural response. The remaining part of the total responsewhich consists of
non-characteristic mode terms is called the forced response of the system.

25. Are zero input response and natural response and zero state response
and forced response same?
Zero input response is not the same as the natural response and zero state
response is also not the same as the forced response. However, the total
response which is the sum of natural response and forced response and
also expressed as the sum of zero state response and zero input response
will be the same. In few cases, the natural response will be the same as the
zero input response and the zero state response is the same as the forced
response.

26. Comment on the solutions of the differential equations obtained by
the application of LT and by classical method?

(a) In the LT method, the initial conditions are applied to zero input response.
In the classical method, the total response cannot be represented as zero
state response and zero input response. Hence, in the classical method,
the zero initial conditions are applied to the total response which begins
at t = 0+.

(b) The classical method is restricted to a certain class of inputs, whereas the
LT method is applicable to many commonly used signals.

27. What do you understand by asymptotic stability of an LTIC system?
An LTIC system is said to be asymptotically stable if all the roots of the
T.F., which may be simple or repeated, lie in LHP. Further, there are no
repeated roots on the imaginary axis. Under such conditions, the system
remains in a particular equilibrium state indefinitely in the absence of an
external input.

28. What do you understand by marginal stability of the system?
An LTIC system is said to be marginally stable if there are no roots in the
RHP and some un-repeated roots are on the imaginary axis.

29. What do you understand by zero input stability and zero state stabil-
ity?
The zero state stability or external stability of the system is obtained when
the input is applied with zero initial conditions. The zero input stability or
internal stability of the system is obtained by applying initial conditions
with no external input.



8.16 System Realization 903

30. What do you understand by bounded input and bounded output
(BIBO) stability?
An LTIC system is bounded input bounded output stable if the area under
the impulse response curve is finite. Here all the poles of the T.F. lie in
LHP. No repeated poles are on the imaginary axis. An asymptotically
stable system is BIBO unstable.

31. Find the transfer function of LTI system described by the differential
equation

d2 y(t)
dt2

+ 3
d y(t)
dt

+ 2 y(t) = 2
dx(t)
dt

− 3x(t)

(Anna University, May 2008)

H(s) = Y(s)

X(s)
= (2s − 3)

(s2 + 3s + 2)

32. Find the LT of x(t) = e−at u(t). (Anna University, December 2006)

X(s) =
∫ ∞

0
e−(s+a)tdt

X(s) = 1

(s + a)
ROC: Re s > −a

33. Given d y(t)
dt + 6 y(t) = x(t). Find the T.F.

(Anna University, December 2006)

H(s) = Y(s)

X(s)
= 1

(s + 6)

34. Find the LT of u(t) − u(t − a) where a > 0. (Anna University,
December, 2006)
The LT of u(t) is 1

s . By using time shifting property of LT

L[−u(t − a)] = X(s) = −1

s
e−as ROC: Re s > 0

L[u(t) − u(t − a)] = 1

s
[1 − e−as]

35. Find the LT of x(t) = +e−3t u(t − 10)?
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X(s) =
∫ ∞

10
e−3te−stdt

= 1

(s + 3)
e−10(s+3) ROC: Re s > −3

36. Find the LT of x(t) = δ(t − 5)?

X(s) = e−5s ROC: all s

37. What is the output of a system whose impulse response h(t) = e−at

for a delta input? (Anna University, December, 2005)

Y(s)

X(s)
= H(s) = 1

(s + a)
[X(s) = 1]

Y(s) = 1

(s + a)

y(t) = e−atu(t) ROC: s > −a

38. Find the LT of x(t) = te−at u(t) where a > 0?
(Anna University, May 2005)

L[e−atu(t)] = 1

(s + a)

L[te−atu(t)] = 1

(s + a)2

(using frequency differentiation property).
39. Determine the LT of

x(t) = 2t 0 ≤ t ≤ 1

= 0 otherwise.

(Anna University, May 2005)

X(s) =
∫ 1

0
2te−stdt

Integrating by parts, we get

X(s) =
[−2t

s
e−st

]1

0

− 2

s2
[e−st]10

= 2

s2
[1 − e−s(s + 1)]
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40. Determine the output response of the system whose impulse response
h(t) = e−at u(t) for the step input? (Anna University, April 2004)

h(t) = e−atu(t)

H(s) = 1

(s + a)

Y(s)

X(s)
= 1

(s + a)
X(s) = 1

s

Y(s) = 1

a

[
1

s
− 1

s + a

]

y(t) = 1

a
[1 − e−at] ROC: Re s > 0

41. Find the LT and sketch the pole-zero plot with ROC for x(t) =
(e−2t + e−3t)u(t) (Fig. 8.70). (Anna University June 2007)

X(s) = 1

(s + 2)
+ 1

(s + 3)

= 2(s + 2.5)

(s + 2)(s + 3)

42. Find the LT of x(t) = δ(t + 1) + δ(t − 1) and its ROC.

X(s) = es + e−s ROC : all s.

43. Find the LT of x(t) = u(t + 1) + u(t − 1) and its ROC.

X(s) = 1

s
[es + e−s] ROC: Re s > 0

44. Using convolution property determine y(t) = x1(t) ∗ x2(t) where
x1(t) = e−2t u(t) and x2(t) = e−3t u(t)?

X1(s) = 1

(s + 2)
;

X2(s) = 1

(s + 3)
Y(s) = X1(s)X2(s)

= 1

(s + 2)(s + 3)

= 1

(s + 2)
− 1

(s + 3)
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y(t) = (e−2t − e−3t)u(t) ROC: Re s > −2

45. Find the zero input response for the following differential equation.

dy(t)

dt
+ 5y(t) = u(t);

y(0−) = 5

Y(s) = 5

s + 5
y(t) = 5e−5tu(t)

46. Find the LT d
dt [δ(t)].

L
d

dt
[δ(t)] = s ROC: all s.

47. Find the LT of x(t) = δ(2t).

X(s) = 1

2
ROC: all s

48. Find the LT of integrated value of δ(t).

X(s) = 1

s

49. Why integrators are preferred to differentiators in structure realiza-
tion?
Use of differentiators in structure realization enhances noise. That is why
differentiators are not preferred.

50. What are the components required in structure realization?
The components required in structure realization are:

(a) Integrators,
(b) Summers, and
(c) Multipliers.

51. Mention the steps to be followed to realize a transposed structure from
canonic form structure.

(a) Interchange X(s) and Y(s),
(b) Change the directions of arrows,
(c) Replace take off points by summers and vice versa.
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2

j(a)
s-plane

3

j(b)
s-plane

2 2

j(e)
s-plane

σσ

2 3

j(c)
s-plane

Re s > 2 Re s < 3

2< Re s <3

Intersection is empty. No ROC.LT does not exist.

2< Re s <2

σ
2 2

j(d)
s-plane

σ

Fig. 8.67 Region of the convergence of different time functions
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3 2 1 2

j
s-plane

Fig. 8.68 ROC of a causal systematic T.F. H(s) = 10(s − 2)(s + 2)

s(s + 3)(s − 1)

Fig. 8.69 ROC of a
non-causal system with the
T.F

2 0312

j
s-plane

Fig. 8.70 Pole-zero plot and
ROC of

X(s) = 2(s + 2.5)

(s + 2)(s + 3)

22.53

j
s-plane

σ

II. Long Answer Type Questions

1. Find the LT of x(t) = e−2|t| and ROC.

X(s) = 1

(s + 2)
+ 1

s − 2
ROC: − 2 < Re s < 2
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2. Find the LT of x(t) = e2|t| and ROC.
ROC do not overlap and x(t) has no LT X(s).

3. Find the LT of x(t) = (e2t + e−2t)u(t) and the ROC.

X(s) = 1

(s − 2)
+ 1

s + 2
ROC: Re s > 2

4. Find the LT of x(t) = (e2t + e−2t)u(−t) and the ROC.

X(s) = −
(

1

(s + 2)
+ 1

s − 2

)
ROC: Re s < −2

5. Find the LT of x(t) = (e−6t + e−4t)u(t) + (e−3t + e−2t)u(−t)

X(s) = 1

(s + 6)
+ 1

(s + 4)
−

(
1

(s + 3)
+ 1

s + 2

)
ROC: −4 < Re s < −3

6. Find the LT of

x(t) = (e−6t + e−3t)u(t) + (e−4t + e−2t)u(−t)

ROC does not overlap, and hence x(t) has no LT X(s).

7. Find the LT and ROC of

x(t) = e−3t [u(t) − u(t − 4)]

X(s) =
[

1
(s+3) − e−4(s+3)

(s+3)

]
ROC: Res > −3

8. Find the inverse LT of the following X(s) for all possible combinations of
ROC.

X(s) = 4
(s + 1)(s − 3)

(a) x(t) = (e3t − e−t)u(t) ROC: Re s > 3
(b) x(t) = (e−t − e3t)u(−t) ROC: Re s < −1
(c) x(t) = (e−tu(t) − e3tu(−t) − 1 < Re s < 3

9. Find the inverse LT of X(s)

X(s) = 8(s + 2)
s(s2 + 4s + 8)

ROC: Re s > −2

x(t) = 2
[
1 + √

2 sin
(
2t − π

4

)]
u(t)
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10. Find the inverse LT of

X(s) = s2 + 2s + 4)
(s + 2)(s + 4)

ROC: Re s > −2

x(t) = δ(t) + 1
2 [e−2t − e−4t]u(t)

11. Find the inverse LT of

X(s) = (s2 + 3s + 1)
(s2 + 5s + 6)

ROC: Re s > −2

x(t) = δ(t) − (9e−2t − 11e−3t)u(t)

12. Find the inverse LT of

X(s) = s3 + 8s2 + 21s + 16
(s2 + 7s + 12)

ROC: Re s > −3

x(t) = [ d
dt δ(t) + δ(t) + 4e−4t − 2e−3t]u(t)

13. Find the inverse LT of

X(s) = 10se−2s + 5e−4s + 6
(s2 + 13s + 40)

ROC: Re s > −5

x(t) =
[
80

3
e−8(t−2) − 50

3
e−5(t−2)

]
u(t − 2)

+5

3
(e−5(t−4) − e−8(t−4))u(t − 4) + 2[e−5t − e−8t]u(t)

14. Find the initial and final value of y(t) if its LT Y(s) is given by

Y(s) = (s2 + 2s + 5)
s(s2 + 4s + 6)

Initial value y(0) = 1. Final value y(∞) = 5
6

15.

x1(t) = u(t)

x2(t) = e−2t u(t)
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X(t)

t

3

2 4 6 8 10

Fig. 8.71 A periodic pulse signal

Using convolution property of LT find y(t) = x1(t) ∗ x2(t)

y(t) = 1

2
[1 − e−2t]u(t)

16. Consider an LTIC system described by the following differential equation

d2 y(t)
dt2

+ d y(t)
dt

− 6 y(t) = x(t)

Determine

(a) the system transfer function.
(b) impulse response of the system if it is causal.
(c) Impulse response of the system if the system is stable.
(d) Impulse response of the system if it is neither causal nor stable.

(a)

H(s) = 1

(s2 + s − 6)

(b)

y(t) = −1

5
[e−3t − e2t]u(t) ROC: Re s > 2

(c)

y(t) = 1

5
[−e2tu(−t) − e−3tu(t)] ROC: − 3 < Re s < 2

(d)

y(t) = 1

5
[−e2t + e−3t]u(−t) ROC: Re s < −3

17. Determine the LT of the periodic signal shown in Fig. 8.71.
X(s) = 3

s
1

[1+e−2s]
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Fig. 8.72 Electrical circuit 1 H

C

L R1

R2

5

10
10v

S

6
1

i(t)

18. Consider the electrical circuit shown in Fig. 8.72. Initially the switch S is
closed. Derive an expression for the current through the inductor as soon
as the switch is open.
i(t) = [3e−3t − 2e−2t]u(t)

19. Find the Laplace inverse of the following X(s)

X(s) = (s + 5)
(s + 2)(s + 3)3

ROC: Re s > −2

x(t) = [3e−2t − (t2 + 3t + 3)e−3t]u(t)

20. Solve the following differential equation

d2 y(t)
dt2

+ d y(t)
dt

− 2 y(t) = dx(t)
dt

+ x(t)

The initial conditions are y(0−) = 2; d y(0−)

dt = 1. The input is

(a) x(t) = δ(t) an impulse
(b) x(t) = u(t) unit step
(c) x(t) = e−4t u(t) an exponential decay

(a) x(t) = [
2
3e−2t + 7

3et
]

u(t) ROC: Re s > 1

(b) x(t) = [− 1
2 + 1

6e−2t + 7
3et

]
u(t) ROC: Re s > 1

(c) y(t) = [
1
2e−2t − 3

10e−4t + 27
15et

]
u(t) ROC: Re s > 1
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21. The unit step response of a certain LTIC system y(t) = 10e−5t . Find
(a) the impulse response? (b) the response due to the exponential decay
x(t) = e−3t u(t)?

(a) h(t) = 10δ(t) − 50e−5tu(t) ROC: Re s > −5

(b) y(t) = (25e−5t − 15e−3t)u(t) ROC: Re s > −3

22. The impulse response of a certain system is h1(t) = e−3t u(t) and the
impulse response of another system is h2(t) = e−5t u(t). These two systems
are connected in cascade. Find (a) the impulse response of the cascade con-
nected system (b). Is the system BIBO stable?

(a) h(t) = 1
2 [e−3t − e−5t]u(t) ROC: Re s > −3

(b) The system is BIBO stable since the ROC is to the right of rightmost pole
at s = −3 which includes the jω axis.

23. The impulse response of a certain system is given by h(t) = e−5t .The system
is excited by x(t) = e−3t u(t) + e−2t u(−t). Determine

(a) The system transfer function
(b) Output of the system y(t)
(c) BIBO stability of the system.

(a) H(s) = −1

(s + 2)(s + 3)(s + 5)
ROC: − 3 < Re s < −2

(b) y(t) = (
1
2e−3t − 1

6e−5t
)

u(t) + 1
3e−2tu(−t)

(c) The system is not BIBO stable since the ROC does not include the jω axis

24. A certain LTIC system is described by the following differential equation

d2 y(t)
dt2

− d y(t)
dt

− 30 y(t) = dx(t)
dt

+ 4x(t)

The system is subjected to the following input.

x(t) = e−3t u(t)

The initial conditions are y(0+) = 3 and ẏ(0+) = 1. Derive an expression
for the output response as a function of time.

y(t) =
[
35

22
e−5t + 145

99
e6t − 1

18
e−3t

]
u(t) ROC: − 3 < Re s < 6
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25. A certain LTIC system is described by the following differential equation

d2 y(t)
dt2

+ 3
d y(t)
dt

+ 2 y(t) = dx(t)
dt

+ 4x(t)

where x(t) = e−3t u(t).The initial conditions are y(0−) = 2 and ẏ(0−) = 1.
Determine

(a) The characteristic polynomial.
(b) The characteristic equation.
(c) The Eigen values.
(d) The zero input response.
(e) The zero state response.
(f) Total response. Use Laplace transform method.

(a) The characteristic polynomial is F(s) = s2 + 3s + 2
(b) The characteristic equation is λ2 + 3λ + 2 = 0
(c) The Eigen values are λ1 = −1 and λ2 = −2
(d) Zero input response is ys(t) = [5e−t − 3e−2t]u(t)
(e) Zero state response is

yi(t) =
[
3

2
e−t − 2e−2t + 1

2
e−3t

]
u(t)

(f) Total response is y(t) = yi(t) + ys(t)

y(t) =
[
13

2
e−t − 5e−2t + 1

2
e−3t

]
u(t)

26. An LTIC system has the following T.F

H(s) = (s + 10)
s3 + 5s2 + 3s + 4

Determine the differential equation.

d3y(t)

dt3
+ 5

d2y(t)

dt2
+ 3dy(t)

dt
+ 4y(t) = dx(t)

dt
+ 10x(t)

27. An LTIC system is described by the following differential equation

d2 y(t)
dt2

+ 4
d y(t)
dt

+ 3 y(t) = dx(t)
dt

+ 4x(t)

The system is in the initial state of y(0−) = 2 and ẏ(0−) = 1. The system
is excited with the input x(t) = e−5t . Determine
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(a) The natural response of the system.
(b) The forced response of the system.
(c) Total response of the system. Use Laplace transform method.

(a) The natural response of the system is

yn(t) =
(
31

8
e−t − 7

4
e−3t

)
u(t)

(b) The forced response of the system is

yf (t) =
(

−1

8
e−5t

)
u(t)

(c) The total response of the system is

y(t) =
[
31

8
e−t − 7

4
e−3t − 1

8
e−5t

]
u(t)

28. The impulse response of an LTIC system is given by x(t) = e−2t u(t). Is the
system causal?
X(s) = 1

s+2 and rational ROC: Re s > −2 which lies in RHP. Hence, the system
is causal.

29. The impulse response of an LTIC system is given by h(t) = e−2|t|. Is the
system causal.
H(s) = −4

(s−2)(s+2) which is rational ROC is −2 < Re s < 2. The ROC is not to
the right of the rightmost pole, and hence the system is not causal.

30. Check the stability of an LTIC system whose impulse response is
h(t) = e−2|t|
H(s) = −4

(s−2)(s+2) which is rational. The ROC is −2 < Re s < 2. This includes
the imaginary axis. Hence, the system is stable.

31. Consider the following transfer function.

X(s) = 1
(s + 2)(s − 2)

Identify all possible ROCs and, in each case, find the impulse response, the
stability and causality. Also, sketch the ROC.
(1) ROC: Re s > +2

h(t) = 1

4
(e2t − e−2t)u(t)
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2 2

j

Re s < 2

2 2

j

Re s > 2(a) ROC:

Causal and unstable system Non-causal and unstable system

(b) ROC:

σσ

2 2

j

σ

Non-causal and stable system ROC: 2 < Re s < 2

Fig. 8.73 ROC related to causality and stability

ROC does not include jω axis. The system is unstable. The system is causal since
ROC is right sided and in RHP.
(2) ROC: Re s < −2

h(t) = 1

4
[−e2t + e−2t]u(−t)

ROC does not include jω axis. The system is unstable and non-causal since the
ROC is left sided.
(3) ROC: − 2 < Re s < 2

h(t) = 1

4
[−e2tu(−t) − e−2tu(t)]

ROC includes the jω axis and the system is stable. The system is non-causal
since ROC is a strip (Fig. 8.73).

32. Find the bilateral LT of
x(t) = e−10|t|
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5

1

26

24

9 Y(s)

X(s)

1
s

1
s

1
s

(a)

(b)

2

1
s

3 5

1

1
s

4

1
s

Y(s)X(s)

Fig. 8.74 a Direct canonic form realization of H(s) = s(s + 5)

(s + 2)(s + 3)(s + 4)
. b Cascade form

realization of H(s) = s(s + 5)

(s + 2)(s + 3)(s + 4)

X(s) = −20

(s2 − 100)

33. Find the bilateral LT of

x(t) = etu(t) − e3t u(−t)

X(s) = (2s − 4)

(s − 1)(s − 3)
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2 3

X(s)

Y(s)

1
s

3 6

1
s

24

1
s

Fig. 8.75 c Parallel realization of H(s) = s(s + 5)

(s + 2)(s + 3)(s + 4)

34. Find the bilateral LT of

X(s) = (s − 5)
(s + 2)(s + 5)

ROC: − 5 < Re s < −2

x(t) = 1

3
[10e−5tu(t) + 7e−2tu(−t)]

35. Find the inverse bilateral LT of

X(s) = (s + 2)
(s − 2)(s − 5)

ROC: 2 < Re s < 5
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Fig. 8.76 d Transpose
realization of H(s) =

s(s + 5)

(s + 2)(s + 3)(s + 4)

1
s

1
s

1
s

5

1 9

26

24

X(s)

Y(s)

x(t) = −1

3
[7e5tu(−t) + 4e2tu(t)]

36. Find the inverse bilateral LT of

X(s) = (s2 − 2s − 3)
(s + 2)(s + 4)(s − 6)

ROC: − 2 < Re s < 6

x(t) =
(−5

16
e−2t + 21

20
e−4t

)
u(t) − 21

80
e6tu(−t)]

37. Realize (Figs. 8.74, 8.75 and 8.76)

H(s) = s(s + 5)
(s + 2)(s + 3)(s + 4)

by
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(a) Direct Canonic Form (Direct Form-II)
(b) Series Form (Cascade)
(c) Parallel Form
(d) Transposed Form

Structure Realization



Chapter 9
The z-Transform Analysis of Discrete
Time Signals and Systems

Learning Objectives

� To define the z-transform and the inverse z-transform.
� To find the z-transform and ROC of typical DT signals.
� To find the properties of ROC.
� To find the properties of z-transform.
� To find the inverse z-transform.
� To solve difference equation using the z-transform.
� To establish the relationship between the z-transform, Fourier transform and the

Laplace transform.
� To find the causality and stability of DT system.
� To realize the structure of DT system.

9.1 Introduction

The z-transform is the discrete counterpart of the Laplace transform. The Laplace
transform converts integro-differential equations into algebraic equations. In the
same way, the z-transform converts difference equations of discrete time systems
to algebraic equations which simplifies the discrete time system analysis. There are
many connections between Laplace and z-transforms except for some minor differ-
ences. DTFT represents discrete time signals in terms of complex sinusoids. When
this sort of representation is generalized and represented in terms of the complex
exponential, it is termed as z-transform. This sort of representation has a broader
characterization of the system with signals. Further, the DTFT is applicable only for
stable systems whereas z-transform can be applied even to unstable systems which
means that z-transform can be used to a larger class of systems and signals. It is to be
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noted that many of the properties in DTFT, Laplace transform and z-transform are
common except that the Laplace transform deals with continuous time signals and
systems.

9.2 The z-Transform

Let zn be an everlasting exponential. Let h(n) be the impulse response of the discrete
time system. The response of a linear, time invariant discrete time system to the
everlasting exponential zn is given as H(z)zn. That is, it is the same exponential
within a multiplicative constant. Thus, the system response to the excitation x[n] is
the sum of the system’s responses to all these exponentials. The tool that is used to
represent an arbitrary discrete signal x[n] as a sum of the everlasting exponential of
the form zn is called the z-transform.

Let x[n] = zn be the input signal applied to an LTI discrete time system whose
impulse response is h[n]. The system output y[n] is given by

y[n] = x[n] ∗ h[n]
=

∞∑

k=−∞
h[k]x[n − k]

Substitute x[n] = zn

y[n] =
∞∑

k=−∞
h[k]zn−k = zn

[ ∞∑

k=−∞
h[k]z−k

]

Define the transfer function

H[z] =
∞∑

k=−∞
h[k]z−k (9.1)

Equation (9.1) may be written as

H[zn] = H[z]zn

To represent any arbitrary signal as a weighted superposition of the eigenfunction
zn, let us substitute z = rej� into Eq. (9.1)



9.2 The z-Transform 923

H[rej�] =
∞∑

n=−∞
h[n][rej�]−n

=
∞∑

n=−∞

(
h[n]r−n

)
e−j�n (9.2)

Equation (9.2) corresponds to theDTFTof the signal h[n]r−n. The inverse ofH[rej�],
by mathematical manipulation of Eq. (9.2), can be obtained as

h[n] = 1

2π j

∮
H(z)zn−1dz (9.3)

More generally, Eqs. (9.2) and (9.3) can be written as

X[z] =
∞∑

n=−∞
x[n]z−n

x[n] = 1

2π j

∮
X(z)zn−1dz

(9.4)

(9.5)

The above equations are called z-transform pair. Equation (9.4) is the z-transform
of x[n] and Eq. (9.5) is called inverse z-transform. In Eq. (9.4), the range of n is
−∞ < n < ∞ and hence it is called bilateral z-transform. If x[n] = 0 for n < 0,
Eq. (9.4) can be written as

X[z] =
∞∑

n=0

x[n]z−n (9.6)

Equation (9.6) is called unilateral or right-sided z-transform. Bilateral z-transform
has limited practical applications. Unless otherwise it is specifically mentioned, z-
transform means unilateral. z-transform and inverse z-transform are symbolically
represented as given below.

Z[x[n]] = X[z]
x[n] Z←→ X[z]

z−1[X[z]] = x[n]
X[z] Z−1←→ x[n] (9.7)
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9.3 Existence of the z-Transform

Consider the unilateral z-transform given by Eq. (9.6)

X[z] =
∞∑

n=0

x[n]z−n

=
∞∑

n=0

x[n]
zn

For the existence of X[z],

|X[z]| ≤
∞∑

n=0

|x[n]|
|z|n < ∞ (9.8)

If the signal x[n] is expressed in terms of an exponential signal rn, then if x[n] ≤ rn

for some r, then

|x[n]| ≤ rn (9.9)

Substitute Eq. (9.9) in Eq. (9.8)

|X[z]| ≤
∞∑

n=0

(
r

z

)n

= 1[
1 − r

|z|
] iff |z| > r (9.10)

From Eq. (9.10), it is evident that the z-transform of x[n] which is X(z) exists for
|z| > r and the signal is z-transformable. If the signal x[n] grows faster than the
exponential signal rn for any r0, Eq. (9.10) is not convergence and x[n] is not z-
transformable.

9.4 Connection Between Laplace Transform, z-Transform
and Fourier Transform

Consider the Laplace transform of x(t) which is represented below as

X(s) =
∫ ∞

−∞
x(t)e−stdt (9.11)
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When s = jω, Eq. (9.11) becomes

X(jω) =
∫ ∞

−∞
x(t)e−jωtdt (9.12)

Equation (9.12) represents the Fourier transform. The Laplace transform reduces
to the Fourier transform on the imaginary axis where s = jω. The relationship
between these two transforms can also be interpreted as follows. The complex vari-
able s can be written as (σ + jω). Equation (9.11) is written as

X(σ + jω) =
∫ ∞

−∞
x(t)e−(σ+jω)tdt

=
∫ ∞

−∞

[
x(t)e−σ t

]
e−jωtdt (9.13)

Equation (9.13) can be recognized as the Fourier transform of [x(t)e−σ t]. Thus, the
Laplace transform of x(t) is the Fourier transform of x(t) after multiplication
by the real exponential e−σ t which may be growing or decaying with respect
to time.

The complex variable z can be expressed in polar form as

z = rejω (9.14)

where r is the magnitude of z and ω is the angle of z.
Substitute z = rejω in Eq. (9.6)

X(rejω) =
∞∑

n=−∞
x[n](rejω)−n

=
∞∑

n=−∞
{x[n]r−n}e−jωn

= F[x[n]r−n] (9.15)

Thus, X(re jω) is the Fourier transform of the sequence x[n]which is multiplied
by a real exponential r−n which may be growing or decaying with increasing
n depending on whether r is greater or less than unity. If r = 1, then |z| = 1 and
the equation becomes

X(ejω) =
∞∑

n=−∞
x[n]e−jωn = F[x[n]]

The z-transform reduces to Fourier transform in the complex z-plane on the con-
tour of a circle with a unit radius. The circle which is called the unit circle plays the
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Fig. 9.1 z-transform reduces
to FT on the unit circle

Im

Re

z-plane

Unit cricle

z e j

1 1

role in the z-transform similar to the role of the imaginary axis in the s-plane for the
Laplace transform. The unit circle in the z-plane is shown in Fig. 9.1.

9.5 The Region of Convergence (ROC)

In Eq. (9.4) which defines the z-transform X(z), the sum may not coverage for all
values of z. The values of z in the complex z-plane for which the sum in the z-
transform equation converges is called the region of convergence which is written
in abbreviated form as ROC. The concept of ROC is illustrated in the following
examples.

� Example 9.1

Consider the following discrete time signals:

(a) x[n] = anu[n] a < 1

(b) x[n] = −anu(−n − 1) a < 1

(c) x[n] = anu[n] − bnu(−n − 1) b > a and a > b

Find the z-transform and the ROC in the z-plane.

Solution:

(a) x[n] = anu[n]
The signal x[n] is shown in Fig. 9.2a which is a right-sided signal.
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anu[n]

n

(b)(a)

0 1

1

2 3 4 5

ROC

zero pole 1a0

Unit cricle

a

Im

Re

Fig. 9.2 a x[n] = anu[n] and bs ROC: 0 < a < 1

X(z) =
∞∑

n=0

anu[n]z−n

=
∞∑

n=0

anz−n [∵ u[n] = 1 all n ≥ 0]

=
∞∑

n=0

(
a

z

)n

Using the power series, we get

X(z) = 1[
1 − a

z

]

where a
z < 1 or |z| > |a|.

X(z) = z

(z − a)

X(z) = 1

1 − az−1

(9.16)

(9.17)

Fourier transform is represented in the form as shown in Eq. (9.16) to identify
poles and zero and system transfer function. Equation (9.17) form is used when
inverse z-transform is taken and also for structure realization. z−1 is used as
time delay operation. z-transform for the causal real exponential converges iff
|z| > |a|. Thus, the ROC of X(z) is to the exterior of the circle of radius a, which
is shown in Fig. 9.2b in shaded area. The ROC includes the unit circle for |a| < 1.

(b) x[n] = −an[u[−n − 1]]
The signal x[n] is shown in Fig. 9.3a which is a left-sided signal
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x[n] anu[ n 1]

n

(b)(a)

0
5 4 3 2 1

ROC

zero pole 1a0

Unit cricle

z-plane

a

Im

Re

Fig. 9.3 a x[n] = −anu[−n − 1] and b ROC: 0 < a < 1

Z[−anu[−n − 1]] =
−1∑

n=−∞
−anz−n ∵ [u(−n − 1)] = 1 for all − n

=
−1∑

n=−∞
−

[
a

z

]n

=
∞∑

n=1

−
[ z

a

]n

= −
[

z

a
+ z2

a2
+ z3

a3
+ · · ·

]

= 1 −
[
1 + z

a
+

( z

a

)2 +
( z

a

)3 + · · ·
]

= 1 − 1

1 − z
a

if
∣∣∣
z

a

∣∣∣ < 1

Z[−anu[−n − 1]] = z

(z − a)
ROC |z| < a (9.18)

The z-transformsof x[n] = anu[n]which is causal and that of x[n] = −anu[−n −
1]which is anti-causal are identical. In the former case, the ROC is to the exterior
of the circle passing through the outermost pole and in the letter case (anti-causal)
the ROC is to the interior of the circle passing through the innermost pole. The
ROC is shown in Fig. 9.3b.

(c) x[n] = anu[n] − bnu[−n − 1]
From the results derived in Example 9.1(a) and (b), we can find the z-transform
of x[n] as

X(z) = z

(z − a)
+ z

(z − b)
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(a) (b)

ROC

ROC

z-plane z-plane

b a

|a|>b |b|>a

a
b

Im

Re

ROC

a b

b

a

Im

Re

Fig. 9.4 ROC of a two-sided sequence

The right-sided signal anu[n] converges if |z| > a and the left-sided signal
−bnu[−n − 1] converges if |z| < b. The ROC for |a| > |b| and |a| < |b| are
shown in Fig. 9.4a and b, respectively. From Fig. 9.4a, it is observed that the two
ROCs do not overlap and hence z-transform does not exist for this signal. Now
consider Fig. 9.4b; it is observed that the two ROCs overlap and the overlapping
area is shaded in the form of a ring. The z-transform exists in the case with ROC
as |a| < |z| < |b|.

9.6 Properties of the ROC

Assuming thatX(z) is the rational function of z, the properties of theROCare summed
up and given below.

1. The ROC is a concentric ring in the z-plane.
2. The ROC does not contain any pole.
3. If x[n] is a finite sequence in a finite interval N1 ≤ n ≤ N2, then the ROC is the

entire z-plane except z = 0 and z = ∞.
4. If x[n] is a right-sided sequence (causal), then the ROC is the exterior of the circle

|z| = rmax where rmax is the radius of the outermost pole of X(z).
5. If x[n] is a left-sided sequence (non-causal), then the ROC is the interior of the

circle |z| = rmin where rmin is the radius of the innermost pole of X(z).
6. If x[n] is a two-sided sequence, then the ROC is given by r1 < |z| < r2 where r1

and r2 are the magnitudes of the two poles of X(z). Here, ROC is an annular ring
between the circle |z| = r1 and |z| = r2 which does not include any poles.

The following examples illustrate the method of finding z-transform X(z) for the
discrete time sequence x[n].
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� Example 9.2

Find the z-transform and the ROC for the sequences x[n] given below.

1. x[n] = {2, −1, 0, 3, 4}
↑

2. x[n] = {1, −2, 3, −1, 2}
↑

3. x[n] = {5, 3, −2, 0, 4, −3}
↑

4. x[n] = δ[n]
5. x[n] = u[n]
6. x[n] = u[−n]
7. x[n] = a−nu[−n]
8. x[n] = a−nu[−n − 1]
9. x[n] = (−a)nu[−n]
10. x[n] = a|n| for |a| < 1 and |a| > 1

11. x[n] = ejω0nu[n]
12. x[n] = cosω0nu[n]
13. x[n] = sinω0nu[n]
14. x[n] = u[n] − u[n − 6]
15. x[n] =

[
cos

(πn

3
+ π

4

)]
u[n]

(Anna University, May, 2007)
Solution:

1. x[n] = {2, −1, 0, 3, 4}

X[z] =
4∑

n=0

x[n]z−n

X[z] = 2 − z−1 + 0 + 3z−3 + 4z−4

X[z] will not converge if |z| = 0. Hence, ROC is |z| > 0.
2. x[n] = {1, −2, 3, −1, 2}

↑
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X[z] =
0∑

n=−4

x[n]z−n

X[z] = z4 − 2z3 + 3z2 − z + 2

X[z] will not converge if |z| = ∞. Hence, ROC is |z| < ∞.
3. x[n] = {5, 3, −2, 0, 4, −3}

↑

X[z] =
3∑

n=−2

x[n]z−n

X[z] = 5z2 + 3z − 2 + 0 + 4z−2 − 3z−3

For |z| = 0 and |z| = ∞, X[z] is infinity. Hence, ROC is 0 < |z| < ∞.
4. x[n] = δ[n]

X[z] =
∞∑

n=−∞
δ[n]z−n

δ[n] = 1 n = 0

= 0 n 	= 0

X[z] = 1 ROC is entire z-plane

5. x[n] = u[n]

X[z] =
∞∑

n=0

z−n

= 1 + 1

z
+ 1

z2
+ · · ·

= 1

1 − 1
z

[By using summation formula]

X[z] = z

(z − 1)

X[z] = 1

(1 − z−1)
ROC: |z| > 1 (9.19)
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6. x[n] = u[−n]

X[z] =
0∑

n=−∞
z−n

=
∞∑

n=0

zn

= 1 + z + z2 + · · ·

X[z] = 1

1 − z
ROC: |z| < 1 (9.20)

7. x[n] = a−nu[−n]

X[z] =
0∑

n=−∞
a−nz−n

=
0∑

n=−∞
(az)−n

=
∞∑

n=0

(az)n

= 1 + (az) + (az)2 + · · ·

X[z] = 1

(1 − az)
ROC: |z| <

1

a
(9.21)

8. x[n] = a−nu[−n − 1]

X[z] =
−1∑

n=−∞
a−nz−n

=
−1∑

n=−∞
(az)−n

=
∞∑

n=1

(az)n

= az + (az)2 + (az)3 + · · ·
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X[z] = az[1 + az + (az)2 + · · · ]
= az

1 − az

X[z] = −z(
z − 1

a

) ROC: |z| <
1

a
(9.22)

9. x[n] = (−a)nu[−n]

X[z] =
0∑

n=−∞
(−a)nz−n

=
0∑

n=−∞

(
z

−a

)−n

=
∞∑

n=0

(
z

−a

)n

= 1 +
(

z

−a

)
+

(
z

−a

)2

+
(

z

−a

)3

+ · · ·

X[z] = a

(z + a)
ROC: |z| < |a| (9.23)

10. x[n] = a|n|; a < 1

x[n] = anu[n] + a−nu[−n − 1]
Z[anu[n]] = z

(z − a)
ROC: |z| > a

Z[a−nu[−n − 1]] = −z(
z − 1

a

) ROC: |z| <
1

a

X[z] = z

(z − a)
− z(

z − 1
a

)

X[z] = (a2 − 1)

a

z

(z − a)
(
z − 1

a

) (9.24)
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(b)(a)

ROC

Unit cricle

z-planez-plane

a
a 1

Im

Re a

Unit cricle

Im

Re
a
1ROC

ROC

Fig. 9.5 ROC of x[n] = a|n|. a a < 1 and b a > 1

x[n] u[n] u[n 6]

n0 1

1

2 3 4 5

Fig. 9.6 x[n] = u[n] − u[n − 6]

ROC: a < |z| < 1
a . The ROC is sketched and shown in Fig. 9.5a for a < 1.

x[n] = a|n| a > 1

The ROC is sketched and shown in Fig. 9.5b. In Fig. 9.5b, the two ROCs do not
overlap and there is no common ROC. Hence, x[n] does not have X[z] (Fig. 9.6).

11. x[n] = e jω0nu[n]

X[z] =
∞∑

n=0

ejω0nz−n

=
∞∑

n=0

(
ejω0

z

)n

=
(

1

1 − ejω0

z

)
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X[z] = z

(z − ejω0)
ROC: |z| > |ejω0 | or |z| > 1 (9.25)

12. x[n] = cosω0nu[n]

x[n] = 1

2
[ejω0n + e−jω0n]

Z[ejω0n] = z

(z − ejω0)

Z[e−jω0n] = z

(z − e−jω0)

X[z] = 1

2

[
z

(z − ejω0)
+ z

(z − e−jω0)

]

= z

2

[
z − e−jω0 + z − ejω0

]
[
z2 − z(e−jω0 + ejω0) + 1

]

X[z] = z

2

[2z − 2 cosω0][
z2 − 2z cosω0 + 1

]

X[z] = (1 − z−1 cosω0)

(1 − z−12 cosω0 + z−2)
ROC: |z| > 1 (9.26)

13. x[n] = sinω0nu[n]

x[n] = 1

2j
[ejω0n − e−jω0n]

Z[ejω0nu[n]] = z

(z − ejω0)

Z[e−jω0nu[n]] = z

(z − e−jω0)

X[z] = z

2j

[
1

(z − ejω0)
− 1

(z − e−jω0)

]

= z

2j

[
z − e−jω0 − z + ejω0

]
[
z2 − 2z cosω0 + 1

]

= z sinω0

(z2 − 2z cosω0 + 1)

X[z] = z−1 sinω0

(1 − 2z−1 cosω0 + z−2)
ROC: |z| > 1 (9.27)
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14. x[n] = u[n] − u[n − 6]

x[n] = {1, 1, 1, 1, 1, 1}
X[z] = 1 + z−1 + z−2 + z−3 + z−4 + z−5

=
[
1 + 1

z
+ 1

z2
+ 1

z3
+ 1

z4
+ 1

z5

]

X[z] = [z5 + z4 + z3 + z2 + z + 1]
[z5] ROC: all z except z 	= 0 (9.28)

The above result can be represented is a compact form as

X[z] =
5∑

n=0

z−n

=
5∑

n=0

(
1

z

)n

The following summation formula is used to simplify this:

n∑

k=m

ak = an+1 − am

(a − 1)

where a = 1
z , k = 0 and n = 5

X[z] =
(
1
z

)6 − (
1
z

)0
(
1
z − 1

)

X[z] = z

(z − 1)
(1 − z−6)

15. x[n] = [
cos

(
πn
3 + π

4

)]
u[n]

x[n] = 1

2

[
ej( πn

3 + π
4 ) + e−j( πn

3 + π
4 )
]

= 1

2

[
ej π

4 ej πn
3 + e−j π

4 e−j π
4

]

X[z] = 1

2

[
ej π

4
z

(z − ej π
3 )

+ e−j π
4

z

(z − e−j π
3 )

]
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X[z] = z

2

[
zej π

4 − e−j π
12 + ze−j π

4 − e−j π
12
]

z2 − z(ej π
3 + e−j π

3 ) + 1

= z

2

[
2z cos π

4 − 2 cos π
12

]
(
z2 − 2z cos π

3 + 1
)

X[z] = z[0.707z − 0.966]
(z2 − z + 1)

ROC: |z| > 1

9.7 Properties of z-Transform

The transformations of x(t) and x[n] to X(s), and X(jω) using Laplace transform
and Fourier transform, respectively, as seen from Chaps. 6 and 8 become easier if
the properties of these transforms are directly applied. Similarly, if the properties of
z-transform are applied directly to x[n], then X[z] can be easily derived. Hence, some
of the important properties of z-transform which are applied to signals and systems
are derived and the applications illustrated. The following properties are derived:

1. Linearity;
2. Time shifting;
3. Time reversal;
4. Multiplication by n;
5. Multiplication by an exponential;
6. Time expansion;
7. Convolution theorem;
8. Initial value theorem;
9. Final value theorem.

9.7.1 Linearity

If

x1[n] Z←→ X1[z] and x2[n] Z←→ X2[z]

then

{a1x1[n] + a2x2[n]} Z←→[a1X1[z] + a2X2[z]] (9.29)
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Proof Let

x[n] = a1x1[n] + a2x2[n]
X[z] =

∞∑

n=−∞
[a1x1[n] + a2x2[n]]z−n

=
∞∑

n=−∞
a1x1[n]z−n +

∞∑

n=−∞
a2x2[n]z−n

X[z] = a1x1[z] + a2x2[z]

9.7.2 Time Shifting

If

x[n] Z←→ X[z]

then

x[n − k] Z←→ z−kX[z]

Proof Let

Z[x[n − k]] =
∞∑

n=−∞
x[n − k]z−n

Substitute (n − k) = m

Z[x[n − k]] =
∞∑

m=−∞
x[m]z−(k+m)

=
∑

z−kx[m]z−m

Z[x[n − k]] = z−kX[z] (9.30)
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9.7.3 Time Reversal

If

x[n] Z←→ X[z] ROC: r1 < |z| < r2

then

x[−n] Z←→ X[z−1] ROC:
1

r1
< |z| <

1

r2

Proof Let

Z[x[−n]] =
∞∑

n=−∞
x[−n]z−n

Substitute −n = m

Z[x[−n]] =
−∞∑

n=∞
x[m]zm

=
∞∑

m=−∞
x[m](z−1)m

Z[x[−n]] = X[z−1] (9.31)

Thus, according to time reversal property, folding the signal in the time domain is
equivalent to replacing z by z−1. Further, the ROC of X[z] which is r1 < |z| < r2
becomes r1 < |z−1| < r2 which is 1

r2
< |z| < 1

r1
.

9.7.4 Multiplication by n

If

Z[x[n]] = X[z]

then

Z[nx[n]] = −z
d

dz
X[z]
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Proof Let

X[z] =
∞∑

n=−∞
x[n]z−n

Z[nx[n]] =
∞∑

n=−∞
nx[n]z−n

= z
∞∑

n=−∞
nx[n]z−n−1

= z
∞∑

n=−∞
x[n][nz−n−1]

Z[nx[n]] = z
∞∑

n=−∞
−x[n] d

dz
[z−n]

= −z
d

dz

∞∑

n=−∞
x[n]z−n

Z[nx[n]] = −z
d

dz
X[z] (9.32)

9.7.5 Multiplication by an Exponential

If

Z[x[n]] = X[z]

then

Z[anx[n]] = X[a−1z]

Proof Let

Z[anx[n]] =
∞∑

n=−∞
anx[n]z−n

=
∞∑

n=−∞
x[n][a−1z]−n
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Z[anx[n]] = X[a−1z] (9.33)

ROC: r1 < |a−1z| < r2 or ar1 < |z| < ar2. In X[z], z is replaced by z
a .

9.7.6 Time Expansion

If

Z[x[n]] = X[z]

then

Z[xk[n]] = X[zk]

Proof

Z[xk[n]] =
∞∑

n=−∞
x
[n

k

]
z−n

where n is multiple of k. Substitute n
k = l

Z[xk[n]] =
∞∑

l=−∞
x[l]z−kl

=
∞∑

l=−∞
x[l][zk]−l = X[zk]

Z[xk[n]] = X[zk] (9.34)

9.7.7 Convolution Theorem

If

y[n] = x[n] ∗ h[n]

then

Y [z] = X[z]H[z]
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Proof

y[n] =
∞∑

k=−∞
x[k]h[n − k]

Y [Z] =
∞∑

n=−∞

[ ∞∑

k=−∞
x[k]h[n − k]

]
z−n

=
∞∑

k=−∞
x[k]z−k

∞∑

n=−∞
h[n − k]z−(n−k)

Substitute (n − k) = l

Y [z] =
∞∑

k=−∞
x[k]z−k

∞∑

l=−∞
h[l]z−l

Y [z] = X[z]Y [z] (9.35)

9.7.8 Initial Value Theorem

If

X[z] = Z[x[n]]

where x[n] is causal, then

x[0] = Lt
z→∞ X[z]

Proof For a causal signal x[n],

X[z] =
∞∑

n=0

x[n]z−n

= x[0] + x[1]z−1 + x[2]z−2 + · · ·

Taking z → ∞ on both sides, we get

Lt
z→∞ X[z] = Lt

z→∞[x[0] + x[1]z−1 + x[2]z−2 + · · · ]
= x[0]
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x[0] = Lt
z→∞ X[z] (9.36)

9.7.9 Final Value Theorem

If Z[x[n]] = X[z] where x[n] is a causal signal and the ROC of X[z] has no poles on
or outside the unit circle then

x[∞] = Lt
z→1

(z − 1)X[z]

Proof

Z[x[n + 1]] − Z[x[n]] = Lt
k→∞

k∑

n=0

[x[n + 1] − x[n]]z−n

x[∞] = Lt
k→∞

k∑

n=0

[x[n + 1] − x[n]]z−n

zX[z] − x[0] − X[z] = Lt
k→∞

k∑

n=0

[x[n + 1] − x[n]]z−n

(z − 1)X[z] − x[0] = Lt
k→∞

k∑

n=0

[x[n + 1] − x[n]]z−n

Taking Lt
z→∞ on both sides, we get

Lt
z→∞(z − 1)X[z] − x[0]

= Lt
k→∞

[x[1] − x[0]] + [x[2] − x[−1]] + [x[3] − x[2]] + · · · + [x[k + 1] − x[k]]
= x[∞] − x[0]

x[∞] = Lt
z→1

(z − 1)X[z] (9.37)

� Example 9.3

Find the z-transform of the following sequences and also ROC using the properties
of z-transform:
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1. x[n] = δ[n − n0]
2. x[n] = u[n − n0]
3. x[n] = an+1u[n + 1]
4. x[n] = an−1u[n − 1]
5. x[n] =

(
1

2

)n

u[−n]
(Anna University, December, 2007)

6. x[n] = u[n − 6] − u[n − 10]

7. x[n] = nu[n]
8. x[n] = n[u[n] − u[n − 8]]
9. x[n] = an cosω0nu[n]
10. x[n] = an sinω0nu[n]
11. show that u[n] ∗ u[n − 1] = nu[n]
12. x[n] = n

(
−1

4

)n

u[n] ∗
(
1

6

)−n

u[−n]

13. x[n] =
[(

1

2

)n

−
(
1

4

)n]
u[n]

Find X[z] and plot the poles and zeros. (Anna University, December, 2007)

14. x[n] = 1 n ≥ 0

= zn n < 0

(AnnaUniversity,April, 2005)

15. (a) x[n] =
[(

−1

3

)n

+ 3

(
1

6

)n]
u[n]

(b) x[n] =
[(

−1

3

)n

u[−n] + 3

(
1

6

)n]
u[n]

(c) x[n] =
[(

−1

3

)n

+ 3

(
1

6

)n]
u[−n]

16. (a) x[n] =
[(

1

4

)n

+
(
1

5

)n]
u[n]

(b) x[n] =
[(

1

5

)n

u[n] +
(
1

4

)n

u[−n − 1]
]

(c) x[n] =
(
1

4

)n

u[n] +
(
1

5

)n

u[−n − 1]

17. x[n] = δ[n] + 1

2
δ(n + 1) + δ(n − 3) (Anna University, December, 2006)
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18. x[n] = 4n cos

[
2πn

6
+ π

4

]
u[−n − 1]. Sketch the pole-zero plot and indicate

the ROC. (AnnaUniversity,April, 2008)

19. x[n] = nu[n − 1] (Anna University, December, 2006)

20. x[n] = (4)n n < 0

=
(
1

4

)n

n = 0, 2, 4, . . .

=
(
1

5

)n

n = 1, 3, 5, . . .

Solution:

1. x[n] = δ[n − n0]

δ[n] Z←→ 1 ROC: |z| > 0

By applying the time shifting property, we get

Z[δ[n − n0]] = z−n0 (9.38)

ROC: all z excluding |z| = 0.
2. x[n] = u[n − n0]

u[n] Z←→ z

(z − 1)

By applying the time shifting (right shifted) property, we get

Z[u[n − n0]] = z−n0z

(z − 1)
= z−(n0−1)

(z − 1)

X[z] = z−(n0−1)

(z − 1)
ROC: 1 < |z| < ∞ (9.39)

3. x[n] = an+1u[n + 1]

anu[n] Z←→ z

(z − a)

By applying the time shifting (left shifted) property, we get

Z[an+1u[n + 1]] = z
z

(z − a)
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X[z] = z2

(z − a)
ROC: |a| < |z| < ∞ (9.40)

4. x[n] = an−1u[n − 1]

anu[n] Z←→ z

(z − a)

Applying the time shifting (right shifted) property, we get

Z[an−1u[n − 1]] = z−1z

(z − a)

X[z] = 1

(z − a)
ROC: a < |z| < ∞ (9.41)

5. x[n] = ( 1
2

)n
u[−n]

u[−n] Z←→ 1

(1 − z)

x[n] =
(
1

2

)n

u[−n]

By using the multiplication property (replacing z by ( 12 )
−1z), we get

X[z] = 1

(1 − 2z)
ROC: |z| <

1

2

6. x[n] = u[n − 6] − u[n − 10]
The signal is represented in Fig. 9.7.

X[z] = z−6 + z−7 + z−8 + z−9

= 1

z6
+ 1

z7
+ 1

z8
+ 1

z9

X[z] = z8 + z2 + z + 1

z9
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x[n]

n0 1 2 3 4 5 6 7 8 9

Fig. 9.7 x[n] = u[n − 6] − u[n − 10]

ROC: all z except z 	= 0. The above result can be simplified using the summation
formula as

X[z] =
9∑

n=6

(
1

z

)n

=
(
1
z

)10 − (
1
z

)6
(
1
z − 1

)

X[z] = z

(z − 1)
[z−6 − z−10]

The above result can be obtained by the time shifting property of unit step
sequence.

Z[u[n − 6]] = z

(z − 1)
z−6

Z[u[n − 10]] = z

(z − 1)
z−10

X[z] = z

(z − 1)
[z−6 − z−10]

X[z] = (z−5 − z−9)

(z − 1)

7. x[n] = nu[n]

Z[u[n]] = z

(z − 1)

Applying the differentiation property in z,
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Z[nu[n]] = −z
dX[z]

dz

Z[nu[n]] = −z
d

dz

[
z

(z − 1)

]

X[z] = z

(z − 1)2
(9.42)

8. x[n] = n[u[n] − u[n − 8]]
By using the shift theorem, we get

Z[u[n] − u[n − 8]] = z

(z − 1)
[1 − z−8]

= (z − z−7)

(z − 1)

Z[n[u[n] − u[n − 8]]] = −z
d

dz

[z − z−7]
z − 1

X[z] = −z
[(z − 1)(1 + 7z−8) − (z − z−7)]

(z − 1)2

X[z] = (−8z−6 + 7z−7 + z)

(z − 1)2

X[z] = [z8 − 8z + 7]
z7(z − 1)2

9. x[n] = an cosω0nu[n]
For Example 9.2.12, we get

Z[cosω0nu[n]] = [1 − z−1 cosω0]
[1 − 2 cosω0z−1 + z−2]

To apply the multiplication property, replace z by | z
a | or z−1 = | z

a |−1 = az−1

∴ Z[an cosω0nu[n]] = [1 − az−1 cosω0]
[1 − 2a cosω0z−1 + a2z−2]

X[z] = [1 − az−1 cosω0]
[1 − 2a cosω0z−1 + a2z−2] (9.43)
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10. x[n] = an sinω0nu[n]
For Example 9.2.13, we get

Z[sinω0nu[n]] = z−1 sinω0

[1 − 2 cosω0z−1 + z−2]
To apply the multiplication property, as in the previous example, replace z−1 by
a z−1 and z−2 = a2z−2

Z[an sinω0nu[n]] = az−1 sinω0

[1 − 2a cosω0z−1 + a2z−2]

X[z] = [az−1 sinω0]
[1 − 2a cosω0z−1 + a2z−2] (9.44)

11. Show that u[n] ∗ u[n − 1] = nu[n]

Z[u[n]] = z

(z − 1)

Z[u[n − 1]] = 1

(z − 1)
Z[u[n] ∗ u[n − 1]] = Z[u[n]]Z[u[n − 1]]

= z

(z − 1)

1

(z − 1)

= z

(z − 1)2

Multiplying by Z−1 both sides, we get

u[n] ∗ u[n − 1] = Z−1

[
z

(z − 1)2

]

u[n] ∗ u[n − 1] = n[u[n]]

12. x[n] = n
(− 1

4

)n
u[n] ∗ (− 1

6

)−n
u[−n]

x1[n] =
(

−1

4

)n

u[n] Z←→ z(
z + 1

4

)

n

[(
−1

4

)n

u[n]
]

Z←→−z
d

dz

z(
z + 1

4

)
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= −z

[
z + 1

4 − z
]

(
z + 1

4

)2

=
[− z

4

]
(
z + 1

4

)2 ROC: |z| >
1

4

x2[n] =
(
1

6

)n

u[n] Z←→ z(
z − 1

6

) ROC: |z| >
1

6

If the time reversal property is used, z is to be replaced by z−1

(
1

6

)−n

u[−n] Z←→ z−1

(
z−1 − 1

6

)

X1[z] = − 6

z − 6
ROC: |z| < 6

X[z] = X1[z]X2[z]
=

z
46(

z + 1
4

)2
(z − 6)

X[z] = 1.5z(
z + 1

4

)
(z − 6)

ROC:
1

4
< |z| < 6

13. x[n] =
[( 1

2

)n − ( 1
4

)n]
u[n]

Find X[z] and plot the poles and zeros. (Anna University, December, 2007)

x1[n] =
(
1

2

)n

u[n] Z←→ z(
z − 1

2

)

x2[n] =
(
1

4

)n

u[n] Z←→ z(
z − 1

4

)

x[n] = x1[n] − x2[n]
X[z] = X1[z] − X2[z]

= z

(z − 0.5)
− z

(z − 0.25)

X[z] = z0.25

(z − 0.5)(z − 0.25)
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Fig. 9.8 Pole-zero plot
z-plane

Im

Re.25 .5

The pole-zero plot is shown in Fig. 9.8.
14.

x[n] = 1 n ≥ 0

= 3n n < 0

(Anna University, April, 2005)

x[n] = u[n] + 3nu[−n − 1]
= x1[n] + x2[n]

X1[z] = z

(z − 1)
ROC: |z| > 1

x2[n] = (3)nu[−n − 1]

Using time reversal and multiplication properties, we get

X2[z] = − z

(z − 3)
ROC: |z| < 3

X[z] = X1(z) + X2(z)

= z

(z − 1)
− z

(z − 3)

X[z] = −2z

(z − 1)(z − 3)
ROC: 1 < z < 3

15.

(a) x[n] =
(

−1
3

)n

u[n] + 3
(
1
6

)n

u[n]

(b) x[n] =
[(

−1
3

)n

u[−n] + 3
(
1
6

)n]
u[n]

(c) x[n] =
[(

−1
3

)n

+ 3
(
1
6

)n]
u[−n]
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(a)

x[n] =
(

−1

3

)n

+ 3

(
1

6

)n

u[n]
= x1[n] + x2[n]

X1[z] = z(
z + 1

3

) ROC: |z| > −1

3

X2[z] = 3
z(

z − 1
6

) ROC: |z| >
1

6

X[z] = X1[z] + X2[z]
= z

[
1(

z + 1
3

) + 3(
z − 1

6

)
]

ROC: |z| >
1

6

(b)

x[n] =
[(

−1

3

)n

u[−n] + 3

(
1

6

)n]
u[n]

= x1[n] + x2[n]
x1[n] =

(
−1

3

)n

u[−n]

Applying the properties of time reversal and multiplication, we get

X1[z] = 1

(1 + 3z)
See Example 9.3.12 ROC: |z| <

1

3

x2[n] = 3

(
1

6

)n

u[n]

X2[z] = 3z(
z − 1

6

) ROC: |z| >
1

6

X[z] = X1[z] + X2[z]

X[z] =
[

1

(1 + 3z)
+ 3z(

z − 1
6

)
]

ROC:
1

6
< |z| <

1

3
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(c)

x[n] =
[(

−1

3

)n

+ 3

(
1

6

)n]
u[−n]

= x1[n] + x2[n]
X1[z] = 1

(1 + 3z)
ROC: |z| <

1

3

The derivation is given in Example 9.3.15(b),

x2[n] = 3

(
1

6

)n

u[−n]

u[−n] Z←→ 1

(1 − z)

Applying the multiplication property, we get

Z

(
1

6

)n

u[−n] Z←→ 1

(1 − 6z)
ROC: |z| >

1

6

X[z] =
[

1

(1 + 3z)
+ 3

(1 − 6z)

]
ROC:

1

6
< |z| <

1

3

16. (a)

x[n] =
[(

1
4

)n

+
(
1
5

)n]
u[n]

Applying the results of Eq. (9.16), we get

X[z] =
[

z(
z − 1

4

) + z(
z − 1

5

)
]

ROC: |z| >
1

4

(b)

x[n] =
[(

1
5

)n

u[n] +
(
1
4

)n

u[−n − 1]
]

(
1

5

)n

u[n] Z←→ z(
z − 1

5

) ROC: |z| >
1

5
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Fig. 9.9 X[z] and its ROC
of Example 16(b)

ROC

1
4

z-plane

Im

Re1
5

(
1

4

)n

u[−n − 1] Z←→ −z(
z − 1

4

) ROC: |z| <
1

4
(
1

5

)n

u[n] +
(
1

4

)n

u[−n − 1] Z←→ z(
z − 1

5

) − z(
z − 1

4

)

X[z] = − z
20(

z − 1
5

) (
z − 1

4

) ROC:
1

5
< |z| <

1

4

The poles and zero and the ROC are marked in Fig. 9.9.
(c)

x[n] =
[(

1
4

)n

u[n] +
(
1
5

)n]
u[−n − 1]

(
1

4

)n

u[n] Z←→ z(
z − 1

4

) ROC: |z| >
1

4
(
1

5

)n

u[−n − 1] Z←→ −z(
z − 1

5

) ROC: |z| <
1

5

The ROCs of the above two equations are shown in Fig. 9.10, and it is seen
that they do not overlap and thus the given x[n] does not have X[z].
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Fig. 9.10 ROC of Example
9.16(c)

ROC

ROC

Im

Re1
4

1
5

17. x[n] = δ[n] + 1
2δ(n + 1) + δ(n − 3)

δ[n] Z←→ 1

1

2
δ[n + 1] Z←→ 1

2
z

δ[n − 3] Z←→ z−3

X[z] = 1 + 1

2
z + z−3

18. x[n] = 4n cos
[ 2πn

6 + π
4

]
u[−n − 1]

cos

(
2πn

6

)
= cos

πn

3

cos

(
2πn

6
+ π

4

)
= ej( π

4 + πn
3 ) + e−j( π

4 + πn
3 )

2

= 1

2
ej( π

4 )ej( πn
3 ) + 1

2
e−j( π

4 )e−j( πn
3 )

4n cos

(
2πn

6
+ π

n

)
= 1

2
ej( π

4 )
(
4ej π

3
)n + 1

2
e−j π

4
(
4e−j π

3
)n

From Eq. (9.18),

(
4ej π

3
)n

u[−n − 1] Z←→ −z

(z − 4ej π
3 )

ROC: |z| < 4

(
4e−j π

3
)n

u[−n − 1] Z←→ −z

(z − 4e−j π
3 )

ROC: |z| < 4
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Fig. 9.11 Poles and zeros
and ROC of Example 9.3.18

5.467

2 j3.464

2 j3.464

ROC

z-plane

Im

Re

4

X[z] = −1

2
z

[
ej π

4

(z − 4ej π
3 )

+ e−j π
4

(z − 4e−j π
3 )

]

= −1

2
z

[
zej π

4 − 4e−j π
12 − 4ej π

12 + ze−j π
4

z2 − z4(ej π
3 + e−j π

3 ) + 16

]

= − 1
2 z[√2z − 7.73]
(z2 − 4z + 16)

X[z] = −0.707z[z − 5.467]
(z − 2 + j3.464)(z − 2 − j3.464)

ROC: |z| < 4

The pole-zero diagram is shown in Fig. 9.11. TheROC is the interior of the circle.
19. x[n] = nu[n − 1]

Method 1

u[n − 1] Z←→ 1

(z − 1)

Using the differential property, we get

nu[n − 1] Z←→−z
d

dz

1

(z − 1)

z[nu[n − 1]] = z

(z − 1)2
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Method 2

nu[n − 1] = (n − 1)u[n − 1] + u[n − 1]
(n − 1)u[n − 1] Z←→ zz−1

(z − 1)2
= 1

(z − 1)2

u[n − 1] Z←→ 1

(z − 1)

nu[n − 1] Z←→ 1

(z − 1)2
+ 1

(z − 1)

Z[nu[n − 1]] = z

(z − 1)2

20.

x[n] =

⎧
⎪⎨

⎪⎩

(4)n n < 0
( 1
4

)n
n = 0, 2, 4, . . .

( 1
5

)n
n = 1, 3, 5, . . .

X[z] =
−1∑

n=−∞
(4)nz−n +

∞∑

n=0

(
1

4

)n

z−n +
∞∑

n=0

(
1

5

)n

z−n

= X1[z] + X2[z] + X3[z]

X1[z] =
−1∑

n=−∞
(4)nz−n

=
−1∑

n=−∞

( z

4

)−n

=
∞∑

n=1

( z

4

)n

= z

4
+

( z

4

)2 + · · ·

= z

4

[
1 + z

4
+

( z

4

)2 + · · ·
]

= z

4

1(
1 − z

4

)

= −z

(z − 4)
ROC: |z| < 4
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X2[z] =
∞∑

n=0

(
1

4

)n

z−n

=
∞∑

n=0

(4z)−n

=
∞∑

p=0

(4z)−2p where n = 2p and p = 0, 1, 2, . . .

X2[z] =
∞∑

p=0

(
16z2

)−p

= 1(
1 − 1

16z2
)

= z2(
z2 − 1

16

) ROC: |z| >
1

4

X3[z] =
∞∑

n=0

(
1

5

)n

z−n

=
∞∑

n=0

(5z)−n

=
∞∑

q=0

(5z)−(2q+1) where n = 2q + 1

= 1

5z

∞∑

q=0

(
25z2

)−q

= 1

5z

1(
1 − 1

25z2
)

= z/5(
z2 − 1

25

) ROC: |z| >
1

5

X[z] =
[
− z

(z − 4)
+ z2(

z2 − 1
16

) + z/5(
z2 − 1

25

)
]

ROC: 1
4 < |z| < 4.
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� Example 9.4

Find the initial and final values of the following functions:

(a) X[z] = z

(4z2 − 5z − 1)
ROC: |z| > 1

(b) x[z] = 10z(z − 0.4)

(z − 0.5)(z − 0.3)
ROC: |z| > 0.5

Solution:

(a) X[z] = z
(4z2−5z−1)

Initial Value

x[0] = Lt
z→∞ X[z]

= Lt
z→∞

z

z2
(
4 − 5

z − 1
z2
)

= Lt
z→∞

1

z
(
4 − 5

z − 1
z2
)

x[0] = 0

Final Value

x[∞] = Lt
z→1

(z − 1)

z

Provided all the poles are inside, the unit circle and possibly one pole on the unit
circle.

(4z2 − 5z + 1) = 4(z − 1)

(
z − 1

4

)

X[z] = z

4(z − 1)
(
z − 1

4

)

The poles (z − 1) are on the unit circle and z = 1
4 within the unit circle. X[z] is

valid to apply the final value theorem.

x[∞] = Lt
z→1

(z − 1)

z

z

4(z − 1)
(
z − 1

4

)
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x[∞] = 1

3

(b) X[z] = 10z(z−0.4)
(z−0.5)(z−0.3)

x[0] = Lt
z→∞

10z2
(
1 − 0.4

z

)

z2
(
1 − 0.5

z

) (
1 − 0.3

z

)

x[0] = 10

To find the final value x[∞], the poles of X[z] are all inside the unit circle and
hence it is valid to apply the final value theorem.

x[∞] = Lt
z→1

10z(z − 1)(z − 0.4)

z(z − 0.5)(z − 0.3)

x[∞] = 0

� Example 9.5

X[z] =
[
1 − 1

4 z−2
]

[
1 + 1

4 z−2
] [
1 + 5

4 z−1 + 3
8 z−2

]

How many different regions of convergence could correspond to X[z]?
(Anna University, May, 2008)

Solution:

X[z] = z2
[
z2 − 1

4

]
(
z2 + 1

4

) (
z2 + 5

4 z + 3
8

)

= z2
(
z + 1

2

) (
z − 1

2

)
(

z − j
2

) (
z + j

2

) (
z + 3

4

) (
z + 1

2

)

X[z] = z2
[
z − 1

2

]
(

z − j
2

) (
z + j

2

) (
z + 3

4

)

The poles and zeros are located in Fig. 9.12.
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(b) (c)

z-plane

Im

Re

j
2

j
2

3
4

ROC

z-plane

Im

Re

j
2

j
2

3
4

ROC

z-planeROC

Im(a)

Re

j
2

j
2

3
4

1
2

Fig. 9.12 Pole-zero diagram and ROC of X[z]

From Fig. 9.12, the circle passing through |z| = 3
4 and |z| = 1

2 are drawn. X[z]
exists from the following ROCs.

1. |z| > 3
4 . ROC is the exterior of the outermost pole z = − 3

4 . The system is causal
and X[z] exits (Fig. 9.12a).

2. |z| < 1
2 . ROC is the interior of the innermost pole ± j

2 . The system is anti-causal
and X[z] exits (Fig. 9.12b).

3. 1
2 < |z| < 3

4 . TheROC is a ring between the two circles of radius r1 = 3
4 and r1 =

1
2 . Here X[z] exits. The system is both causal and anti-causal (Fig. 9.12c).

The unilateral z-transform pairs are given in Table9.1. The properties of z-transform
are given in Table9.2.
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Table 9.1 Unilateral z-transform pairs

No. x[n] X[z]
1 δ[n] 1

2 u[n] z

(z − 1)
3 nu[n] z

(z − 1)2

4 n2u[n] z(z + 1)

(z − 1)3

5 anu[n] z

(z − a)

6 an−1u[n − 1] 1

(z − a)

7 nanu[n] az

(z − a)2

8 cosω0nu[n] 1 − cosω0z−1

1 − 2 cosω0z−1 + z−2

9 sinω0nu[n] z−1 sinω0

1 − 2 cosω0z−1 + z−2

10 an cosω0nu[n] 1 − az−1 cosω0

1 − 2a cosω0z−1 + a2z−2

11 an sinω0nu[n] az−1 sinω0

1 − 2a cosω0z−1 + a2z−2

Table 9.2 z-transform properties (operations)

Operation x[n] X[z]
Linearity a1x1[n] + a2x2[n] a1X1[z] + a2X2[z]
Multiplication by an anx[n]u[n] X

[ z
a

]

Multiplication by n nx[n]u[n] −z d
dz X[z]

Time shifting x[n − n0] z−n0X[z]
Multiplication by ejω0n ejω0nx[n] X[e−jω0 z]
Time reversal x[−n] X

[
1
z

]

Accumulation
∑n

k=−∞ x[n] z
(z−1) X[z]

Convolution x1[n] ∗ x2[n] X1[z]X2[z]
Initial value x[0] Lt

z→∞ X[z]
Final value x[∞] Lt

z→1

(z−1)
z X[z]

poles of (z − 1)X[z] are inside the unit circle
Right shifting x[n − m]u[n − m] 1

zm X[z]
x[n − m]u[n] 1

zm X[z] + 1
zm

∑m
n=1 x(−m)zn

x[n − 1]u[n] 1
z X[z] + x[−1]

x[n − 2]u[n] 1
z2

X[z] + 1
z x[−1] + x[−2]

Left shifting x[n + m]u[n] zmX[z] − zm ∑m−1
n=0 x[n]z−n

x[n + 1]u[n] zX[z] − zx(0)

x[n + 2]u[n] z2X[z] − z2x[0] − zx[1]
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9.8 Inverse z-Transform

If X[z] is given, then the sequence x[n] is determined. This is called inverse z-
transform. As in the Laplace transform, in inverse z-transform also, the integration
in the complex z-plane using Eq. (9.5) is avoided since it is tedious. Instead, the
following methods are used. They are

1. Partial fraction method;
2. Power series expansion;
3. Residue method.

Of these, the partial fraction method is very easy to apply as was done in determining
inverse Laplace transform.

9.8.1 Partial Fraction Method

If X[z] is a rational function of z, then it can be expressed as follows:

X[z] = N[z]
D[z] = K(z − z1)(z − z2) . . . (z − zm)

(z − p1)(z − p2) . . . (z − pn)
(9.45)

where n ≥ m and all the poles are simple.

X[z]
z

= K(z − z1)(z − z2) . . . (z − zm)

z(z − p1)(z − p2) . . . (z − pn)

= A0

z
+ A1

z − p1
+ A2

z − p2
+ · · · + An

z − pn

where

A0 = X[z]|z=0

A1 = (z − p1)
X[z]

z

∣∣∣
z=p1

X[z] = A0 + A1
z

z − p1
+ · · · + Anz

z − pn
(9.46)

Using z-transform pair table, x[n] can be determined. The following examples illus-
trate the above method. For repeated poles, the z-transform pairs given in Table9.3
may be referred to.
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Table 9.3 z-transform pairs of repeated poles

X[z] x[n] ROC: |z| > |a|
1.

z

z − a
anu[n]

2.
z

(z − a)2
nan−1u[n]

3.
z

(z − a)3

n(n − 1)an−2

∠2
u[n]

4.
z

(z − a)k

n(n − 1)(n − 2) . . . (n − (k − 2))an−k+1

∠(k − 1)
u[n]

� Example 9.6

Find the inverse z-transform of

X[z] = 1 − 1
3 z−1

(1 − z−1)(1 + 2z−1)
ROC: |z| > 2

(Anna University, April, 2004)
Solution:

X[z] = 1 − 1
3 z−1

(1 − z−1)(1 + 2z−1)

= z
(
z − 1

3

)

(z − 1)(z + 2)
X[z]

z
= A1

(z − 1)
+ A2

(z + 2)(
z − 1

3

)
= A1(z + 2) + A2(z − 1)

Substitute z = 1

A1 = 2

9

Substitute z = −2

A2 = 7

9

X[z] = 1

9

[
2z

z − 1
+ 7z

z + 2

]

x[n] = 1

9

[
2(1)n + 7(−2)n

]
u[n]
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� Example 9.7

Find the inverse z-transform of

X[z] = 1

1024

[
1024 − z−10

1 − 1
2 z−1

]
ROC: |z| > 0

(Anna University, April, 2008)
Solution:

X[z] = 1

1024

[
1024 − z−10

1 − 1
2 z−1

]

= z(
z − 1

2

) − z(
z − 1

2

) z−10

1024

Taking inverse z-transform, we get

x[n] =
(
1

2

)n

u[n] − 1

1024

(
1

2

)n−10

u[n − 10]

=
(
1

2

)n

u[n] − 1

1024

(
1

2

)n (1

2

)−10

u[n − 10]

=
(
1

2

)n

u[n] − 1

1024

(
1

2

)n

1024u[n − 10]

=
(
1

2

)n

u[n] −
(
1

2

)n

u[n − 10]

x[n] =
(
1

2

)n

− 0 0 ≤ n ≤ 9

=
(
1

2

)n

−
(
1

2

)n

= 0 n ≥ 10

x[n] =
(
1

2

)n

0 ≤ n ≤ 9

= 0 otherwise
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� Example 9.8

Find the inverse z-transform of

X[z] = z2

(1 − az)(z − a)

(Anna University, December, 2007)
Solution:

X[z] = z2

(1 − az)(z − a)

X[z]
z

= −z

a
[
z − 1

a

] [z − a]

X[z]
z

= A1(
z − 1

a

) + A2

(z − a)

− z

a
= A1(z − a) + A2

(
z − 1

a

)

Substitute z = 1
a

− 1

a2
= A1

(
1

a
− a

)

A1 = −1

a(1 − a2)

Substitute z = a

−1 = A2

(
a − 1

a

)

A2 = a

(1 − a2)

X[z] = 1

(1 − a2)

[
−1

a

z(
z − 1

a

) + az

(z − a)

]

For a > 1, the ROC is shown in Fig. 9.13a. For a < 1, the ROC is shown in Fig. 9.13b.
For a > 1, theROC is exterior of the outermost pole.Hence, the function is casual.

x[n] = 1

(1 − a2)

[−1

a

1

(a)n
+ a(a)n

]
u[n]
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ROC

)b()a( Im

Re

z-plane z-plane

a>1

1
a

a a 1
a

ROC

Im

Re

a<1

Fig. 9.13 ROC of Example 9.8

x[n] = 1

(1 − a2)

[
−

(
1

a

)n+1

+ (a)n+1

]
u[n]

For a < 1, the ROC is a < |z| < 1
a and it is a concentric strip. The pole at |z| = 1

a is
anti-causal and z = a is causal.

x[n] = 1

(1 − a2)

[(
1

a

)n+1

u[−n − 1] + (a)n+1u[n]
]

� Example 9.9

X[z] = (7z − 23)

(z − 3)(z − 4)

Find x[n]. ROC: |z| > 4.

Solution:
Method 1:
Dividing both sides by z, we get

X[z]
z

= (7z − 23)

z(z − 3)(z − 4)

= A1

z
+ A2

(z − 3)
+ A3

(z − 4)
(7z − 23) = A1(z − 3)(z − 4) + A2z(z − 4) + A3z(z − 3)
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Substitute z = 0

−23 = 12A1; A1 = −23

12

Substitute z = 3

−2 = A2(3)(−1); A2 = 2

3

Substitute z = 4

5 = 4A3; A3 = 5

4

X[z] = −23

12
+ 2

3

z

(z − 3)
+ 5

4

z

(z − 4)

X[n] =
[
−23

12
δ[n] + 2

3
(3)n + 5

4
(4)n

]
u[n]

Method 2:

X[z] = (7z − 23)

(z − 3)(z − 4)

= A1

(z − 3)
+ A2

(z − 4)
7z − 23 = A1(z − 4) + A2(z − 3)

Substitute z = 3

−2 = −A1; A1 = 2

Substitute z = 4

5 = A2

X[z] = 2

(z − 3)
+ 5

(z − 4)
2

(z − 3)
Z−1←→ 2(3)n−1u[n − 1]

5

(z − 4)
Z−1←→ 5(4)n−1u[n − 1]
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x[n] = [2(3)n−1 + 5(4)n−1]u[n − 1]

The results of the above two methods are the same even though they are expressed
in different forms.

� Example 9.10

X[z] = 10z

(z + 2)(z + 4)2
ROC: |z| > 4

Find x[n] using the partial fraction method.

Solution: This is the case with poles repeated twice

X[z] = 10z

(z + 2)(z + 4)2

X[z]
z

= 10

(z + 2)(z + 4)2

= A1

(z + 2)
+ A2

(z + 4)
+ A3

(z + 4)2

10 = A1(z + 4)2 + A2(z + 2)(z + 4) + A3(z + 2)

Substitute z = −2

10 = 4A1; A1 = 5

2

Substitute z = −4

10 = −2A3; A3 = −5

Compare the coefficients of free terms

10 = 16A1 + 8A2 + 2A3

= 16
5

2
+ 8A2 − 10

A2 = −5

2

X[z] = 5

2

z

(z + 2)
− 5

2

z

(z + 4)
− 5

(z + 4)2

x[n] =
[
5

2
(−2)n − 5

2
(−4)n − 5n(−4)n

]
u[n]
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� Example 9.11

X[z] = z(z2 + z − 30)

(z − 2)(z − 4)3
ROC: |z| > 4

Find x[n] using the partial fraction method.

Solution: This is the case with poles repeated thrice

X[z] = z(z2 + z − 30)

(z − 2)(z − 4)3

X[z]
z

= (z2 + z − 30)

(z − 2)(z − 4)3
= (z − 5)(z + 6)

(z − 2)(z − 4)3

= A1

(z − 2)
+ A2

(z − 4)3
+ A3

(z − 4)2
+ A4

(z − 4)

(z2 + z − 30) = A1(z − 4)3 + A2(z − 2) + A3(z − 2)(z − 4) + A4(z − 2)(z − 4)2

Substitute z = 2

(−3)(8) = −8A1; A1 = 3

Substitute z = 4

(−1)(10) = 2A2; A2 = −5

(z2 + z − 30) = 3(z3 − 12z2 + 48z − 64) − 5(z − 2) + A3(z
2 − 6z + 8)

+A4(z
3 − 10z2 + 32z − 32)

Compare the coefficients of z2

1 = −36 + A3 − 10A4

A3 − 10A4 = 37

Compare the coefficients of z

1 = 144 − 5 − 6A3 + 32A4

6A3 − 32A4 = 138

Solving the above equation, we get

A3 = 7; A4 = −3
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X[z] = 3z

(z − 2)
− 5z

(z − 4)3
+ 7z

(z − 4)2
− 3z

(z − 4)
z

(z − 4)3
Z−1←→ n(n − 1)

∠2
(4)n−2u[n] = n(n − 1)

32
(4)nu[n]

z

(z − 4)2
Z−1←→ n(4)n−1u[n] = 1

4
n(4)nu[n]

x[n] =
[
3(2)n +

{
− 5

32
n(n − 1) + 7

4
n − 3

}
(4)n

]
u[n]

The values of A1, A2 and A3 determined are checked for their correctness as follows:

X[z]
z

= (z − 5)(z + 6)

(z − 2)(z − 4)3

Substitute z = 0

X[z]
z

∣∣∣
z=0

= (−5)(6)

(−2)(−4)3
= −15

64
X[z]

z
= 3

z − 2
− 5

(z − 4)3
+ 7

(z − 4)2
− 3

(z − 4)

Substitute z = 0

X[z]
z

∣∣∣
z=0

= −3

2
+ 5

64
+ 7

16
+ 3

4
= −15

64

Hence the values of A1, A2, A3 and A4 are found to be correct.

� Example 9.12

X[z] = z(z + 10)

(z − 1)(z2 − 8z + 20)

Find x[n] using the partial fraction method.

Solution: This is the case with complex poles

X[z] = z(z + 10)

(z − 1)(z2 − 8z + 20)
X[z]

z
= (z + 10)

(z − 1)(z − 4 + j2)(z − 4 − j2)

= A1

(z − 1)
+ A2

(z − 4 + j2)
+ A3

(z − 4 − j2)

(z + 10) = A1(z
2 − 8z + 20) + A2(z − 1)(z − 4 − j2) + A3(z − 1)(z − 4 + j2)
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Substitute z = 1

11 = A1(13); A1 = 11

13

Substitute z = 4 + j2

(14 + j2) = A3(4 + j2 − 4 + j2)(4 + j2 − 1)

A3 = (14 + j2)

j4(3 + j2)
= 14.142∠8.13◦

4
√
13∠123.69◦

= 0.98∠ − 115.56◦ = 0.98e−j115.56◦

A2 = conjugate of A3

= 0.98∠115.56◦ = 0.98ej115.56◦

X[z] = 11

13

z

(z − 1)
+ 0.98ej115.56◦

(z − 4 + j2)
+ 0.98e−j115.56◦

(z − 4 − j2)

Using z-transform pair, we get the following inverse z-transform:

x[n] = 11

13
u[n] + [0.98ej115.56◦

(4 − j2)n + 0.98e−j115.56◦
(4 + j2)n]u[n]

115.56◦ = 2 radians

(4 + j2)n = (4.47)nej0.4636n

(4 − j2)n = (4.47)ne−j0.4636n

x[n] = 11

13
u[n] + [0.98ej2e−j0.4636n(4.47)n + 0.98(4.47)ne−j2ej0.4636n]u[n]

= 11

13
u[n] + 0.98 ∗ (4.47)n[ej(2−.4636n) + e−j(2−.4636n)]u[n]

x[n] =
[
11

13
+ 1.96(4.47)n cos(2 − 0.4636n)

]
u[n]

� Example 9.13

X[z] = (5z3 − 29z2 + 8z + 60)

(z2 − 7z + 10)

Find x[n] by partial fraction method.



9.8 Inverse z-Transform 973

Solution: This is the case with irrational system function. The solution of x[n] will
have forward and backward shifts. Dividing the numerator polynomial by the denom-
inator polynomial, we get

5z + 6

z2 − 7z + 10
)
5z3 − 29z2 + 8z + 60

5z3 − 35z2 + 50z

6z2 − 42z + 60

6z2 − 42z + 60

(z2 − 7z + 10) = (z − 2)(z − 5)

X[z] = (5z + 6) + 1

(z − 2)(z − 5)
= X1[z] + X2[z]

where

X1[z] = (5z + 6)

X2[z] = 1

(z − 2)(z − 5)
X2[z]

z
= 1

z(z − 2)(z − 5)

= A1

z
+ A2

z − 2
+ A3

z − 5
1 = A1(z − 2)(z − 5) + A2z(z − 5) + A3z(z − 2)

Substitute z = 0

A1 = 1

10

Substitute z = 2

1 = A2(2)(−3); A2 = −1

6

Substitute z = 5

1 = A3(5)(3); A3 = 1

15
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X[z] = 5z + 6 + 1

10
− 1

6

z

(z − 2)
+ 1

15

z

(z − 5)

x[n] =
[
δ(n + 1) + 6.1δ[n] − 1

6
(2)n + 1

15
(5)n

]
u[n]

� Example 9.14

Find the inverse z-transform of

X[z] = (5 + z−2 + 4z−3)

(z2 + 7z + 10)

Solution:

X[z] = (5 + z−2 + 4z−3)

(z2 + 7z + 10)

= (5 + z−2 + 4z−3)

z

z

(z + 2)(z + 5)

= [5z−1 + z−3 + 4z−4] z

(z + 2)(z + 5)
z

(z + 2)(z + 5)
= 1

3

[
z

z + 2
− z

z + 5

]

z

(z + 2)(z + 5)
Z−1←→ 1

3

[
(−2)n − (−5)n

]
u[n]

Now

x[n] = [5z−1 + z−3 + 4z−4]1
3
[(−2)n − (−5)n]u[n]

Using the time shifting property, we get

x[n] = 5

3

[
(−2)n−1 − (−5)n−1

]
u[n − 1] + 1

3

[
(−2)n−3 − (−5)n−3

]
u[n − 3]

+ 4

3

[
(−2)n−4 − (−5)n−4

]
u[n − 4]
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� Example 9.15

Find the inverse z-transform for the following system functions:

(a) X[z] = 4

(z − 5)
ROC: |z| < 5

(b) X[z] = z(1 − z−1)(1 + 2z−1) ROC: 0 < |z| < ∞

Solution:

(a) X[z] = 4
(z−5)

X[z] = 4

(z − 5)
= 4z−1 z

z − 5

x[n] = 4z−1[(5)n]u[n]]

x[n] = 4(5)n−1u[n − 1]

(b) X[z] = z(1 − z−1)(1 + 2z−1)

X[z] = z(1 − z−1)(1 + 2z−1)

X[z] = z[1 + 2z−1 − z−1 − 2z−2)

= [z + 1 − 2z−1]

x[n] = {1, 1, −2}↑

9.8.2 Inverse z-Transform Using Power Series Expansion

The z-transform Eq. (9.4)

X[z] =
∞∑

n=−∞
x[n]z−n

can be expressed in power series form and the coefficients of z|n| give the values of
the sequence. Equation (9.4) can be express as

X[z] = · · · + x[−3]z3 + x[−2]z2 + x[−1]z + x[0] + x[1]z−1 + x[2]z−2 + x[3]z−3 + · · ·
(9.47)
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Equation (9.47) does not give closed form. However, if X[z] is not in a simpler
form other than the polynomial in z−1, using the power series method x[n] is easily
obtained. If X[z] is rational, the power series is obtained by long division. The
following examples illustrate the above method.

� Example 9.16

Using power series expansion, find the inverse z-transform of the following X[z]:

(a) X[z] = 4z

(z2 − 3z + 2)
ROC: |z| > 2

(b) X[z] = 4z

(z2 − 3z + 2)
ROC: |z| < 1

(c) X[z] = 1

(1 − az−1)
ROC: |z| > |a| and ROC: |z| < |a|

(Anna University, December, 2006)
Solution:

(a) X[z] = 4z
(z2−3z+2) ; ROC: |z| > 2

X[z] = 4z

(z2 − 3z + 2)

= 4z

(z − 1)(z − 2)

For ROC: |z| > 2, x[n] is a right-sided sequence where n ≥ 0. Hence, the long
division is done in such a way that X[z] is expressed in the power of z−1.

4z−1 + 12z−2 + 28z−3 + · · ·
z2 − 3z + 2

)
4z

4z − 12 + 8z−1

12 − 8z−1

12 − 36z−1 + 24z−2

28z−1 − 24z−2

28z−1 − 84z−2 + 56z−3

X[z] = 4z−1 + 12z−2 + 28z−3 + · · ·

x[n] = {0, 4, 12, 28, . . .}↑
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(b) X[z] = 4z
(z2−3z+2) ; ROC: |z| < 1

For ROC: |z| < 1, x[n] sequence is negative where n ≤ 0. The long division is
done in such a way that X[z] is expressed in the power of z.

2z + 3z2 + 7
2 z3

2 − 3z + z2
)
4z

4z − 6z2 + 2z3

6z2 − 2z3

6z2 − 9z3 + 3z4

7z3 − 3z4

7z3 − 21
2 z4 + 7

2 z5

X[z] = 2z + 3z2 + 7

2
z3 + · · ·

x[n] =
{

· · · 7
2
, 3, 2, 0

}

↑

(c) X[z] = 1
(1−az−1)

; ROC: |z| > |a|

X[z] = z

(z − a)

The ROC: |z| > a, and it is exterior of the circle of radius |a|. Hence, x[n] is a
right-sided sequence where n ≥ 0. The long division is done such that X[z] is
expressed in terms of the power of z−1 as shown below.

1 + az−1 + a2z−2 + a3a−3 + · · ·
z − a)z

z − a

a

a − a2z−1

a2z−1

a2z−1 − a3z−2

a3z−2

a3z−2 − a4z−3
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X[z] = 1 + az−1 + a2z−2 + a3z−3 + · · ·

x[n] = {1, a, a2, a3, . . .}↑
x[n] = anu[n]

For ROC: |z| < |a|, x[n] sequence is left-sided
−a−1z − a−2z2 − a−3z3 · · ·

− a + z)z

z − a−1z2

a−1z2

a−1z2 − a−2z3

a−2z3

a−2z3 − a−3z4

X[z] = −a−1z − a−2z2 − a−3z3 + · · ·

x[n] =
{

· · · , 1

a3
, − 1

a2
, −1

a
, 0

}

↑
x[n] = −anu[−n − 1]

� Example 9.17

Determine the inverse z-transform of

X[z] = log(1 − 2z), |z| <
1

2

by using the power series

log(1 − x) = −
∞∑

n=1

xn

n
, |x| < 1

and by first differentiating X[z] and then using this to recover x[n].
(Anna University, December, 2007)
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Solution:

(a) Using Power Series

X[z] = log(1 − 2z)

= −
∞∑

n=1

1

n
(2z)n

Replace n = −n

X[z] =
−∞∑

n=−1

1

n
(2z)−n

=
−∞∑

n=−1

(
1

2

)n 1

n
z−n

By z-transform definition, it is a left-sided signal

X[n] = 1

n

(
1

2

)n

u(−n − 1) n ≤ −1

= 0 n ≥ 0

(b) Using the Differentiation Property

X[z] = log(1 − 2z)
d

dz
X[z] = −2

(1 − 2z)

Multiplying both sides by −z, we get

−z
d

dz
X[z] = 2z

(1 − 2z)

= −z

z − 1
2

−z
d

dz
X[z] Z−1←→ nx[n]
−z

z − 1
2

Z−1←→
(
1

2

)n

u(−n − 1) ROC: |z| <
1

2

nx[n] =
(
1

2

)n

u(−n − 1)

x[n] =
(
1

2

)n 1

n
u(−n − 1)
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� Example 9.18

Find the inverse z-transform of

(a) X[z] = log(1 + az−1) |z| > |a|
(b) X[z] = log(1 − az−1) |z| > |a|

(Madras University, October, 1998)
Solution:

(a) The power series expansion for log(1 + x) is

log(1 + x) =
∞∑

n=1

(−1)n+1

n
xn for x < 1

log(1 + az−1) =
∞∑

n=1

(−1)n+1(az−1)n

n
|az−1| < 1 or |z| > |a|

=
∞∑

n=1

(−1)n+1anz−n

n

Since the summation is from n = 1, using the time shifting property we get

x[n] = (−1)n+1an

n
u[n − 1]

(b) The power series expansion for log(1 − x) is

log(1 − x) = −
∞∑

n=1

1

n
xn |x| < 1

log(1 − az−1) = −
∞∑

n=1

1

n
(az−1)n

log(1 + az−1) = −
∞∑

n=1

an

n
z−n

x[n] = −an

n
u[n − 1]
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9.8.3 Inverse z-Transform Using Contour Integration or the
Method of Residue

The inverse z-transform can be obtained from Eq. (9.2) which is given by

x[n] = 1

2π j

∮

c
X[z]zn−1dz (9.48)

The above integral can be evaluated by summing up all the residues of the poles
which are inside the circle c of Eq. (9.48) which can be expressed as

x[n] =
∑

(Residues of X[z]z−n at the poles inside (c)

=
∑

i

(z − zi)X[z]z−n−1
∣∣∣
z=zi

(9.49)

For multiple poles of order k, and z = α, the residue is written as

Residue = 1

∠(k − 1)
Lt

z→α

{
dk−1

dzk−1
(z − α)kX[z]zn−1

}
(9.50)

� Example 9.19

Find the inverse z-transform of the following X[z] using the Residue method:

(a) X[z] = (1 + z−1)

(1 + 8z−1 + 15z−2)
|z| > 5

(b) X[z] = z−1

(1 − 10z−1 + 24z−2)
4 < |z| < 6

(c) X[z] = z
(
z − 1

2

)2

Solution:

(a) X[z] = (1+z−1)

(1+8z−1+15z−2)
; |z| > 5

X[z] = z(z + 1)

(z2 + 8z + 15)

X[z] = z(z + 1)

(z + 3)(z + 5)

x[n] =
∑

Residue of
z(z + 1)

(z + 3)(z + 5)
zn−1
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= Residue of (z + 3)
z(z + 1)

(z + 3)(z + 5)
zn−1

∣∣∣
z=−3

+ Residue of (z + 5)
z(z + 1)zn−1

(z + 3)(z + 5)

∣∣∣
z=−5

x[n] = −(−3)n + 2(−5)n

(b) X[z] = z−1

(1−10z−1+24z−2)
; 4 < |z| < 6

X[z] = z

(z2 − 10z + 24)
= z

(z − 4)(z − 6)

For n ≥ 0,

x[n] = Residue of X[z]zn−1
∣∣∣
z=4

= (z − 4)
z(zn−1)

(z − 4)(z − 6)

∣∣∣
z=4

= −1

2
(4)nu[n]

For n < 0,

x[n] = −
[
(z − 6)

zzn−1

(z − 4)(z − 6)

]

z=6

= −1

2
(6)nu(−n − 1)

x[n] = −1

2
[(4)nu[n] + (6)nu(−n − 1)]

(c) X[z] = z
(z− 1

2 )2

x[n] = d

dz

[(
z − 1

2

)2 zzn−1

(
z − 1

2

)
]

z= 1
2

= d

dz
zn
∣∣∣
z=1/2

= nzn−1
∣∣∣
z=1/2

x[n] = 2n

(
1

2

)n

u[n]
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Fig. 9.14 System impulse
response and system function (a) x[n] −→ h[n] −→ y[n] = x[n] ∗ h[n]

(b) X[z] −→ H[z] −→ Y [z] = X[z]H[z]

9.9 The System Function of DT Systems

Let

1. x[n] = Input of the system;
2. y[n] =Output of the system;
3. h[n] = Impulse response of the system.

The output y[n] can be expressed as the convolution of x[n] with h[n] as

y[n] = x[n] ∗ h[n] (9.51)

By applying the convolution property of z-transform, we obtain

Y [z] = X[z]H[z] (9.52)

where Y [z], X[z] and H[z] are the z-transforms of y[n], x[n] and h[n], respectively.
Equation (9.52) can be expressed as

H[z] = Y [z]
X[z] (9.53)

In Eq. (9.53), H[z] is referred to as the system function or the transfer function.
System function is defined as the ratio of the z-transforms of the output y[n] and the
input x[n]. The system function completely depends on the system characteristic.
Equations (9.51) and (9.52) are illustrated in Fig. 9.14a and b, respectively.

9.10 Causality of DT Systems

A linear time invariant discrete time system is said to be causal if the impulse response
h[n] = 0 for n < 0 and it is therefore right-sided. The ROC of such a system H[z]
is the exterior of a circle. If H[z] is rational, then the system is said to be causal if
the ROC lies exterior of the circle passing through the outermost pole and includes
infinity area. A DT system which is linear time invariant with its system function
H[z] rational is said to be causal iff the ROC is the exterior of a circle which passes
through the outermost pole of H[z]. Further, the degree of the numerator polynomial
of H[z] should be less than or equal to the degree of the denominator polynomial.
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9.11 Stability of DT System

As we discussed in Chap. 2, an LTI discrete time system is said to be BIBO stable if
the impulse response h[n] is summable. This is expressed as

∞∑

n=−∞
|h[n]| < ∞ (9.54)

The corresponding requirement on H[z] is that the ROC of H[z] contains the unit
circle. By definition of z-transform,

H[z] =
∞∑

n=−∞
h[n]z−n

Let z = ej�

|z| = |ej�|
= 1

|H[ej�]| =
∣∣∣∣∣

∞∑

n=−∞
h[n]e−j�n

∣∣∣∣∣

≤
∞∑

n=−∞

∣∣h[n]e−j�n
∣∣

=
∞∑

n=−∞
|h[n]| < ∞ (9.55)

From Eq. (9.55), we see that the stability condition given by Eq. (9.54) is satisfied if
z = ej�. Thus, this implies that H[z] must contain unit circle |z| = 1.

An LTI system is stable iff the ROC of its system function H[z] contains the unit
circle |z| = 1.

9.12 Causality and Stability of DT System

For a causal system whose H[z] is rational, the ROC is outside the outermost pole.
For the BIBO stability, the ROC should include the unit circle |z| = 1. For the system
to be causal and stable, the above requirements are satisfied if all the poles are within
the unit circle in the z-plane.

An LTID systemwith the system function H[z] is said to be both causal and stable
iff all the poles of H[z] lie inside the unit circle.

The above characteristics of LTI discrete time systems are illustrated in Fig. 9.15
for a causal system.
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h[n]

n0 1 2 3 4

(a)

10

Im

Re

h[n]

n0 1 2 3 4 5

(b)

1

Im

Re

h[n]

n0 1 2 3 4 5

(c)

1

Im

Re

h[n]

n0 1 2 3 4 65 7

(d)

1

Im

Re

Fig. 9.15 Pole location and impulse response of a causal system
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h[n]

n0 1 2 3 4 5

(e)

1

Im

Re

h[n]

n0 1 2 3 4 65 7 8

(f)

1

Im

Re

Fig. 9.15 (continued)

� Example 9.20

The input to the causal LTI system is

x[n] = u[−n − 1] +
(
1

2

)n

u[n]

The z-transform of the output of the system is

Y [z] = − 1
2 z−1

(
1 − 1

2 z−1
)
(1 + z−1)

Determine H[z], the z-transform of the impulse response and also the output y[n].
(Anna University, December, 2007)

Solution:

X[z] = − z

(z − 1)
+ z

(z − 0.5)

= −0.5z

(z − 1)(z − 0.5)
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Y [z] = − 1
2 z−1

(
1 − 1

2 z−1
)
(1 + z−1)

= − 1
2 z

(z − 0.5)(z + 1)

H[z] = Y [z]
X[z]

= (−0.5)z(z − 1)(z − 0.5)

(z − 0.5)(z + 1)(−0.5)z

= (z − 1)

(z + 1)
H[z]

z
= (z − 1)

z(z + 1)

= A1

z
+ A2

z + 1
(z − 1) = A1(z + 1) + A2z

Substitute z = 0

−1 = A1

Substitute z = −1

−2 = −A2; A2 = 2

H[z] = −1 + 2z

(z + 1)

h[n] = −δ[n] + (−1)n2u[n]

Y [z] = − 1
2 z

(z − 0.5)(z + 1)

Y [z]
z

= − 1
2

(z − 0.5)(z + 1)

= A1

z − 0.5
+ A2

z + 1

−1

2
= A1(z + 1) + A2(z − 0.5)
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Substitute z = 0.5

−1

2
= 3

2
A1; A1 = −1

3

Substitute z = −1

−1

2
= −3

2
A2; A2 = 1

3

Y [z] = 1

3

[
− 1

(z − 0.5)
+ 1

(z + 1)

]

y[n] = 1

3

[
−

(
1

2

)n

+ (−1)n

]
u[n]

� Example 9.21

A certain LTI system is described by the following system function:

H[z] =
(
z + 1

2

)

(z − 1)
(
z − 1

2

)

Find the system response to the input x[n] = 4−(n+2)u[n].
Solution:

x[n] = 4−(n+2)u[n]
= 1

16
(4)−nu[n]

X[z] = 1

16

z(
z − 1

4

)

Y [z] = H[z]X[z]
= 1

(
z + 1

2

)
z

16(z − 1)
(
z − 1

2

) (
z − 1

4

)

Y [z]
z

=
(
z + 1

2

)

16(z − 1)
(
z − 1

2

) (
z − 1

4

)

= A1

z − 1
+ A2(

z − 1
2

) + A3(
z − 1

4

)

1

16

(
z + 1

2

)
= A1

(
z − 1

2

)(
z − 1

4

)
+ A2(z − 1)

(
z − 1

4

)
+ A3(z − 1)

(
z − 1

2

)
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Substitute z = 1

(
1

16

)(
3

2

)
=

(
1

2

)(
3

4

)
A1; A1 = 1

4

Substitute z = 1
2

1

16
= −

(
1

2

)(
1

4

)
A2; A2 = −1

2

Substitute z = 1
4

1

16

3

4
= −

(
3

4

)(
−1

4

)
A3; A3 = 1

4

Y [z] =
[
1

4

z

(z − 1)
− 1

2

z(
z − 1

2

) + 1

4

z(
z − 1

4

)
]

y[n] =
[
1

4
(1)n − 1

2

(
1

2

)n

+ 1

4

(
1

4

)n]
u[n]

� Example 9.22

Given

x[n] = {2, −3, 1}
h[n] = {1, 2, −1}

Find y[n] using z-transform.

Solution:

X[z] = (2 − 3z−1 + z−2)

H[z] = 1 + 2z−1 − z−2

Y [z] = X[z]H[z]
= [2 − 3z−1 + z−2][1 + 2z−1 − z−2]
= 2 + z−1 − 7z−2 + 5z−3 − z−4

y[n] = {2, 1, −7, 5, −1}
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� Example 9.23

Given

x[n] = u[n]
y[n] = (2)nu[n]

Find the system function and the impulse response.

Solution:

x[n] = u[n]
X[z] = z

(z − 1)
|z| > 1

y[n] = (2)nu[n]
Y [z] = z

(z − 2)
|z| > 2

H[z] = Y [z]
X[z] = (z − 1)

(z − 2)
|z| > 2

H[z]
z

= (z − 1)

z(z − 2)

= A1

z
+ A2

(z − 2)
z − 1 = A1(z − 2) + A2z

Substitute z = 0

−1 = A1(−2); A1 = 1

2

Substitute z = 2

1 = 2A2; A2 = 1

2

H[z] = 1

2

[
1 + z

(z − 2)

]

y[n] = 1

2

[
δ(n) + (2)nu[n]]
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� Example 9.24

Given

y[n] =
(
1

4

)n

u[n]

x[n] =
(
1

2

)n

u[−n − 1]

Find the system function and hence the system impulse response.

Solution:

y[n] =
(
1

4

)n

u[n]

Y [z] = z(
z − 1

4

) |z| >
1

4

x[n] =
(
1

2

)n

u[−n − 1]

X[z] = − z(
z − 1

2

) |z| <
1

2

H[z] = Y [z]
X[z]

H[z] = −(
z − 1

2

)
(
z − 1

4

)

H[z]
z

= −(
z − 1

2

)

z
(
z − 1

4

)

= A1

z
+ A2

z
(
z − 1

4

)

1

2
− z = A1

(
z − 1

4

)
+ A2z

Substitute z = 0

1

2
= −1

4
A1; A1 = −2

Substitute z = 1
4
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1

2
= 1

4
A2; A2 = 2

H[z] = 2

[
−1 + z(

z − 1
4

)
]

h[n] = 2

[
−δ[n] +

(
1

4

)n]
u[n]

� Example 9.25

Consider the following system functions:

(a) H[z] = (1 + 4z−1 + z−2)

(2z−1 + 5z−2 + z−3)

(b) H[z] = (z − 1)(z + 2)(
z − 1

2

) (
z − 3

4

) ROC: |z| >
3

4

(c) H[z] = (z − 1)(z + 2)(
z − 1

2

) (
z − 3

4

) ROC: |z| <
1

2

Determine whether these systems are causal or not.

Solution:

(a) H[z] = (1+4z−1+z−2)

(2z−1+5z−2+z−3)

H[z] = (z3 + 4z2 + z)

(2z2 + 5z + 1)

H[z] is irrational since the degree of the numerator polynomial is greater than
the denominator polynomial.

The System is Non-causal.

(b) H[z] = (z−1)(z+2)
(z− 1

2 )(z− 3
4 )
; ROC: |z| > 3

4

The ROC is the exterior of the circle passing through the outermost pole of H[z].
Hence h[n], the impulse response, is right-sided.

The System is Causal.
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(c) H[z] = (z−1)(z+2)
(z− 1

2 )(z− 3
4 )

ROC : |z| < 1
2

The ROC is the interior of the circle passing through the innermost pole of H[z].
Hence h[n], the impulse response, is left-sided.

The System is Non-causal.

� Example 9.26

Consider the following system function:

H[z] =
(
2 − 13

4 z−1
)

(
1 − 1

4 z−1
) (
1 − 3z−1

)

Determine the causality and stability of the system for the following cases:

(a) ROC: |z| > 3;
(b) ROC: |z| < 1

4 ;
(c) ROC: 1

4 < |z| < 3.

Solution:

H[z] =
(
2 − 13

4 z−1
)

(
1 − 1

4 z−1
) (
1 − 3z−1

)

= z
(
2z − 13

4

)
(
z − 1

4

)
(z − 3)

(a) ROC : |z| > 3
The ROC is the exterior of the circle passing through the outermost pole of
H[z] which is rational (the denominator and numerator polynomials have the
same order). The impulse response h[n] is a right-sided sequence. Hence H[z]
is causal. The ROC does not contain a unit circle. Hence h[n] is not summable.
The system is unstable. Refer to Fig. 9.16a.

The System is Causal and Unstable.

(b) ROC : |z| < 1
4

The ROC is the interior of the circle passing through the innermost pole of H[z].
The impulse response is a left-sided sequence. H[z] is therefore non-causal.
The ROC does not include the unit circle. The h[n] is a growing exponential
negative sequence. The system is unstable. Refer to Fig. 9.16b.

The System is Non-causal and Unstable.
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Unit cricle

Im

Re1
4

3

ROC

Im

Re1
4

3

ROC

1

Unit cricle

Im
(c)(b)

Re1
4

3

ROC

(a)

Fig. 9.16 a Causal and unstable system, b Non-causal and unstable system and c Non-causal and
stable system

(c) ROC : 1
4 < |z| < 3

TheROC is to the left of the outermost pole and to the right of the innermost pole.
Hence, h[n] will have right- and left-sided sequences, which is non-causal. The
ROC includes a unit circle, which means that the right- and left-side sequences
of h[n] will exponentially decay and the system is stable. Refer to Fig. 9.16c.

The System is Non-causal and Stable.

The system cannot be both Causal and Stable.
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� Example 9.27

Consider the following system function:

H[z] = z(
z − 1

4

) (
z + 1

4

) (
z − 1

2

)

For different possible ROCs, determine the causality, stability and the impulse
response of the system.

Solution:

H[z] = z(
z − 1

4

) (
z + 1

4

) (
z − 1

2

)

The possible ROCs for H[z] to exist are (a) ROC: |z| > 1
2 , (b) ROC: |z| < 1

4 and (c)
ROC: 1

4 < |z| < 1
2 .

H[z]
z

= 1(
z − 1

4

) (
z + 1

4

) (
z − 1

2

)

= A1(
z − 1

4

) + A2(
z + 1

4

) + A3(
z − 1

2

)

1 = A1

(
z + 1

4

)(
z − 1

2

)
+ A2

(
z − 1

4

)(
z − 1

2

)
+ A3

(
z − 1

4

)(
z + 1

4

)

Substitute z = 1
4

1 = A1

(
1

4
+ 1

4

)(
1

4
− 1

2

)
; A1 = −8

Substitute z = − 1
4

1 = A2

(
−1

4
− 1

4

)(
−1

4
− 1

2

)
; A2 = 8

3

Substitute z = 1
2

1 = A3

(
1

2
− 1

4

)(
1

2
+ 1

4

)
; A3 = 16

3
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H[z] = − 8z(
z − 1

4

) + 8

3

z(
z + 1

4

) + 16

3

z(
z − 1

2

)

(a) ROC : |z| > 1
2

The pole-zero diagram and the ROC are shown in Fig. 9.17a. From Fig. 9.17a,
the ROC is the exterior of the outermost pole z = 1

2 . Further, ROC includes a unit
circle. Thus, h[n] is a right-sided sequence and hence H[z] is causal. Since ROC
includes the unit circle and all the poles are within the unit circle, the system is
stable.

Now,

H[z] = − 8z(
z − 1

4

) + 8

3

z(
z + 1

4

) + 16

3

z(
z − 1

2

)

h[n] =
[
−8

(
1

4

)n

+ 8

3

(
−1

4

)n

+ 16

3

(
1

2

)n]
u[n]

The System is Causal and Stable.

(b) ROC : |z| < 1
4

For ROC: |z| < 1
4 , the pole-zero diagram is shown in Fig. 9.17b. The ROC is

interior of the circle passing through the innermost pole. Hence the system is
non-causal. The condition that the ROC does not include a unit circle implies
that the system is unstable. The sequence h[n] is left-sided. This is obtained as
follows:

H[z] = − 8z(
z − 1

4

) + 8

3

z(
z + 1

4

) + 16

3

z(
z − 1

2

)

h[n] =
[
8

(
1

4

)n

− 8

3

(
−1

4

)n

− 16

3

(
1

2

)n]
u[−n − 1]

The left-sided sequence u[−n − 1] will exponentially increase for n < 0 and
makes the system unstable.

The System is Non-causal and Unstable.



9.12 Causality and Stability of DT System 997

z-plane

Unit cricle Unit cricle

ROC

Im
(c)(b)

Re1
4

1
4

1
2

1

z-plane

Im

Re1
4

1
2

ROC

11
4

z-plane

Unit cricle

ROC

Im

Re1
4

1
4

1
2

1

(a)

Fig. 9.17 a Pole-zero diagram and ROC: |z| > 1
2 of Example 9.27, b Pole-zero diagram and ROC:

|z| < 1
4 and c Pole-zero diagram and ROC: 1

4 < |z| < 1
2

(c) ROC : 1
4 < |z| < 1

2
The pole-zero diagram and ROC of H[z] are shown in Fig. 9.17c. The ROC is
a concentric ring for 1

4 < |z| < 1
2 . The h[n] sequences die to the poles at z = 1

4
and z = − 1

4 are right-sided and the sequence due to the pole z = 1
2 is left-sided.

Hence the system is non-causal. The ROC does not include the unit circle and
hence the system is unstable. The impulse response is obtained as follows.

H[z] = − 8z(
z − 1

4

) + 8

3

z(
z + 1

4

) + 16

3

z(
z − 1

2

)
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h[n] =
[
−8

(
1

4

)n

+ 8

3

(
−1

4

)n]
u[n] − 16

3

(
1

2

)n

u[−n − 1]

The term− 16
3 (1/2)nu[−n − 1] forn<0yields exponentially increasing sequence.

The System is Non-causal and Unstable.

9.13 z-Transform Solution of Linear Difference Equations

As in the case of Laplace transform with a differential equation, to get the solution
in time domain z-transform is used to solve the difference equation to get the output
sequence as a function of n. By using the time shift property of z-transform, the differ-
ence equation is converted into an algebraic equation, taking into account the initial
conditions. By taking z-inverse transform, the time domain solution is obtained.

9.13.1 Right Shift (Delay)

If

x[n]u[n] Z←→ X[z]

then

x[n − 1]u[n − 1] Z←→ 1

z
X[z]

x[n − 1]u[n] Z←→ 1

z
X[z] + x[−1]

x[n − 2]u[n] Z←→ 1

z2
X[z] + 1

z
x[−1] + x[−2]

In general,

x[n − m]u[n] Z←→ z−mX[z] + z−m
m∑

n=1

x[−n]zn (9.56)
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9.13.2 Left Shift (Advance)

If

x[n]u[n] Z←→ X[z]
x[n + 1]u[n] Z←→ zX[z] − zx[0]
x[n + 2]u[n] Z←→ z2X[z] − z2x[0] − zx[1]

In general,

x[n + m]u[n] Z←→ zmx[z] − zm
m−1∑

n=0

x[n]z−n (9.57)

Equations (9.56) and (9.57) are used to convert difference equations with initial
conditions to algebraic equations in z. With the application of Eq. (9.56), the delay
shift is more common. The following examples illustrate the above procedure.

� Example 9.28

Consider the following linear constant coefficient difference equation:

y[n] − 3

4
y[n − 1] + 1

8
y[n − 2] = 2x[n − 1]

Determine y[n] when x[n] = δ[n] and y[n] = 0, n < 0.

(Anna University, May and December, 2007)

Solution: If y[n] = 0, n = 0 implies the initial conditions are zero. Taking z-
transform on both sides of the given equation, we get

[
1 − 3

4
z−1 + 1

8
z−2

]
Y [z] = 2z−1X[z]

For δ[n], X[z] = 1,

Y [z] = 2z−1

1 − 3
4 z−1 + 1

8 z−2

= 2z

z2 − 3
4 z + 1

8

Y [z]
z

= 2(
z − 1

2

) (
z − 1

4

)
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= A1(
z − 1

2

) + A2(
z − 1

4

)

2 = A1

(
z − 1

4

)
+ A2

(
z − 1

2

)

Substitute z = 1
2

2 = A1
1

4
; A1 = 8

Substitute z = 1
4

2 = A2

(
−1

4

)
; A2 = −8

Y [z] = 8

[
z(

z − 1
2

) − z(
z − 1

4

)
]

y[n] = 8

[(
1

2

)n

−
(
1

4

)n]
u[n] ROC: |z| >

1

2

� Example 9.29

y[n + 2] + 1.1y[n + 1] + 0.3y[n] = x[n + 1] + x[n]

where x[n] = (−4)−nu[n]. Find y[n] if the initial conditions are zero.
Solution: Taking z-transform using the left shift property, we get

[z2 + 1.1z + 0.3]Y [z] = [z + 1]X[z]
x[n] = (−4)−nu[n]

X[z] = z(
z + 1

4

)

Y [z] = z(z + 1)(
z + 1

4

)
(z2 + 1.1z + 0.3)

= z(z + 1)(
z + 1

4

)
(z + 0.5)(z + 0.6)

Y [z]
z

= (z + 1)(
z + 1

4

)
(z + 0.5)(z + 0.6)
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= A1(
z + 1

4

) + A2

(z + 0.5)
+ A3

(z + 0.6)

(z + 1) = A1 (z + 0.5) (z + 0.6) + A2

(
z + 1

4

)
(z + 0.6)

+A3

(
z + 1

4

)
(z + 0.5)

Substitute z = − 1
4

(
−1

4
+ 1

)
= A1

(
−1

4
+ 0.5

)(
−1

4
+ 0.6

)
; A1 = 8.57

Substitute z = −0.5

(−0.5 + 1) = A2

(
−0.5 + 1

4

)
(−0.5 + 0.6); A2 = −20

Substitute z = −0.6

(−0.6 + 1) = A3

(
−0.6 + 1

4

)
(−0.6 + 0.5); A3 = 11.43

Y [z] = 8.57z(
z + 1

4

) − 20z

(z + 0.5)
+ 11.43

(z + 0.6)

y[n] =
[
8.57

(
−1

4

)n

− 20 (−0.5)n + 11.43(−0.6)n

]
u[n]

� Example 9.30

A causal LTI system is described by the difference equation

y[n] = y[n − 1] + y[n − 2] + x[n − 1]

Find (a) System function for this system and (b) Unit impulse response of the system.

(Anna University, April, 2008)

Solution: Taking z-transform on both sides of the equation and making use of right
shift property, we get

[1 − z−1 − z−2]Y [z] = z−1X[z]
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(a)

H[z] = Y [z]
X[z]

H[z] = z−1

(1 − z−1 − z−2)

(b)

H[z] = z

(z−2 − z − 1)
H[z]

z
= 1

(z − 1.618)(z + 0.618)

= A1

(z − 1.618)
+ A2

(z + 1.618)
1 = A1(z + 0.618) + A2(z − 1.618)

Substitute z = 1.618

1 = A1 (1.618 + 0.618) ; A1 = 0.447

Substitute z = −0.618

1 = A2 (−0.618 − 1.618) ; A2 = −0.447

H[z] = 0.447

[
z

z − 1.618
− z

z + 0.618

]

h[n] = 0.447
[
(1.618)n − (−0.618)n

]
u[n]

� Example 9.31

Find the impulse response of the discrete time system described by the difference
equation

y[n − 2] − 3y[n − 1] + 2y[n] = x[n − 1]

(Anna University, April, 2005)
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Solution:

[z−2 − 3z−1 + 2]Y [z] = z−1X[z]
H[z] = Y [z]

X[z]
= z−1

(z−2 − 3z−1 + 2)

= z

(2z2 − 3z + 1)
H[z]

z
= 0.5

(z − 1)(z − 0.5)

= 1

(z − 1)
− 1

(z − 0.5)

H[z] = z

z − 1
− z

z − 0.5

h[n] =
[
(1)n −

(
1

2

)n]
u[n]

� Example 9.32

Determine the impulse response and frequency response of the system described by
the difference equation

y[n] −
(
1

6

)
y[n − 1] − 1

6
y[n − 2] = x[n − 1]

(Anna University, May, 2007)
Solution:

To obtain Impulse Response

[
1 − 1

6
z−1 − 1

6
z−2

]
Y [z] = z−1X[z]

H[z] = Y [z]
X[z]

= z(
z2 − 1

6 z − 1
6

)

= z(
z − 1

2

) (
z + 1

3

)

H[z]
z

= 1(
z − 1

2

) (
z + 1

3

)
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= 6

5

[
1(

z − 1
2

) − 1(
z + 1

3

)
]

H[z] = 6

5

[
z(

z − 1
2

) − 1(
z + 1

3

)
]

h[n] = 6

5

[(
1

2

)n

−
(
1

3

)n]
u[n]

To obtain Frequency Response

Substitute z = ejω in H[z]

H[ejω] = ejω

(
ejω − 1

2

) (
ejω + 1

3

)

This can be expressed in terms of amplitude and phase as follows:

H[ejω] = ejω

(
cosω + j sinω − 1

2

) (
cosω + j sinω + 1

3

)

since |ejω| = 1

|H(ejω)| = 1
[{(

cosω − 1
2

)2 + sin2 ω
} {(

cosω + 1
3

)2 + sin2 ω
}] 1

2

Since ∠ejω = ω,

∠H(ejω) = ω − tan−1 sinω(
cosω − 1

2

) − tan−1 sinω(
cosω + 1

3

)

� Example 9.33

A causal system is represented by the difference equation

y[n] + 1

4
y[n − 1] = x[n] + 1

2
x[n − 1]

Use z-transform to determine the

(1) System function;
(2) Unit sample response of the system;



9.13 z-Transform Solution of Linear Difference Equations 1005

(3) Frequency response of the system.

Solution:

(1)

[
1 + 1

4
z−1

]
Y [z] =

[
1 + 1

2
z−1

]
X[z]

H[z] = Y [z]
X[z]

H[z] =
[
1 + 1

2 z−1
]

[
1 + 1

4 z−1
]

(2)

H[z] =
(
z + 1

2

)
(
z + 1

4

)

H[z]
z

=
(
z + 1

2

)

z
(
z + 1

4

) = A1

z
+ A2(

z + 1
4

)
(

z + 1

2

)
= A1

(
z + 1

4

)
+ A2z

Substitute z = 0

A1 = 2

Substitute z = − 1
4

[
−1

4
+ 1

2

]
= A2

(
−1

4

)
; A2 = −1

H[z] = 2 − z(
z + 1

4

)

h[n] = 2δ[n] −
(
1

4

)n

u[n]
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(3)

H[z] =
(
z + 1

2

)
(
z + 1

4

)

H[ejω] =
(
ejω + 1

2

)
(
ejω + 1

4

) =
(
cosω + 1

2

) + j sinω
(
cosω + 1

4

) + j sinω

|H(ejω)| =
[(
cosω + 1

2

)2 + sin2 ω
]1/2

[(
cosω + 1

4

)2 + sinω
]1/2

∠H(jω) = tan−1 sinω(
cosω + 1

2

) − tan−1 sinω(
cosω + 1

4

)

� Example 9.34

Find the output of the systemwhose input-output is related by the difference equation

y[n] − 5

6
y[n − 1] + 1

6
y[n − 2] = x[n] − 1

2
x[n − 1]

for the step input. Assume initial conditions to be zero.

Solution:
[
1 − 5

6
z−1 + 1

6
z−2

]
Y [z] =

[
1 − 1

2
z−1

]
X[z]

Y [z] =
[
1 − 1

2 z−1
]

[
1 − 5

6 z−1 + 1
6 z−2

]X[z]

For unit step input, X[z] = z
z−1

Y [z] = z2
[
z − 1

2

]

(z − 1)
(
z2 − 5

6 z + 1
6

)

Y [z]
z

= z
[
z − 1

2

]

(z − 1)
(
z − 1

2

) (
z − 1

3

)

= z

(z − 1)
(
z − 1

3

)
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= A1

(z − 1)
+ A2(

z − 1
3

)

z = A1

(
z − 1

3

)
+ A2 (z − 1)

Substrate z = 1

1 = A1

(
1 − 1

3

)
; A1 = 3

2

Substrate z = 1
3

1

3
= A2

(
1

3
− 1

)
; A2 = −1

2

Y [z] = 3

2

z

(z − 1)
− 1

2

z(
z − 1

3

)

y[n] =
[
3

2
(1)n − 1

2

(
1

3

)n]
u[n]

� Example 9.35

Find the output response of the discrete time system described by the following
difference equation:

y[n] − 3

4
y[n − 1] + 1

8
y[n − 2] = x[n]

The initial conditions are y[−1] = 0 and y = [−2] = 1. The input x[n] = (
1
5

)n
u[n].

Solution:
Taking z-transform on both sides of the above equation, we get

Y [z] − 3

4
[z−1Y [z] + y[−1]] + 1

8
[z−2Y [z]

+z−1y[−1] + y[−2]] = X[z][
1 − 3

4
z−1 + 1

8
z−2

]
Y [z] = −1

8
+ z(

z − 1
5

)
[
z2 − 3

4 z + 1
8

]

z2
Y [z] = −1

8
+ z(

z − 1
5

)
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Y [z]
z

= − z

8
(
z − 1

4

)(
z − 1

2

) + z2(
z − 1

5

)(
z − 1

4

)(
z − 1

2

)

= Y1[z] + Y2[z]
Y1[z] = − z

8
(
z − 1

4

)(
z − 1

2

)

= − A1(
z − 1

4

) + A2(
z − 1

2

)

− z

8
= A1

(
z − 1

2

)
+ A2

(
z − 1

4

)

Substitute z = 1
4

−1

4

1

8
= −A1

1

4
; A1 = 1

8

Substrate z = 1
2

−1

2

1

8
= A2

1

4
; A2 = −1

4

Y1[z] = 1

8
(
z − 1

4

) − 1

4
(
z − 1

2

)

Y2[z] = z2(
z − 1

5

) (
z − 1

4

)(
z − 1

2

)

z2 = A1

(
z − 1

4

)(
z − 1

2

)
+ A2

(
z − 1

5

)(
z − 1

2

)
+ A3

(
z − 1

5

)(
z − 1

4

)

Substitute z = 1
5

1

25
= A1

(
1

5
− 1

4

)(
1

5
− 1

2

)
; A1 = 8

3

Substitute z = 1
4

1

16
= A2

(
1

4
− 1

5

)(
1

4
− 1

2

)
; A2 = −5

Substitute z = 1
2



9.13 z-Transform Solution of Linear Difference Equations 1009

1

4
= A3

(
1

2
− 1

5

)(
1

2
− 1

4

)
; A3 = 10

3

Y2[z] = 8

3

1(
z − 1

5

) − 5(
z − 1

4

) + 10

3

1(
z − 1

2

)

Y [z] = z

8
(
z − 1

4

) − z

4
(
z − 1

2

) + 8

3

z(
z − 1

5

) − 5z(
z − 1

4

) + 10

3

z(
z − 1

2

)

= −39

8

z(
z − 1

4

) + 37

12

z(
z − 1

2

) + 8

3

z(
z − 1

5

)

y[n] =
[
−39

8

(
1

4

)n

+ 37

12

(
1

2

)n

+ 8

3

(
1

5

)n]
u[n]

� Example 9.36

Consider the following difference equation:

y[n] + 2y[n − 1] + 2y[n − 2] = x[n]

The initial conditions are y[−1] = 0 and y = [−2] = 2. Find the step response of
the system.

Solution: Taking z-transform on both sides of the above equation, we get

X[z] = Y [z] + 2[z−1Y [z] + y[−1]] + 2[z−2Y [z] + z−1y[−1] + y[−2]]
−4 + X[z] = [1 + 2z−1 + 2z−2]Y [z]
−4 + X[z] = (z2 + 2z + 2)

z2
Y [z]

For step input X[z] = z
(z−1) ,

z2 + 2z + 2 = (z + 1 + j)(z + 1 − j)
(z + 1 + j)(z + 1 − j)

z2
Y [z] = −4 + z

z − 1

= (4 − 3z)

z − 1
Y [z]

z
= z(4 − 3z)

(z − 1)(z + 1 + j)(z + 1 − j)

= A1

(z − 1)
+ A2

(z + 1 + j)
+ A3

(z + 1 − j)
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z[4 − 3z] = A1(z
2 + 2z + 2) + A2(z − 1)(z + 1 − j)

+A3(z − 1)(z + 1 + j)

Substitute z = 1

1 = A15; A1 = 1

5

Substitute z = −1 + j

(−1 + j)(4 − 3 + j3) = A3(−1 + j − 1)(−1 + 1 + j + j)

(−1 + j)(1 + j3) = A3(−2 + j)j2√
2∠135◦√10∠71.56◦ = A3

√
5∠153.43◦√2∠90◦

A3 =
√
2∠135◦√10∠71.56◦

√
5∠153.43◦√2∠90◦

= 1∠−36.87◦ = 1e−j0.643

A2 = conjugate of A3

= 1ej0.643

The exponentials of A1 and A2 are expressed in radians using 57.3◦ = 1 radian.

Y [z] = 1

5

z

(z − 1)
+ ej0.643z

z + 1 + j
+ e−j0.643z

z + 1 − j

Y [z] = 1

5

z

(z − 1)
+ ej0.643z

(z + √
2ej π

4 )
+ e−j0.643z

(z + √
2e−j π

2 )

Taking inverse z-transform, we get

y[n] = 1

5
+ ej0.643(−√

2ej π
4 )n + e−j0.643(−√

2e−j π
4 )n

= 1

5
+ (−√

2)n
[
ej(0.643+ π

4 n) + e−j(0.643+ π
4 n)

]

y[n] =
[
1

5
+ 2(−√

2)n cos
(π

4
n + 0.643

)]
u[n]
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� Example 9.37

Solve the following difference equation:

y[n] + 6y[n − 1] + 8y[n − 2] = 5x[n − 1] + x[n − 2]

The initial conditions are y[−1] = 1 and y[−2] = 2. The input x[n] = u[n].
Solution: Taking z-transform on both sides, we get

1 + 6(z−1Y [z] + y[−1]) + 8(z2Y [z] + z−1y[−1] + y[−2]) = [5z−1 + z−2]X[z]

For a causal signal u[n], x[−2], x[−1] are zero.

[1 + 6z−1 + 8z−2]Y [z] + (6 + 8z−1 + 16) = [5z−1 + z−2] z

(z − 1)
(z + 2)(z + 4)

z2
Y [z] = −(22 + 8z−1) + (5z−1 + z−2)

z

(z − 1)

= (−22z2 + 19z + 9)

z(z − 1)

Y [z]
z

= (−22z2 + 19z + 9)

(z − 1)(z + 2)(z + 4)

= A1

(z − 1)
+ A2

(z + 2)
+ A3

(z + 4)

−22z2 + 19z + 9 = A1(z + 2)(z + 4) + A2(z − 1)(z + 4)

+A3(z − 1)(z + 2)

Substitute z = 1

−22 + 19 + 9 = A1(3)(5); A1 = 0.4

Substitute z = −2

−88 − 38 + 9 = A2(−3)(2); A2 = 19.5

Substitute z = −4

−352 − 76 + 9 = A3(−5)(−2); A3 = −41.9

Y [z] = 0.4z

(z − 1)
+ 19.5

z

(z + 2)
− 41.9

z

(z + 4)
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y[n] = [
0.4 + 19.5(−2)n − 41.9(−4)n

]
u[n]

� Example 9.38

Find the response of the LTID systemdescribed by the following difference equation:

y[n + 2] + y[n + 1] + 0.24y[n] = x[n + 1] + 2x[n]

where x[n] = ( 12 )
nu[n] and all the initial conditions are zero.

Solution: When the initial conditions are zero,

y[n + 2] Z←→ z2Y [z]
y[n + 1] Z←→ zY [z]
x[n + 1] Z←→ zX[z]

(
1

2

)2

u[n] Z←→ z

(z − 0.5)

The given difference equation can be written in the following form after taking
z-transform on both sides:

[z2 + z + 0.24]Y [z] = [z + 2] z

(z − 0.5)

(z2 + z + 0.24) = (z + 0.6)(z + 0.4)
Y [z]

z
= (z + 2)

(z − 0.5)(z + 0.6)(z + 0.4)

= A1

(z − 0.5)
+ A2

(z + 0.6)
+ A3

(z + 0.4)
(z + 2) = A1(z + 0.6)(z + 0.4) + A2(z − 0.5)(z + 0.4)

+A3(z − 0.5)(z + 0.6)

Substitute z = 0.5

2.5 = A1(1.1)(0.9); A1 = 2.525

Substitute z = −0.6

1.4 = A2(−1.1)(−0.2); A2 = 6.36

Substitute z = −0.4

1.6 = A3(−0.9)(−0.2); A3 = −8.89
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Y [z] = 2.525
z

(z − 0.5)
+ 6.36

z

(z + 0.6)
− 8.89

z

(z + 0.4)

y[n] = [
2.525(0.5)n + 6.36(−0.6)n − 8.89(−0.4)n

]
u[n]

� Example 9.39

Consider the following difference equation:

y[n + 2] − 5y[n + 1] + 6y[n] = x[n + 1] + 4x[n]

The auxiliary conditions are y[0] = 1 and y[1] = 2 and the input x[n] = u[n]. Solve
for y[n].
Solution:

y[n + 2] Z←→ z2Y [z] − z2y(0) − zy(1)

= z2Y [z] − z2 − 2z

y[n + 1] Z←→ zY [z] − zy[0]
= zY [z] − z

x[n + 1] Z←→ zX[z] − zx[0]
= zX[z] − z

Taking z-transform on both sides of the above equation and substitutingX[z] = z
(z−1) ,

we get

[z2 − 5z + 6]Y [z] = z2 + 2z − 5z + (z + 4)
z

(z − 1)
− z

(z − 2)(z − 3)Y [z] = z(z − 4)(z − 1) + z(z + 4)

(z − 1)

Y [z]
z

= (z2 − 4z + 8)

(z − 1)(z − 2)(z − 3)

= A1

(z − 1)
+ A2

(z − 2)
+ A3

(z − 3)

(z−2 − 4z + 8) = A1(z − 2)(z − 3) + A2(z − 1)(z − 3) + A3(z − 1)(z − 2)



1014 9 The z-Transform Analysis of Discrete Time Signals and Systems

Substitute z = 1

1 − 4 + 8 = A1(−1)(−2); A1 = 2.5

Substitute z = 2

4 − 8 + 8 = A2(−1); A2 = −4

Substitute z = 3

9 − 12 + 8 = A3(2)(1); A3 = 2.5

Y [z] = 2.5
z

(z − 1)
− 4

z

(z − 2)
+ 2.5

z

(z − 3)

y[n] = [
2.5 − 4(2)n + 2.5(3)n

]
u[n]

� Example 9.40

Solve the following difference equation:

y[n + 2] − 9y[n + 1] + 20y[n] = 4x[n + 1] + 2x[n]

The input x[n] = ( 12 )
nu[n]. The initial conditions are y[−1] = 2 and y[−2] = 1.

Solution: The given difference equation is in advanced operator formwhich requires
the knowledge of y[1] and y[2]. Therefore, the given equation is converted in delay
operator form as described below and the given initial conditions are applied. Replac-
ing n with (n − 2), the given difference equation is converted as

y[n] − 9y[n − 1] + 20y[n − 2] = 4x[n − 1] + 2x[n − 2]

Since the input is causal, x[−1] = x[−2] = 0. Taking z-transform on both sides of
the above equation, we get

Y [z] − 9[z−1Y [z] + y[−1]] + 20[z−2Y [z] + z−1y[−1] + y[−2]]
= 4[z−1X[z] + x[−1] + 2[z−2X[z] + z−1x[−1] + z−2x[−2]]]
= [4z−1 + 2z−2]X[z]
= [1 − 9z−1 + 20z−2]Y [z] − 18 + 40z−1 + 20 = (4z−1 + 2z−2)X[z]
[z2 − 9z + 20]

z2
Y [z] = −(2 + 40z−1) + (4z−1 + 2z−2)X[z]
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Substitute (z2 − 9z + 20) = (z − 4)(z − 5) and X[z] = z
(z−0.5)

Y [z]
z

= (−2z2 − 35z + 22)

(z − 0.5)(z − 4)(z − 5)

= A1

(z − 0.5)
+ A2

(z − 4)
+ A3

(z − 5)

(−2z−2 − 35z + 22) = A1(z − 4)(z − 5) + A2(z − 0.5)(z − 5)

+A3(z − 0.5)(z − 4)

Substitute z = 0.5

−0.5 − 17.5 + 22 = A1(−3.5)(−4.5); A1 = 0.254

Substitute z = 4

−32 − 140 + 22 = A2(3.5)(−1); A2 = 42.86

Substitute z = 5

−50 − 175 + 22 = A3(4.5); A3 = −45.1

Y [z] = 0.254z

(z − 0.5)
+ 42.86z

(z − 4)
− 45.1z

(z − 5)

y[n] = [
0.254(0.5)n + 42.86(4)n − 45.1(5)n

]
u[n]

9.14 Zero Input and Zero State Response

The total solution of the difference equation is separated into zero input and zero state
components. The response due to the initial conditions alone (in the absence of the
input) is called zero input response. The response due to the input alone (assuming
that the initial conditions are zero) is called a zero state response. The total response
is the sum of zero input response and zero state response. This is illustrated in the
following examples.
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� Example 9.41

y[n] + 5y[n − 1] + 6y[n − 2] = x[n − 1] + 2x[n]

where x[n] = u[n]. The initial conditions are y[−1] = 1 and y[−2] = 0. Find (a)
Zero input response, (b) Zero state response and (c) Total response.

Solution:

(a) Zero Input Response

y[n] Z←→ Y [z]
y[n − 1] Z←→ z−1Y [z] + y[−1]
y[n − 2] Z←→ z−2Y [z] + z−1y[−1] + y[−2]

Assuming the input is zero, taking z-transform on both sides of the given equa-
tion, we get

Y [z] + 5(z−1Y [z] + y[−1]) + 6(z−2Y [z]
+z−1y[−1] + y[−2]) = 0

(1 + 5z−1 + 6z−2)Y [z] + 5 + 6z−1 = 0
(z + 2)(z + 3)

z2
Y [z] = − (5z + 6)

z
Y [z]

z
= − (5z + 6)

(z + 2)(z + 3)

= A1

(z + 2)
+ A2

(z + 3)
−(5z + 6) = A1(z + 3) + A2(z + 2)

Substitute z = −2

10 − 6 = A1; A1 = 4

Substitute z = −3

15 − 6 = A2(−1); A2 = −9

Y [z] = 4z

(z + 2)
− 9z

(z + 3)
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y[n] = [
4(−2)n − 9(−3)n

]
u[n]

The initial condition can be easily checked as explained below. Substitute
n = −1

y[−1] = 4
1

(−2)
− 9

(
1

−3

)

= −2 + 3 = 1

Substitute n = −2

y[−2] = 4
1

(−2)2
− 9

1

(−3)2

= 1 − 1 = 0

(b) Zero State Response

Assuming the zero initial conditions and noting x[−1] = 0, we get

[1 + 5z−1 + 6z−2]Y [z] = z−1X[z] − x[−1] + 2X[z]
[z2 + 5z + 6]

z2
Y [z] = [z−1 + 2]X[z]

= (2z + 1)

z

z

(z − 1)
Y [z]

z
= z(2z + 1)

(z − 1)(z + 2)(z + 3)

= A1

(z − 1)
+ A2

(z + 2)
+ A3

(z + 3)

2z2 + 3 = A1(z + 2)(z + 3) + A2(z − 1)(z + 3)

+A3(z − 1)(z + 2)

Substitute z = 1

2 + 1 = A1(3)(4); A1 = 1

4

Substitute z = −2

8 − 2 = A2(−3); A2 = −2

Substitute z = −3

18 − 3 = A3(−4)(−1); A3 = 15

4
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Y [z] = 1

4

z

(z − 1)
− 2z

(z + 2)
+ 15

4

z

(z + 3)

y[n] =
[
1

4
− 2(−2)n + 15

4
(−3)n

]
u[n]

(c) Total Response

Total response = Zero input response+Zero state response

y[n] = 4(−2)n − 9(−3)n + 1

4
− 2(−2)n + 15

4
(−3)n

y[n] =
[
1

4
+ 2(−2)n − 21

5
(−3)n

]
u[n]

9.15 Natural and Forced Responses

In the total response, the response due to the characteristic modes are called forced
response. The terms which do not include characteristic modes (eigenvalues) are
called natural response. In Example 9.41, the eigenvalues are λ1 = −2 and λ2 = −3.
In the total response, y[n] = 1

4u[n] is free from characteristic modes. Hence, it is the
natural response. The rest of the termsbelong to the forced response. This is illustrated
in the following example.

� Example 9.42

Consider the following difference equation:

y[n + 2] − 6y[n + 1] + 8y[n] = x[n]

where x[n] = ( 14 )
nu[n]. The initial conditions are y[0] = 1 and y[1] = 2. Find (a)

Zero state response, (b) Zero input response, (c) Natural response, (d) Forced
response and (e) Total response.

Solution:

(a) Taking z-transform on both sides, we get

X[z] = z2Y [z] − z2y[0] − zy[1] − 6{zY [z] − zy[0]} + 8Y [z]
X[z] = [z2 − 6z + 8]Y [z] − z2 − 2z + 6z
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Substituting X[z] = z
(z−0.25) and z2 − 6z + 8 = (z − 2)(z − 4), we get

(z − 2)(z − 4)Y [z] = z2 − 4z + z

(z − 0.25)

z = 2 and z = 4 are the eigenvalues. If the initial conditions are zero, we get

Y [z]
z

= 1

(z − 2)(z − 4)(z − 0.25)

= A1

(z − 2)
+ A2

(z − 4)
+ A3

(z − 0.25)
1 = A1(z − 4)(z − 0.25) + A2(z − 2)(z − 0.25) + A3(z − 2)(z − 4)

Substitute z = 2

1 = A1(−2)(1.75); A1 = −2

7

Substitute z = 4

1 = A2(2)(3.75); A2 = 2

15

Substitute z = 0.25

1 = A3(−1.75)(−3.75); A3 = 16

105

Let y0s[n] denote zero state response and y0i[n] denote zero input response.

Y0s[z] = −2

7

z

(z − 2)
+ 2

15

z

(z − 4)
+ 16

105

z

(z − 0.25)

y0s[n] =
[
−2

7
(2)n + 2

15
(4)n + 16

105
(0.25)n

]
u[n]

(b) If we assume the input is zero, X[z] = 0

Y0i[z]
z

= (z − 4)

(z − 2)(z − 4)

Y0i[z] = z

(z − 2)
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y0i[n] = (2)nu[n]

(c) The total response y[n] is given by

y[n] = y0s[n] + y0i[n]
=

[
−2

7
(2)n + 2

15
(4)n + 16

105
(0.25)n + (2)n

]
u[n]

=
[
5

7
(2)n + 2

15
(4)n

︸ ︷︷ ︸
+ 16

105
(0.25)n

︸ ︷︷ ︸

]
u[n]

Natural response Forced response

Let us denote yn[n] and yf [n] as the natural and forced responses, respectively.
The natural response is the responsewhich is due to the characteristic roots z = 2
and z = 4. The remaining portion of y[n] is the forced response.

yf [n] = 16

105
(0.25)nu[n]

(d) The natural response is

yn[n] =
[
5

7
(2)n + 2

15
(4)n

]
u[n]

(e) The total response is

y[n] =
[
5

7
(2)n + 2

15
(4)n + 16

105
(0.25)n

]
u[n]

9.16 Difference Equation from System Function

Let the system function H[z] be expressed as

Y [z]
X[z] = H[z] = b0zN + b1zN−1 + · · · + bN−1z + bN

zN + a1zN−1 + · · · + aN−1z + aN

Cross-multiplying and operating z on Y [z] and X[z], we get

y[n + N] + a1y[n + N − 1] + · · · + aN−1y[n + 1] + aN y[n]
= b0x[n + N] + b1x[n + N − 1] + · · · + bN−1x[n + 1]

+bN x[n] (9.58)
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A similar procedure has to be followed if the system frequency response H(ejω) is
given. Here ejω has to be treated as z. The following examples demonstrate the above
methods.

� Example 9.43

For the system functions given below, determine the difference equation

(a) H[z] = (1 − z−1)(
1 − 1

2 z−1 + 1
4 z−2

)

(b) H[z] = (z − 1)

(z + 1)(z − 2)

(c) H[z] = 1(
1 − 1

4 z−1
)

(Anna University, December, 2006)

(d) Consider the system consisting of the cascade of two LTI systems with frequency
responses

H1(e
jω) = 2 − ejω

(
1 + 1

2e−jω
)

H2(e
jω) = 1(

1 − 1
2e−jω + 1

4e−j2ω
)

Find the difference equation describing the overall system.
(Anna University, April, 2008)

(e) Writeadifferenceequationthatcharacterizesasystemwhosefrequencyresponseis

H(ejω) =
(
1 − 1

2e−jω + e−3jω
)

(
1 + 1

2e−jω + 3
4e−2jω

)

(Anna University, May, 2007)
Solution:

(a) H[z] = (1−z−1)

(1− 1
2 z

−1+ 1
4 z

−2)

Y [z]
X[z] =

(
1 − z−1

)
(
1 − 1

2 z−1 + 1
4 z−2

)

Y [z] − 1

2
z−1Y [z] + 1

4
z−2Y [z] = X[z] − z−1X[z]
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y[n] − 1

2
y[n − 1] + 1

4
y[n − 2] = x[n] − x[n − 1]

(b) H[z] = (z−1)
(z+1)(z−2)

Y [z]
X[z] = (z − 1)

(z + 1)(z − 2)

= (z − 1)

(z2 − z − 2)

z2Y [z] − zY [z] − 2Y [z] = zX[z] − X[z]

y[n + 2] − y[n + 1] − 2y[n] = x[n + 1] − x[n]

(c) H[z] = Y [z]
X[z] = 1

(1− 1
4 z

−1)

[
1 − 1

4
z−1

]
Y [z] = X[z]

y[n] − 1

4
y[n − 1] = x[n]

(d) H1(e jω) = 2−e jω

(1+ 1
2 e

− jω)
and H2(e jω) = 1

(1− 1
2 e

− jω+ 1
4 e

− j2ω)

H1H2(e
jω) = Y(jω)

X(jω)

= (2 − e−jω)(
1 + 1

2e−jω
) (
1 − 1

2e−jω + 1
4e−j2ω

)

= (2 − e−jω)(
1 − 1

2e−jω + 1
4e−j2ω + 1

2e−jω − 1
4e−j2ω + 1

8e−j3ω
)

Y [ejω]
[
1 + 1

8
e−j3ω

]
= [2 − e−jω]X[ejω]

y[n] + 1

8
y[n − 3] = 2x[n] − x[n − 1]

(e) Y [e jω]
X[e jω] = H(e jω) = (1−e− jω+e−3 jω)

(1+ 1
2 e

− jω+ 3
4 e

−2 jω)
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[
1 + 1

2
e−jω + 3

4
e−2jω

]
Y [ejω] = [

1 − e−jω + e−3jω
]

X[ejω]

y[n] + 1

2
y[n − 1] + 3

4
y[n − 2] = x[n] − x[n − 1] + x[n − 3]

� Example 9.44

Obtain the difference equation for the block diagram shown in Fig. 9.18.

x[n]

w[n] w[n 1] w[n 2]

y[n]

1
4

1
2

z 1

z 1z 1

Fig. 9.18 Block diagram of Example9.44. a Block form-I structure

Solution: From Fig. 9.18, the following equations are written:

w[n] = x[n] − 1

2
y[n]

Replace n by (n − 2)

w[n − 2] = x[n − 2] − 1

2
y[n − 2]

y[n] = 1

4
x[n − 1] + w[n − 2]

= 1

4
x[n − 1] + x[n − 2] − 1

2
y[n − 2]

y[n] + 1

2
y[n − 2] = 1

4
x[n − 1] + x[n − 2]



1024 9 The z-Transform Analysis of Discrete Time Signals and Systems

Y[z]W[z]X[z]

a1

a2

anbm

b2

b1

b0

z 1

z 1

z 1

z 1

z 1

z 1

Fig. 9.18 (continued)

9.17 Discrete Time System Realization

Like the continuous time system, realization of discrete time system from the system
functionH[z] is done in an identical fashion. The only difference is that the integrator
1
s in the LTIC system is replaced by the time delay z−1 in LTID. The basic operations
such as an adder, scalarmultiplier and pick-off points remain the same. The following
methods or realization are described below:

1. Direct Form-I;
2. Direct Form-II;
3. Cascade Form;
4. Parallel Form;
5. Transposed Form.
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9.17.1 Direct Form-I Realization

Consider the system function represented in the following form:

H[z] = Y [z]
X[z] =

∑m
k=0 bkz−k

1 + ∑n
k=1 akz−k

(9.59)

= (b0 + b1z−1 + b2z−2 + · · · + bmz−m)

(1 + a1z−1 + a2z−2 + · · · + anz−n)
(9.60)

Y [z]
X[z] = Y [z]

W [z]
W [z]
X[z]

Y [z] + a1z−1Y [z] + a2z−2Y [z] + · · · + anz−nY [z]
= b0X[z] + b1z−1X[z] + b2z−2X[z] + · · · + bmz−mX[z] (9.61)

Let W [z] = b0X[z] + b1z−1X[z] + · · · + bmz−mX[z]
Y [z]
W [z] = 1

(1 + a1z−1 + a2z−2 + · · · + anz−n)

W [z] = Y [z](1 + a1z−1 + a2z−2 + · · · + anz−n)

Y [z] = W [z] − a1z−1Y [z] − a2z−2Y [z] − · · · − anz−nY [z] (9.62)

Equations (9.61) and (9.62) are represented in Fig. 9.18a.

� Example 9.45

Realize in direct form-I structure given that

y[n] − 5

6
y[n − 1] + 1

6
y[n − 2] = x[n] + 2x[n − 1]

(Anna University, December, 2007)
Solution:
Taking z-transform on both sides, we get

[
1 − 5

6
z−1 + 1

6
z−2

]
Y [z] = [1 + 2z−1]X[z]

H[z] = Y [z]
X[z] = (1 + 2z−1)(

1 − 5
6 z−1 + 1

6 z−2
)

The coefficients of numerator and denominator polynomials are identified as
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Y[z]
W[z]X[z]

a1b1 2

b0 1

5
6

a2
1
6

z 1 z 1

z 1

Fig. 9.19 Direct form-I realization

b0 = 1; b1 = 2; a1 = −5

6
; a2 = 1

6

The direct form-I representation is shown in Fig. 9.19.

9.17.2 Direct Form-II Realization

Consider the system function given in Eq. (9.60)

Y [z]
X[z] = H[z] = (b0 + b1z−1 + b2z−2 + · · · + bmz−m)

(1 + a1z−1 + a2z−2 + · · · + anz−n)

Let H[z] = H1[z]H2[z] where

H1[z] = (b0 + b1z−1 + b2z−2 + · · · + bmz−m)

H2[z] = 1

(1 + a1z−1 + a2z−2 + · · · + anz−n)

Y [z] = H1[z]W [z] (9.63)

where

W [z] = H2[z]X[z] (9.64)
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X[z]

H2[z] H1[z]

W[z] W[z] Y[z]

X[z] Y[z]

(a)

(b)

b1

b0

a1

a2

a1

a2

an

an

b2

b0

b1

b2

bm

bm

z 1

z 1W[z]

z 2W[z]

z 1W[z]

z 2W[z]

z 1

z 1 z 1

z 1 z 1

z 1

z 1

z 1

Fig. 9.20 Direct form-II realization



1028 9 The z-Transform Analysis of Discrete Time Signals and Systems

X[z] Y[z]

1

1

2

1
7
8

z 1

z 1

Fig. 9.21 Direct form-II realization for Example 9.46

Equations (9.63) and (9.64) are represented in Fig. 9.20a, where H1[z] and H2[z] are
in cascade. Collapsing the two sets of z−1 blocks, H[z] is obtained and is represented
in Fig. 9.20b, as test blocks generate identical quantities. Thus, the time delay blocks
necessary to realize the system function are reduced by a factor 2. Direct form-II
realization is demonstrated in the following example.

� Example 9.46

The system function of a discrete time system is

H[z] = (1 + z−1)2(
1 − z−1 + 7

8 z−2
)

Realize the system by direct form-II.

Solution:

H[z] = (1 + 2z−1 + z−2)(
1 − z−1 + 7

8 z−2
)

where b0 = 1, b1 = 2, b2 = 1, a1 = −1 and a2 = 7
8 . The direct form-II realization

is shown in Fig. 9.21.
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X[z] Y[z]

a2

a1 a3

a4b2

b1

b0 b3

b4

H1[z] H2[z]

z 1

z 1

z 1

z 1

Fig. 9.22 System realization by cascade connection

9.17.3 Cascade Form Realization

In cascade realization, the system function is expressed as a product of several sub-
systems and each subsystem is realized in direct form-II.

Consider the following system function:

H[z] = (b0 + b1z−1 + b2z−2)(b3 + b4z−1)

(1 + a1z−1 + a2z−2)(1 + a3z−1 + a4z−2)

The above function is expressed as

H[z] = H1[z]H2[z]

where

H1[z] = (b0 + b1z−1 + b2z−2)

(1 + a1z−1 + a2z−2)

H2[z] = (b3 + b4z−1)

(1 + a3z−1 + a4z−2)

H1[z] and H2[z] are realized separately in direct form-II and they are connected in
cascade as shown in Fig. 9.22.

The following example illustrates the cascade realization.
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X[z] Y[z]

15

21 4.05.0

H1[z] H2[z]

z 1 z 1

Fig. 9.23 System realization in cascade for Example 9.47

� Example 9.47

H[z] = (5z + 1)(z + 2)

(z − 0.5)(z − 0.4)

Realize the system function in cascade form.

Solution:

H[z] = (5z + 1)(z + 2)

(z − 0.5)(z − 0.4)
= (5 + z−1)(1 + 2z−1)

(1 − 0.5z−1)(1 + 0.4z−1)

Let

H1[z] = (5 + z−1)

1 − 0.5z−1

H2[z] = (1 + 2z−1)

(1 − 0.4z−1)

H1[z] and H2[z] are realized in direct form-II and they are connected in cascade as
shown in Fig. 9.23.

9.17.4 Parallel Form Realization

In parallel form realization, the system functionH[z] is put into partial fraction. Each
term is individually realized and Y [z] is obtained by adding them through a summer.
This is illustrated by the following examples.
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� Example 9.48

Obtain the parallel form realization of the following system functions:

(a) H[z] = (z2 + 4z + 10)

(z + 2)(z + 4)

(b) H[z] = (z + 5)

(z + 4)2

Solution:

(a) H[z] = (z2+4z+10)
(z+2)(z+4)

H[z]
z

= (z2 + 4z + 10)

z(z + 2)(z + 4)

= A1

z
+ A2

(z + 2)
+ A3

z + 4

z2 + 4z + 10 = A1(z + 2)(z + 4) + A2z(z + 4) + A3z(z + 2)

Substitute z = 0

10 = A18; A1 = 5

4

Substitute z = −2

4 − 8 + 10 = A2(−2)(2); A2 = −3

2

Substitute z = −4

16 − 16 + 10 = A3(−4)(−2); A3 = 5

4

H[z] = Y [z]
X[z] = 5

4
− 3

2

z

(z + 2)
+ 5

4

z

(z + 4)

Y [z] = 5

4
X[z] − 3

2

X[z]
(1 + 2z−1)

+ 5

4

X[z]
(1 + 4z−1)

The parallel realization is shown in Fig. 9.24.
(b) H[z] = (z+5)

(z+4)2
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H[z]
z

= (z + 5)

z(z + 4)2

= A1

z
+ A2

(z + 4)
+ A3

(z + 4)2

(z + 5) = A1(z + 4)2 + A2z(z + 4) + A3z

Substitute z = 0

5 = A116; A1 = 5

16

Substitute z = −4

1 = A3(−4); A3 = −1

4

Compare the coefficient of z

1 = 8A1 + 4A2 + A3; A2 = − 5

16

H[z] = 5

16
− 5

16

z

(z + 4)
− 1

4

z

(z + 4)2

Y [z]
X[z] = 5

16
− 5

16

1

(1 + 4z−1)
− 1

4

z−1

(1 + 4z−1)2

Y [z] = 5

16
X[z] − 5

16

X[z]
(1 + 4z−1)

− 1

4

z−1X[z]
(1 + 4z−1)2

The above equation is represented in Fig. 9.25.

9.17.5 The Transposed Form Realization

A transposed realization is the realization which has the same system function. Here,
the realization is said to be equivalent. The transpose realization is exactly the same
as for continuous time system. The given realization is changed to its transpose by
following the steps given below.

1. Replace the input X[z] with the output Y [z] and vice versa.
2. Reverse all the arrow directions without changing the values of the multiplier.
3. Replace pick-off nodes with adders and vice versa.
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X[z]

Y[z]2

3/2

5/4

5
4

4

z 1

z 1

Fig. 9.24 Parallel realization for Example 9.48(a)

X[z]

Y[z]5/6

5
16

4 4

4
1

z 1 z 1

Fig. 9.25 Parallel realization for Example 9.48(b)

The following examples illustrate the above procedure.

� Example 9.49

Find the transposed direct form-II realization for the system described by the fol-
lowing difference equation:

y[n] = 3

4
y[n − 1] − 3

4
y[n − 2] + x[n] − 1

3
x[n − 1]

(Anna University, December, 2007)
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Y[z]X[z]
(a)

1

1
3

3
4

3
4

X[z]Y[z]
(b)

1

1
3

3
4

3
4

z 1

z 1

z 1

z 1

Fig. 9.26 a Direct form-II and b Transposed form

Solution: Taking z-transform on both sides of the above equation, we get

[
1 − 3

4
z−1 + 3

4
z−2

]
Y [z] =

[
1 − 1

3
z−1

]
X[z]

H[z] = Y [z]
X[z] =

[
1 − 1

3 z−1
]

[
1 − 3

4 z−1 + 3
4 z−2

]
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Y[z]X[z]

0.5 0.875

1

0.63

0.76

z 1

z 1

z 1

Fig. 9.27 a Direct form-II structure and b Parallel form realization of first- and second-order
systems

To realize direct form-II structure, we have b0 = 1, b1 = − 1
3 , b2 = 0, a1 = − 3

4 and
a2 = 3

4 . The direct form-II structure is shown in Fig. 9.26b.

� Example 9.50

Consider the causal linear shift invariant filter with system function

H[z] = (1 + 0.875z−1)

(1 + 0.2z−1 + 0.9z−2)(1 − 0.7z−1)

Draw the following realization structure of the system.

(a) Direct form-II;
(b) A parallel form connections of first- and second-order systems realized in

direct form-II.

(Anna University, December, 2007)
Solution:

(a) H[z] = (1+0.875z−1)

(1+0.2z−1+0.9z−2)(1−0.7z−1)

The denominator is expressed in the following polynomial form:
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0.28

0.7

0.72

0.9

0.2 0.926

X[z] Y[z]

H2[z]

z 1

z 1

z 1

H1[z]

Fig. 9.27 (continued)

(1 + 0.2z−1 + 0.9z−2)(1 − 0.7z−1) = (1 − 0.5z−1 + 0.76z−2 − 0.63z−3)

H[z] = (1 + 0.875z−1)

(1 − 0.5z−1 + 0.76z−2 − 0.63z−3)

where b0 = 1, b1 = 0.875, b2 = 0, b3 = 0, a1 = −0.5, a2 = 0.76 and a3 =
−0.63. The direct form-II structure is shown in Fig. 9.27a.

(b) Parallel form Realization

H[z] = (1 + 0.875z−1)

(1 − 0.2z−1 + 0.9z−2)(1 − 0.7z−1)

Let us substitute z−1 = x

H[x] = (1 + 0.875x)

(1 + 0.2x + 0.9x2)(1 − 0.7x)

= A1

(1 − 0.7x)
+ (A2 + A3x)

(1 + 0.2x + 0.9x2)

(1 + 0.875x) = A1(1 + 0.2x + 0.9x2) + A2(1 − 0.7x) + A3x(1 − 0.7x)
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Substitute x = 1
0.7

(
1 + 0.875

0.7

)
= A1(1 + 0.2857 + 1.836)

A1 = 0.72

Comparing the coefficients of constant terms, we get

A1 + A2 = 1

A2 = 0.28

Comparing the coefficients of x2, we get

0.9A1 − 0.7A3 = 0

A3 = 0.926

H[x] = 0.72

(1 − 0.7x)
+ (0.28 + 0.926x)

(1 + 0.2x + 0.9x2)

H[z] = 0.72

(1 − 0.7z−1)
+ (0.28 + 0.926z−1)

(1 + 0.2z−1 + 0.9z−2)

= H1[z] + H2[z]

The parallel form connections of first- and second-order systems realized are
shown in Fig. 9.27b.

� Example 9.51

Realize direct form-I, direct form-II, cascade and parallel realization of the discrete
time system having system function as

H[z] = 2[z + 2]
z(z − 0.1)(z + 0.5)(z + 0.4)

(Anna University, April, 2004)
Solution:

(a) Direct Form-I Realization

H[z] = (2z + 4)

z4 + 0.8z3 + 0.11z2 + 0.02z + 0

= 2z−3 + 4z−4

1 + 0.8z−1 + 0.11z−2 + 0.02z−3 + 0z−4
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From the above equation, the coefficients of the polynomials are obtained as
b0 = 0, b1 = 0, b2 = 0, b3 = 2, b4 = 4, a1 = 0.8, a2 = 0.11, a3 = 0.02 and
a4 = 0. The direct form-I structure is shown in Fig. 9.28a.

(b) Direct Form-II Realization
The direct form-II realization is shown in Fig. 9.28b.

(c) Cascade Form-II Realization

H[z] = 2

z

(z + 2)

(z − 0.1)

1

(z + 0.5)

1

(z + 0.4)
= H1[z]H2[z]H3[z]H4[z]

where

H1[z] = 2z−1 −→ b0 = 0; b1 = 2

H2[z] = (1 + 2z−1)

(1 − 0.1z−1)
−→ b0 = 1; b1 = 2; a1 = −0.1

H3[z] = z−1

(1 + 0.5z−1)
−→ b0 = 0; b1 = 1; a1 = 0.5

H4[z] = z−1

(1 + 0.4z−1)
−→ b0 = 0; b1 = 1; a1 = 0.4

(d) Parallel Form Realization

H[z] = 2(z + 2)

z(z − 0.1)(z + 0.5)(z + 0.4)

= A1

z
+ A2

(z − 0.1)
+ A3

(z + 0.5)
+ A4

(z + 0.4)
2z + 4 = A1(z − 0.1)(z + 0.5)(z + 0.4) + A2z(z + 0.5)(z + 0.4)

+A3z(z − 0.1)(z + 0.4) + A4z(z − 0.1)(z + 0.5)

Substitute z = 0

4 = A1(−0.1)(0.5)(0.4); A1 = −200

Substitute z = 0.1

(0.2 + 4) = A2(.1)(.6)(.5); A2 = 140

Substitute z = −0.4

−1 + 4 = A3(−0.5)(−0.6)(−0.1); A3 = −100
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Substitute z = −0.4

−0.8 + 4 = A4(−0.4)(−0.5)(0.1); A4 = 160

H1[z] = −200

z
= −200z−1

H2[z] = 140

(z − 0.1)
= 140z−1

(1 − 0.1z−1)
−→ b0 = 0; b1 = 140; a1 = −0.1

H3[z] = − 100

(z + 0.5)
= − 100z−1

(1 + 0.5z−1)
−→ b0 = 0; b1 = −100; a1 = 0.5

H4[z] = 160

(z + 0.4)
= 160z−1

(1 + 0.4z−1)
−→ b0 = 0; b1 = 160; a1 = 0.4

The parallel form realization is shown in Fig. 9.28d.

� Example 9.52

The system function of a discrete time system is

H[z] = (1 + z−1)4(
1 − z−1 + 7

8 z−2
) (
1 + 2z−1 + 3

4 z−2
)

Realize this system using a cascade of a second-order system in direct form-II.
(Anna University, December, 2007).

Solution:

H[z] = (1 + z−1)4(
1 − z−1 + 7

8 z−2
) (
1 + 2z−1 + 3

4 z−2
)

(1 + z−1)4 = (1 + z−1)2(1 + z−1)2

= (1 + 2z−1 + z−2)(1 + 2z−1 + z−2)

H[z] = (1 + 2z−1 + z−2)(
1 − z−1 + 7

8 z−2
) (1 + 2z−1 + z−2)(

1 + 2z−1 + 3
4 z−2

)

= H1[z]H2[z]

For H1[z],

b0 = 1; b1 = 2; b2 = 1; a1 = −1; a2 = 7

8

For H2[z],
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Fig. 9.28 a Direct form-I
realization, b Direct form-II
realization, c Cascade form
realization and d Parallel
form realization

z 1

z 1

z 1

z 1

z 1

z 1

z 1

X[z] Y[z]

0.8

0.11

0.02

2

4

Y[z]

X[z]

0.8

0.11

0.02 2

4

z 1

z 1

z 1

z 1
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Y[z]X[z]

H1[z] H2[z] H3[z] H4[z]
2

1

0.1 0.5 0.4 112

z 1 z 1 z 1 z 1

Y[z]

X[z]

200

140

160

0.1

100

0.5

0.4

z 1

z 1

z 1

z 1

Fig. 9.28 (continued)
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X[z] 1

2

1
7
8

1

Y[z]1

2

1
3
4

2

z 1 z 1

z 1 z 1

Fig. 9.29 Second-order system realization by cascade connection

b0 = 1; b1 = 2; b2 = 1; a1 = 2; a2 = 3

4

The cascade system is shown in Fig. 9.29.

� Example 9.53

The unit system response of an FIR filter is

h[n] = an{u[n] − u[n − 2]}

Draw the direct form realization of this system.

(Anna University, December, 2007)
Solution:

h[n] = an{u[n] − u[n − 2]}
anu[n] Z←→ 1

(1−az−1)

anu[n − 2] = a2an−2u[n − 2]
anu[n − 2] Z←→ a2 z−2

(1−az−1)

H[z] = 1
(1−az−1)

(1 − a2z−2)

b0 = 1; b1 = 0; b2 = −a2; a1 = −a; a2 = 0

The system realization is shown in Fig. 9.30.
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Y[z]

X[z]

a2

a

1

z 1

z 1

Fig. 9.30 Direct form realization for Example 9.53

� Example 9.54

Consider a causal LTI system whose input x[n] and output y[n] are related through
the block diagram representation shown in Fig. 9.31a. (a) Determine a difference
equation relating y[n] and x[n] and (b) Is this system stable?

(Anna University, April, 2008)
Solution:

(a) From Fig. 9.31, b0 = 1, b1 = −6 and b2 = 8. a1 = − 2
3 and a2 = 1

9 . With these
coefficients, the following second-order difference equation is written as

y[n − 2] − 2

3
y[n − 1] + 1

9
y[n] = x[n] − 6x[n − 1] + 8x[n − 2]

(b) Taking z-transform on both sides of the given differences equation, we get

H[z] = Y [z]
X[z] = (1 − 6z−1 + 8z−2)(

1 − 2
3 z−1 + 1

9 z−2
)

= (z2 − 6z + 8)(
z2 − 2

3 z + 1
9

)

= (z − 2)(z − 4)
(
z − 1

3

)2

For the causal system, ROC is |z| > 1
3 . The ROC includes The unit circle. The

system is therefore stable (Fig. 9.31b).

The System is Stable.
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y[n]x[n]

6

1

81
9

2
3

z 1

z 1

Unit cricle

ROC

11
3 2 4

Im

Re

z-plane

Fig. 9.31 a Structure of the system for Example 9.54 and b Pole-zero location and ROC for
Example 9.54
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Summary

1. The z-transform for discrete time signals and systems have been devel-
oped. This resembles corresponding treatment of Laplace transform for
continuous time system.

2. A definite connection exists betweenLaplace transform, Fourier transform
and z-transform. The Laplace transform reduces to Fourier transform on
the imaginary axis in the s-plane. Then z-transform reduces to Fourier
transform on the unit circle in the complex z-plane.

3. For the causal signal system (right-sided), the z-transform exists if the
ROC is the exterior of the circle which passes through the outermost pole
of the system function. For the anti-causal signal and system (left-sided),
the z-transform exists if the ROC is the interior of the circle which passes
through the innermost pole of the system. For the right- and left-sided
signals, the ROC is a ring which does not include any pole of system
function.

4. The application of the properties of z-transform very much simplifies the
procedure to determine z-transform and inverse z-transform.

5. For anLTID system to be causal, the system function should be rational and
the ROC is the exterior of the circle which passes through the outermost
pole of the system function H[z].

6. An LTID system is said to be stable if the ROC of the system function
H[z] includes the unit circle.

7. An LTID system is said to be causal and stable if all the poles of the system
function H[z] lie inside the unit circle in the z-plane.

8. Using the properties of z-transform, LTID systems described by a con-
stant coefficient difference equation can be converted into algebraic equa-
tions and easily analyzed. The solution obtained is classified as zero state
response, zero input response, natural response and forced response.

9. An LTID system structure is realized using adders, multipliers and unit
delay. system is realized in direct form-I, direct form-II, parallel form,
cascade form and transposed form.

Exercises

I. Short Answer Type Questions

1. Define z-transform.
The z-transform of a discrete time signal x[n] is defined as

X[z] =
∞∑

n=−∞
x[n]z−n

where z is a complex variable.
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2. Define z-transform pair.
When the discrete time signal x[n] is z-transformed, it is expressed as

X[z] =
∞∑

n=−∞
x[n]z−n

If we want to recover x[n] from X[z], it is obtained using the following
integration:

x[n] = 1

2π j

∮
X[z]zn−1dz

This equation is called inverse z-transform. The above two equations for
z-transform and inverse z-transform are called z-transform pair.

3. What do you understand by ROC of z-transform?
The range of values of z for which the function X[z] converges is called
region of convergence which is expressed in abbreviated form as ROC.

4. Mention the properties of ROC.

1. The ROC of X[z] is in the form of a ring in the z-plane which is
centered about the origin.

2. The ROC does not include any poles.
3. For the right-sided sequence x[n], the ROC is the exterior of the out-

ermost pole.
4. For the left-sided sequence x[n], the ROC is the interior of the inner-

most pole.
5. If the sequence x[n] is two-sided, then the ROC consists of a ring in

the z-plane.

5. What is the scaling property of z-transform?
If

x[n] Z←→ X[z] ROC: R

then

anx[n] ←→ X
[ z

a

]
ROC: aR

Byusing themultiplication property, the z-transform is obtained by replac-
ing z by z

a with ROC R replaced by aR.
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6. What is the convolution property of z-transform?
If

x1[n] Z←→ X1[z] ROC: R1

x2[n] Z←→ X2[z] ROC: R2

then

x1[n] ∗ x2[n] Z←→ X1[z]X2[z] ROC: R1 ∩ R2

7. What is difference property in the z-transform?
If

x[n] Z←→ X[z] ROC: R

then

nx[n] Z←→−z
dx[z]

dz
ROC: R

8. What are initial and final value theorems?
If x[n] = 0 for n < 0, then

x[0] = Lt
z→∞ X[z]

is called the initial value theorem. According to the finial value theorem if
X[z] is the z-transform x[n] and if all the poles of X[z] are inside the unit
circle, then the final value of x[n] = x[∞] is obtained from

x[∞] = Lt
z→1

(z − 1)X[z]

9. Whatdoyouunderstandby the timereversal propertyof z-transform?
If

x[n] Z←→ X[z] ROC: R

then

x[−n] Z←→ X

[
1

z

]
ROC:

1

R
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Thus, the z-transform of the time reversal signal is obtained by replacing
z by its reciprocal and also its ROC by its reciprocal.

10. What do you understand by causality of an LTID system?
A linear time invariant discrete time system is said to be causal if the ROC
of the system function H[z] is the exterior of the circle containing all the
poles of H[z].

11. What do you understand by the stability of an LTID system?
An LTID system is said to be stable if the ROC of the system function
H[z] includes the unit circle in the z-plane.

12. When is the system said to be both causal and stable?
An LTID system is said to be both causal and stable if all the poles of the
system function H[z] are inside the unit circle in the z-plane.

13. Define system function.
System function or transfer function H[z] is defined as the ratio of the
z-transform of output sequence y[n] and the input sequence x[n]

H[z] = Y [z]
X[z]

14. What is the z-transform of δ[n − 2]?

δ[n − 2] Z←→ z−2

15. What is the z-transform of u[n] and δ[n]?

u[n] Z←→ z

(z − 1)

δ[n] Z←→ 1

16. Find the z-transform of x[n] = u[n] − u[n − 5].

X[z] = z

(z − 1)
[1 − z−5]

17. Write the relationship between z-transform and Fourier transform.
The z-transform reduces to Fourier transform on the unit circle in the
complex z-plane.

18. Write the relationship between z-transform and Laplace transform.
The Laplace transform and z-transform are related as

es = z

X[s] = X[z]
∣∣∣
z=es



9.17 Discrete Time System Realization 1049

19. What is the inverse z-transform of X[ z
a ]?

X
[ z

a

]
Z−1←→ anx[n]

20. Find the system function of the following first-order difference equa-
tion y[n] − 2 y[n − 1] = x[n] + x[n − 1]?

H[z] = Y [z]
X[z] = [1 + z−1]

[1 − 2z−1]
= [z + 1]

[z − 2]

II. Long Answer Type Questions

1. Find the z-transform of the following sequence.

x[n] = [3n−1 − (−3)n−1]u[n]

X[z] = 2z2

3(z2 − 9)
ROC: |z| > 3

2. Find the z-transform of

x[n] =
∞∑

n=0

1
3
z−n + 1

4
(−2)nz−n

X[z] = 1

3

1

(1 − z−1)
+ 1

3

1

(1 + 2z−1)
ROC: |z| > 2

3. Find the z-transform of

x[n] =
∞∑

n=−1

(
1
4

)n+1

z−n

X[z] = z + 1

4

1(
1 − 1

4 z−1
) ROC: |z| >

1

4

4. Find the z-transform of

x[n] =
∞∑

n=1

(
1
4

)−n+1

z−n



1050 9 The z-Transform Analysis of Discrete Time Signals and Systems

X[z] = 1

4
+ 4

(1 − 4z)
ROC: |z| <

1

4

5. Find the z-transform of

x[n] =
(

1
10

)n

u[n − 4]

X[z] = 10−4 z−3

(
z − 1

10

) ROC: |z| >
1

10

6. Find the z-transform of

(a) x[n] = 1 0 ≤ n ≤ 9

= 0 otherwise

(b) y[n] = x[n] − x[n − 1]

(a) X[z] = (1 − z−10)

(1 − z−1)
ROC: |z| > 0

(b) Y [z] = 1 − z−10 ROC: |z| > 0

7. Find the unilateral z-transform and the ROC for the following sequences:

(a) x[n] =
(
1
6

)n

u[n + 6]
(b) x[n] = 3δ[n + 4] + δ[n] + (3)nu[−n]
(c) x[n] =

(
1
4

)|n|

(a) X[z] = 1

(1 − 6z−1)
ROC: |z| > 6

(b) X[z] = 4 ROC: all z

(c) X[z] = 1(
1 − 1

4 z−1
) ROC: |z| >

1

4

8. By applying the properties of z-Transform, find the z-transform of the fol-

lowing sequences given x[n] Z←→ z
(z2+2) :
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(a) y[n] = x[n − 3]
(b) y[n] = nx[n]
(c) y[n] = x[n + 1] + x[n − 1]
(d) x[n] = 2nx[n]
(e) x[n] = (n − 2)x[n − 1]
(f) x[n] = x[−n]

(a) Y [z] = z−2

(z2 + 2)
ROC:|z| < 2 (Time shifting property)

(b) Y [z] = z[z2 − 2]
(z2 + 2)2

(Differentiation property)

(c) Y [z] = (z2 + 1)

(z2 + 2)
(Time advancing and time delaying)

(d) Y [z] = 2z

(z2 + 8)
(Multiplying property)

(e) Y [z] = −4

(z2 + 2)2
(Time differentiation and time shifting)

(f) Y [z] = z

(1 + 2z2)
(Time reversal)

9. Find the z-transform of

(a) x[n] = 2nu[n − 2]
(b) x[n] =

(
1
4

)n

u[−n]

(a) X[z] = 4z−2

(1 − 2z−1)

(b) X[z] = 1

(1 − 4z)

10. Find the z-transform of

(a) x[n] = (n − 4)u[n − 4]
(b) x[n] = u[n] − u[n − 4]
(c) x[n] = (n − 4)u[n]
(d) x[n] = n[u[n] − u[n − 4]]
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(a) X[z] = z−3

(z − 1)2
ROC: |z| > 1

(b) X[z] = z

(z − 1)
[1 − z−4] ROC: |z| > 1

(c) X[z] = (5z − 4z2)

(z − 1)2
ROC: |z| > 1

(d) X[z] = (z − 3z−2 + 2z−3)

(z − 1)2
ROC: |z| > 1

11. Find the z-transform of the following sequence:

x[n] =
(
1
4

)n

u[n]

=
(

−1
2

)n

u[−n − 1]

X[z] = 3

4

[
z(

z − 1
4

) (
z + 1

2

)
]

ROC:
1

4
< |z| <

1

2

12. Using convolution find y[n] given

x[n] =
(
1
2

)n

u[n]

h[n] =
(
1
3

)n

u[n]
y[n] = x[n] ∗ h[n]

y[n] =
[
3

(
1

2

)n

− 2

(
1

3

)n]
u[n] ROC: |z| <

1

2

13. Using partial function, find the inverse z-transform

H[z] = (1 − z−1 + z−2)

(1 − z−1)(1 − 2z−1)(1 − 4z−1)
ROC: 2 < |z| < 4

h[n] =
[
1

3
− 3

2
(2)n

]
u[n] + 3

16
(4)nu[−n − 1]

14. Find the inverse z-transform of

H[z] = 4z + 1

z − 1
4
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using power series expansion.

(a) ROC : |z| >
1
4

(b) ROC : |z| <
1
4

(a) x[n] =
{
4, 2,

1

2
,
1

8
,
1

32
, . . .

}

↑
(b) x[n] = {. . . , 2048, −512, −128, −32, −4}

↑

15. Consider the algebraic expression for the z-transform of x[n]

x[n] =
(
1 − 1

4 z
−2

)

(
1 + 1

4 z
−1

) (
1 − 5

6 z
−1 + 1

6 z
−2

)

How many different ROCs could correspond the X[z]?

(a) ROC: |z| >
1

2

(b) ROC: 0 < |z| <
1

4

(c) ROC:
1

3
< |z| <

1

2

16. Consider the algebraic expression for the z-transform of x[n]

x[n] =
(
1 + z−1 + 4z−2

)

(
1 − 1

4 z
−1

) (
1 − 7

24 z
−1 + 1

48 z
−2

)

ROC: |z| > 1
4 . Find whether the system is causal and stable.

X[z] is rational and the poles are at z = 1
4 , z = 1

6 and z = 1
8 . Since the ROC is the

exterior of the outermost pole, the system is causal. The ROC includes the unit
circle and the poles are inside the unit circle. The system is stable. Therefore the
system is causal and stable.

17. A system with impulse response h[n] = 5(3)nu[n − 1] produces on output
y[n] = (−4)nu[n − 1]. Determine the input x[n].

x[n] = 1

5

[
(−4)nu[n] − 3(−4)n−1u[n − 1]] ROC: |z| > 4
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18. Consider the following difference equation:

y[n] − y[n − 1] − 2 y[n − 2] = x[n] + 2x[n − 1]

The initial conditions are y[−1] = 1 and y[−2] = 2.The input x[n] = u[n].
Find (a) Zero input response, (b) Zero state response, (c) Natural response,
(d) Forced response and (e) Total response.

(a) y0i[n] = [(−1)n + 4(2)n]u[n]
(b) y0s[n] =

[
−1

6
(−1)n + 8

3
(2)n − 3

2

]
u[n]

(c) yn[n] = −3

2
u[n]

(d) yf [n] =
[
5

6
(−1)n + 20

3
(2)n

]
u[n]

(e) ytotal[n] =
[
−3

2
+ 5

6
(−1)n + 20

3
(2)n

]
u[n]

19. Consider the causal LTID system represented in block diagram shown in
Fig. 9.32. (a) Determine the difference equation relating the output y[n]
and input x[n] and (b) Is the system stable?

y[n]x[n]

5

1

71
64

1
4

z 1

z 1

Fig. 9.32 Block diagram of Problem 19
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(a)

y[n] − 1

4
y[n − 1] + 1

64
y[n − 2] = x[n] − 5x[n − 1] + 7x[n − 2]

(b) The ROC includes the unit circle, and the poles of system function are within
unit circle. Hence, the system is stable.

20. Foreachof the followingdifference equations, determine theoutput response
y[n]?

(a) y[n] − 4 y[n − 1] = x[n] with y[−1] = 2and x[n] =
(
1
3

)n

u[n]

(b) y[n] + 1
3
y[n − 1] = x[n] − 1

3
x[n − 1]

with y[−1] = 1 and x[n] = u[n]

(a) y[n] =
[
100

11
(4)n − 1

11

(
1

3

)n]
u[n]

(b) y[n] =
[
3

2
− 5

6

(
−1

3

)n]
u[n]



Chapter 10
Sampling

Learning Objectives

� To represent a continuous time signal by a sequence of equally spaced samples.
� To establish the sampling theorem for exact reconstruction of the original signal.
� To reconstruct the original signal by means of low-pass filters.
� To choose the correct sampling rate to avoid aliasing.
� To study the important applications of sampling.

10.1 Introduction

Due to the dramatic development of digital technology in the recent past, continuous
time signals are converted into discrete time signals, which are processed by discrete
time systems and again converted back to continuous time signals which are applied
to continuous time systems. A continuous time signal can be completely represented
by and recovered from its values called samples at points equally spaced in time.
This process is called sampling. The concept of sampling uses a discrete time system
to implement continuous time systems and process continuous time signals. The
information present in the sampled continuous time signal is retained in the discrete
time signal also.While a sampled continuous time signal is represented by a sequence
of impulses, a discrete time signal is represented by a sequence of numbers which
carry the sample information as that of the sampled sequence.

In the discussion to follow, the concept of sampling and the process of recon-
structing a continuous time signal from its samples are developed. The necessary
condition under which a CT signal can be exactly reconstructed from its samples
is established through the Sampling Theorem. Finally, the consequences that arise
when the sampling theorem is not satisfied are discussed.
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10.2 The Sampling Process

Figure10.1a shows the block diagram representation of a continuous signal x(t)
being multiplied by a periodic impulse train δT (t) to get the sampled output g(t).
The device used for this is called a sampler. The sampler is also represented by a
switch which opens and closes with periodicity Ts. This is shown in Fig. 10.1b. The
continuous time signal x(t) is shown in Fig. 10.1c. The periodic impulse train δT (t)
is shown in Fig. 10.1d. The product of x(t) and δT (t)which is the sampled signal g(t)
is shown in Fig. 10.1e. Now we develop the sampling theorem as discussed below.

10.3 The Sampling Theorem

The signals x(t), δT (t) and g(t) shown in Fig. 10.1 are connected by the following
equation:

g(t) = x(t)δT (t) (10.1)

where

x(t)

t

T(t)

0

(a)

(d)

(e)

g(t)

T (t)

Ts

g(t)

tt 0 TsTs2Ts 2Ts 3Ts3Ts

Ts2Ts3Ts4Ts 2Ts 3Ts 4Ts

(b)

x(t) Ts

g(t)

Sampler

x(t)

t0

(c)

Fig. 10.1 The sampling process representation by schematic diagram and signals
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δT (t) =
∞∑

n=−∞
δ(t − nTs) (10.2)

δTs(t) is called a sampling function, Ts the sampling period and ωs = 2π
Ts

the fun-
damental sampling frequency. This is also called radian frequency and is related to
cyclic frequency as

ωs = 2π

Ts
= 2π fs

where fs = 1
Ts

is the cyclic frequency. The sampled signal g(t) shown in Fig. 10.1e
consists of impulses spaced every Ts seconds, which is the sampling interval. δT (t)
can be expressed as a trigonometric Fourier series as

δT (t) = 1

Ts
[1 + 2 cosωst + 2 cos 2ωst + 2 cos 3ωst + · · · ] (10.3)

g(t) = x(t)δT (t)

= 1

Ts
[x(t) + 2x(t) cosωst + 2x(t) cos 2ωst + · · · ] (10.4)

From the knowledge of Fourier transform of continuous time signals, the following
equations are written:

x(t)
FT←→X(ω)

2x(t) cosωst
FT←→X(ω − ωs) + X(ω + ωs)

2x(t) cos 2ωst
FT←→X(ω − 2ωs) + X(ω + 2ωs)

g(t)
FT←→G(ω) (10.5)

Substituting Eq. (10.5) in Eq. (10.4), we get

G(ω) = 1

Ts
[X(ω) + X(ω − ωs) + X(ω + ωs)

+X(ω − 2ωs) + X(ω − 2ωs) + · · · ] (10.6)

G(ω) = 1

Ts

∞∑

n=−∞
X(ω − nωs) (10.7)

In Eq. (10.6), the first term in the bracket is X(ω). The second term is
X(ω − ωs) + X(ω + ωs). This represents the spectrum of X(jω) shifted to ωs and
−ωs. Similarly, the third term X(ω − 2ωs) + X((ω − 2ωs)) which represents the
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X( )

m
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ms m s 2 s
( s m)

s < 2 m

s > 2 m
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2
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0

1

T ( )

0

aliasing

G( )

(a)

(b)

(c)

(d)

0

m

T

1
T

s m s 2 s2 s

G( )

0

1
T

Fig. 10.2 Continuous signal, impulse train sampled signal spectrum

spectrum X(ω) shifted by 2ωs and −2ωs and so on. The frequency spectrum
X(ω) and δ(ω) are represented in Fig. 10.2a and b, respectively. In Fig. 10.2a, ωm

is the maximum frequency content of the continuous time signal. Figure10.2c
represents the frequency spectrum G(ω) of the continuous sampled signal for
ωs > 2ωm. Spectrumof the sampled signalG(ω) forωs < 2ωm is shown inFig. 10.2d.
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To reconstruct the continuous time signal x(t) from sampled signal g(t), we should
be able to recover X(ω) from G(ω). This recovery is possible of there is no overlap
between successive G(ω). From Fig. 10.2c, this is possible if ωs > 2ωm or

fs > 2fm (10.8)

The minimum sampling rate fs = 2fm is called the Nyquist rate of x(t), and the
corresponding time intervalTs = 1

fs
= 1

2fm
is calledNyquist interval of x(t). Samples

of a signal taken at its Nyquist rate are the Nyquist samples.
From Eq. (10.8), the Shannon sampling theorem or simply sampling theorem is

stated as follows.
A band-limited signal of finite energy which has no frequency component higher

than fm can be completely described and recovered back if the sampling frequency
is twice the highest frequency of the given signal.

The proof of the theorem is given in Eq. (10.7) and Fig. 10.2c. If fs < 2fm,
Eq. (10.7) is represented in Fig. 10.2d, and here overlapping between successive sam-
ples occurs and therefore it is not possible to recover x(t) from the frequency spectrum
G(ω) when passed through low-pass filter.

10.4 Signal Recovery

If the condition ωs > 2ωm is satisfied, x(t) can be recovered exactly from g(t) using
an ideal low-pass filter whose characteristic is shown in Fig. 10.3d with a gain Ts and
cutoff frequency greater than ωm and less than (ωs − ωm).

10.5 Aliasing

Consider the frequency spectrum of sampled signal g(t) which has been obtained
by sampling x(t) with a sampling frequency fs < 2fm. The frequency spectrum of
G(ω) is shown in Fig. 10.2d. When fs < 2fm, the signal is said to be under-sampled.
The spectra located at G(ωm), G(ωm − ωs), G(ωm − 2ωs), etc., overlap on each
other. When the high frequency interferes and appears as low frequency, then the
phenomenon is called aliasing.

The effects of aliasing are as follows:

1. Distortion in signal recovery is generated when the high and low frequencies
interfere with each other.

2. The data is lost and it cannot be recovered.

Different methods are available to avoid aliasing:

1. To increase the sampling rate fs so that fs > 2fm.
2. To put anti-aliasing filter before the signal x(t) is sampled.
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Fig. 10.3 Signal sampling and recovery. a Continuous signal for sampling and reconstruction; b
Frequency spectrum of x(t); c Frequency spectrum of sampled signal; (d) Characteristic of a low-
pass filter; e Spectrum of recovered continuous signal

10.5.1 Sampling Rate ωs Higher than 2ωm

If the sampling rate ωs > 2ωm, the frequency spectrum of the sampled continuous
signal is as shown in Fig. 10.2a and there is no overlapping between the samples and
the original signal can be reconstructed without aliasing.

10.5.2 Anti-aliasing Filter

The anti-aliasing filterHaa(ω) put before the sampler is shown in Fig. 10.4. x(t) is the
continuous signal and is passed through the anti-aliasing filterHaa(ω)which gives the
output x̄(t). The signal x̄(t) is passed through the sampler and recovered as xr(t). The
continuous signal x(t) is passed through an anti-aliasing filter whose cutoff frequency
is fs/2. All the frequency components of x(t) beyond fs/2 are eliminated before
sampling of x(t) is started. The anti-aliasing filter essentially band-limits the signal to
fs/2. By this, the components of x(t) beyond fs/2 are lost. However, these suppressed
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Fig. 10.4 Anti-aliasing filter
before the sampler

x(t) x(t)
xr(t)

T(t)

Haa( ) Sampler

components cannot corrupt the components of x(t)whose frequency is less than fs/2.
Thus, the spectrum below fs/2 remains intact and completely recovered. The noise
produced by the aliasing is very much reduced when anti-aliasing filter is used. It
also suppresses the entire noise spectrum beyond the frequency fs/2.

10.6 Sampling with Zero-Order Hold

Band-limited signals which are sampled are narrow with large amplitude pulses.
These impulses are difficult to generate and transmit. However, a more convenient
method is to generate the sampled signal and send it through a zero-order hold. The
input-output of a zero-order hold is shown in Fig. 10.5. The Zero-Order Hold (ZOH)
samples x(t) at a given time and holds those values until the next instant.

The input of the ZOH is shown in Fig. 10.5b and the output is shown in Fig. 10.5c.
The output of the hold circuit is passed through a low-pass filter to recover the
continuous time signal. The cascade-connected ZOH with a reconstruction filter is
shown in Fig. 10.6.

The transfer function of ZOH is obtained from a unit step function with a time T
shifted step being subtracted from that. Thus,

H0(s) = 1

s
[1 − e−sT ] (10.9)

= e−sT/2

s
[esT/2 − e−sT/2]

Fig. 10.5 Input-output of
zero-order hold

x(t)

x(t) x0(t)

t

x0(t)

(a)

)c()b(

Zero Order Hold
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x(t)
r(t)

ZOH

g(t)

T(t)

Sampler
Filter
hr(t)

h0(t)
1

T t

Fig. 10.6 Cascade-connected ZOH and reconstruction filter

The frequency response of the ZOH is therefore

H0(ω) = e−jωT/2 sinωT/2

ω
(10.10)

If we consider the frequency response of the ideal filter as H(ω), then

H0(ω)Hr(ω) = H(ω)

Hr(ω) = H(ω)ωejωT/2

sin
(

ωT
2

) (10.11)

10.7 Application of Sampling Theorem

1. The sampling theorem is used in the analysis, processing and transmission of
signals.

2. Processing the continuous time signal is equivalent to processing a discrete
sequence of numbers, which ultimately leads to the area of digital filtering.

3. In the field of communication, the transmission of continuous time signals
reduces to the transmission of a sequence of numbers.While doing so, the ampli-
tude (PAM) of the sample, the width of the sample (PWM) or the position of
the sample (PPM) can be varied and transmitted. At the receiver end, the pulse
modulated signal is reconstructed and x(t) is received. This process permits
simultaneous transmission of several signals on a time-sharing basis which is
called Time Division Multiplexing (TDM). By this, we can multiplex several
signals in the same channel.

4. The transmission of digital signals is more rugged than that of analog signals
because digital signals can withstand channel noise and distortion much better.
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� Example 10.1

Find the Nyquist rate and Nyquist interval for the following signals:

1. x(t) = sin 200π t

2. x(t) = 2 + 3 cos 100π t + 2 sin 200π t

3. x(t) = sin 100π t

π t
4. x(t) = (sin 200π t)2

5. x(t) = cos 200π t cos 100π t

6. x(t) = sinc 2000π t
Solution:

1. x(t) = sin 200π t

Let ωm = 200π

fm = ωm

2π
= 200π

2π
= 100 Hz

Nyquist rate fs = 2fm = 200 Hz

Nyquist width W = 1

fs
= 1

200
= 5 m.s.

2. x(t) = 2+ 3 cos 100π t + 2 sin 200π t

Let x1(t) = cos 100π t and x2(t) = sin 200π t

fm1 = 100π

2π
= 50 Hz

fm2 = 200π

2π
= 100 Hz

fm2 > fm1

Nyquist rate fs = 2fm2 = 200 Hz

Nyquist width W = 1

fs
= 1000

200
= 5 m.s.

3. x(t) = sin 100π t
π t

Let ωm = 100π

fm = ωm

2π
= 100π

2π
= 50 Hz

Nyquist rate fs = 2fm = 2 × 50 = 100 Hz

Nyquist width W = 1

fs
= 1000

100
= 10 m.s.
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4. x(t) = (sin 200π t)2

Let

x(t) = sin2 200π t

= 1

2
[1 − cos 400π t]

ωm = 400π

fm = 400π

2π
= 200 Hz

Nyquist rate fs = 2fm = 400 Hz

Nyquist width W = 1

fs
= 1000

400
= 2.5 m.s.

5. x(t) = cos 200π t cos 100π t

Let

x(t) = 1

2
[cos(200 + 100)π t + cos(200 − 100)π t]

= 1

2
[cos 300π t + cos 100π t]

x1(t) = cos 300π t

fm1 = 300π

2π
= 150 Hz

x2(t) = cos 100π t

fm2 = 100π

2π
= 50 Hz

fm1 > fm2

Nyquist rate fs = 2fm1 = 2 × 150 = 300 Hz

Nyquist width W = 1

fs
= 1000

300
= 10

3
m.s.

6. x(t) = sinc 2000π t

Let

ωm = 2000π

fm = ωm

2π
= 2000π

2π
= 1000 Hz

Nyquist rate fs = 2fm = 2000 Hz

Nyquist width W = 1

2000
= 0.5 m.s.
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� Example 10.2

Consider the signal

x(t) = cos 2000π t + 10 sin 10,000π t + 20 cos 5000π t

Determine the (1) Nyquist rate for this signal and (2) If the sampling rate is 5000
samples per sec., then what is the discrete time signal obtained after sampling?

(Anna University, May, 2007)
Solution:

1.

x1(t) = cos 2000π t

fm1 = 2000π

2π
= 1000 Hz

x2(t) = 10 sin 10,000π t

fm2 = 10,000π

2π
= 5000 Hz

x3(t) = 20 cos 5000π t

fm3 = 5000π

2π
= 2500 Hz

fm2 > fm3 > fm1

Hence, the Nyquist rate

fs = 2fm2 = 10,000 Hz

2. The required sampling rate is 5000 samples per second. Themaximum frequency
of the given signal is 5000Hz. The sampling rate is not equal to twice the max-
imum frequency content of the given signal and therefore aliasing occurs. The
given signal cannot be recovered. fs = 5000 Hz, 2fm = 10,000 and fs < 2fm.

10.8 Sampling of Band-Pass Signals

In the previous sections, we discussed the sampling theorem for low-pass signals. If
the signal is band pass, the sampling theorem is stated as follows.

The band-pass signal x(t) whose maximum bandwidth is 2W can be completely
represented and recovered from the sample if it is sampled at a minimum rate of
twice the bandwidth.
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Fig. 10.7 Sampling of
band-pass signal
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Let x(t) be the band-pass signal whose bandwidth is 2W as shown in Fig. 10.7a.
The signal can be represented as impulse and quadrature components xI(t) and xQ(t).
Thus, x(t) which is centered around fs can be represented as

x(t) = xI(t) cos 2π fct − xQ sin 2π fct (10.12)

These two components are low pass in nature. Their spectrum is shown in Fig. 10.7b.
The in phase and quadrature components are sampled at fs = 4W rate. The sampled
xI(nTs) and xQ(nTs) are passed through their respective reconstruction filters and
xI(t) and xQ(t) are reconstructed. The original x(t) is obtained by multiplying xI(t)
by cos 2π fct and xQ(t) by sin 2π fct. x(t) is obtained using the following relationship:

x(t) = xI(t) cos 2π fct + xQ sin 2π fet.

Summary

1. The sampling theorem states that a continuous time band-limited signal
x(t) can be sampled and reconstructed iff the sampling frequency is greater
than twice the maximum frequency of the given signal.

2. If the sampling theorem is not satisfiedwhile sampling x(t), aliasing occurs
and it is not possible to reconstruct the original signal. Further, the sam-
pling process creates noise.
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3. While the continuous time signal is sampled, if the high frequency of the
spectrum interfereswith the low frequency spectrum then the phenomenon
is called aliasing.

4. The effect of aliasing is the distortion in the recovered signal and also loss
of data.

5. To avoid sampling, sampling rate is increased such that the sampling rate
(Nyquist rate) fs > 2fm. Aliasing is also avoided by putting an anti-aliasing
filter just before the signal x(t) is sampled.

6. Some of the applications of sampling include signal analysis processing
and transmission.

7. The band-pass signal x(t)whose maximum bandwidth is 2W can be com-
pletely represented and recovered if it is sampled at a minimum rate of
twice the bandwidth.

Exercise
I. Short Answer Type Questions

1. What is sampling theorem?
If a continuous time signal x(t) is to be sampled and recovered, then the
sampling frequency should be greater than twice the maximum frequency
content of the signal. This is called sampling theorem.

2. What is Nyquist rate and Nyquist interval?
The sampling frequency which is greater than twice the maximum fre-
quency content of the signal to be sampled is called the Nyquist rate. The
reciprocal of the Nyquist rate is called Nyquist width.

3. What is aliasing?
When the continuous time signal is sampled and if it does not satisfy the
sampling theorem, then the high-frequency spectrumof the sampled signal
interferes and appears as low-frequency spectrum. This phenomenon is
called aliasing.

4. What are the effects of aliasing?
The effects of aliasing are as follows:

1. Distortion in signal recovery is generated.
2. The data is lost and the reconstruction of original signal becomes

impossible.

5. What are the methods available to avoid aliasing?
Aliasing can be avoided or minimized by increasing the sampling rate
which satisfies the sampling theorem. Aliasing can also be minimized by
putting anti-aliasing filters just before the signal is sampled.
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6. What is zero-order hold? What is its T.F.?
Band-limited signals which are to be sampled are passed through the zero-
order hold. The ZOH samples the continuous time signal x(t) at a given
time and holds that value until the next instant. The T.F. of a ZOH is

H(s) = 1

s

[
1 − e−sT

]

7. What are the applications of the sampling theorem?
The sampling theorem is used in the analysis, processing and transmission
of signals.

8. State the sampling theorem as applied to band-pass signals.
The band-pass signal x(t)whose maximum bandwidth is 2W can be com-
pletely represented and recovered from the sample if it is sampled at a
minimum rate of twice the bandwidth. This is the sampling theorem as
applied to band-pass signal.

9. Find the Nyquist rate and Nyquist width for the signal given below.

1. x(t) = 10 cos 2000π t + sin 3000π t + 5 cos 1500π t

2. x(t) = (10 cos 100π t)2

3. x(t) = (10sinc 2000π t)2

4. x(t) = cos 1000π t cos 2000π t

1. Nyquist rate fs = 3000 Hz.
Nyquist width W = 1

3 m.s.
2. Nyquist rate fs = 200 Hz.

Nyquist width W = 5m.s.
3. Nyquist rate fs = 4000Hz.

Nyquist width W = 0.25m.s.
4. Nyquist rate fs = 3000Hz.

Nyquist width W = 1
3 m.s.
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Mathematical Formulae

A.1 Summation Formulae

1.
N−1∑

n=0

αn =
{

1−αN

1−α
α �= 1

N α = 1

2.
∞∑

n=0

αn = 1

(1 − α)
|α| < 1

3.
∞∑

n=k

αn = αk

(1 − α)
|α| < 1

4.
∞∑

n=0

nαn = α

(1 − α)2
|α| < 1

5.
∞∑

n=0

n2αn = α2 + α

(1 − α)3
|α| < 1

6.
n∑

k=m

ak = an+1 − am

a − 1
a �= 1

7.
n∑

k=0

k = n(n + 1)

2

8.
n∑

k=0

k2 = n(n + 1)(2n + 1)

6

9.
k=n1∑

k=n2

(1)k = n2 − n1 + 1
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A.2 Euler’s Formula

1. e± jθ = cos θ ± j sin θ

2. cos θ = 1

2
[e jθ + e− jθ ]

3. sin θ = 1

2 j
[e jθ − e− jθ ]

A.3 Power Series Expansion

1. eα =
α∑

k=0

αk

∠k
= 1 + α + α2

∠2
+ α3

∠3
+ · · ·

2. (1 + α)n = 1 + nα + n(n − 1)

∠2
α2 + · · · +

(n
k

)
αk + · · ·

3. n(1 + α) = α − 1

2
α2 + 1

3
α3 + · · · + (−1)k+1

k
αk + · · ·

A.4 Trigonometric Identities

1. sin2 θ + cos2 θ = 1

2. sin2 θ = 1

2
(1 − cos 2θ)

3. cos2 θ = 1

2
(1 + cos 2θ)

4. sin 2θ = 2 sin θ cos θ

5. cos 2θ = 1 − 2 cos2 θ

6. cos(a ± b) = cos a cos b ∓ sin a sin b

7. sin(a ∓ b) = sin a cos b ± cos a sin b

8. sin a sin b = 1

2
[cos(a − b) − cos(a + b)]

9. cos a cos b = 1

2
[cos(a − b) + cos(a + b)]

10. sin a cos b = 1

2
[sin(a − b) + sin(a + b)]

11. cos a + cos b = 2 cos
(a + b)

2
cos

(a − b)

2
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12. sin a + sin b = 2 sin
(a + b)

2
cos

(a − b)

2

13. a cosα + b sin α =
√
a2 + b2 cos

(
α − tan−1 b

a

)

14. tan(A + B) = tan A + tan B

1 − tan A tan B

15. tan(A − B) = tan A − tan B

1 + tan A tan B

16. tan−1 A ± tan−1 B = tan−1 A ± B

1 ∓ AB

A.5 Definite Integrals

1.
∫ ∞

0

sin x

x
dx = π

2

2.
∫ ∞

0

(
sin x

x

)2

= π

2

3.
∫ ∞

0
e−ax sin bxdx = b

(a2 + b2)

4.
∫ ∞

0
e−ax cos bxdx = b

(a2 + b2)

A.6 Indefinite Integrals

1.
∫

dx

(a + bx)
= 1

b
ln[a + bx]

2.
∫

x cos xdx = cos x + x sin x

3.
∫

eax sin xdx = eax

(a2 + 1)
(a sin x − cos x)

4.
∫

x sin xdx = sin x − x cos x

5.
∫

xeaxdx = eax
[
x

a
− 1

a2

]
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A.7 Derivatives

1.
∫

udv = uv −
∫

vdu

2.
d

dx
(ln x) = 1

x

3.
d

dx
(loga x) = 1

x
log a

4.
d

dx
(ax ) = ax ln a



References

1. Oppenheim AV, Willsky AS, Young LT (1983) Signals and systems. Prentice Hall, Englewood
Cliffs

2. Lindner DK (1999) Introduction to signals and systems. McGraw-Hill International Edition,
New York

3. Haykin S, Van Veen B (1998) Signals and systems. Wiley Inc, Hoboken
4. Lathi BP (2005) Linear systems and signals, 2nd edn. Oxford University Press, Oxford
5. Palani S, Kalaiyarasi D (2015) Discrete time systems and digital signal processing, 2nd edn.

Ane Books Pvt, Ltd, New Delhi
6. RobertsMJ (2004) Signals and systems. TataMcGraw-Hill Publishing Company Limited, New

Delhi
7. Hsu HP (2006) Signals and systems. Schaum’s outlines, John McGraw-Hill Company, New

Delhi, Reprint
8. Cadzow JA, Landingham HF (1985) Signals and systems. Prentice Hall, Englewood Cliffs
9. Cruz JB, Vankenburg ME (1974) Signals and linear circuits. Houghton Mifflin, Boston
10. Houts RC (1991) Signals analysis in linear systems. Saunders College, New York
11. Jackson LB (1991) Signals and systems and transforms. Addison Wesley, Reading
12. Kamen E (1987) Introduction to signals and systems. Macmillan, New York
13. McGillem CD, Cooper GR (1991) Continuous and discrete signal and system analysis, 3rd

edn. Holt, Rinehart and Winston, New York
14. Zeimer RE, Tranter WH, Fannin RD (1989) Signals & systems - continuous and discrete, 2nd

edn. Pearson, Macmillan, New York
15. Siebert WM (1986) Signals and systems. MIT Press, Cambridge
16. Taylor FJ (1994) Principles of signals and systems. McGrawHill series in electrical and com-

puter engineering, McGrawHill, New York
17. Soliman S, Srinath M (1990) Continuous and discrete signals and systems. Prentice Hall, New

York
18. Bracewell RN (1986) The Fourier transform and its applications, 2nd edn. McGrawHill, New

York
19. Doetsch G (1974) Introduction to the theory and applications of the Laplace transformation

with a table of Laplace transformations. Springer, New York
20. Jury EI (1982) Theory and applications of the Z-transform method. R.E, Krieger, Malabar
21. Ogata K (1990) Modern control engineering, 2nd edn. Prentice Hall, Englewood Cliffs

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Palani, Signals and Systems,
https://doi.org/10.1007/978-3-030-75742-7

1075

https://doi.org/10.1007/978-3-030-75742-7


Index

A
Addition of CT signals, 20
Addition of DT sequence, 77
Additivity and homogeneity, 200
Aliasing, 1061
Amplitude scaling of CT signals, 21
Amplitude scaling of DT signals, 79
Anti-aliasing filter, 1062
Aperiodic signal, 538
Asymptotic stability, 902

B
Basic CT signals, 6
Basic DT signals, 15
Basic operations on CT signals, 19
Basic operations on DT signals, 77
BIBO stability, 226, 348

C
Causal and non-causal system, 739
Causality from convolution, 347
Causality of CT systems, 856
Causality of DT systems, 220, 983
Circular convolution, 705

circle method, 705
DFT-IDFT method, 709
matrix method, 706

Classification of CT signals, 103
Classification of DT signals, 162
Complex exponential F.S., 433
Complex exponential signal, 14
Connection between LT and FT, 855
Continuous time signals, 3
Continuous time systems, 3

Convergence of CT Fourier series, 471
Convolution and BIBO stability, 348
Convolution integral, 273
Convolution operation, 280

analytical method, 280
non-causal signals, 288

Convolution properties, 276
associative, 278
commutative, 276
distributive, 277
shift, 279
width, 280

Convolution property of LT, 820
Convolution sum, 339
Convolution sum and response, 351
Convolution sum by

graphical method, 393
matrix method, 390
multiplication method, 381
tabulation method, 386

Convolution sum properties, 342
associative, 342
commutative, 344
distributive, 342
shift, 345
width, 345

Convolution with
delayed impulse, 346
delayed step, 347
unit impulse, 345
unit step, 346

D
De-convolution, 405
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Deterministic and non-deterministic CT sig-
nal, 103

Deterministic signal, 103
Dirichlet conditions, 470
Discrete time FT, 687

properties, 659
Discrete time signal, 3
DT system properties, 241
DT system realization, 1024

cascade form, 1029
direct form-I, 1025
direct form-II, 1026

Duality, 556, 562
Dynamic system, 265

E
Energy and power of CT signals, 143
Energy and power of DT signals, 178
Even and odd component of a signal, 123
Existence of F.S., 470

F
Fast Fourier transform, 713
Forced response, 1018
Fourier integral, 538
Fourier series of periodic signal, 431
Fourier series spectrum, 471
Fourier spectra, 542
Fourier transform, 538

conjugation, 557
convolution, 562
differentiation in time, 558
duality, 562
frequency shifting, 561
linearity, 556
Parseval’s theorem, 563
time integration, 559
time scaling, 560
time shifting, 557

Fourier transform analysis equation, 541
Fourier transform and Laplace transform,

542
Fourier transform periodic signal, 565
Fourier transform properties, 556
Fourier transform synthesis equation, 541
Frequency response, 1003, 1004
FS of DT signals, 510

properties, 512, 517
FS of DT signals-properties, 512, 517
Fundamental period of two signals, 105

H
Harmonic form of F.S., 434

I
Impulse function, 6, 15
Impulse response, 273, 1003
Impulse sequence, 15
Inverse CT system, 230
Inverse DT system, 256
Inverted CT signal, 24
Invertibility, 230, 256

L
Laplace transform

properties, 752
properties of ROC, 744
ROC, 741

Laplace transform–bilateral, 858
causal and anti-causal system, 859
ROC, 860

Laplace transform existence, 741
Laplace transform–inverse, 788

graphical method of determining
residues, 802

Laplace transform-solving differential equa-
tion without initial conditions, 803

Laplace transform–unilateral, 752
conjugation, 760
final value theorem, 761
frequency differentiation, 759
frequency scaling, 755
frequency shifting, 754, 759
initial value theorem, 760
linearity, 752
properties, 752
time convolution, 758
time differentiation, 756
time integration, 757
time scaling, 754
time shifting, 753

M
Marginal stability, 902
Memoryless system, 216
Modulation, 665
Multiple transformation of CT signals, 26
Multiple transformation of DT signals, 81
Multiplication of CT signals, 21
Multiplication of DT signals, 77
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N
Natural and force response using LT, 818,

1018
Network analysis using LT, 824
Non-causal CT system, 220
Non-causal DT system, 248
Non-deterministic signal, 103
Non-linear CT system, 200
Non-linear DT system, 242
Non-periodic CT signal, 103
Non-periodic DT signal, 162
Nyquist interval, 1061
Nyquist rate, 1061

O
Odd and even DT signals, 170
Odd and even functions of CT signals, 121
Odd component DT signal, 170
Odd component of CT signal, 123

P
Parabolic function, 10
Parallel form, 884, 1030
Parseval’s theorem, 516, 563, 664, 704
Periodic and non-periodic CT signals, 103
Periodic and non-periodic DT signals, 162
Polar form of Fourier series, 434
Pole-zero locations, 826
Power of CT signal, 143
Power of DT signal, 178
Properties of CT systems, 199
Properties of DT systems, 241
Properties of F.S., 445

conjugation, 449
differentiation, 449
integration, 450
linearity, 445
multiplication, 448
Parseval’s theorem, 450
time reversal, 447
time shifting, 446

R
Ramp function, 8
Ramp sequence, 16
Real exponential, 13
Real exponential sequence, 19
Rectangular function, 10
Rectangular sequence, 16
Region of Convergence (ROC), 741, 744,

926, 929

S
Sampler, 1062
Sampling, 1057
Sampling rate, 1062
Sampling theorem, 1058
Signal recovery, 1061
Signal reflection or folding, 24

cascade form, 1029
direct form-I, 1025
direct form-II, 1026
parallel form, 1030
transposed form, 1032

Signals, 1, 2
Signum function, 12
Sinc function, 12
Sinusoidal sequence, 17
Sinusoidal signal, 12
Stability from impulse response, 410
Stability of DT system, 984
Stability of LTIC system, 324, 857
Step function, 7
Step response, 7, 8
Step sequence, 15
Structure realization-DT system, 1024
System, 2
System causality, 414
System realization, 870

cascade form, 882
direct form-I, 871
direct form-II, 877
parallel form, 884
transposed form, 890

T
Time invariant CT system, 226
Time invariant DT system, 246
Time response of CT system, 272
Time reversal, 26
Time scaling of CT signal, 22
Time scaling of DT signal, 79
Time shifting of CT signal, 22
Time shifting of DT signal, 80
Time varying CT system, 212
Time varying DT system, 246
Transfer function, 826
Transposed form, 890, 1032
Triangular function, 11
Trigonometric Fourier series, 431

U
Unstable CT system, 225
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Unstable DT system, 251

Z
Zero input response, 1015
Zero input, Zero state responses, 814

time reversal, 939
time shifting, 938
z-transform properties, 937, 962

Zero-order hold, 1063
Zero padding, 697
Zero state response, 1015
ZT, LT and FT—connection, 924

properties, 929
z-transform, 921, 922, 924

ROC, 926
z-transform (inverse), 963

contour integration, 981

partial fraction method, 963
power series expansion, 975

z-transform pair
convolution theorem, 941
final value theorem, 943
initial value theorem, 942
linearity, 937
multiplication by an exponential, 940
multiplication by n, 940
time expansion, 941

z-transform-solution of difference equation,
998

z-transform-structure realization
cascade form, 1029
direct form-I, 1025
direct form-II, 1026
parallel form, 1030
transposed form, 1032
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