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Preface to Second Edition

I have ventured to bring out the second edition of the book Signals and Systems in its
new form due to the success and wide patronage extended to the previous edition and
reprints by the members of the teaching faculty and student community. The present
edition as in the previous edition covers the undergraduate syllabus in Signals and
Systems for the B.E. degree courses. A thorough revision of all the chapters in the
previous edition has been undertaken. Few errors noticed in the previous edition have
been removed and appropriate corrections have been made. Signal representation is
a vital topic to understand the importance of the theoretical concepts in Signals
and Systems. A large number of numerical problems have been included in Chap. 1
which describes signal representation (both continuous and discrete time signals).
Similarly, the classification of systems is well explained in Chap. 2 with graphical
illustration wherever possible. More number of numerical problems have been added
in Chap. 4 which describes Fourier Series Analysis. Further, the properties of FS are
well explained and applied in solving many FS problems by cutting short lengthy
procedures. Similarly, in Chap. 6, explanation is provided for the Fourier Transform
method of Analysis and for the properties of FT which are frequently used to solve
numerical problems in an easier way. However, in FS and FT, conventional methods
of solving the numerical problems are also retained. In Chap. 8, numerical problems
using LT properties have been solved. I hope that the readers of this book would
appreciate the above attempts. Since every theoretical concept is explained by a
variety of numerical examples which are presented in a graded manner, the book is
voluminous. I take this opportunity to thank Ane Books Pvt. Ltd and the publisher
for taking up this difficult job.

Pudukkottai, India S. Palani



Preface to First Edition

The book SIGNALS AND SYSTEMS presents a comprehensive treatment of signals
and linear systems for the undergraduate level study. It is a rich subject with
diverse applications such as signal processing, control systems and communica-
tion systems. It provides an integrated treatment of continuous-time and discrete-
time forms of signals and systems. These two forms are treated side by side. Even
though continuous-time and discrete-time theory have many mathematical properties
common between them, the physical processes that are modelled by continuous-time
systems are very much different from the discrete-time systems counterpart.

I have written this book with the material I have collected during my long experi-
ence of teaching signals and systems to the undergraduate level students in national
level reputed institutions. The book in the present form is written to meet the require-
ments of undergraduate syllabus of Indian Universities in general and Anna Univer-
sity in particular for B.E./B.Tech. degree courses. The organization of the chapters
is as follows.

Chapter 1 deals with the representation of signals and systems. It motivates the
reader as to what signals and systems are and how they are related to other areas
such as communication systems, control systems and digital signal processing. In
this chapter, various terminologies related to signals and systems are defined. Further,
mathematical description, representation and classifications of signals and systems
are explained.

Chapter 2 presents a detailed descriptions of system classifications. Under broader
category, systems are classified as continuous-time and discrete-time systems. Each
of them is further classified as linear and non-linear, time invariant and time varying,
static and dynamic, causal and non-causal, stable and unstable and invertible and
non-invertible. Systems are identified accordingly.

A comprehensive treatment of time domain analysis of continuous-time and
discrete-time systems are given in Chapter 3. It develops convolution from the repre-
sentation of an input signals as a superposition of impulses. To find the convolution
of two time signals, both analytical as well as graphical methods are explained.

Chapter 4 deals with the Fourier representation of continuous-time signals.
Continuous time periodic signals are represented by trigonometric Fourier series,
polar Fourier series and exponential Fourier series.

vii



viii Preface to First Edition

In Chapter 5, discrete-time signals is represented by exponential Fourier series
and their properties are derived. The Fourier spectra of discrete-time signal is also
determined in this chapter.

It is not possible to find Fourier series representation of non-periodic signals. In
Chapter 6, Fourier transform is introduced which can represent periodic as well as
non-periodic signals. In this chapter the Fourier transform for continuous-time signal
is explained.

In Chapter 7, the representation of discrete-time signal using discrete time Fourier
transform is explained. Further, discrete Fourier transform and Fast Fourier Trans-
form algorithm are also explained here. The Laplace transform is a very powerful
tool in the analysis of continuous time signals and systems.

In Chapter 8, the Laplace transform method is explained and its properties derived.
The use of Laplace transform to solve differential. equation is described. Finally
different forms of structure realization of continuous-time systems are discussed.

Chapter 9 is devoted to the z-transform and its application to discrete time signals
and systems. The properties of z-transform and techniques for inversion are intro-
duced in this chapter. The use of z-transform for solving difference equation is
explained. Different forms of structure realization of discrete-time system is also
explained in this chapter.

In Chapter 10, the sampling theorem is explained. The necessary condition to
avoid aliasing is also explained here.

The notable features of this book includes the following:

1. The syllabus content of signals and systems for undergraduate level of most of
the Indian Universities in general and Anna University in particular has been
covered.

The organization of the chapter are sequential in nature.

Large number of numerical examples have been worked out.

Chapter objectives and summary are given in each chapter.

For the students to practice, short and long questions with answers are given at
the end of each chapter.

Dk

I take this opportunity to thank Shri. Sunil, Managing Director Ane Books India, for
coming forward to publish the book. I would like to express my sincere thanks to
Shri. R. Krishnamoorthi, sales manager Ane Books India who took the initiatives to
publish the book in a short span of time. I would like to express my sincere thanks to
Mr. V. Ashok who has done a wonderful job to key the voluminous book like this in
a very short time and beautifully too. My sincere thanks are also due to my colleague
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Mr. N. Sathurappan who gave some useful suggestions. I would also like to thank my
wife Dr. S. Manimegalai, M.B.B.S., M.D., who was the source of inspiration while

preparing this book.

S. Palani
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Chapter 1 ®)
Representation of Signals I

Learning Objectives

4 To define various terminologies related to signals and systems.

¢ To classify signals and systems.

¢ To give mathematical description and representation of signals and systems.

¢ To perform basic operations on CT and DT signals.

¢ To classify CT and DT signals as periodic and non-periodic, odd and even and
power and energy signals.

1.1 Introduction

The concepts of signals and systems play a very important role in many areas of
science and technology. These concepts are very extensively applied in the field of
circuit analysis and design, long distance communication, power system generation
and distribution, electron devices, electrical machines, biomedical engineering, aero-
nautics, process control and speech and image processing to mention a few. Signals
represent some independent variables that contain some information about the
behavior of some natural phenomenon. Voltages and currents in electrical and elec-
tronic circuits, electromagnetic radio waves, human speech and sounds produced by
animals are some of the examples of signals. When these signals are operated on
some objects, they give out signals in the same or modified form. These objects
are called systems. A system is, therefore, defined as the interconnection of objects
with a definite relationship between objects and attributes. Signals appearing at vari-
ous stages of the system are attributes. R, L, C components, spring, dash-pots, mass,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 1
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2 1 Representation of Signals

etc. are the objects. The electrical and electronic circuits comprising of R, L, C com-
ponents and amplifiers, the transmitter and receiver in a communication system, the
petrol and diesel engines in an automobile, chemical plants, nuclear reactor, human
beings, animals, a government establishment, efc. are all examples of systems.

1.2 Terminologies Related to Signals and Systems

Before we give mathematical descriptions and representations of various terminolo-
gies related to signals and systems, the following terminologies which are very fre-
quently used are defined as follows:

1.2.1 Signal

A signal is defined as a physical phenomenon that carries some information or data.
The signals are usually functions of independent variable time. There are some cases
where the signals are not functions of time. The electrical charge distributed in a
body is a signal which is a function of space and not time.

1.2.2 System

A system is defined as the set of interconnected objects with a definite relationship
between objects and attributes. The inter-connected components provide desired
function.

Objects are parts or components of a system. For example, switches, springs,
masses, dash-pots, efc. in mechanical systems and inductors, capacitors and resistors
in an electrical system are the objects. The displacement of mass, spring and dash-pot
and the current flow and the voltage across the inductor, capacitor and resistor are
the attributes. There is a definite relationship between the objects and attributes. The
voltages across R, L, C series components can be expressed as vg = iR, V| = L%
and Vo = % f idt. If this series circuit is excited by the voltage source e;(¢), the e;(f)
is the input attribute or the input signal. If the voltage across any of the objects R, L
and C is taken, then such an attribute is called the output signal. The block diagram
representation of input and output (voltage across the resistor) signals and the system
is shown in Fig. 1.1.
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Fig. 1.1 Block diagram
representation of signals and D) SYSTEM Ve
)

systems
Input signal R.L,O)

or excitation

Output signal

1.3 Continuous and Discrete Time Signals

Signals are broadly classified as follows:

1. Continuous Time signal (CT signal).
2. Discrete Time signal (DT signal).

The signal that is specified for every value of time ¢ is called continuous time signal
and is denoted by x(¢). On the other hand, the signal that is specified at the discrete
value of time is called discrete time signal. The discrete time signal is represented as
a sequence of numbers and is denoted by x[n] where n is an integer. Here time ¢ is
divided into n discrete time intervals. The Continuous Time signal (CT) and Discrete
Time signal (DT) are represented in Figs. 1.2 and 1.3, respectively.

It is to be noted that in continuous time signal representation the independent
variable ¢ which has unit as sec. is put in the parenthesis (-) and in discrete time signal
the independent variable n which is an integer is put inside the square parenthesis
[-]. Accordingly, the dependent variables of the continuous time signal/system are

Fig. 1.2 CT signal Ax(1)
—t 0 t
Fig. 1.3 DT signal 4 x[n]
1.5 1.5
1
0.5 0.5 0.5
L o | | I
2

Svy

—n -4 -3 -2 -1 0 1
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denoted as x(¢), g(¢), u(t), etc. Similarly the dependent variables of discrete time
signals/systems are denoted as x[n], g[n], u[n], etc.
A discrete time signal x[n] is represented by the following two methods:

1.
_ 1@ n=o0
x[n] = {0 0 =0 (1.1)

Substituting various values of n where n > 0 in Eq. (1.1) the sequence for x[n]
which is denoted by x{n} is written as follows:

11 1
x[n]: 19_7_27'-"_
a a a"

2. The sequence is also represented as given below.

x[n] =1{3,2, 5,4,6, 8, 2}
T

The arrow indicates the value of x[n] at n = 0 which s 5 in this case. The numbers
to the left of the arrow indicate to the negative sequence n = —1, —2, efc. The
numbers to the right of the arrow correspond to n = 1,2, 3,4, etc. Thus, for the
above sequence, x[—1] = 2; x[—-2] = 3;x[0] = 5;x[1] = 4;x[2] = 6;x[3] = 8
and x[4] = 2. If no arrow is marked for a sequence, the sequence starts from the
first term in the extreme left. Consider the sequence

x[n] = {5, 3, 4, 2}.

Here, x[0] = 5; x[1] = 3; x[2] = 4 and x[3] = 2. There is no negative sequence
here.

B Example 1.1

Graphically represent the following sequence:

x[n] ={1, 0, —1, 1}

Solution: The graphical representation x[n] = {1, 0, —1, 1} is shown in Fig. 1.4.

B Example 1.2

Graphically represent the following sequence:

x[n]=1{-2,1,0, 1,2,0, 1}
/]\
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A x[n]
1 1
—n 0 1 2 3 0
-1
Fig. 1.4 Graphical representation of x[n]
A x[n]
2
! 1
—n 3 2 -1 [0 1 2 d

-2

Fig. 1.5 Graphical representation of x[n]

Solution: The sequence

x[n]=1{-2,1,0, 1,2,0, 1}
T

is represented in Fig. 1.5.
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1.4 Basic Continuous Time Signals

Basic signals play a very important role in signals and systems analysis. The following
are the basic continuous time signals which serve as a basis to represent other signals.
The basic continuous time signals are as follows:

Unit impulse function.

Unit step function.

Unit ramp function.

Unit parabolic function.

Unit rectangular pulse (or Gate) function.
Unit area triangular function.
Unit signum function.

Unit Sinc function.
Sinusoidal signal.

Real exponential signal.
Complex exponential signal.

SO0 RN R WD~

—_

The mathematical description and graphical representation of the above signals are
discussed below. Similar to continuous time signals, basic discrete time signals are
also available. The descriptions of these signals will immediately follow this.

1.4.1 Unit Impulse Function

The unit impulse function is also known as Dirac delta function which is repre-
sented in Fig. 1.6. The unit impulse function is denoted as §(¢) and its mathematical

description is given below.
0 #0

so=1, ., (1.2)

Fig. 1.6 Unit impulse 4 x(t)
function

A 6(0
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1.4.1.1 Importance of Impulse Function

1. By applying impulse signal to a system, one can get the impulse response of
the system. From impulse response, it is possible to get the transfer function of
the system.

2. For a linear time invariant system, if the area under the impulse response curve
is finite, then the system is said to be stable.

3. From the impulse response of the system, one can easily get the step response
and ramp response by integrating it once and twice, respectively.

4. Impulse signal is easy to generate and apply to any system.

1.4.1.2 Some Properties of Impulse Function

1. 8(at) = 15(n)

2. §(—t) =48(1)

3. x()8(1) = x(0)8(1)

4. x(1)8(t — ty) = x(0)8(t — 1)
5. (% 8(nydt =1

6. t6(t) =0

7. 120 = —5(1)

8

Cx() %8 —ty) = x(t — tg)

1.4.2 Unit Step Function

The unit step function is shown in Fig. 1.7. The function is defined as follows:

1 >0
u(t) = - 1.3
© 0 t<0 (1.3
Fig. 1.7 Unit step function 0
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The step function is denoted by u(¢). Any causal signal which begins at # = 0 (which
has a value of zero for# < 0) is multiplied by the signal by u(¢). For example, a causal
exponentially decaying signal ¢~ (¢ > 0) is represented as x () = e~ “u(t).
Similarly e=% (¢t < 0) is represented as x (¢) = e~ u(—t).

1.4.2.1 Importance of Step Function

1. Step function is easy to generate and apply to the system.

2. By differentiating the step response, the impulse response can be obtained. By
integrating the step response, the ramp response can be obtained.

3. Step signal is considered as a white noise which is drastic. If the system response
is satisfactory for a step signal, it is likely to give a satisfactory response to other
types of signals.

4. Application of step signal is equivalent to the application of numerous sinusoidal
signals with a wide range of frequencies.

1.4.3 Unit Ramp Function

The unit ramp function is represented in Fig. 1.8. It is defined by the following
mathematical equation:
t t>0
r(t) = { - 1.4

0 t<0

For a causal signal (¢ > 0), the ramp function can also be expressed as

r(t) = tu(t) (1.5)
Fig. 1.8 Unit ramp function (1)
)
|
| | [
! I
! |
! I
! |
! I
! [
L
0 1 2 t
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1.4.3.1 Relationships between Impulse, Step and Ramp Signals

1. Integrating the unit step signal u(z), we get

/u(l)dtz /dt:t (1.6)

By integrating the unit step function, unit ramp function is obtained. In the
reverse process, by differentiating a ramp function, a step function is obtained.

2. The continuous time unit step function is the running integral of the unit impulse
function which is expressed as

u(t) = /Z S(t)drt

o0

du(t)
dt

—5(1) (1.7)

3. By differentiating the ramp function twice, the impulse function is obtained.

r(t) =t
O _ 1w (1.8)
dt ’

d*r (1) _du(t)
yr e 8(1) (1.9)

Thus, the impulse function is obtained by differentiating the ramp function twice.
By the reverse process, by integrating the impulse function twice, the ramp
function is obtained which is mathematically expressed as follows:

r(t) = //S(t)dt (1.10)

The relationships between the impulse, step and ramp signals are represented
below.

integrate integrate

S 5w =5 ()

differentiate differentiate

r@) — u(@®) — @)
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Fig. 1.9 Unit parabolic 4+ x(f)
function

N 2

(=)
—_
v

1.4.4 Unit Parabolic Function

The unit parabolic function x(¢) is represented in Fig. 1.9. The mathematical expres-
sion is given below.

1 2
x)=37| 120 (1.11)

If the parabolic function is differentiated, unit ramp function is obtained. Thus,

dx(t) _
d

t>0.

Step, ramp and parabolic functions are called singularity functions.

1.4.5 Unit Rectangular Pulse (or Gate) Function

The unit area rectangular pulse which is also called gate function is represented in
Fig. 1.10. Mathematically it is described as follows:

1 forlt|<ZI
xny = | L ferll=5 (1.12)
0  otherwise

The above equation is also written in the following form:

xH=1 —=<t<

|~
N[~

The function is written as x() = rect(%).
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t x(r) = rect(%)

<

—t —

SIS
]
ok
v

Fig. 1.10 Unit area rectangular pulse (or gate) function

Fig. 1.11 Unit area 4+ x(¢) = tri()
triangular function
1
—t -1 0 1 '

1.4.6 Unit Area Triangular Function

The unit area triangular function is represented in Fig. 1.11. Itis symbolically written
as x(t) = tri(z). It is defined as

: (L=l =1

tri(t) = 1.13
® 0 [t] > 1 (1.13)
The above equation can be written in the following form also:

tri(r) = [1 +1] —1<t=<0
=[1—1] 0<r=<l1
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Fig. 1.12 Representation of 4 x(f) = sgn(?)
unit signum function

1.4.7 Unit Signum Function

The signum function is written in the abbreviated form as sgn(#). It represents the
characteristics of an ideal relay. This is shown in Fig. 1.12. It is defined by the
following equations:

1 t>0
sgn(t) =10 t=0 (1.14)
-1 t<0

1.4.8 Unit Sinc Function

The unit sinc function is represented in Fig. 1.13. It is defined as

sinrt

sinc(t) = —00 <t <. (1.15)

1.4.9 Sinusoidal Signal

The sinusoidal signal is represented in Fig. 1.14. It is defined as
x(t) = Asin(wt — ¢) (1.16)

where A = Peak amplitude, v =radian frequency and ¢ = phase shift.
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4 sinc(?)

i 4

-t —4 -3 =2 -1 |0 1 2 3 4

Fig. 1.13 Representation of unit sinc function

4 x(f) = Asin(wt— )

ani ;
VARV AVERVA

Fig. 1.14 Representation of sinusoidal signal

1.4.10 Real Exponential Signal

Let
x(t) =€ (1.17)

where s = o + jw is a complex number. The signal x(¢) in Eq. (1.17) is called general
complex exponential. Equation (1.17) is written in the following form:

x(1) = elotjot
— eotejwt

= ¢%'(cos wt + j sin wt) (1.18)

Ifw=0,
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(a) (b)
4 x(f) = 0t 4 x(f) = 0t
/ o>0 o<0
~1 R ;5 o ;

Fig. 1.15 Representation of real exponential signals. a Growing exponential; b Decaying
exponential

0o
Equation (1.19) is real exponential. The plot of x(¢) with respect to ¢ for o > 0 and
o < OisshowninFig. 1.15aand b, respectively. Foro > 0, the signal is exponentially
growing and for o < 0, it is exponentially decaying.

1.4.11 Complex Exponential Signal

The signal x(#) in Eq. (1.18) is the general complex exponential which has real
part as e°’ cos wt and the imaginary part ¢’ sin wt. For o = 0, the signal x(¢) is a
sinusoid. For o > 0, x() is a sinusoid which is exponentially building and is shown
in Fig. 1.16a. For o < 0, the signal x() = e ?"(cos wt + j sin wt) is exponentially
decaying and is shown in Fig. 1.16b.

(@) (b)

A )C(t) 'y

A/\\/\/\ : /\ A :
RVATCYRVATEE U WA

o<0

x(1)

—l‘

Fig. 1.16 Complex exponential signals. a Exponentially growing (o > 0); b Exponentially
decaying (o < 0)
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Fig. 1.17 Basic unit impulse 4 3[n]
sequence

4
v

1.5 Basic Discrete Time Signals

Similar to continuous time signals, basic discrete signals are available. However,
13 2

these signals are represented at discrete intervals of time “n” where n is an integer.
Representation of basic discrete time signals is discussed below.

1.5.1 The Unit Impulse Sequence

The basic impulse sequence is shown in Fig. 1.17. The unit impulse sequence also
called sample is defined as

n=20

Ll

(1.20)

8[n] is also called Kronicker delta function.

1.5.2 The Basic Unit Step Sequence

The basic unit step sequence is represented in Fig. 1.18. It is denoted by u(n). It is
defined as
1 n>0

u =1~ (1.21)

Any discrete sequences x[n] for n > 0 is expressed as x[n]u[n]. For n < 0, it is
expressed as x[n]u[—n]. It is be noted that at n = 0, the value of u[n] = 1.
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A u[n]

1
—n o 1 2 3 4 5 n
Fig. 1.18 Basic unit step sequence
4 rin]
5
4
3
2
1 () () () (]
—n 0 1 2 3 4 5 n

Fig. 1.19 Basic unit ramp sequence

1.5.3 The Basic Unit Ramp Sequence

The basic unit ramp sequence which is denoted by r[n] is represented in Fig. 1.19.
It is defined as
n n>0
r[n] = - 1.22
L] 0 n<0 ( )

1.5.4 Unit Rectangular Sequence

The discrete time unit rectangular sequence is shown in Fig. 1.20a. It is defined as

1 <N
rect[n] = {o :Z: v (1.23)

The above equation can also be expressed as
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(a) 4 rect[n]
1
has N =3 -2 -1 o9 1 2 3 N "
(b) 4 recty[n]
1
s —4 3 -2 -1 o 1 2 3 4 ,

Fig. 1.20 Unit rectangular sequence

1 —N<n<N
rect[n] = -

0  otherwise
N indicates the width of the rectangular sequence on both sides of —n and +n.
For example, the notation rect4[n] indicates four samples for 0 < n < 4 and four
samples for —4 < n < 0 and one sample at n = 0. Thus, there will be nine samples
for recty[n]. This is represented in Fig. 1.20b.

1.5.5 Sinusoidal Sequence

The discrete time sinusoidal signal is defined by the following mathematical expres-
sion:
x[n] = Ae™*" sin(won + ¢) (1.24)

where A and « are real numbers and ¢ is the phase shift. Depending on the value of
«, the sinusoidal sequence is divided into the following categories:

e A purely sinusoidal sequence (o = 0).
e Decaying sinusoidal sequence (o > 0).
e Growing sinusoidal sequence (o < 0).

The above sinusoidal sequences are illustrated in Fig. 1.21a—c, respectively.
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4 x[n] = Asin(wgn)

(b)

b x[n] = Ae™ M sin(wgn+d)

a>0

. [T lITfy ,

© _ .
b x[n] = Ae™ M sin(wgn+d)

a<0

Fig. 1.21 Discrete time sinusoidal signal. a Purely sinusoidal; b Decaying sinusoidal; ¢ Growing
sinusoidal
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(a) (b)k
/// a1 \\\ O<ax<l
H—rrTTﬂﬂ ] { R X [ H\T\TTT‘T R
(c) (@)
- g h AN —1<a<0
. - a< —1 ~_ -
e 1] ] { [Tore
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\
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Sy

REuny

Fig. 1.22 Discrete time real exponential sequences. a o >1; b O<a<l;
ca<—1l;d-1<a<0

1.5.6 Discrete Time Real Exponential Sequence

The general complex exponential sequence is defined as
x[n] = A" (1.25)

where A and « are in general complex numbers.

In Eq. (1.25) if A and « are real, the sequence is called real exponential. These
sequences for various values of & are shown in Fig. 1.22. Depending on the value of
«, the sequence is classified as:

1. Exponentially growing signal (o > 1, Fig. 1.22a).

2. Exponentially decaying signal (0 < o < 1, Fig. 1.22b).

3. Exponentially growing for alternate value of n (¢ < —1, Fig. 1.22c¢).

4. Exponentially decaying for alternate value of n (—1 < o < 0, Fig. 1.22d).

1.6 Basic Operations on Continuous Time Signals
The basic operations performed on continuous time signals are given below:

1. Addition of CT signals.
2. Multiplications of CT signals.



20 1 Representation of Signals

(a) (b)
4 xl(t) A xz(t)
2 3k-—
- !
|
« : R « R
-t -2 -1 0 1 2 t -t -3 -2 -1 o1 2
-2
v
©) .
x(1) = x (D) +x,(0)
3
2
________ 1_
e —) -1 [0 1 2 ;
-—-1

Fig. 1.23 Additions of two CT signals

. Amplitude scaling of CT signals.

. Time scaling of CT signals.

. Time shifting of CT signals.

. Reflection or folding of CT signals.
. Inverted CT signal.

~N N bW

1.6.1 Addition of CT Signals

Consider the signals x; (#) and x,(¢) which are shown in Fig. 1.23a, b. The amplitude
of these two signals at each instant of time is added to get their sum. The following
table is prepared.

From Table 1.1, x(¢) = x;(¢) + x»(¢) is plotted and is shown in Fig. 1.23c.
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Table 1.1 Addition of two CT signals

t -3 -2 -1 0 1 2
x1(t) 0 1 2 2 0 0
x2(1) 1 -2 -2 1 3 0
x(t) = 1 -1 0 3 3 0
x1(t) +

x2(1)
Table 1.2 Multiplication of two CT signals

t -3 -2 —1 0 1 2
x1(1) 0 1 2 2 0 0
x2(1) 1 -2 -2 1 3 0
x(t) = 0 -2 —4 2 0 0
x1(t) x

x2(1)

1.6.2 Multiplications of CT Signals

Consider the two signals x;(¢) and x,(¢#) shown in Fig. 1.23a and b, respectively.
These signals x; (#) and x, (¢) are multiplied to get x()

x(1) = x1(1) X x2(2)

The functions x; () and x,(¢) at different time intervals are determined from figure
and multiplied. Table 1.2 is prepared to get x(¢) at different time intervals. Table 1.2
is transformed to plot x(#) = x;(¢) x x»(¢) which is shown in Fig. 1.24.

1.6.3 Amplitude Scaling of CT Signals

Consider the signals x(¢) sketched and shown in Fig. 1.25a. This signal when mul-
tiplied by a factor A is expressed as Ax(f). At any time ¢, the amplitude of x(f) is
multiplied by A. This type of signal transformation is called amplitude scaling. The
signal 3x(7) is shown in Fig. 1.25b. At any instant ¢, x(¢) is multiplied by a factor 3.

Consider the signal )% At any time ¢, the amplitude of x(¢#) shown in
Fig. 1.25ais divided by the factor 2. The above transformation is plotted in Fig. 1.25c.
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t x()=x(H)Xxy(1)

Fig. 1.24 Multiplications of two CT signals

1.6.4 Time Scaling of CT Signals

The compression or expansion of a signal in time is known as time scaling. Consider
the signal x(¢) shown in Fig. 1.26a. The signal is time compressed and shown in
Fig. 1.26b as x(4¢). For any given magnitude of x(¢), the time is divided by the
factor 4. The time expanded signal x(§) is shown in Fig. 1.26¢c. Here, for any given
magnitude of x(¢), the time is multiplied by the factor 4. In general, for any given
amplitude of x(¢), x(at) is time compressed by a factor a and x(é) is time expanded
by a factor a.

1.6.5 Time Shifting of CT Signals

Consider the signal x(¢) = u(t), the unit step function. The step function is shown in
Fig. 1.27a as u(¢). The transformation ¢ = ¢ — fy where f is any arbitrary constant
amounts to shifting u(z) to the right by #y unit if £, is positive and is denoted as
u(t — to). If 1y is negative, the function is shifted to the left by #y unit and is denoted
asu(t + to). Theright shifted u(t — #) is shown in Fig. 1.27b and left shifted u(z + #y)
is shown in Fig. 1.27c. The signal u(—t) is shown in Fig. 1.27d and is obtained by
folding u(¢) as shown in Fig. 1.27a. u(—¢) = 1fort < 0.If we fold across the vertical
axis, the signal to the right of the vertical axis is transformed to its left and vice versa.
That is why it is called folded signal. The signal u(—¢ — t;) is obtained by shifting
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(b)
4 3x(1)
(@) b x(2)
2
/_I 1
| 1
| 1
 — > < >
-3-2-10 1 2 t -t -3-2-10 1 2 4
© tx0)
2
1
I---O.S
-t -3 -2 -1 0 1 2 1
. . . x(t)
Fig. 1.25 Amplitude scaling. a x(¢); b 3x(¢) and ¢ -

the signal u(—1) to the left by #( unit as shown in Fig. 1.27e. The signal u(—t + #y) is
obtained by shifting the signal u(—) to the right by #; unit and is shown in Fig. 1.27f.

Summary of Shifting of CT signal

. It x(¢) is given, then x (¢ + #) is plotted by shifting x (¢) to the left by #,.

. It x(¢) is given, then x (¢ — ¢) is plotted by shifting x (¢) to the right by ¢,.

3. It x(—¢) is given, then x(—t — t) is plotted by shifting x(—¢) to the left
by #.

4. It x(—t) is given, then x (—¢ + t) is plotted by shifting x (—¢) to the right by
1.

5. In general for x (¢ + #)) and x(—¢ — ty) the time shift is made to the left of
x(t) and x(—t), respectively, by #,. For x(f — ty) and x(—f + ¢)) the time
shift is made to the right of x(#) and x (—¢), respectively, by #.

DN =
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@) Ax(1) (®) Ax(4r)
3 3
-t —3 0 2t —t =3/, 02y t
© & x(ly)
3
-t —12 0 8 ¢

Fig. 1.26 Time scaling of CT signals

1.6.6 Signal Reflection or Folding

Consider the signal x(#) shown in Fig. 1.28a. The signal x(—¢) is obtained by putting a
mirror along the vertical axis. The signal to the right of the vertical axis gets reflected
to the left and vice versa. Alternatively, if we make a folding across the vertical axis,
the signal in the right of the vertical axis is printed in the left and vice versa. The
signal so obtained is x(—t¢).

1.6.7 Inverted CT Signal

Consider the CT signal x(¢) shown in Fig. 1.29a. The inverted signal —x(¢) is obtained
by inverting its amplitude. By this the signal above the horizontal axis (time axis)
comes below the axis and vice versa. Alternatively, if a mirror is put along the
horizontal axis, the signal above the axis gets reflected below the axis and vice versa.
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25
a b c
@ 4 u(?) ®) t ut—ty) © + u(t+1y)
1 lF-——---- L
0 ; 0 tO ; il _to O ;
(d) (O]
tu(—o Y u(—1—1y)
T 1
hay 0 (A b 0 ’
®
4 u(_t“l'to)
1
Fig. 1.27 Representation of time shifting CT signals
(a) (b)
+x() tx(=1
4 4
3 0 2 = 3 7

Fig. 1.28 CT signal reflection or folding
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b
(a) A X(t) ( ) A _X(t)

Fig. 1.29 Inverted CT signal

1.6.8 Multiple Transformation

The transformation namely amplitude scaling, time reversal, time shifting, time scal-
ing, etc. when applied simultaneously, the sequence of operation is important. If not
followed correctly, it would give erroneous results.

Consider the following signal:

y(t):Ax(_t_t())
a

The following sequence of transformation is followed:

1. y(#) is written in the following form:

Plot x(1).

Plot Ax(#) using amplitude scaling.

Plot Ax(—t) using time reversal.

Plot Ax(—t — ) by shifting Ax(—1) to the left by 2 (time shifting).
Plot Ax(—% — %) by time expansion.

SARNAIE S
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The following examples illustrate the above sequence of operation.

B Example 1.3

Consider the signal y(t) = 5x(—3¢ 4 1) where x(¢) is shown in Fig. 1.30a. Plot y()
and —y(?).

Solution:
y(t) =5x(=3t+1)

. The given signal x(¢) is represented in Fig. 1.30a.

. The signal x(¢) is amplitude scaled and plotted in Fig. 1.30b.

3. 5x(—t) is obtained by folding 5x(r) in Fig. 1.30b and is plotted in
Fig. 1.30c.

4. 5x(—1) is time shifted by one unit to the right and 5x(—¢ 4 1) is obtained and
shown in Fig. 1.30d.

5. 5x(—t + 1) is time compressed by a factor 3 and 5x(—3¢ + 1) is obtained. This
is shown in Fig. 1.30e.

6. 5x(—3t+ 1) amplitude inverted to get —5x(—3f-+ 1). This is shown in

Fig. 1.30f.

DN =

B Example 1.4

Consider the signal
x(t) = rect(t)

-3
Plot y(t) = Srect(‘32).

Solution:
x(t) = Srect

(t—13)
4

1. x(r) can be written as x(r) = Srect (4 — 3). The plot of rect(s) is shown in
Fig. 1.31a.
2. The time delayed (zy = 3/4) signal is right shifted by 3/4 and with its amplitude
multiplied by 5 is shown in Fig. 1.31b.
. The time shifted signal represented in step 2 is to be time expanded by a factor
4. This is shown in Fig. 1.31c as y(¢) = Srect(’;—‘”.

w

B Example 1.5
For the signal shown in Fig. 1.32a, sketch

2
y(t) = —3x <—§t + 1.5)
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(b)
@ 4 x(0) 4 5x(r)

A

-t =2 0 1 t -t -2 0 1 1
Amplitude scaling

() (@
+ S5x(—1) + Sx(—t+1)
---10 10
Y1 o 21 0 3 1
Time reversal Time shifting
(e) )
4 y() = 5x(—3t+1) “
1
0 :
10
-10
0 1 t v y(@®) = —5x(=3t+1)
Time scaling Amplitude inverted
(compression)

Fig. 1.30 Basic operations on CT signal
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(a) b x(t)=rect(r) (b) | Srect(1—3/4)
1 5 1
* 1 > x 1 5 ;
t 5 0 5 t t 0 T T t
© ‘Srect(% —%) :Srect(tT_)
sl 1
R 0 1 5 t=

Fig. 131 Sketch of Srect “52

Solution:

. x(t) is sketched as shown in Fig. 1.32a.

. By time reversal x(—¢) is obtained and sketched as shown in Fig. 1.32b.

. By amplitude scaling and inversion —3x(¢) is obtained and is shown in Fig. 1.32c.

. The signal obtained in step 3 is right shifted by r = 1.5 and —3x(—¢ 4 1.5) is
shown in Fig. 1.32e.

5. By time scaling expanded by 3/2, we get —3x(—(2/3)t + 1.5) which is shown

in Fig. 1.32f.

B W N =

B Example 1.6

For the signal x(7) shown in Fig. 1.33 give mathematical equation in terms of step
signals.

Solution: The signal x(#) shown in Fig. 1.33 is in the form of stair case in the time
interval —3 < ¢ < 3. The mathematical expression in terms of step signals can be
derived as explained below:

1. For the time interval —3 <t < 00, the step signal is generated as u(t + 3).
2. For the time interval —2 < ¢ < 00, the step signal is generated as u(f + 2).
3. For the time interval —1 <t < oo, the step signal is generated as 2u(t + 1).
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a (b)
@ b x(7) 4 x(—1)
4 4
1
< 71 » < »
—t 0 3 t -t -3 0 1 t
-2
-2

©) (= d
( () @ s —3x(—1+1.5)

6

6 _____
hPE— T < ,
t3 0 1 i 15 0 15 2571
—12
! —12
© 4 y(0)=—3x(—31+1.5)
6 _____
hip 225 0 225 3751
I-12

Fig. 132 Sketch of y(r) = —3x (—31 + 1.5)
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x(1)
4
2
N |
| |
|
_____ U | R R
] | ! |
| | ! |
| | i !
) : : l !
-t -3 -2 -1 0 1 2 3 t

Fig. 1.33 The signal x(¢) for Example 1.6

If the above three step signals are added, we will get the stair-case signal —3 <t < 1.
However, these step signals are extended to + — oo also and hence, they are to be
canceled by negative going steps att = 1,t =2 and t = 3 as —2u(t — 1), —u(t — 2)
and u(t — 3), respectively. Thus, x(¢) is obtained by adding these step signals.

[ X(0) = ut +3) +ult +2) + 2 + 1) = 2ut = 1) —u(t —2) —u(t - 3)|

B Example 1.7
For a signal x(¢) shown in Fig. 1.34a, sketch

(@  x(Gt+2)
(b) x(%t—l)

(Anna University, June, 2007)

Solution: To plot x (3t + 2)

1. x(r) is represented in Fig. 1.34a. x(¢) is moved to the left by = 2 and is shown
in Fig. 1.34b.

2. By time compression by a factor 3, from Fig. 1.34b, x(3¢ + 2) is obtained and
is shown in Fig. 1.34c.



32

1 Representation of Signals

ux(l‘)
2
IR} S
| |
! |
! I
! |
I ! ,
-t —1 " 0 1 1t
(a)
4+ x(t+2)
__________________ 2
——————————— 1
| |
| |
| |
| |
| |
« : : >
t -3 2.5 =2 —-1.5 -1 0 t
(b)
4 x(3t+2)
| " T T T T T T T T 7717 2
|
|
|
|
|
|
I 1
| : |
| ! |
l ! l
1 ! 1
| ! |
l ! l
| ! |
« L ! L >
— _ 2 1
! I -2 -3 -3 - 0 !
(©)

Fig. 1.34 a Plot of x(¢). b Time shifted x(¢). ¢ Time compressed x(¢). d Folded x(¢). e Time shifted
x(—1). f Time expansion of x(—t — 1) to get x(—% -1
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b x(—1)
2
__________ v
I
l !
! |
! |
! |
i |
; 5 | .
-t -1 _% 0 _% 1 t
(d)
$x(—t—1)
—————— 2
1
I I
| |
I I
| |
I I
. ! ! >
—t -2 —1% -1 -1 0 1
(e)
x=5-1)
—————————— 2
1
I I
| |
I I
| |
I I
< L L >
—t —4 -3 -2 -1 0 t
()

Fig. 1.34 (continued)
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Solution: To plot x(—(5) — 1)

1. By folding x(¢) represented in Fig. 1.34a, x(—¢) is obtained and is shown in
Fig. 1.34d.

2. x(—t — 1) is obtained by shifting x(—#) by = 1 to the left. x(—¢ — 1) is sketched
as shown in Fig. 1.34e.

3. By time expansion, the time of the signal x(—¢ — 1) is multiplied by the factor 2,
and x(—% — 1) is obtained. This is shown in Fig. 1.34f.

B Example 1.8

The rectangular signal x(#) = rect(¢/2) is shown in Fig. 1.35a. Sketch the following
signals:

(a) (b)
4+ x(f) 4+ x(t—3)
l _________
P 0 T S0 2 4 7
(a)
(c) (d)
T[ —1 0 1 l;
4 2x(t)
2
-3
-t —1 0 1 + —3x(1)

Fig. 1.35 a x(¢) signal and b Representation of x(# — 3). ¢ Representation of 2x(¢) and d Repre-
sentation of —3x(#). e Representation of x(# — 2) and f Representation of 3x(¢). g Representation
of x(t — 2) + 3x(¢)
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e (3]
© 4 x(t—2) 4 3x(r)
3
1.___
S0 1 3 1 S o1 o Y
(€3]
£ 4 x(t—2)+3x[1]
3
_1____
I
|
—t -1 0 1 2 3 t

Fig. 1.35 (continued)

(a)
(b)
(©)
(d)

x(t —3)

2x(1)

—3x(1)

x(t —2) 4+ 3x(1)

35

Solution:

(a) To represent the signal x (¢ — 3)
x(¢t — 3) is obtained by time shifting x(¢) by 3 unit of time toward right. This is

shown in Fig. 1.35b.

(b) To represent the signal 2x (¢)
This is an amplitude scaled signal. The amplitude of x(¢) is multiplied by the
factor 2 and is shown in Fig. 1.35¢.

(c) To represent the signal —3x(¢)
The signal x(¢) is amplitude inverted and multiplied by a factor 3. This is shown

in Fig. 1.35d.
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(d)
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To represent the signal x (¢ — 2) + 3x(¢)

The time delayed x(¢# — 2) is obtained by shifting x(¢) to the right by a factor
2. This is represented in Fig. 1.35e. The signal x(¢) is amplitude multiplied by
a factor 3 and 3x(¢) is obtained. This is shown in Fig. 1.35f. By adding the
signals shown in Fig. 1.35e and in Fig. 1.35f, x(# — 2) 4 3x() is obtained and
is represented in Fig. 1.35g.

B Example 1.9

Consider the triangular wave form x(#) shown in Figure 1.36(a). Sketch the following
wave forms:

@  x(2r+3)

b x (t 5 3)
! 3

o (3-)

(d) x(=2t+3)
(e) x(=2t —3)

Solution:

(a)

(b)

(©

(d)

(e)

To sketch x (2t + 3)

Figure 1.36a shows x(¢) = tri(¢). By time shifting by t = 3 toward left, x(t + 3)
is obtained and this is sketched in Fig. 1.36b. x(¢ 4+ 3) is time compressed by a
factor of 2 to get x(2¢ + 3). This is sketched in Fig. 1.36¢.

To sketch x (£3)

The signal x (42) is written as x (£ + 1.5). The signal x(¢) is time shifted to
the left by 1.5 unit to get x(¢# 4+ 1.5). This is sketched in Fig. 1.36d. x(¢ + 1.5)
is time expanded by a factor 2 to get x (% + 1.5) which is nothing but x (%)
This is sketched in Fig. 1.36e.

To sketch x (5 — 3)

x(t — 3) is obtained from x(¢) by time shifting the signal x(¢) to the right by 3
unit and is shown in Fig. 1.36f. By time expansion of x(¢t — 3) by a factor 2,
x (£ — 3) is obtained and sketched as shown in Fig. 1.36g.

To sketch the signal x (—2¢ + 3)

Signal x(—t) is obtained by folding x(¢) and it is shown in Fig. 1.36h. x(—¢) is
time shifted to the right by 3 unit to get x(—¢ 4 3). This is shown in Fig. 1.36i.
The signal x(—¢ + 3) is time compressed by a factor 2 to get x(—2¢ 4 3). This
is sketched in Fig. 1.36;j.

To sketch the signal x (—2¢ — 3)

x(—t) is shown in Fig. 1.36h. From Fig. 1.36h, x(—¢) is time shifted toward
left by 3 units to get x(—t — 3). This is shown in Fig. 1.36k. x(z — 3) is time
compressed by a factor 2 to get x(—2¢ — 3). This is sketched in Fig. 1.36l.
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B Example 1.10
A continuous time signal x(¢) is shown in Figure 1.37(a). Sketch and label carefully

each of the following signals:

(a) x(t—1)
(b) x2—1)

@ wop(i+3) - (3)]

@  xQ@t+1)

(Anna University, April, 2008)

(a) 4 x(1) = tri(r)
1

A

(b) (©
x(t+3) x(2t+3)

A

(d)

<
<

—t —25-15-5 0

Fig. 1.36 a x(t) =tri(t). bx(t +3); cx2t +3). d x(t + 1.5); e x (#) fx(t—3);gx (% — 3).
hx(=t);ix(—t+3);jx(=2t+3). kx(—t — 3); 1 x(=2t — 3)
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(e

&)

IS0y AN
N

~Vv

’
(h) A x(=1) @) A x(—143)
1
PR 0 1 1 7
i k
2 x(—2t+3) )
L )
|
| :
1 » t
0o 1 15 2 t
1
D x(—2t—3)
AT 1
—t -2 71.571 0

Fig. 1.36 (continued)

Solution:

(a) To sketch x(t — 1)
x(t — 1) is the time delayed signal of x(¢) by one unit. x(¢) is shifted to the right
by t = 1 and it is sketched as shown in Fig. 1.37b.
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(b) To sketch x(2 — ¢)
The folded signal of x(¢) is x(—¢) and is shown in Fig. 1.37c. x(—t) is right
shifted by 2 unit to get x(2 — ¢) and is shown in Fig. 1.37d.

(c) To sketch x (£)[8(t + 3) — 8(t — 3)]
S(t+ %) and§(t — %) are shown in Fig. 1.37e, which occur as unitimpulses att =
—% andr = %, respectively. Atr = —%,x(t) = —% and §(¢ + %) = 1. Using the
property of impulse x(¢)8(t — to) = x(t9)8(t — ty), we get x()8(t + %) = —
Similarly at # = 2, x(r) = § and —=8(t — 2) = —1. Hence, x(1)8(t — 3) = —
This is sketched as shown in Fig. 1.37f.

(d) To sketch x (2t + 1)
From Fig. 1.37a, x(¢ + 1) is derived by shifting x(¢) to the left by = 1. This is
shown in Fig. 1.37g. By time compression of x(z 4+ 1) by a factor 2, x(2¢ 4- 1) is
obtained and sketched as shown in Fig. 1.37h.

B —=1 =

B Example 1.11
Sketch the signal x(¢) = [u(t) — u(t — a)] where a > 0.

Solution:

(1) The unit step signal u(#) is shown in Fig. 1.38a.

(2) The unit step signal with a time delay a and amplitude inverted is shown in
Fig. 1.38b.

(3) If the above two step signals are added, a pulse signal is obtained and is sketched
as shown in Fig. 1.38c which gives u(f) — u(t — a). The above signal is defined

as
x)=1 0=<t<a
(a) b x(7)
2
1

I

i

I
“ + »
—t -2 -1 0 1 2 t

_________________ _1

Fig. 1.37 a x(t) plot. b x(t — 1) plot
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(b) Px(t—1)
)
1
| |
| |
| |
— 1 : : R
-t 0 1 2 3 t
———————— -1
(©) (d)
t x(—1) t+ x(2—1)
2 2F---
1 -
I L
| | |
« ! » ! »
-t -2 -1 0 1 2t 0 1 2 3 4 t
_1 ________ _1 _________________
© G C G R GET)
d3(t+3/5)
“““ 1
T 3/ =3/ 3/
S, 0 1] 2 1 ) L —1 0 1] 2 &
. G e

Fig. 1.37 (continued)
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® 4 x(1+1) M A x(2U+1)
2 2
___4l _41
] ]
| |
-3 [ \ [ \
< ¢ > < : »
-t -2 -1 0 1 t —t _3| /11,0 1 t
____________ -1 B B
Fig. 1.37 (continued)
(@) (b) ©
+ u(?) 0 a 4 b u(t)—u(t—a)
1 1
— 1 _____
0 t= —u(t—a) 0 a t:
Fig. 1.38 Pulse signal from two step signals
(@ (b) (©
x(1) +u(l—r) x(Hu(1—1)
2 2
1
1 -
2 0 2 1 0o 1 1 -2 0 1 7

Fig. 1.39 Product of triangular and time delayed step signals

B Example 1.12
Consider the signal x(¢) shown in Fig. 1.39a. Sketch the signal x(*)u(1 — t).

Solution:

1. The signal x(t) is shown in Fig. 1.39a. The signal u(1 — t) is shown in Fig. 1.39b.

2. The signal x(¢) is multiplied by the factor 1 for the intervals —2 < ¢t < 0and 0 <
t < 1. During these time intervals, the slope of the straight lines of the triangles
are +1 and —1, respectively. Hence, x() is retained as it is. At ¢t =1, x(¥) = 1
and u(1 —r) = 1. Hence, x(H)u(1 —t) = 1

3. Fort > 1,u(1 —t) = Oandhence, x(t)u(l — ¢) = 0. Thisis sketched in Fig. 1.39¢.
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(©
@ 4 rect(d) ®) 3(t+5) rect(Hd(r+})
1
T‘ il
-1 0 1:t hap _% 0 % ha _% 0 ¥

Fig. 1.40 Product of rectangular and time advanced impulse

B Example 1.13
Consider the signal rect(%). Sketch the signal rect(3) 8( + %).

Solution:

1. The rectangular pulse rect(%) is shown in Fig. 1.40a.
2. The time advanced impulse & (¢ + %) is defined as follows:

8 t~|—1 1 if ¢ !
— — 1 e —
2 2

=0  otherwise

This is sketched in Fig. 1.40b.

3. At t = —%, the magnitude of rect(r) = 1. Hence, using the property x(¢)
8(t + t9) = x(ty), we sketch x(#)S (¢ + to) as animpulse at t = —% which is shown
in Fig. 1.40c.

B Example 1.14

x(f) = 1073+

Determine x(f + 2), x(— 4 2) and x(§ — 5).

Solution:

x(r) = 10e 3+
1. Fort=1t+2,

)C(l + 2) — 106—3(l+2)+4

x(t+2) = 10e732

2. Fort = —t+2,
X(—t +2) = 10e 2+
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3. Fort= (5 —95),

43

|x(—1 +2) = 1047

X L —5) =10e 3G9+
4

X L_ 5) = 10 3+19
4

B Example 1.15

Decompose the signal x(#) shown in Fig. 1.41a in terms of basic signals such as delta,

step and ramp.

(Anna University, December, 2007)

(a) 4x(1) (b) »u()+u(t—1)—3u(t—2)
2___ ¢M(t)
1 Yue—1)
0 l 3 R
1 2 0 4t 0 1 2 1
B —— !
_3 ——————————
—3u(:—2)T
© , u@®+u—1)—3u(t—2) (A ar(t=3)—r(—4)
o)) N
1 r(l‘—3)7
|
|
L > 0 >
0 2 1 EERERENN
—lpmmmme e — r(1—4)
e 4x
2____ Ve
1 ///;(l‘—3)
0 1 24%/ N
S I TSo—4)

Fig. 1.41 Composite signal expressed in terms of basic signals
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Solution:

1. The given signal x(¢) is shown in Fig. 1.41a.
2. The signals u(t) + u(t — 1) — 3u(t — 2) are shown in Fig. 1.41b and their sum is
shown in Fig. 1.41c.
. The signals r(t — 3) and r(t — 4) are shown in Fig. 1.41d.
4. Signals in Fig. 1.41c, d are summed up and they are shown in Fig. 1.41e which
is nothing but x(#). Hence,

W

[x() =u() —u(t = 1) = 3u(t —=2) + r(t =3) —r(t — 4)

5. For the time 3 < t < 4, the ramp signal is to be generated with a 4ve slope of 1.
The equation of this straight line signal is

r(t) =t+c
Atr=3,r(t) = —1

—1=3+4c¢
c=—4
ry=@t—4) 3<t<4
=@ —=Du—3) —u—4)]

x(t) = u(t) +u(t — 1) — 3u(t —2) + (t — H)[u(t —3) — u(t — 4)] \

B Example 1.16
Sketch the signals

(a) x(t) = —4sgn 3t
(b) x(t) = Ssinc 10¢

Solution:

(a) x(t) = —4sgn3t
The signal sgn ¢ is shown in Fig. 1.42a. The signum function is inverted and
multiplied by a factor 4. The time compression by a factor 3 does not apply in
this case as the signal remains constant for —oo < t < co. The signal is shown
in Fig. 1.42b.

(b) x(t) = 5sinc10¢
The signal sinc ¢ is sketched in Fig. 1.42c. The sinc function amplitude is multi-
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(a) (b)
4 x(t)=sgnt 4 x(t)= —4sgn3t
11— —4
: :
-1 —4
© . (@)
x(t) = sinct x(t) = Ssinc10¢
5
1

~_ KA ~T
-4 -3 =2 -1 |O 1'\/2I 34

~Vv
T
%
|
|.—
g
|‘*’Z

~V

S
—
)
—_
=
—
3
—
=
=S

1

(=]

1

Fig. 1.42 Representation of signum and sinc functions

plied by the factor 5 and the time is compressed by the factor 10. x(¢#) = 5 sin 10¢
is represented in Fig. 1.42d.

B Example 1.17

Consider the signal shown in Figure1.43(a) and sketch the following signals.
. x(Du@ —1)

. x(Ou+1)

. x@u(—t—1)

. x@u(—t+1)

L x(t—=Du@—-1)

. x@t 4+ Du(t+1)
cx(=2t = Du(—t—1)

. x(=2t+ Du(—t+1)
Cx@O[u@+ 1) —u —2)]

O 0 9 O Lt A W N =

Solution:

1.

1 t>1
u —1) = 0 r<1

x(t) is sketched in Fig. 1.43a. It will be multiplied by 1 for # > 1 and by 0 for
t < 1. x(f)u(t — 1) is shown in Fig. 1.43b.
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b
@ 1 x0) ®) x(Du(r—1)
5 l--
2 —_——
1
3 o 01 2 o 0o 1 2 1
© d
T x(Hu(t+1) @ x(Hu(—t—1)
o=
_f 1 01 2+¢{ - =32 -0 o1 2.
(
2 2 x(Hu(—t+1) ® x(t—Du(t—1)
2 ______
1 N
T3 2 <101 21 % 0o 1 2 31
© iy ® Xty
2 2
| 1
/\ |
I I
I I
) . . I I R
-t -4 -3 —2 -1 0 1 ¢ -t -2 3 -1 -1 17
2 2 2
@ x(2t+ Du(t+1) T 0 T x(—1)
2 -2
1 1
- =2 -1 1 o 1 ¢ =2 =1 o 1 2 37
2 2

Fig. 1.43 Sketching of signal x(7) for Example 1.17
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(k) 1) )

—————— 2

32 =1 o0 1 2:¢ -1
(m) X2 Du(=1=1) () $x(-r+1)
-—12 2
1
—1 ERETI i —f 1 o 1 2 3 41
©) t x(=2t+1) (P) t x(=2t+ Du(—1+1)
2 2
1 1
1 o0 1 1 3 21 0 1 7
2 2 2 2 2
@
d $ 3O+ D) —u(t=2)]
5l
1
by =i 0 1 2 ¢

Fig. 1.43 (continued)
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1 t>-—1
t+1) = -
u ) {O t<—1
x(t) is multiplied by 1 for > —1 and by O for t < —1. x(*)u(t + 1) is shown in
Fig. 1.43c.

(—r—1) 1 t<-1
u\—1 — =
0 r>-—1
x(t) is multiplied by 1 for t < —1 and by O for r > —1. x(f)u(—¢ — 1) is shown
in Fig. 1.43d.

1 t<1
—t+1)= -
u( ) {0 t>1

x(t) is multiplied by 1 for t < 1 and by O for ¢ > 1. x(t)u(—t + 1) is shown in
Fig. 1.43e.

1 t>1
u —1) = 0 r<1

x(t) is right shifted by 1 to get x(¢ — 1). This is shown in Fig. 1.43e. x(t — 1) for
t > 1 is identified and plotted as x(+ — 1)u(t — 1) and shown in Fig. 1.43f.

Grn=1" =71
u =
0 t<-—1

x(t) is left shifted by 1 and x(¢ + 1) is plotted as shown in Fig. 1.43g. x(r + 1)
is time compressed by 2 and is shown in Fig. 1.43h. x(2¢t + 1) for t > —1 is
multiplied by 1 and for t < —1 by 0 and x(27 + 1)u(z + 1) is plotted as shown
in Fig. 1.43i.

1 t<-1

Rt



1.6 Basic Operations on Continuous Time Signals 49

x(—1) is sketched by reflection of x(¢) and is shown in Fig. 1.43;. It is left shifted
by 1 togetx(—t — 1) andis showninFig. 1.43k. x(—¢ — 1) is time compressed by
2 and is shown as x(—2¢ — 1) in Fig. 1.431. Forr < —1, x(—2¢ — 1) is multiplied
by 1 and for # > —1 by 0 and x(—2¢ — 1)u(—t — 1) is obtained and plotted as
shown in Fig. 1.43m.

1 <1
—t+1)= -
u( ) {0 t> 1
x(—1t)isrightshifted by 1 and plotted as x(—¢ + 1) as showninFig. 1.43n. x(—¢ +
1) is time compressed by 2 and x(—2¢ + 1) is plotted as shown in Fig. 1.430.
For t < 1, x(—2¢ + 1) is multiplied by 1 and for > 1, it is multiplied by zero.
Thus, x(—2¢ + 1)u(—t + 1) is obtained and sketched as shown in Fig. 1.43p.

1 -1<tr<2
0 otherwise

[w(t+1) —u —2)] = {

x(t) is multiplied by 1 for the time interval —1 <t < 2 and by O elsewhere.
Thus, x(¢)[u(t + 1) — u(t — 2)] is obtained and sketched as shown in Fig. 1.43q.

B Example 1.18

(I) Consider the CT signals shown in Fig. 1.44a—c. For each of these figures give the
mathematical description. Derive the first derivative of these equations in terms
of singularity equations. Sketch the waveform of the derivative signals.

(II) Consider the mathematical description of a certain signal which is given as

x(t) = Qt = 6)[ut+1) —u —4)]

Sketch the signal x(7).

Solution:

@O (@
x(t) =u(t) —u(t —a)

The above equation represents a rectangular pulse of width a and height
1 and is represented in Fig. 1.44a. The derivative of the above equation is
obtained as

dx(t) _ du(t) _ du(t — a)

dt  dr dt
= 5(1) — 8(t — a)
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The impulses at = 0 and ¢ = a are shown in Fig. 1.44d. From Fig. 1.44a, it
is evident that the derivative of a pulse can be obtained just by observation.
For x(t) being constant, the derivative will be zero. At t = 0, there is an
up going pulse of strength 1 and at t = a, there is a down going pulse of
strength —1.

(b)

t 0<t<a
x(1) = .
0 otherwise

The above equation represents a triangle with unity slope with a base of a

and is sketched as shown in Fig. 1.44b. Further, the above equation can be
written as follows:

x(t) = t{u(t) — u(t — a)]

Differentiating the two time functions using # — v method, we get

dx(r)  [du®) du(t—a)
p _t[ e 7 i|+[u(t)—u(t—a)]

=15(t) —t5(t —a) + [u(t) — u(t — a)]
=0—as(t—a)+u() —u(t—a)

(@) b (©
Yoy x(1) ® x(0) ¢ + x(H)=sgnt
1
1 af--———, R
i 0 t
-1
0 a ; 0 a ;
d © | dut
(g
423(1)
0 a ! B .
0 a 7 ! 0 !
_1 v
—3(t—a) —ad(t—a)

Fig. 1.44 Representation of x(¢) and its derivatives of Example 1.18(a). Sketch of x(¢) of Exam-
ple 1.18(b)
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(€]

A — h
(21=6) ®) e+ D)= u(t=4)

______ -8 () + x(1)

Fig. 1.44 (continued)

Thus, the derivative of the triangle is obtained as the sum of a rectangular
pulse of width a and an impulse of strength —a occurring at ¢ = a. This
is represented in Fig. 1.44e. This can be also obtained just by observation.
For the straight line of the triangle, the slope is one, and correspondingly,
the rectangular pulse in the derivative of x(¢) will have the height which is
nothing but the slope (which is 1 here) and the width of the rectangular pulse
is “a” which is the base of the triangle. The triangle has a negative going
impulse at ¢ = a. The rectangular pulse together with the impulse is shown
in Fig. 1.44e.

x(t) = sgnt
=u(t) — u(—t)
dx(t) _
ek 8(t) — 8(—1)
=48() +6(1)

= 25(1)
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x() is shown in Fig. 1.44c and its derivative in Fig. 1.44f. By observation of
Fig. 1.44c, its derivation can be obtained. Since signal is constant at all time
t except t = 0, its derivative is zero. At t = 0, there is an up going impulse
from —1 to 1. This impulse is represented as 23 (7).
(I) 1. (2t — 6) is a straight line of slope +2 and is passing through ¢ = 3 with
zero magnitude. This is sketched as shown in Fig. 1.44g.
2.

1 —-1<t<4
w+1) —ut —4] = .
0 otherwise
The signal of the equation is sketched in Fig. 1.44h.
3. (2t — 1) will be multiplied by 1 for —1 < ¢ < 4 and by zero elsewhere.
The plot of x(¢) is shown in Fig. 1.44i.

B Example 1.19

Sketch the signal x(¢) which has the following mathematical description.

3143 —2<1<0
x() =13 0<r<4

0 otherwise

Also, sketch the signals x(¢/4) and x(5¢) and give their mathematical descriptions.

Solution:

1. x(t) = %t + 3 for —2 <t > Oisastraight line with a slope 3/2 and x(¢) = 3¢
for 0 <t < 4 is an exponential decay. These two are combined and shown as
x(t) in Fig. 1.45a.

2. x(t/4) is the time expanded signal. In the signal description of x(¢/4), time ¢ in
x(t) is replaced by #/4 and the time axis ¢ is expanded by 4. Thus, the following
mathematical description is written for x(¢/4)

3 _ z
x(t/4) = 8t—i—3 2§4<O
or —8<t>0

3o~ it O§£<4

— or0<t<16

0 otherwise

x(t/4) with the above mathematical description is sketched as shown in Fig. 1.45b.

3. x(5¢) is the time compressed signal. To sketch x(5¢), time ¢ in x(¢) is replaced by
5t and the time axis is compressed by a factor 5. Thus, the following mathematical
description is given for x(5¢)
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(a) ) (b) 4 x %)
3 3
3 3
7t+3 oy §t+3 30t
APt 0 4 7 53 0 16 7
(C) 4 x(St)
3
15
31t3 3p— 150
hi ) >
t < 0 % t

Fig. 1.45 Graphical representation x(), x(¢/4) and x(5¢) of Example 1.19

L2r+3  —2<51<0
x(51) =
0r%2§t<0
371 0<5t<4

4

0r0§t<5

With the above mathematical description x(5¢) is sketched and is shown in
Fig. 1.45c.

B Example 1.20
The signal x(#) is given by

t+1) —-1<tr<0
x(t)y =11 0<t<?2
0 otherwise

Find the mathematical and graphical representation for x(—¢), x(3 — ¢) and x(¢/2).

(Anna University, 2011)
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() (1) (b) b x(—1)
1 1
-t -1 0 2 r -2 0 1 7
(d) A X(L)
© t x(—t+3) 2
1
sL__ 1
|
I
|
|
|
i R
il‘ 0 1 3 4 l: —t -2 0 4 t

Fig. 1.46 Graphical representation of x(¢), of Example 1.20

Solution:

1. The graphical representation of x(¢) is shown in Fig. 1.46a. x(¢) can be mathe-

2.

3.

matically represented by a single equation for all ¢ as

x() = @+ Du@t+1) —u@®)] + [u@) —u(t —2)]
=@+ Du(t+1) — tu(t) — u(t —2)

x(—t) is obtained from x(¢) by signal reflection and is shown in Fig. 1.46b. x(—t)
is mathematically represented as

1 —-2<t<0
x(=t) =30 -1 0<t<l1
0 otherwise

The above equations can also be written as a single equation for all time ¢ as

x(®) = [u@+2) —u@®]+ A = D[u@) — u - 1)]
= [u(t +2) — tu(t) + (¢ — Du(t — 1]

x(—t) is right shifted by 3sec. to get x(3 — ¢) and is graphically represented in
Fig. 1.46¢. The following mathematical equation is written for x(3 — 7).
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1 1<t<3
xB-N=14—1t 3<t<4
0 otherwise

The following single equation for x(3 — ¢) for all time # is written.

xB=0=[ut—1) —ut—3)]+@—0u@—3)—ult—4)]
=u(t—1)— @t —-3u(t—-3)+ (& —Du(t —4)

4. x(t/2) is obtained by time expansion of x(#) and is shown in Fig. 1.46d. The
following mathematical equations are written for x(z/2).

; <
X <§> =11 0<r<4
0 otherwise

The above equations can be written as a single equation as

X <%) = (%t + l) [u(t +2) — u(®)] + [u@®) — ut — 4)]

= (%t + 1) u(t +2) — %m(f) —u(t—4)

B Example 1.21

Carefully sketch the following signals. Express the signals in terms of singularity
functions.

1.  x(t) = Srect (%)

t+2
2. x(t):rect( +2)
4
3. x(t) = rect(—4t +5)
1 0<tr<3
0 3<t<5
4. x(1) = =r=
1 5<t<8

0 otherwise

Express x(t)as products as well as sum of step functions.

5.  x(t) = 2rect ¢ ; >
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(t—15) (t—06)
5 -+ rect )

7. x@®)=r®)+r@—1)4+2rt—2)—2r(t—3) —3u(t — 6)
8. x(®)=r@+3)—r@)+r—3)

9.  x(t) =u®u5—1)
10.  x(t) = u(t) +8(t — 3)

1. x(®) = u(@®)é( —3)

6. x(t) =rect

r(t+5 —5<t<-3

2 —-3<tr<?2
12.  x(r) = {4 2<t=<4

—rt—4) 4<t<5

0 otherwise

13. x@O)=u(@+4)r(—t+2)
14.  x(t) = rect (4) tri(t 4+ 1.5)

15. x(¢) = rect ( ) tri (%)

16. x(t) =rQ2t+ l)rect(

Solution:

1.

x(t) = Srect (i)

rect(¢) is plotted as shown in Fig. 1.47a.

@) T rect(r) (b) 4 Srect(1/4)
1 5
s 1 G e 5 »
t -3 0 7 t t 2 0 t

Fig. 1.47 Rectangular CT signal
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(@) T rect(t+1) (b) t @+
rectT

--11 --q1
3 1 > P — >
t -3 -5 0 t t =3 1 0 t

Fig. 1.48 Time shifted rectangular CT signal

Its amplitude is multiplied by 5 and time is expanded by 4 to get x(f) = Srect (5—1)
which is shown in Fig. 1.47b. The mathematical equation for the above signal
is

x(t) = S[u+2) —u(t —2)]

or

x(t) = 5Su(t +2)u(—t+2)

(t+2) t
t = tl =+ 1
ec 2 rec <2+ )

x(t) is left shifted by 1sec and plotted as x(z + 1) which is shown in Fig. 1.48a.

rect(z + 1) is time expanded by a factor 2 to get rect(% + 1) which is nothing

butrect (’ng). This is plotted in Fig. 1.48b. The mathematical equation for this

signal is written as

x() =u(t+3)—ui+1)
or
x(t) =ut+3u(—t—1)
3. The signal x(—t) is sketched in Fig. 1.49a. x(—t) is right shifted by 5 sec to
get x(—t + 5) and is sketched in Fig. 1.49b. x(—¢ 4 5) is time compressed by a

factor 4 to get x(—4¢ 4 5) which is sketched as shown in Fig. 1.49c. The equation
for x(—4t + 5) can be written as
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(a) 1 x(—1f)=rect(—1) (b) t x(—t+5)
1 [ —
< » i 2 11 >
© ' X(—41+5)
1 - ——
hi 9 [TRS
t 0 < u t

Fig. 1.49 x(¢) = rect(—4t + 5) graphical representation

1 0<r<3
0 3<t<5
1 5<t<8
0 otherwise

x(t) =

The signal x(#) is sketched as shown in Fig. 1.50. x(#) can be expressed in the
mathematical forms as

x(t) = u(t) —u(t —3)+u(t—5) —u(—38)

or
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T x(1)

v

—t 0 3 5 8

Fig. 1.50 Graphical representation of Example 1.21.4

x(t) = ul®)u@ — 1) + u(t — 5)u® — 1)

x(t) = 2rect @ ; >

t 5
=2rect| - — =
2 2

59

rect(t — %) is sketched by right shifting 2rect(#) by % as shown in Fig. 1.51a
and 2rect(t — %) is obtained. This signal is time expanded by a factor of 2 to get

x(t) = 2rect (’;5) and is sketched as shown in Fig. 1.51b.
The mathematical expression for x(t) is written as

x(t) = 2[u(t — 4) — u(t — 6)]

or

(@) + 2rect(t—5/2) () + 2rect[(1—5)/2]

ap 0 2 3 ;Y 0 4

Fig. 1.51 Graphical representation of Example 1.21.5

v
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x(t) =2ut —4u(6 — 1)

6.
t—5 t—6
x(t) = rect( 3 ) + rect( 5 )
rect(t — 1) is plotted by shifting rect(¢) by 1 to the right and is shown in Fig. 1.52a.
(@) + rect(t—1) (b) b rect[(t—5)/5]
1--- 1b-—-
: 1 hs 5 15 >
t 0 % % t t 0 3 b t
(c) *+ rect(1—3) @ 4 rect[(t—6)/2]
1F-- 1hb--
- > 5 0 5 7 e
t 0 % % t
(e b x(f)=rect[(t—5)/5]+rect[(t—6)/2]
2 __________
1 _____
| |
I I
I I
I I
I I
I I
I I
I I
< L L >
—t 0 3 5 7 I3 t

Fig. 1.52 Graphical representation of Example 1.21.6
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Fig. 1.53 Graphical 4 x(f)
representation of Example
1.21.7
3P i
I
2 e :
I
|
1=~ d :
! l
! 1
| 1
! |
! |
1 L >
0 1 3 t

(t—5) t
rect =rect| - —1
5 5

Now rect(r — 1) is time expanded by 5 and rect(’g—s) is plotted as shown in
Fig. 1.52b.
(t—6) t
rect =rect| - —3
2 2

rect(t — 3) is plotted by right shifting rect(s) by 3. rect(r — 3) (Fig. 1.52¢) is

time expanded by 2 to get rect (’;3) which is shown in Fig. 1.52(d). Figure 1.52b,

d is added to get Fig. 1.52e which represents

x(t) = rect

g ; 5) —+ rect @ ; 6

From Fig. 1.52e, the following equation is derived for x(z).

5 15
x(t)=u<t—§>+u(t—5)—u(t—7)—u<t—7)

x(t) = r(t) — r(t — 1) 4+ 2r(t — 2) — 2r(t — 3) — 3u(t — 6)

For 0 <t < 1, the ramp signal with slope one is drawn. ramp(¢ — 1) cancels r(t)
and hence, x(¢) remains constant at 1. Att = 2, the ramp (¢ — 2) starts with slope
2 and exits upto ¢ = 3. At t = 3 a negative going ramp with slope —2 makes
x(t) flat with amplitude 3. At = 6, a negative step function with amplitude
—3 makes x(f) = 0. Thus, x(#) is sketched as shown in Fig. 1.53. x(#) can be
expressed in terms of the singularity step and ramp functions as follows.
ForO0<t <1,
x(t) =t
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and for2 <t > 3,

x(t) =2t—3
t 0<tr<l1
1<t<?2
x(t) =
2t—-3) 2<t<3
3 3<t<6

The above equation can be written as a single equation for all time ¢.

x(t) = tlu(®) —u(t — D]+ [u@ — 1) —u(r — 2)]
+ 2t = 3)[ut —2) —u(t — 3)] + 3[u( — 3) —ut — 6)]

x(t) =tu(@) — (¢ — Du@— 1)+ 20t —2)u(t —2)
—2(t — 3)u(t — 3) — 3u(t — 6)

The above equation can be checked for any time ¢. For example for r = 2.5,

x(t)=25-25-1)4+225-2)
=25-15+1
=2

x(t) = r(t +3) — r(t) — 2r(t — 3)

The above equation can be written as follows.

Xy =t+c
xl(t)=0

0=-3+c¢
or c¢c=3
xi(t) =t+3

x3(t) = =2t +c¢
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x3(t) =3
3=—-6+c
or ¢c=9
x3(t) = =2t +9
t+3 -3<t<0
(@) = 0<r<3
—2t+9 >3
0 otherwise

x(1) = x1(1) + x2() + x3(7)
The above equation is represented in Fig. 1.54.

x() = (1 + 3+ 3) —u@®)] + 3[u(®) —ut —3)]+ 9 —20)u(r — 3)

\x(t) = (t 4+ 3)u(t +3) — tu(t) — 2(t — u(t — 3) \

x(t) =u@®ud —1)

u(t) and u(5 — t) are sketched in Fig. 1.55a and b, respectively. The product
of these two signals exits when they overlap. As seen from these figures the
overlapping occurs for 0 < ¢ < 5 and it forms a pulse as shown in Fig. 1.55c.
From Fig. 1.55c¢, the following equation is written for x(z).

\x(:) = u(t) — u(t — 5) \

Fig. 1.54 Graphical 4 )
representation of Example
1.21.8

3 x5(1)

x1(7)
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() + u(?) () Tu(5—1)
1
a 0 ; an 0 5 :
© & x(O)=u(Ou(5—H=u(t)—u(t—5)
1
h 0 :

Fig. 1.55 Graphical representation of Example 1.21.9

Fig. 1.56 Graphical
representation of Example
1.21.10

10.

x(t) =u@)+5(0—3)

t x(H=u()+3(1—3)

e}
[N ) S
v

The above signal is the summation of a step and impulse at # = 3. The sketch of
x(t) is shown in Fig. 1.56.
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(a) (b)
+ x(H=u(t)d(t—3) +x(0)

<

—t 0 3 t —t 0 3

~y

Fig. 1.57 Graphical representation of Example 1.21.11

11.

x(t) = u(t)d(t — 3)
=u(3)5(t —3)
u(t) and (¢t — 3) are represented in Fig. 1.57a. x(¢) = u(¢)4(t — 3) is nothing
but u(r) att = 3. Att # 3, x(¢) = 0. This is represented in Fig. 1.57b.
12.

r¢+5) —-5<t<-3

2 —3<tr<?2
x(t) = 14 2<t<4

—r(t—4) 4<t<5

0 otherwise

The above equations are sketched as x(7) in Fig. 1.58. For —5 <t < —3,x(f)isa
straight line with a slope one and constant ¢ = 5. In other words, x(¢) = (¢ + 5)
for —5 <t < —3. Similarly, for 4 <t < 5, it has a negative slope of 4 and
constant ¢ = 20. Here,

x(t) =—4t+20 4<tr<5

The following single equation in terms of step and ramp singularity functions is
written for the signal x(¢)
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4 x(0)

4 =

N _—— — —_ =
N

()]

Sy

-t -5 =3 0

Fig. 1.58 Graphical representation of Example 1.21.12

x(t) =@+ 5)[u@+5) —ul@+3)]+2[u(+3) —u(t —2)]
F4{u(t —2) —u(t — 4] + (—4t + 20)[u(t — 4) — u(t — 5)]
=@+5ut+5) —[t+5—2u(+3)]+ 2u(—2)
+[(—4t +20 — Du(t — H] 4+ 4@ — Su(t — 5)

x(t) =@ +5ut+5) — (+3u(t+3) 4+ 2u(t —2)
—4(t —Dut —4) + 4@ — Su(t —5)

The validity of the above equation may be checked for any time ¢. For example,
fort =3,

X()e3 =8 — 6 +2
=4

13.
x(t) = u(t + 4)ramp(—¢ + 2)

The signal ramp(¢) is plotted in Fig. 1.59a as (). By folding r(¢), r(—1) is plotted
in Fig. 1.59b. r(—1) is right shifted by 2 to get »(—¢ + 2) which is sketched in
Fig. 1.59c. The step signal u(z) is left shifted by 4 to get u(¢ + 4). This is shown
in Fig. 1.59d. When r(—¢ 4 2) and u(¢ + 4) are multiplied to get x(¢), the signal
x(t) = 0 for t < —4 and also for r > 2. This is shown in Fig. 1.59f.

The equation for x; (¢) in Fig. 1.59f is

x1(t) = —mt+c
=—t+c
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(a) + (o) (b) t r(—9
i |
|
|
|
|
|
|
« L > « >
—t 0 1 t —t 0 t
(©) tr(—1+2) (d) tu(t+4)
1
2
% 0 2 1 P — 0 :
© s=u(+ar(—r+2) D 1)
6
2
% —4 0 2 i 5 :

Fig. 1.59 Graphical representation of Example 1.21.13

Fort =2,
x1(H) =0
0=-2+4c¢
c=2

X =@2-n

67
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(a) 4 rectd) (b) ri(r)
1
1
AP 0 2 /P 0 1 t
(© A ri(r+1.5) (d x(n)=recttri(+1.5)
l A
. 1
I
|
x,(2) LA
I
—t—25 -15 —-05 0 1 —1-25 -2 —-15-050 2t
(e) “x(t)

0.5

-r=2 —15-1 —050 t

Fig. 1.60 Graphical representation of Example 1.21.14

For Fig. 1.59f, the following equation is written

x(t) = Q2 —=Dlu+4) —u —2)]

| x(0) = —tlu(r +4) — u(t — 2)] + 2[u(t + 4) — u(t — 2)]|

14.

x(t) = rect (i) tri(t + 1.5)

L

The signal rect (4) is shown in Fig. 1.60a. The signal tri(¢) is shown in Fig. 1.60b.
tri(¢) is left shifted by 1.5 to get tri(t + 1.5) which is shown in Fig. 1.60c. The
product of rect(ﬁ) and tri( 4 1.5) is shown in Fig. 1.60d. x(#) is obtained by
multiplying the above two signals when they overlap. This is shown in Fig. 1.60e.
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From Fig. 1.60d, the equations for x; and x, (which are straight lines) are obtained

as follows:
x1(t) =mt+c
wherem = 1. Fort = —1.5
xi(r) =1
1=—-15+¢
c=25
x1(t) =t+25
x(t) = —t+c
Fort=-1.5
X =1
1=15+¢
c=-0.5

X () = —(+0.5)
From Fig. 1.60e, the following equation is written

x() =@ +25)[u(t+2) —u(t+1.5)] — (¢t +0.5)[u + 1.5) — u(t +0.5)]

\x(t) = [(t +2.5)ut +2) — 2t + 3u(t + 1.5) + (¢ + 0.5)u(t + 0.5)] \

. t St
x(t) = rect (§> tri <4_1>

rect (%) is sketched as shown in Fig. 1.61a. tri(%) is sketched as shown in
Fig. 1.61b. Combined rect (%) tri (f—‘) is shown in Fig. 1.61c. The overlapping of
these two signals takes place during the period —1 < ¢ < 1. In this period tri(é)
is multiplied by 1 which gives x(¢). This is shown in Fig. 1.61d. x(¢) contains
two straight lines x; (#) and x, (¢) and they have slopes of }1 and —%, respectively.
These equations are written as follows:

15.

1
x1(t) = Zt—{—c

Fort =0,
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(@) 4 rect(%) (b) 4 tri(%)
1
1
S 0 1 R 0 & 1
© 4 rect(%)tri(%) (d

» <

—t—4 —1 0 1 4 1 —t

~V

Fig. 1.61 Graphical representation of Example 1.21.15

x1() =1
1=0+c¢

1
x() = 1+1

1
x(t)=—-t+c

4
Fort =0,
x»nt) =1
1=0+¢

1
x(t) = —Zt +1

x() =xi(Ou@ + 1) —u@®)] + x2(O[u(®) —u —1)]
= (025t + D[u + 1) —u@®] + (1 — 0.256)[u(t) — u(t — 1)]

x(t) = 0.25(t + Hu(t + 1) — 0.5tu(t) + 0.25(t — Hu(t — 1)

The above equation can be checked as follows. For = 0.5
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1
x () = ~1 x 0541
= 0.875

x(H)]i=05 = 0.25 x 4.5 —-0.5 x 0.5
= 0.875

16.

x(t) = ramp(2¢ 4 1)rect

t—2) r 1
rect =rect|{ - — =
4 4 2

The signal rect (t — (1/2)) is shown in Fig. 1.62a. It is time expanded by 4 and
rect @ is shown in Fig. 1.62b. The signal ramp(#) is represented in Fig. 1.62c.
The ramp r(¢) is left shifted by 1 to get r(¢ + 1) which is shown in Fig. 1.62d.
The signal r(¢ 4 1) is time compressed by 2 and r(2¢ + 1) is shown in Fig. 1.62e.
The combined signal r(2f + l)rect% is shown in Fig. 1.62f. These two signals
overlap in the time interval 0 <t < 4 and their product gives x(f) which is
represented in Fig. 1.62g. From Fig. 1.62g, the following equation is written

(t—2)
4

x() = Qt+ 1) [u(t) —u —4)]

|6(0) = 20[u(t) — u(t — D] + [u(t) — u(t — 4)]|

B Example 1.22
Consider the signal y(#) = 2x(—4t — 5) where y(¢) is described by

2t 0<t<l1
y) =132 1<r<3
0 otherwise

Find the original signal x(#) and plot with respect to 7. Give the mathematical descrip-
tion for x (7).

Solution:

1.
Y(t) = 2x(—4t — 5)
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(@) IS rect(z—%) (b) IS I'CCt(t;f)
1
i[ 0 1 ; h : 0 4 t:
© 4 o) @ & K+ 1) () A Q141
W/ |
I
|
1
| 1
|
! > > < »
0 Lot -l 0 ;=05 o 2
() r(2t+1) rect(%z) (® 4 x(?)
1 ol
1
=05 0 4 1 b 0 —

Fig. 1.62 Graphical representation of Example 1.21.16

y(¢) as per the mathematical description given is plotted as shown in Fig. 1.63a.
The following operations on x(¢) are performed in the sequential order to get

y(0).

(a) Signal reflection.
(b) Time shifting.

(c) Time compression and amplitude scaling.

2. To get x(¢) from y(¢), the reverse process is done in the following sequence.

(a) Amplitude scaling and time expansion.

(b) Time shifting.
(c) Signal reflection.
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(@ 1t y0 ® Ly

“y

© 1 1ywa-s) (d)

vy

I
I
I
I
I
:
I
-t 0 5 9 17

v

C—t —17 -9 =50
Fig. 1.63 Plot of y(¢) of Example 1.22

3. Amplitude scaling and time expansion: The amplitude of y(¢) is truncated
by 2 and time expanded by 4. The plot of %y (%) is shown in Fig. 1.63b.

4. x(—4t —5) is left shifted by 5 sec. Therefore, %y (ﬁ) is to be right shifted by 5
sec. Thus, the plot of %y(fl — 5) is obtained as given in Fig. 1.63c.

5. Finally time reflection is done to get %y(%’ —5), which gives x(¢). This is shown
in Fig. 1.63d.

6. The mathematical description of x(¢) is given below. For —9 <t < —5, the
straight line has a slope of —1/4 with a constant —5/4. Thus, we write

1 5

—zl —Z _9 S < —5
x(t) =141 —17<t<-9
0 otherwise

B Example 1.23

Consider the signal

y(0) = %X(—?ﬂ +4)

shown in Fig. 1.64a. Find the original signal and give its mathematical description
by a single equation for all time ¢.
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@ ty=gx(=3r+4)  ® + dy(5)
1 4
S -o0s 0 05 1 S 3 0 KR
©) t 4y(L+4) @ gy~ Lray=x0
-------- 1

—r — _5 0
2 4 2

~V
|

~

~V

Fig. 1.64 Sketch of signals of Example 1.23

Solution:

1. The multiple transformation of the signal x(¢) to get y(¢) takes place in the
following sequence.

(a) Time reversal.
(b) Time shifting.
(c) Amplitude and time scaling.

From the transformed signal y(), the original signal x(¢) is obtained in the reverse
order.

(a) Amplitude and time scaling.
(b) Time shifting.
(¢c) Time reversal.

2. The signal y(1) = %x(—3t + 4) is shown in Fig. 1.64a. Here, the amplitude of
x(t) is truncated by 4 and time is compressed by 3. In the transformation the
amplitude of y(¢) is amplified by a factor of 4 and time should be expanded. The
first transformation of y(¢) becomes 4y(#/3) and is shown in Fig. 1.64b.

3. y(¢) is right shifted by 4 sec. It should be left shifted by 4 sec to get 4y(§ +4)
which is sketched in Fig. 1.64c.

4. Finally to get x(¢), 4y(% + 4) is time reversed as 4y(—t/3 + 4). This is sketched
in Fig. 1.64d.

5. To get the mathematical description of x(¢), the following equations are written
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Fig. 1.65 Signal x(¢) of +x(1)
Example 1.24

-t =2
8 20 5
gl‘ -3 3 <tr< 4
x)=1Fr+4 4<r<
0 otherwise

6. As a single equation for all time ¢, the following equation is written

0=[tr-3][(-3) -]
8 44 4 11
#[ 3 g oo 3)]

x(t) = %[(81‘ —20)u(t — 2.5) + (—16t + 64)u(t — 4) + (8t — 44)u(t — 5.5)]

B Example 1.24
Consider the signal shown in Fig. 1.65.

(a) Give mathematical description for x(¢).
(b) Express x(#) by a single expression for all 7.

Solution:

(a) x(#) can be decomposed as x;(¢) and x,(#) where

x1(t) = mit + ¢4 —2<t>2
x(t) = —mot + ¢ 2<t>3
x(t) =0 otherwise

x(1) = x1(1) + x2(1)
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From Fig. 1.65, the slope m; = 2

5
x1(1) = Zt“l‘cl
Fort = —-2,x1(t) =0
0=+

= > Cq

5
1 = <= =25

2

From Fig. 1.65, the slope m, = 5
Xp) = —=5t+c¢
Fort=3,x(0) =0

0=-5%x3+c
6‘2215
x(f) = =5t + 15

(b) x;(#) can be written by a single equation for all ¢ as follows:
5
x1() = Zt 4+ 2.5 [u(t+2) —u( —2)]

X, (t) can be written by a single equation for all 7 as
Xy =[5t + 15][u(t — 2) — u(t — 3)]
x(t) = x1(2) + x2(1)
5 5
= Zm(r +2) +2.5u(t + 2) — Ztu(l —2) —2.5u(t —2) — Stu(t — 2)
+15u(t — 2) + 5¢(t — 3) — 15u(t — 3)

5 -25
x(t) = (Zt + 2.5) ut+2)+ (Tt + 12.5) u(t —2)
+(5t — 15)u(t — 3)
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(@) +x[n] (®) Hxoln]

1 11 1 1

[ 5 [ 5 5 [ 5{ 5
: I L, 1 ' L ..
-n =3 1—2—1 01 2 n -nl[3-2-1 Jo 1 2 3] n

-5 -5
~1
© tx[n]=x[n]+x,[n]
1.5 2

SiNE

-5 -5

Fig. 1.66 Addition of DT signals

1.7 Basic Operations on Discrete Time Signals

The basic operations that are applied to continuous time signals are also applicable
to discrete time signals. The time 7 in CT signal is replaced by » in DT signals. The
basic operations as applied to DT signals are explained below.

1.7.1 Addition of Discrete Time Sequence

Addition of discrete time sequence is done by adding the signals at every instant of
time. Consider the signals x;[n] and x,[n] shown in Fig. 1.66a and b, respectively. The
addition of these signals at every n is done and represented as y[n] = x;[n] + x[n].
This is shown in Fig. 1.66c.

1.7.2 Multiplication of DT Signals

The multiplication of two DT signals x[n] and x;[#] is obtained by multiplying the
signal values at each instant of time n. Consider the signal x; [n] and x; [n] represented
in Fig. 1.67a and b. At each instant of time n, the samples of x;[n] and x;[n] are
multiplied and represented as shown in Fig. 1.67c.
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1.7.3 Amplitude Scaling of DT Signal

Let x[n] be a discrete time signal. The signal Ax[n] is represented by multiply-
ing the amplitude of the sequence by A at each instant of time n. Consider the
signal x[n] shown in Fig. 1.67d. The signal 2x[n] is represented and shown in
Fig. 1.67e.

1.7.4 Time Scaling of DT Signal

The time compression or expansion of a DT signal in time is known as time scaling.
Consider the signal x[n] shown in Fig. 1.68a. The time compressed signal x[2n] and
time expanded signal x[5] are shown in Fig. 1.68b and c, respectively. One should
note that while doing compression and expansion of DT signal, only for integer
value of n the samples exist. For non-integer value of n, the samples do not
exist.

(a) t x[n] (b) + x[2n]
11 11 11
‘ s ‘ ‘ s s
‘ 5 ‘ [ 5
—4}—3—2—1 ojlz 34 n —21—1 01 2 n
s s s
(©) + x[4]
| | 1 1
5 5
NS ‘ W
4 6 8 n

Fig. 1.68 Time scaling of DT signal
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Time Compression
Let
yln] = x[2n]
y[—2] = x[-4] = 0.5

y[—1] = x[-2] = 0.5
y[0] = x[0] = 0.5
Y1 =x2] =1
2] =x[4] = 1.

The plot of x[2x] is shown in Fig. 1.68b.
Time Expansion
Let
n
yln] =x [5]
y[—8] = x[-4] = —0.5
y[=6l =x[-3]=1
y[—4] = x[-2] = 0.5
-21=a-11=1

y[0] = x[0] = 0.5
y[2] = x[1] = —-0.5
V4l = 2] =1
y[6] = x[3] = 0.5
y[8] = x[4] = 1.

The plot of x[5] is shown in Fig. 1.68c.

1.7.5 Time Shifting of DT Signal

As in the case of CT signal, time shifting property is applied to DT signal also. Let
x[n] be the DT signal. Let ny be the time by which x[n] is time shifted. Since 7 is an
integer, ng is also an integer. The following points are applicable while DT signal is
time shifted.

e For the DT signals x[—n — ng] and x[n + ng], the signals x[—n] and x[n] are to
be left shifted by ny.
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(@) %xln] (b) tx[n=21 5 —> © x[—n]
1 1 1 1 1 1
5 ‘ 5 ‘ 5 { 5 ‘ { 5 ‘ s
L1, 0 O O
0 1 2 3n 0 1 2 3 4 5n -n—=3 -2 -1 0
Right shifted x[n] Folded x[n]
(e) x[n+2] ® x[—n—2]
1 1 1 1
.5 ‘ s ‘ { .5 ‘ 5
_ o]
-10 1 2n -n-2-10 1n -n—-5—-4 -3 -2 —-10
Right shifted x[—n] Left shifted x[n] Left shifted x[ —n]

Fig. 1.69 Time shifting of DT signal

e For the DT signals x[n — ng] and x[—n + ng], the signals x[n] and x[—n] are to
be right shifted by ny.

Figure 1.69 shows time shifting of DT signal.

In Fig. 1.69a, the sequence x[n] is shown. The sequence x[n — 2] which is right
shifted by 2 samples is shown in Fig. 1.69b. x[—n] which is the folded signal is
shown in Fig. 1.69c. x[—n + 2] which is left shifted of x[—n] is shown in Fig. 1.69d.
x[n + 2] which is right shifted of x[n] is shown in Fig. 1.69¢. x[—n — 2] which is
left shifted of x[—n] is shown in Fig. 1.69f.

1.7.6 Multiple Transformation

The transformations namely amplitude scaling, time reversal, time shifting, time
scaling, efc. are applied to represent DT sequence. The sequence of operation of
these transformations is important and followed as described below.

Consider the following DT signal:

yln] = Ax [—Z + no]

Plot x[n] sequence and obtain Ax[r] by amplitude scaling.

. Using time reversal (folding), plot Ax[—n].

3. Using time shifting, plot Ax[—n + ng] where ny > 0. The time shift is to be right
of x[—n] by ng samples.

4. Using time scaling, plot Ax[—% + no] where a is in integer. In the above case,

keeping amplitude constant, time is expanded by a.

N =

The following examples illustrate the above operations.
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B Example 1.25
Let x[n] and y[n] be as given in Fig. 1.70a and b, respectively. Plot

(a) x[2n]

(b) x[3n — 1]

(©) x[n — 2]+ y[n — 2]
(d) y[1 —n]

(Anna University, December, 2006)

Solution: The DT signals x[n] and y[n] are plotted as shown in Fig. 1.70a and b,
respectively.

(a)

(b)

(©)

(d)

To plot x[2n]

Here, the DT sequence is time compressed by a factor 2. Hence, the samples only
with even numbers are divided by a factor 2 and the corresponding amplitudes
marked and shown in Fig. 1.70c. When odd values of n are divided by the factor
2, it becomes a fraction and they are skipped.

To plot x[3n — 1]

The plot of x[n — 1] is obtained by right shifting of x[n] by no = 1. This is
shown in Fig. 1.70d. When x[n — 1] is time compressed by a factor 3, x[3n — 1]
is obtained. Only integers which are divisible by 3 in the sequence x[n — 1] are
to be taken to plot x[3n — 1]. Thus, samples for n = 0 and n = 3 will be plotted
as shown in Fig. 1.70e.

To plot x[n — 2] + y[n — 2]

The sequence x[n — 2] is obtained by right shifting of x[n] by 2 and is shown in
Fig. 1.70f. Similarly, the sequence y[n — 2] is obtained by right shifting of y[n]
by 2 and is shown in Fig. 1.70g. The sequence x[n — 2] + y[n — 2] is obtained by
summing up the sequences in Fig. 1.70f, g for all
n and is shown in Fig. 1.70h.

To plot y[1 — n]

The sequence y[—n] is obtained by folding y[r] and is shown in Fig. 1.70i.
y[—n] is right shifted by 1 sample to get the sequence y[1 — n]. This is shown
in Fig. 1.70;.

B Example 1.26

Consider the sequence shown in Fig. 1.71a. Express the sequence in terms of step
function.

Solution: The unit step sequence u[n] is shown in Fig. 1.71b. The unit negative
step sequence with a time delay of np = 4 is shown in Fig. 1.71b. It is evident from
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(a) (b) 4 yln]
x[n] 1
3 3
| aaaa| 1]
|[1 1{‘ —‘nljj101234h
) Tt R -
-n —-3-2-101 2 3 n
(©) x[2n]
2 2
S -1 0 ] n
(d x[n—1] (e) +x[3n—1]
3 3
‘ 2 2 2
1
IR !
92 1 0 1 2 3 4 n 0 1
€3] (@ b y[n—2]
x[n—2] T
: : 111
2 -2 -1 .
‘2’1 1[{ 1}0112345671
< T T »> -1
-n—10 123435 n
(h) t x[n—2]+y[n—-2]
4
3
2
1
Sannk
“w 210123456 n

Fig. 1.70 Two discrete sequences
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® ty[—n] (@) +y[1—n]

—— W
v

1234 2
—4-3-2-1 l l l l n -3 —2-1/0 J
_l_ _1___

(@) fxln] (b) 4 uln] (©00 1 2 3 4 5 6 n
T e | 1T
0 1 2 3n 0 1 2 3 7 —uln—4]

(a) x[n] (b)

[ e S
.« =
=
+
L e W
=
e
ANl
N f—e
.
.
.
y

Fig. 1.72 DT sequences expressed in terms of step sequences

Fig. 1.71 that {u[n] — u[n — 4]} gives the required x[n] sequence which is represented
in Fig. 1.71a. Thus, x[n] = {u[n] — u[n — 41]}.

Bl Example 1.27

Consider the sequence shown in Fig. 1.72a. Express the sequence in terms of step
function.

Solution:

1. Figure 1.72a represents the sequence x[n] in the interval —3 <n < 4.
2. Consider u[n 4 3] which is represented in Fig. 1.72b. The sequence interval is
-3 <n<oo.
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(a) x[n] (b) uln+1] © x[n{uln+1]
—u[n—73] —u[n—3]}
2 2
1 s 1 5 1 5 1
IR0 I I I O pesl |
-3-2—-1 0 1 2 3 n -n—10 1 2 n -2-1 0 1 2 n

Fig. 1.73 Multiplication of DT sequences

3. Consider the step sequence with a time delay of ny = 5 and inverted. This can be
written as —u[n — 5] for the interval 5 < n < oo. This is represented in Fig. 1.72c.

4. Now consider the sum of the sequences u[n + 3] and —u[n — 5]. This is nothing
but x[#n]. Thus,

x[n] = u[n + 3] — uln — 5]

B Example 1.28

A discrete time sequence x[n] is shown in Fig. 1.73a. Find

x[nl{ul[n + 1] — u[n — 3]}

Solution:

1. x[n] sequence is represented in Fig. 1.73a.

2. {u[n + 1] — u[n — 3]} sequence is nothing but the time delayed unit step sequence
with ny = 3 being subtracted from the time advanced unit step sequence with
ny = 1. This sequence is represented in Fig. 1.73b.

3. Multiplying sample wise of Fig. 1.73a, b, the required sequence x[n]{u[n + 1] —
u[n — 3]} is obtained and represented in Fig. 1.73c.

B Example 1.29

Sketch x[n] = a" where —2 < n < 2 for the two cases shown below:

(Anna University, May, 2007)
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(a) 16 4 .X'[l’l] — (_%)l’l (b) 4 16
1 1
1 16 16 1
. ! R
-2 |-1] n i n
_1 _1
I 1
—4 —4

Fig. 1.74 DT sequences of Example 1.29

Solution:
For x[n] = (—}1)” and x[n] = (—4)" where —2 < n < 2, x[n] is found and tabulated
below:

n 210 1 2
x[n]=(—p" 16 41— —
x[n]=(—4" £ —11-416

The samples of x[n] are plotted and shown in Fig. 1.74. x[n] = (— }‘)" is represented
in Fig. 1.74a and x[n] = (—4)" is represented in Fig. 1.74b.

Bl Example 1.30

Given

x[n]=1{2,3,4,1, 6,7,5,2,4}
T

sketch the following signals.

1. x[n]

2. x[n]uln]

3. x[nJu[—n]

4. x[n — 2]uln]

5. x[n — 2Ju[n — 2]
6. x[n — 2)uln + 2]
7. x[n]u[—n — 3]

8. x[2n]

9. x[2n + 3]u[n + 3]
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x[—nlu[—n]

x[5 — 1uln + 4]

x[n]u[3 — n]

x[n](uln 4 2] — uln — 3])

Solution:

1.
2.

The given sequence x[n] is plotted as shown in Fig. 1.75a.

1 n>0foralln
uln] =
0 n<O

x[n] is multiplied by 1 for all n when n > 0 and by 0 when n < 0. x[n]u[n] is
sketched in Fig. 1.75b.

1 n<Oforalln
ul=nl = 0 n>0

x[n] is multiplied by 1 for all » when n < 0 and by 0 when n > 0. x[n]u[—n] is
sketched in Fig. 1.75c.

1 n>0foralln
uln] =
0 n<O

x[n] isright shifted by 2 samples to get x[n — 2]. Forn > 0, x[n — 2] is multiplied
by 1 and for n < 0, it is multiplied by 0. x[n — 2]u[n] is sketched in Fig. 1.75d.

1 n>2forall
”[”_Z]Zio ZZzora '

x[n — 2] is right shifted by 2 samples to get x[n — 2]. For n > 2, x[n — 2] is
multiplied by 1 and for n < 2, it is multiplied by 0. x[rn — 2]u[n — 2] is sketched
in Fig. 1.75e.

1 n>—2foralln

u[n+2]==0 n< -2
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() | Xl
7
6 5
4 4
3
2 2
1
.0 ! o
-n —5-4-3-2-10 1234 5 n
(b) | Xnluln] (©) x[nlu[—n] »
6 5
4 4
3
2 2
0 0 [ ‘
—n 012345 n -n —5-4-3-2-10 n
(d) R x[n—2]u[n] (e) ‘ x[n—2]u[n—2]
. 7
5 6 5
4 4
3 2 2
1
) ! 0 . 0 .
-n 0 1234567 n -n 0 1234567 n
) + X[n—2]u[n+2]

IY

1 s
4 4

1

0 0 1
23456

0
-n —4 =3 -2-10 1 5 7

Fig. 1.75 DT signal x[n] when scaled and time shifted
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@) xlnlul =p=3]
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89
‘x[2n]
6 5
4
0
0 1 2 3 n
x[—n]Ju[—n]
7
6
0
-1 0 1 n

x[n][u(n+2)—u(n—3)]

7

Fig. 1.75 (continued)
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10.

11.

12.
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x[n] is right shifted by 2 samples to getx[n — 2]. Forn > —2,foralln, x[n — 2] is
multiplied by 1 and elsewhere it is multiplied by 0. The sketch of x[n — 2]u[n +
2] is shown in Fig. 1.75f.

ul—n — 3] = 1 n< —-3foralln
0 n>-3

x[n] is multiplied by 1 for all » and n < —3. For n > —3, x[n] is multiplied by
0. The sketch of x[n]u[—n — 3] is shown in Fig. 1.75g.

. x[n] is time compressed by 2 and x[2n] is obtained. x[2n] is sketched as shown

in Fig. 1.75h.

3] 1 n>—-3foralln
uln =

0 n<-3
x[n] is left shifted by 3 samples to get x[n + 3]. x[n + 3] is time compressed by 2
to get x[2n + 3]. x[2n + 3] is multiplied by 1 for n > —3 for all n and elsewhere
it is multiplied by 0. The sketch of x[2n + 3]u[n + 3] is shown in Fig. 1.75i.

1 n<Oforalln
ul=nl = 0 n>0

x[—n] is sketched by reflecting x[n]. For n < 0, x[—n] is multiplied by 1 for
all n. For n > 0, x[—n] is multiplied by 0. The plot of x[—n]u[—n] is shown in
Fig. 1.75j.

1 n>—4foralln

x[n] is right shifted by one sample to get x[n — 1]. It is time expanded by mul-
tiplying every n by 2 and thus x[5 — 1] is obtained. x[5 — 1] is multiplied by 1
for n > —4 for all n. Elsewhere x[5 — 1] is zero. The plot for x[5 — 1]u[n + 4]

is shown in Fig. 1.75k.

1 n<3foralln

u[3—n]={0 n>3
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x[n] is multiplied by 1 for n < 3 for all n and elsewhere by zero. The sketch of
x[n]u[3 — n] is shown in Fig. 1.751.

1 —2<n<3forall
uln+2] —uln—3] = _I?_ oratin
0 otherwise

x[n] is multiplied by 1 for —2 < n < 3 for all n and elsewhere by zero. The plot
of x[n][u(n 4+ 2) — u(n — 3)] is shown in Fig. 1.75m.

B Example 1.31

Carefully sketch the following discrete time functions.

1.

(a) x[n] = recty[n]
(b) x[n] = recty[n + 2]

2. (a) x[n] = ramp[—n]
(b) x[n] = ramp[3]
3. (a) x[n] = §[3n]
(b) x[n] = 8[5n]
4. x(n) = u[3n — 2]
5. x(n) = trig[n]
6. x(n) = ramp(n + 2] — 2ramp[n] — ramp[n — 2]
7. x(n) = 4sin [Zn]recty[n]
8. x(n) = 2sin [%n] rectz[n — 2]
9. x(n) = n(u[n] — uln — 5])
10. x(n) = (n — 2)(u[n — 2] — u[n — 5])
11. x(n) = (8 — n)(u[n — 6] — u[n — 10])
Solution:
1.

x[n] = recty[n]

Suffix four in rect4[n] indicates the width of the rectangular pulse on either side
of n. x[n] = recty[n] is sketched as shown in Fig. 1.76a. rect4[n] is left shifted
by two samples to get x[n] = rect4[n + 2] which is sketched in Fig. 1.76b.
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(a) | Anl=recty[n] (b) x[n]=recty[n+2]
1 1

L

-n — 5 —
Fig. 1.76 Graphical representation of a x[n] = rect4[n] and b x[n] = rects[n + 2]

—3-2-10 5 n “p —6-5-4-

(a) x[n]=ramp[—n] (b) x[n] =ramp[n/2]

A
)
L]
)

f—e

| \S]

[ om—

A

N —e —

|l \S]

f—e
L]
L]
L]

|
N
|
N
I
(O8]
|
[\)
|
—
o
v
|
N
(=)

Fig. 1.77 Graphical representation of a x[n] = ramp[—n] and b x[n] = ramp[%]

2. (a)
n 0<n<oo
ramp[n] = {O 0 <0
—-n —o0o<n<0
rampl—n] = 0 n>0

x[n] = ramp[—n] is represented in Fig. 1.77a.
(b) x[n] = ramp[n] is time expanded and is sketched as x[n] = ramp[’%] as
shown in Fig. 1.77b.
3. (a)
- {1 n=0
0 n#0
8[an] = 1 for all integer values of a at n = 0. For n # 0, §[an] = 0. This is
represented in Fig. 1.78a.
(b) In 8[%11], % is not an integer. Hence, for all n, 8[%11] = 0 as represented in
Fig. 1.78b.
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(a) x{n]=3[31] b x(nl=8[2/3)n]
14 8[3n]

jn 0 ;t jn 0 ;1
Fig. 1.78 Graphical representation of a x[n] = §[3n] and b x[n] = 5[%n]

(a) uln—2] (b) x[n]=u[3n—2]

| | ‘ { ‘ | - |
S 0123 456 n -n 0 2 314 n

Fig. 1.79 Graphical representation of a u[n — 2] and b x[n] = u[3n — 2]

4.

W

The step sequence u[n] is right shifted by two samples to get u[n — 2]. This
is represented in Fig. 1.79a. u[n — 2] is time compressed by 3 to get x[n] =
u[3n — 2] and this shown in Fig. 1.79b.

. (Fig. 1.80)

x[n] = ramp[n 4 2] — 2ramp[n] 4+ ramp[n — 2]

The components of x[n] namely ramp[n + 2], —2ramp([n] and ramp[n — 2] are
sketched as shown in Fig. 1.81a—c, respectively. The sum of these components
at n is represented as x[n] in Fig. 1.81d.

b4
x[n] = 4sin [gn] recty[n]

Rectangular pulse of width four on both sides is shown in Fig. 1.82a. Its amplitude

is four. sin n is shown in Fig. 1.82b. The sinusoid has a radian frequency of

Qo = 3 radians. The periodicity of the sinusoid is given by
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R x[n]=triy[n]

]
2 3

-n —4-3-2-1 0 1 4 n
Fig. 1.80 Graphical representation of x[n] = trig[n]
(a) 4 ramp[n+2] (b) 4 —2ramp|[n]
4 00 1|2 |3 t
3
] 2 e o0 _2 e o0
0 —4
-n -2 -1 0 1 2 n —6
© raf{lp[n—Z] (d) 4 x[n]
2
1 1
3
2
]1‘ [ T 1 0 1 n
“n 0 1 2 3 4 5 n

Fig. 1.81 Graphical representation of x[n] of Example 1.31.6

2
Q
2

=—X3
T

= 6 samples per cycle

No

Thus, each sample is separated by % radians or 60°. The product of 4
sin[%n]rect;;[n] is obtained by multiplying the sample strength of 4 sin[ (7 /3)n]
with the corresponding sample of rect4[n] both of which have the same n. Thus,
x[n] is obtained and is shown in Fig. 1.82c. x[n] is limited to the width of +4
which is the width of recty[n]. In Fig. 1.82b, c, the dotted line graph represents
the sinusoid of the CT signal corresponding to sin[ %" ].
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(a) N 4recty[n]

A

Ll e ——]
[N e ]
W
Ao

(b)

4 sin[7/3]n

© x[n]=4recty[n]sin[m/3]n

A
Ve
7
7
7
|
[\
| o8}
— .
~
(@)}
i
- |
~_1
LN
\
\
Ve
7
//
P
N
W
v

Fig. 1.82 Graphical representation of x[n] = 4 sin[%n]recu [n]

T
x[n] = 2sin [En] rects[n — 2]

rects[n — 2] is sketched with right shifted rect;[n] by two samples with its ampli-
tude 2. This is represented in Fig. 1.83a. sin[ 3] has a radian frequency Qo = 7.
The number of samples in one cycle (27 radians) is
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(@) | 2recty[n—2]
5101 2 345 B
(b) , sin[(w/2)n]
2 .
\ /7 \\ d
e |\ , . e
« I\\ -1 ! T \ 3 4/ “ .
= —3 0\ L Jo 12 J / 5 n
\ , /
\ 7 AN L
\\ /____1 ~ -
(b)

4 x[n]=2sin[m/2]n rect3[n—2]

2
=—n><2
b4

= 4 samples/cycle

For odd values of n, peak occurs and for even value of n, the pulse strength is
zero. The periodic sin “F DT signal is represented in Fig. 1.83b. x[n] is obtained
by multiplying a sample at n = n; in 2rects[n — 2] with a corresponding sample
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() 4 u[n]—u[n—5]

70 1 2 3 4 N
(b) 4n >0 (© 4 x[n]=nlu(n)—u(n—>5)]
4 4
3 3
2 ) 2
1 1
70 1 2 3 4 n w0 1 2 3 4 "

Fig. 1.84 Graphical representation of signal of Example 1.31.9

atn =ny in sin[%n] signal. x[n] exists only in the sample interval —1 <n < 5.
For the values of n, x[n] = 0. x[n] is sketched as shown in Fig. 1.83c.

x[n] = n(u[n] — uln — 5J)

u[n] is a unit step sequence and u[n — 5] is the time shifted (right shift) by 5 sam-
ples. u[n] — u[n — 5] exists only during 0 < n < 4.Forn > 5, the negative going
—u[n — 5] will cancel out with the positive going pulses of u[n]. Figure 1.84a
represents u[n] — u[n — 5]. The ramp signal n is represented in Fig. 1.84b. The
product of these two signals is represented in Fig. 1.84c. x[n] exists only during
the sample interval 0 < n < 4. For any other value x[n] = 0.
10.
x[n] = [n — 2](u[n — 2] — u[n — 5])

1 2<n<5

ulp = 2] —uln =31 = {0 otherwise

The above function is represented in Fig. 1.85a. [n — 2] is a ramp function that
is right shifted by two samples from the origin. This is represented in Fig. 1.85b.
Each sample of Fig. 1.85a is multiplied by the corresponding sample occurring
at the same instant in Fig. 1.85b and the product is obtained as x[n] which is
represented in Fig. 1.85c.
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(a) u[n—2]—n[n—>5]

|
N
]
—_
[\
[98)
~
SV

®) 4[n-2] © xn]=[n—2)(uln—2]—uln—5])

W —e —
—e
————e

L]
.
)
A
—e —
e

-n0 1 2

W
(o)}
v

Fig. 1.85 Graphical representation of x[n] = [n — 2](u[n — 2] — u[n — 5])

11.

x[n] = [8 — n](u[n — 6] — u[n — 10])
1 6<n<10
0 otherwise

uln — 6] —u[n — 10] = {
The above function is represented in Fig. 1.86a. [—n] is the folded version of
[n] and is shown in Fig. 1.86b. [—n] is right shifted by eight samples to get
[8 — n] which is represented in Fig. 1.86¢. [8 — n] and u[n — 6] — u[n — 10]
overlap each other for n = 6 and n = 7 only. For n = 6, the product of these
two functions is 2. For n = 7, the product is 1. Thus, x[n] is plotted as shown in
Fig. 1.86d.

B Example 1.32

Sketch the following signals. Find the radian and cyclic frequencies and the period
in each case.

L. x[n] = sin(gn)
2. x[n] = cos({5n)
3. x[n] = cos(5n — %)

4. x[n] = cos(zn + %)
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(a) uln—6]—u[n—10]

—~
(=5
=
—
—
—_
(=]
O ———o O
oo 0
N—-e
DNp——-eo O
e ]
L e
—e W
e to —_
|
‘—0»— S
=
[ I
v
—~
N B
.
.
=)
oo
ol
—
~ 7
e =
W W
Al——eo i
nF——-e W
O\ —e N
g

S S 10-9—8—7—6— S4-3-2-10n -n -1 01 g 0 n
@ x[n]=[8—n](u[n—6]—uln—10])
z
4 1. ..
“n 01 2345678 9an

Fig. 1.86 Graphical representation of x[n] = [8 — n](u[n — 6] — u[n — 10])

Solution:

1. - o
x[n] = sin —n
8

The radian frequency is given by
T .
Qo = — radian per sample

The number of samples per cycle is given by

2
R
2

— x 8
T

16 samples per cycle

No

The cyclic frequency is given by
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f_l
o—N0

1
= — cycles per sample
16 y p p

The plot of x[n] is shown in Fig. 1.87a for two cycles.

x[n] = cos (%n)

The radian frequency is given by
T .
Q= Eradlans/samples

The cosine wave repeats itself for every 27 radians. The number of samples per
cycle is given by

2
Q
2

=—x12
T

= 24 samples per cycle.

No =

The cyclic frequency is given by

1
fO_JVO

1
= — cycles per sample
2 y p p

Forn =0,
T
cos—n =1
12

and is maximum. Forn = 12,

T
cos — x 12 =—1
12
For n = +6,
T x6=0
Cos — X 6=
12
Forn = —12,

cosl x 12 = —1
12
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(2)

—6 —4

101

 x[n]=sin[(7/8)n]

il MT_ .
=

T Ny=16 samples per cycle K
(®) t x[n]=cos[(m/12)n]

1
_—12-11-10-9 -8 =7 T [ { { w ‘ ‘ [ T 7 8 9 10 11 12 -
s [lJi—6—5—4—3—2—10123456lJJ[ n
© x[n]=cos[(w/12)n—(m/3)]

1 ,,,,,,,
-4 -12 -10 -8 -6 —4 72T [(l}{‘{]‘r 12 14 .
_‘nW{ lll—10246sloluh n

- Tr/3rad:4i***
| samples

(d) tx[n]=cos[(/12)+(1/3)]

v

“n [T 8 6
——»| w3rad=4

| samples

Fig. 1.87 Graphical representation of x[n] of Example 1.32
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The complete wave of cos({5n) is sketched in Fig. 1.87b for one cycle.
3.

T T
x[n] = cos (—n — —)
12 3
This cosine wave is the same as the one given in Example 1.32.2 but it lags behind
by % radians. Since 27 corresponds to 24 samples, % corresponds to

24 =&

— X — = 4 samples

2r 3

The original cos({5n) wave is right shifted by 4 samples and is sketched as shown
in Fig. 1.87c.

x[n] = cos (;T—Zn + %)

Here, cos({5n + 3) leads cos({5n) by 3 radians. %, as stated in the previous

problem, corresponds to 4 samples. Here, cos({57) is left shifted by 4 samples to
get cos({5n + 5) and this is sketched in Fig. 1.87d.

B Example 1.33

Given

x[n] = {1, 2, 3, —4, 6}
1

Plot the signal x[—n — 1].

(Anna University, May, 2007)

(@) b x(n] (b) tx[—n] (©) tx[—n—1]
6 6 6
2 13 312 :
1 1 124
! I R —2| -1 I ! -2 ! R
—n —2—1lolt2 =n —n 012 n —n-3 [-1]o1 n
4 —4 —4

Fig. 1.88 DT sequences of Example 1.33
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Solution:

1. The sequence x[n] is represented in Fig. 1.88a.

2. By folding x[n], x[—n] is obtained and represented in Fig. 1.88b.

3. x[—n] is shifted to the left by one sample and x[—n — 1] is obtained. This is
represented in Fig. 1.88c.

1.8 Classification of Signals

Signals which are classified in the broad category of continuous and discrete time
signals are further classified as follows.

1. Deterministic and non-deterministic (random) signals.
2. Periodic and non-periodic (aperiodic) signals.

3. Odd and even signals.

4. Power and energy signals.

1.8.1 Deterministic and Non-deterministic Continuous
Signals

Deterministic signals are signals which are characterized mathematically. The ampli-
tude of such signals at any time interval 7 can be determined at all time . Consider
the signals described by the following equations:

x(t) =A

x(t) = Asinwt
The above signals represent a step signal and a sinusoidal signal, respectively, and
they are shown in Fig. 1.89a, b. At any instant of time ¢, the amplitude of the step
signal which is deterministic can be easily determined. On the other hand, consider

the sinusoidal signal polluted with noise shown in Fig. 1.89b. The magnitude of such
a signal cannot be easily determined since the noise variation is random.

1.8.2 Periodic and Non-periodic Continuous Signals

Consider the continuous time signal described by the following equation:
x(t + nTy) = x(¢) for all ¢ (1.26)

where 7 is any integer value. A continuous time signal x (¢) is said to be periodic
with period T if it repeats itself in a minimum positive interval. The minimum
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(a) (b)
A x(l.) A X(t)

~

0 t
Fig. 1.89 Continuous. a Deterministic signal; b Random signal

(@) tx(n (b) t

|
|
T VV\

— Ty —* — Ty —

Fig. 1.90 Examples of periodic signals. a Rectangular wave; b Sine wave

positive interval over which a function repeats is called fundamental period 7.
The fundamental frequency f is expressed as

1

fo=7- (1.27)

where fj is expressed in cycles per sec. The fundamental radian frequency is expressed
as

wy = 27fy
_ 2

=7 (1.28)

Here w is expressed in rad./sec. The periodic rectangular wave and sine wave are
shown in Fig. 1.90a and b, respectively.
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(a) +x(®) () tx(0

Ae—al

Tozoc

y
y

Fig. 1.91 Non-periodic signals. a Rectangular; b Exponential decay

Any continuous time signal which is not periodic is said to be non-periodic or ape-
riodic signal. Figure 1.91a represents a non-periodic rectangular wave and Fig. 1.91b
represents an exponential decay. The non-periodic signal does not repeat itself with
respect to time.

1.8.3 Fundamental Period of Two Periodic Signals

Consider the periodic signal of two periodic functions with two different fundamental
periods as given below.

t t
x(t) = A sin <2n F) + A, sin (27‘[ T_> (1.29)

1 2

where T} and T, are the fundamental periods of two sine waves. The fundamental
period of the composite signal x(¢) is given by the shortest time by which these
signals have an integer number. If each of these two signals repeat exactly an integer
number of times in some minimum time interval, then they will repeat exactly an
integer number of times again in the next time interval. This is calculated as the Least
Common Multiple (LCM) of the two fundamental periods. Thus, the fundamental
period of a periodic signal, which is composed of more than one periodic signal, is
obtained by taking the least common multiple of the fundamental periods of all the
signals. The fundamental frequency of the sum of the signals is the greatest common
divisor of the two frequencies. It is to be remembered that if any of the composite
signal is non-periodic, then the overall function is also non-periodic.

Instead of sum of two functions, if a signal is a product of two functions, the
method of finding the fundamental period remains the same. Consider the following
composite signal:
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. t . t
x(t) = Asin (271?1> sin <27T Tz) (1.30)

The fundamental period of the two sine functions are 7 and 7. The fundamental
period of x(¢) is calculated as the least common multiple of 7} and 7. The sum
of the product of two or more periodic signals is periodic iff (if and only if) their
ratio of their fundamental periods is rational. The following steps are followed to
determine this:

1. Determine the fundamental period of the individual signal in the sum or product.

2. Find the ratio of the fundamental period of the first signal with the fundamental
period of every other signal.

3. If these ratios are rational, then the sum or the product of the composite signal is
periodic.

4. The fundamental period of the composite signal is determined by taking the least
common multiple of the fundamental period. Alternatively, the greatest common
divisor of the fundamental frequency of each signal gives the fundamental fre-
quency of the composite signal.

For example if T}, T, and T3 are the fundamental periods of three signals which

are the sums of the composite signal, then the ratios % and % should be an integer
multiple or rational. % = % is an integer or rational number. On the other hand,
% = % is not an integer number and it is not rational.

Sinusoidal and complex exponentials are examples of continuous time periodic
signals. Consider the following sinusoidal signal.

x(1) = Asin(wot + 0) (1.31)
x(t +To) = Asin(wo(t + Tp) + 0)
= Assin(wot + woTy + 0) (1.32)

A sine function repeats itself when its total argument is increased or decreased by
any integer multiple of 27 radians. Thus, in Eq. (1.32), if we put wyTy = 27,

x(t 4+ Tp) = Asin(wgt + 0) = x(t)

In other words, the fundamental period of a sine function is

2
To= = (1.33)

Wo

Now consider the complex exponential.
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x(t) = &
x(t + Tp) = &0+ (1.34)
= /! J@0To (1.35)

If we put ¢®To = 1, Eq. (1.35) becomes
x(t + Tp) = €' = x(¢)
Thus, the condition for the complex exponential to be periodic is that

ot — |

or  wylo=21 [ =cos2m +jsin2r = 1]

2
To= = (1.36)

wo

B Example 1.34
Test the periodicity of the following signals:

T
(@)  x(t) = 3cos (5: + g)
(b) x@) ="
(¢)  x(t) =tan(5t+ 0)
@ x(@»=1

(Anna University, May, 2006)
Solution:

(a) x(¢) =3cos (5t + %)
wo = Srad./sec.

Using Eq. (1.33), we get

The given signal is periodic with the fundamental period Ty = 2?” sec.
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(b) x(t) = /1
wo = 10rad./sec.
Using Eq. (1.36), we get

2
Ty = —
wo

_27r

= — = 0.2 sec.
10

The given signal is periodic with the fundamental period
(¢c) x(t) =tan(5t + 0)

x(t + Tp) = tan(5(t 4+ Ty) + 0)
= tan(5¢t + 5T + 0)

The tangent function repeats itself for every m rad. of its total argument. Thus,
if 5Tp = m,

x(t + Ty) = tan(5¢ + 0)
= x(1)

Hence,

b4
Ty = E sec.

(d) x(#) is a d.c. signal and it does not repeat itself. Hence, it is not periodic.

B Example 1.35

If x; (¢) and x,(¢) are periodic signals of period T and T3, show that the sum x(r) =
x1(#) 4+ x,(¢) is a periodic signal if Ty /T, = n/m which is a rational number.

Solution: For the signals x| (¢) and x,(#) to be periodic, the following equations hold
good.

x1() = x(t +mTy)
x(t) = x2(t +nTy)
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Now,

x(#) = x1(8) + x2(0)
xt+T)=xit+T)+x0+T)
= x1(t +mT1) + x2(t + nT>)

From the above equations, we get

T = mT1 = I’lT2

T1 n .
— = — = arational number.
T2 m

B Example 1.36

If x; () and x; (¢) are the periodic signals with fundamental periods T and 7>, respec-
tively, show that the product x(¢) = x;(¢#)x>(¢) will be periodic if % is a rational
number. i

Solution: For the periodic signals x; (f) and x, (¢), the following equations are written:

x1(t) =x1t +Ty) = x1(t +mTy)
x() = 2t +T2) = x(t + nTy)
x(t) = x1(t + mT1)xy (¢ + nT>)

Also
x@4+T)=x1(t+T)x,(t +T)

From the above two equations, we get

T = mT1 =nT2

T1 n .
— = — = arational number.
T2 m

B Example 1.37

Test whether the following signals are periodic. If periodic determine the fundamental
period and frequency.

@  x() ="
(b) x(f) = cos’ t

(c) x(t) = E,cos4mt
@  x(n) =€
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Solution:

(a) x(t) = /™12

x(t) = 'Y

— e*]Ze]m

The signal is a complex exponential with e > being a constant. Comparing this
with standard complex exponential, we get

ejr[t — e]'wot
wy) =T
2 2w
Ty=—=—
wo b4
Ty = 2sec.
1 1
fo= o= 2
fo = 0.5 Hertz.

The signal is a periodic one with fundamental period 7 = 2 sec. and fundamental
frequency fy = 0.5 Hertz.
(b) x(t) = cos>t

1
cos’r = z[l ~+ cos 2¢]

= ! + ! 2t
=5+3 cos
= x1(t) + x2(0)
where |
x1(t) = 3 which is a d.c. signal
and

1
x(t) = 5 cos 2t

For x,(¢), the fundamental radian frequency

a)0=2
2 2

Ty = — = — = msec.
(O 2

The fundamental frequency fy = Tio = % Hz.
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(c) x(t) = E,cosdnt
The even function of x(¢) is

1
Evx(t) = Z1x(8) + x(=0)]

1
= z[cos 4t + cos(—4nt)]

= cosdmrt
wy = 4m
21 21
To = — = — = 0.5sec.
wo 4
1 1
fo=1=03 “

(@) x(t) = eVm21

.x(t) — e(jnfz)t
— e—2t ejm
The function ¢/*' is periodic with fundamental period 2 sec. as seen in problem

(a). However, the function e~ is non-periodic and becomes zero at t — oo.
Hence, the composite signal x() is aperiodic.

B Example 1.38

Consider the following continuous time signal:
x(t) =2cos3mt + 7cos9t

Find the periodicity of the signal.

(Anna University, May, 2005)
Solution:
x(t) = x1 (1) + x2(0)

where

x1(t) = 2cos 3wt
xp(t) = 7cos9t

If T} is the fundamental period of x; (¢),
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w] = 3
2 2w 2 .

T, = — = — = — (rational)
w1 3 3

xp(t) = 7cos 9t

wy = 9
2 2 .

T, = — = — (not rational)
w? 9

T 29 3

d_zZ_Z (not rational)

T2 32w T

The signal x(¢) is not periodic.

B Example 1.39

Find the fundamental period and frequency of the following signals:

(a) x(t) = 5sin24m¢t 4 7sin 367t
(b) x(t) =5cosmtsin3mt

Solution:

(a) Method 1:

x(t) = 5sin24mwt + 7sin 367t
= x1(1) +x2(7)

where

x1(t) = 5sin24nt
Xxp(t) = 7sin 367t

Let T} and T; be the fundamental periods of x; (¢) and x;(¢), respectively.

w) = 24n

21 2m 1 .
| = — = —— = — (rational)

w 247 12

wy = 36
21 2 1 .

T) = — = —— = — (rational)
wy 36w 18

T, 1

— = — x 18 = = (rational)
T, 12 2
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The composite signal is a periodic signal. Since T and T, are rational, x(?) is
periodic. The fundamental period is obtained as follows. From the ratio of %,

2T, =31, =Ty
2 1
Tp = — = — sec
12 6
or
T 3
— = — sec
T8 6
1
= — = 6 Hz.
Jo T z
1
Tozgsec.
fo=6HZ.
Method 2:

In this method, the Least Common Multiple (LCM) for 7} and 75 is obtained
which gives Ty. In case, 7| and T, are fractions, they are made integers by
multiplying by a least number. For T and T, thus obtained, LCM is found. T,
is obtained by dividing by the same number which was chosen to make 7' and
T, as integers. In the above example,

D

T = and T,=
= — an = —
=1 TR

By multiplying 7y and 75 by 36, 7y = 3 and T, = 2.
(2) The LCM for the new T and 7> is easily obtained as 6.
(3) Ty is obtained by dividing LCM by 36.

LCM 6 1
To= —— =

0= 36 %ZESCC.
T 1
= — S€C.
6
f() = 6Hz.

(b)

x(t) = 5S5cosmtsin3mt
= x1(H)x2(7)
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where

x1(t) = S5cosmt

Xxp(t) = sin3mt

The product of two functions is expressed as the sum of the two functions using
the following formula.

sin(A+B)— sin(A—B)=[sin A cos B+ cos A sin B— sin A cos B+ cos A sin B]
=2cosAsinB

1
cosAsinB = E[sin(A + B) —sin(A — B)]
The given function can, therefore, be written as

5
Scosmtsin3nmt = E(sin 4mt — sin 27t)
Let

5
x1(t) = 2 sin4mt

w1 = 4
2
Ty, = —
wo1
1
2
5 .
x () = 3 sin 27t
wpp = 21
2
Ty = —
w02
=1
T 2

To = 1 sec.

fi ! 1H
= —_— = Z

0 To
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B Example 1.40

Find whether the following signal is periodic. If periodic, determine the fundamental
period and frequency. Also determine the fundamental period of each function in the
composite signal in the time of the fundamental period.

x(t) = sin2mt — ) — Scos <3m + %) —8cos <5m - %)

Solution:
x() = x1(t) + x2(t) + x3(8)

where

x1(t) = sin(Qrwt — )
— —5cos (3t + =
x(t) = — cos( Tt + Z)

x3(t) = —8cos (57” + %)

Let T, T; and T3 be the fundamental periods of x; (), x»(¢) and x3(¢), respectively.

w] = 21
2
T, = —
w1
27 .
= — =1 sec. (rational)
2
wy = 3
2
T, =—
w2
2 2 (rational)
= — = — sec. (rationa
3z 3
w3 = S
2
T = —
w3
27 2 .
= — = — sec. (rational)
St S
Ty  1x3
T, 2

3
3 sec. (rational)

T] 1x5
T3 2
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5 .
= 3 sec. (rational)

Hence, the composite signal x(¢) is periodic. The fundamental periods are obtained
by taking LCM of T}, T, and T3 as explained below.

ey
Ti=1: =2 Tp=-
1= 1 2—3’ 3—5

Multiply by 15 to make them integers. The new periods are obtained as 7} =
15, T, =10 and T3 = 6.

(2) The LCM is obtained as
5|15, 1

O
— NN

bl

w
w

[\S)
—| —
HPN

The LCM =5 x 3 x 2 = 30.
3

LCM
To= ——
15

30
= E = 2 sec.

To = 2 sec.

1
= — =05Hz
Jo T z

The fundamental period of x; (¢) during Ty = 2 sec. is
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B Example 1.41
Determine whether the following signals are periodic. If periodic, find the period
1. x;(t) = sindnt

2. xp(t) = sin23¢
3. x3(t) = sindmt + sin 23t

Solution:

L.

x1(t) = sindmt
wo1 = 4
2
Ty = —
o1
21
4

= 0.5 sec.

The signal is periodic and the period Ty = 0.5 sec.

2.
xp(t) = sin23¢
wyp =23
2
Tp =—
w2
2
= — sec.
23
The signal is periodic. The fundamental period 7y = %’sec.
3.

x3(t) = sin4mt + sin 23t
= x1(t) + x2(2)

1
Tor = 3
T 21
R
To 1 23
—_— = = X —
T02 2 21

23 .
= — (irrational)
4



118 1 Representation of Signals

Since % is irrational, the signal x3(¢) is not periodic.

B Example 1.42
For the following signals

1. Sketch the signals.
2. Determine analytically which are periodic (if periodic) and give the period.

(a) x(t) =4cosSmt

(b) x(t) = 4cos(5Smt — 0.257)
(¢) x(¢) = 4u(t) + 2sin(3¢)
(d) x(r) =u()—0.5

Solution:

1. (a)
x(t) = 4cosS5mt

This is a cosine wave with wg = 57 and Ty = 1_7; =0.4sec. At t =0, the

maximum value of 4 is reached, it becomes zero at t = 0.1 sec(}lTo), reaches

negative maximum at t = 0.2 sec(%TO), becomes zero at 1 = 0.3sec(3/4T,)
and reaches maximum at t = 0.4 sec(Ty) and thus completes one cycle. The

same wave is repeated for negative time. The signal is sketched as shown in
Fig. 1.92a.

(b)

x(t) = 4cos(Swt — 0.257)
= 4 cos(5mt — 45°)

The signal 4 cos(5¢ — 45°) lags behind the signal 4 cos(5¢) by 0.27 radians
or 45°. This is sketched as shown in Fig. 1.92a.
(©

x(t) = 4u(t) + 2sin 3¢
4+4+2sin3t 0<t<oo

2 sin 3¢ t<0
x(t) = 2sin3t

4u(r) =

This is a sinusoidal signal of maximum amplitude 2 with wy = 3. The fun-
damental period Ty = (20—7; = %n
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(a) 430
L
4cos5t !
e 4cos(5mt—0.25m) /|
|
) 02 03 | .
—t 0 0.1 | 0.4 t
| |
| |
|
— —
90° !
(b) A x(t)
: t —21r 2w —m 0 =t
3 3
-4-0.2
(©) N
x(O)=u(r)—0.5
0.5
P 0 Y

-0.5

Fig. 1.92 Representation of signals of Example 1.42
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0 4u(t) +2sin(31) 0<t< o0
X =
2 sin(3t) —00<t<0

2 sin(3¢) is superimposed with 4 for ¢ > 0. For t < 0, 2 sin 37 is sketched as
shown in Fig. 1.92b.
(d)

x(t) = u(t) — 0.5

05 0<t<ox
x(t) =

—05 —o0<t<0

The signal is sketched as shown in Fig. 1.92c.
2. (a)

x(t) =4cos5nt
Let T} be the periodicity of the signal.

x(t + Ty) = 4cos5m(t+ Ty)
=4cos(5mt + 57 TpH)

If57Ty =27

x(t 4+ Tp) = 4cos(Snwt + 2m)
=4 cos(5mt)
= x(1)

x(t) is periodic with period Ty = % = 0.4sec.

(b)
x(t) = 4cos(Swt — 0.257)
x(t 4+ Tp) = 4cos(Sn(t + Ty) — 0.257)
=4cos(5nt — 0.257 + 57 Ty)
= 4cos(S5wt — 0.257)
if SiTy =27

x(t + Tp) = x(1)
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The signal x(¢) is periodic with period Ty = 0.4 sec.

(©
x(t) = 4u(t) + 2 sin 3¢
2 sin 3t is a periodic signal for r > 0 with period Ty = i—’g where wy = 3. For
t <0,
x(t) = 2sin 3¢
This is also periodic with period Ty = ZT” sec. However, at t = 0, x(¢) has

discontinuity and it does not recur at any other time. Hence, the signal x()
is non-periodic. This can be analytically proved as follows:

x(t + Tp) = 4u(t + Ty) + 2sin 3(t + Tp)
For Ty, = %n

2
x(t + Tp) = 4u (t + 57'[) + 2 sin 3¢
# x(1)

‘ The Signal is Non-periodic. ‘

(d)
x(t) =u()—0.5
x(t+To) =u(+Ty) —05
# x(1)
for any T

‘ The Signal is Non-periodic. ‘

1.8.4 0Odd and Even Functions of Continuous Time Signals

One of the properties of signals is their symmetry when the time is reversed. They
are classified as even and odd signals. A continuous time signal x(¢) is said to be an
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4 x(t) = Acosw(?)

~Y

Fig. 1.93 Representation of an even (symmetric) function

even signal if it satisfies the following condition:
x(—t) = x(¢t) for all ¢ (1.37)

It is identical under folding about the origin. A signal x(t) is said to be an odd signal
if it satisfies the condition
x(—t) = —x(t) for all ¢ (1.38)

An odd signal must necessarily be zero at £ = (. While even signals are symmetric
about the vertical axis odd signals are anti-symmetric (asymmetric) about the time
origin. Consider the following signal:

x(t) = Acoswt
x(—t) = Acos(—wt)
= Acoswt

= x(1)
The above even signal is shown in Fig. 1.93. Consider the following signal:

x(t) = Asin wt
x(—t) = Asin(—wt)
= —A sin wt
= —x(1)

The above odd signal is shown in Fig. 1.94. The odd function is zero at t = 0 as seen
in Fig. 1.94.
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4 x(¢) = Asinw(?)

Fig. 1.94 Representing of an odd (anti-symmetric) function

1.84.1 Even and Odd Components of a Signal

A continuous time signal x(¢) can be expressed in terms of odd and even components.
Let x.(7) and x((¢) represent the even and odd components of x(#). We may write
x(1) as

x(t) = Xe(1) + x0(1) (1.39)

Putting t = —¢ in Eq. (1.39), we get

xX(=1) = xe(—1) + xo(—1) (1.40)

For an even function x,(—¢) = x,(¢) and for an odd function xo(—f) = —x(¢). Equa-
tion (1.40) is written as

x(—1) = x.(1) — x0(1) (1.41)

Adding Egs. (1.39) and (1.41) the following equation is obtained:

1
Xe (1) = E[x(t) +x(=0)] (1.42)

Subtracting Eq. (1.41) from Eq. (1.39), we get

1
Xo(1) = E[x(t) —x(=1)] (1.43)
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B Example 1.43

Show that the even function has its odd part zero.

Solution: From Eq. (1.42) the even function of x(f) can be written as
1
X (1) = E[x(t) +x(=1)]
For an even function x(—f) = x(f). Hence, the above equation can be written as
1
X (1) = 3 [x(®) +x(®)] = x(1)
From Eq. (1.43) the odd function of x(¢) can be written as

1
Xo(t) = F1x(®) = x(=1]

%[X(t) —x(1)]

=0

Thus, it is proved that for an even function the odd part is zero.

B Example 1.44

Show that the odd function has its even part zero.

Solution: Let x(¢) be an odd function. For an odd function, x(—¢) = —x(t). The even
function of x(#) can be written as

1
5x(@®) +x(=0)]

xe(t) - )
= %[x(t) —x(1)]
=0
1
Xo(t) = E[x(t) —x(=1)]

1
E[x(t) + x(9)]
= x(1)
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Thus, for an odd function x(t), the even part of x(¢) = 0.

B Example 1.45

Show that the product of two even signals is an even signal.

Solution: Let x| (¢) and x,(¢) be the two even signals. Let x(¢) be the product of these
two signals.
x(1) = x1(£)x2(2)

For an even function, x(—t) = x(¢) and x;(—t) = x;(¢t) and x,(—1) = x,(¢). The
above equation is written as follows. Substituting t = —t, we get

x(=1) = x1(=0)x2(=1)
= x1(Ox2(1) = x(1)

Thus, x(t) = x(—¢) which is even.

B Example 1.46

Show that the product of two odd signals is an even signal.

Solution: Let x;(¢) and x,(¢) be two odd signals.
For the odd signals, x;(—t) = —x;(¢) and x,(#) = —x,(¢). Let x(¢) be the
product of x;(¢) and x,(¢).
x(1) = x1(0)x2(2)

Putting ¢+ = —¢ in the above equation, we get

x(—1) = x1(=Hx2(—1)
= x1(H)x2(1)
= x(1)

Thus, it is proved that x(¢) = x(—t). The product of two odd signals is an even signal.
B Example 1.47

Prove that the product of an odd and an even signal is an odd signal.

Solution: Let x;(¢) be an odd signal and x; () be an even signal.
Then x;(—1) = —x1(¢) and x,(—1) = x,(¢). Let x(¢) be the product of x; (¢)
and x,(1).
x(t) = x1(D)x2(1)

Putting ¢+ = —¢ in the above equation, we get
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x(=1) = x1(=0)x2(—1)
—x1(1)x2(2)
= —x(1)

Thus, x(¢#) = —x(—1t) which is odd. The product of an odd and an even signal is an
odd signal.

B Example 1.48

Show that the sum of the two even functions is an even function and the sum of the
two odd functions is an odd function.

Solution: Let x(t) be expressed as the sum of two functions x; (¢) and x; (7).
x(1) = x1 (1) +x2(1)
Substituting # = —¢ in the above equation, we get
x(—=1) = x1(—1) + x2(—1) (a)
If x; () and x,(¢) are even functions, the above equation is written as

x(—1) = x1 (1) + x2(2)
= x(1)

This shows that x(z) which is the sum of two even functions is an even function. If
x1(#) and x,(¢) are odd functions, equation (a) can be written as

x(=1) = x1(=1) +x2(—1)
—(x1() +x2(1))
= —x(1)

Thus, x(#) which is the sum of two odd functions is an odd function.

B Example 1.49

Find whether the following signals are odd or even. Find the odd and even compo-
nents.

(a) x() =12 =5t + 10

(b) x(t) =1+ 47 +6

) x()=1+3¢

@ x(t)=10sin (10m n %)
(e) x(t) = %
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Solution:

(@) x(t) =2 =5t +10
Putt = —t¢

x(—1) = > +5t4+10
# x(1)
£ —x(1)

The function is neither even nor odd.
1
Xe(t) = E[X(t) + x(—=1)]

1
=§[t2—5t+10+t2+5t+10]

x(t) = (£ + 10)

1
xo(?) E[x(t) —x(=1)]

1 2 2
E[t —5t+ 10—t — 5t — 10]

®) x@)=t*+42+6
Putr = —¢

x(=) = + 42 + 6 = x(1)
x(t) = x(—1)

The function is even. The odd part should be zero which can be verified as

1
Xo() = 5x(0) = x(=0]

1
=§[t4+4t2+6—t4—4t2—6]
=0
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O =x®)=r*+47 +6

(c) x(t) =3+ 3¢
Putt = —¢
x(—1) = —(* +31) = —x(1)

The function is odd. The even component is zero.

xo(t) = 2 + 3¢
x. (1) =0

(d) x(¢) =10sin (10t + %)
Putr = —¢

x(—1) = 10sin (-10m n 5)

INIEN

—10sin (IOm — —)

—10 [sin 107t cos% — cos 107t sin %]

-10
= ——[sin 10t — cos 107¢]
V2

# x(1)
# —x(1)

The above signal is neither even nor odd.

x(®) =10 [sin 107t cos % + cos 107 ¢ sin %]
10 .
= —[sin 107t + cos 107 ¢]

V2
1
X (t) = E[x(t) +x(=1)]

10
= ——[sin 107t + cos 107t — sin 107wt + cos 107 ¢]

22

10
X.(t) = —=cos 107t

V2
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1
xo(?) E[x(t) —x(=1)]

10
= ——[sin 1077¢ + cos 10t + sin 107wt — cos 107w ¢]

242

10 |
xo(t) = —=sin 107t

V2

(e) x(t) = /1%

x(—t) = ¢/
x(t) # x(—1)
x(1) # —x(=1)

The signal is neither odd nor even.

X (t) = =[x(#) — x(—1)]

[ejl()t 4 e*jlot]

Sl S

X.(t) = cos 10t

[x() = x(=0)]

Xo(t) =

[ejIOz _ e—jlot]

| — N =

Xo(t) = jsin 10¢

Note: In all the above cases, x(¢) passes through the origin at r = 0.

B Example 1.50

Sketch the even and odd components of a step signal shown in Fig. 1.95a.

Solution:
The step function is shown in Fig. 1.95a. x(—¢) is shown in Fig. 1.95b. In Fig. 1.95c,
the sum of x(¢) and x(—1) is represented. The even function x,(¢) = %[x(t) + x(—1)]
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(@) + x(0) (b) +x(—=1)
10 10
il 0 ; iz 0 >
(© Lo HO+xCD () $x(0= L) +x(—1))
5
i 0 7 i 0 ;
©) ®  xo(t) =10 —x(—1)
i 0 T Sp———
-10 ) R
~t 0 1
v —x(—1) i

Fig. 1.95 Even and odd components of a step function

is shown in Fig. 1.95d. In Fig. 1.95e, —x(—1) is represented. The odd function
xo(t) = %[x(t) — x(—1)] is represented in Fig. 1.95f.

B Example 1.51

Sketch the even and odd components of the pulse signal shown in Fig. 1.96a.

Solution:

x(t) is shown in Fig. 1.96a. In Fig. 1.96b, x(—t) is represented. The sum of x(¢) +
x(—1) is shown in Fig. 1.96¢. The even component of x(#) which is x,. () = %[x(t) +
x(—t)] is shown in Fig. 1.96d. In Fig. 1.96e, —x(—1) is shown. The odd component
of x(t) which is xy (1) = %[x(t) — x(—1)] is represented in Fig. 1.96f.

B Example 1.52

Sketch the even and odd components of the triangular wave shown in Fig. 1.97a.

Solution:
Figure 1.97a represents the x(¢#) which is a triangular wave. x(—t) is represented
in Fig. 1.97b. x(t) 4+ x(—¢) is represented in Fig. 1.97c. From this figure, the even
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(@) + x(1)
2
: 0 3 7
© t x(0)+x(—1)
2
-3 0 3 7
(e) o -3 0 !
-2
v —x(—1)

131
(b) tx(—0)
2
:t -3 0 =t
(d) + x(0)
S -3 0 3 7
(M 4 x0(®)
1
4 _3 .
—t 0 3 t
~1

Fig. 1.96 Even and odd components of a pulse signal

component is obtained by dividing the amplitude by 2 and x, (¢) is shown in Fig. 1.97d.
InFig. 1.97e, —x(—1t) is represented which is obtained by inverting Fig. 1.97b. Adding
Fig. 1.97a, e, [x(¢) — x(—t)] is obtained and represented in Fig. 1.97f. By dividing the
amplitude of Fig. 1.97f by 2, xo(¢) which is %[x(t) — x(—1)] is obtained and sketched
as shown in Fig. 1.97g.

Bl Example 1.53

Sketch the even and odd components of exponential signal x(f) = 10e™2.

Method (a):
Solution:

x(t) = 10e~% is sketched and shown in Fig. 1.98a. Figure 1.98a is time reversed to
get x(—t) and is sketched in Fig. 1.98b. The sum of x(¢) and x(—¢) is sketched as
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(b) x(—=1 (¢ x(O)+x(=1)
2
1 —t Y Y
€ 0 © * .
1
-3 0 3 7
(f) tx()—x(—1) (€3] 1+ xo(0)
p) E— | ——
< _3 » < _3 »
= 0 3 1 ) 0 3
—————— -2 G

Fig. 1.97 Even and odd components of a triangular wave

shown in Fig. 1.98c. The amplitude of Fig. 1.98c is reduced by a factor 2. This gives
x.(t) = %[x(t) + x(—¢)] and is shown in Fig. 1.98d. Figure 1.98a is inverted and time
reversed to get —x(—¢) which is sketched in Fig. 1.98e. The sum of Fig. 1.98a, e
gives [x(f) — x(—1)] and this is sketched and shown in Fig. 1.98f. The amplitude of
Fig. 1.98f is reduced by a factor 2 which gives odd signal xy(¢) = %[x(t) —x(—=1)].
This is shown in Fig. 1.98g.

B Example 1.54
Sketch the even and odd parts of the signal shown in Figs. 1.99a and 1.100a.

(Anna University, May, 2009)
Solution:
x(¢) is graphically represented in Fig. 1.99a. By time folding of Fig. 1.99a, x(—t) is
obtained and is shown in Fig. 1.99b. These figures are graphically added to get x(¢) +
x(—t) and represented in Fig. 1.99c¢. To get the even signal of x(¢), the amplitude of the
signal is divided by a factor 2 and is represented in Fig. 1.99d. The signal x() is time
folded and inverted to get —x(—t). This is represented in Fig. 1.99e. Figure 1.99a,
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(a) (b) x(—1)
10
—t —t 0 Y
(© ol x(#)+x(—1) (d) 1 xe(n)
5
i 0 ha 0 T
(e) ® 4 x(t)=x(=1)
t 0 10
—10 < .
—x(—t)v —t 0 t
-10
(8
+ xo(1)
5
i 0 7
-5

Fig. 1.98 Representation of even and odd function of exponential decay

e is graphically added to get x(¢) — x(—t) which is represented in Fig. 1.99f. The
amplitude of the signal in Fig. 1.99f is divided by a factor 2 which gives x((¢) of x(z).
This is represented in Fig. 1.99g.
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Note the even component x, () in Fig. 1.99d. It is symmetrical with respect to the
vertical axis and when time folded identical mirror images are obtained. Similarly,
the odd component xy(¢) represented in Fig. 1.99g passes through the origin at# = 0
and it is also anti-symmetry.

Consider Fig. 1.100a where x(¢) is represented. By folding x(¢), we get x(—t) and
is shown in Fig. 1.100b. x(—¢) when inverted, we get —x(—¢) and is represented in
Fig. 1.100c.

1
Xo(=1) = 5 (0 (0) —x(=1)

This is obtained by combining Fig. 1.100a and c after dividing the amplitude by a
factor 2. xy(¢) is shown in Fig. 1.100d. The even component is expressed as

1
Xe(t) = = (x(1) + x(=1))

By combining Fig. 1.100a, b and by dividing the amplitude by a factor 2, the even
component is obtained. The even component is represented in Fig. 1.100e.

B Example 1.55

Find the even and odd component of the following signal:

x(t) = cost+sint + costsint

(Anna University, May, 2007)

Solution:
x(t) = cost—+sint + costsint
(a) + x(1) (b) 4 x(—1)
2b-—-- -——<2
| I
I I
I I
I I
I I
-t =2\ 0| /1 2 4 1t —t —4 —2—-10 2 1
-2 -2

Fig. 1.99 Representation of even and odd signals of Example 1.54(a)
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(©) 4 x(®)+x(—1)
2
I________I
I I
I I
| |
Sima 2 ol K2 4
_4 4
3 3
—4
(e) t —x(—1)
2
< _4 _2 »
—t P ~1lo 2 1
|
I
[}
)
(€9)

135

(d b xe(1)
1
|________|
| |
| |
| |
-4 =2 f\o| /X 2 "
_4 4
3 3
-2
() 4 x()—x(—1)
2____
|
|
|
4 2 i ,
—t | 0 2 1
|
|
|
{2
1+ xo(0)

Fig. 1.99 (continued)

Putt = —¢

xe(t) =

x(—t) = cos(—t) + sin(—t) + cos(—t) sin(—t)

= cost —sint — costsint

%[X(t) +x(=1)]

1 . . . .
—[cost 4+ sint + costsint 4+ cost — sint — costsin ]
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(a) (b)
£x(0 £x(-1
1 1
A 0 2t AP 0 1 %
(© (d)
nxo(t)
12F---
I
]
Pl o 1 : -2 -1 |
—t | 0 1 2t
:
|
S )
+ XY
(e)

~+v

I
|
-t -2 -1 0 1 2

Fig. 1.100 Representation of odd and even components of Example 1.54(b)

x.(t) = cost

The odd component of x(¢) is obtained as follows:

%[x(t) —x(=1)]

xo(?)

1 . . . .
= E[cost+smt+costsmt—cost+smt+costsmt]

‘xo(t) = sinf[1 4 cos ]
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B Example 1.56

Find the odd and ever components of the following signals and sketch the same.
1. x(t) = sin wpt

2. x(t) = sin wotu(t)

3. x(t) = cos wyt

4. x(t) = cos wotu(t)

Solution:
1.
x(1) = sin wyt
x(—t) = — sin wqt
1
Xo(1) = E[x(t) —x(—1)]
a .
@) 4 X(D)=sinwyt
D P / - 0 T 21 woi
-1
(b) 2 X(—1)
1
T —om = 0 ™ 2w Oyt
-1

Fig. 1.101 Representation of x(z) = sin wpt and its odd and even components for Example 1.56.
Representation of x(f) = sin wptu(t) and its odd and even components for Example 1.56. Repre-
sentation of x(f) = cos wyt. Representation of xo(¢) = % cos wot[u(t) — u(—1)]
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© | x(n=sinwyt u(t) (d) » 3o(1)=0.5sinaqr

AN

A

—t |o E 21 u)Zt S w = /10 ™ 2m50z
-1 -0.5
(e) » X, (0)=0.5sinwyt[u(t) —u(—1]
05 _
par— - 0 ™ 21 w;z
—-0.5
()

4+ X()=cosmt

< _%\7 0 Uzw oot

-1

Fig. 1.101 (continued)

I . .
= E[sm wot + sin wot]
= sin wpt

= x(1)
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(€]

1t xo(H)=0.5coswgt[u(t) —u(—1)]

0.5
I I
I I
I I
I I
LN ._ 211- | |
- >
I 0
I
I
I
I

2 Wyt

c-----12

—0.5

Fig. 1.101 (continued)

1
X (1) = E[x(t) +x(=1)]
= %[Sin wot — sin wpt]
=0

x(t) and x(—t) are sketched as shown in Fig. 1.101a and b, respectively. From
Fig. 1.101b, we easily get —x(—t) by inverting x(—t¢). By adding % of x(¢) and
—x(—1t) we will get x(¢) itself. Similarly, by adding % of x(¢) and x(—t) point by
point, it becomes zero.

x(t) = sin wotu(t)
x(—t) = — sin wotu(—t)
—x(—1t) = sin wytu(—t)

1
Xo() = Slx(0) = x(=0)]

1
= E[Sin wotu(t) + sin wotu(—t)]

xo(t) = % sin wot[u(t) + u(—t)]
— 1 ]
=3 sin wot
1
X (1) = E[x(t) +x(=1)]

1
= E[sin wotu(t) — sin wotu(—1)]

= % sin wot[u(t) — u(—1)]
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The signals x(t), xo(¢) and x,(¢) are sketched as shown in Fig. 1.101c—e, respec-
tively.
3.

x(t) = cos wyt

x(—t) = cos wot

1
Xo(t) = E[x(t) —x(=1)]

1
= —[cos wyt — coswpt] =0

Xe(t) = = [x(#) + x(—1)]

—_ N =

= E[cos wot + cos wot]
= Ccos wpt

= x(1)

The signal x(7) is represented in Fig. 1.101f.
4.

x(t) = cos wotu(t)
x(—1t) = cos wotu(—t)
—x(—1t) = — cos wytu(—t)

1
xo([) = E[x(l) _-x(_t)]
= %cos wot[u(t) — u(—1)]

1
Xe(t) = S[x(0) + x(=0)]

X (1) = % cos wot[u(t) + u(—1)]

= — cos wyt

(1)

—X

2

The odd component is represented in Fig. 1.101g. The even component is
nothing but %x(t) represented in Fig. 1.101f with maximum amplitude being
reducedto 1/2.
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(a) b)

i 4

Fig. 1.102 Odd and even components of x(¢) of Example 1.57

B Example 1.57

A certain CT signal is described by the following mathematical equations.

t+4) -2=<t<?2
x(t) =48 t>2
0 t<-2

Sketch the signal x(#). Sketch the odd and even components of x(¢) and give the
mathematical description of these components.
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Solution: 2t+4 —2<t<2
x(t) =138 t>2
0 t<-2

To satisfy the above mathematical equations, x(¢) is sketched as shown in Fig. 1.102a.
x(—t) is sketched by signal reflection (folding) and is shown in Fig. 1.102b. By signal
inversion of x(—t), —x(—t) is obtained and is shown in Fig. 1.102c. The odd and
even components of x(¢) are obtained as given below.

1
Xe (1) = E[x(t) + x(—1)]
For —o0o <t < -2,

x(t) =0
x(—t) =8

Hence,
1
Xe(t) = §[0+ 8]
=4
For -2 <t <2,

x(t) = 2t + 4
x(—t) = =2t +4

1
X (1) = E[Zt +4 — 2t 4 4]

=4
Fort > 2,
x(t) =8
x(—t) =0
1
X.(t) = 5[8 + 0]
=4
Thus,
X, (1) =4

for all ¢. The even component of x(¢) is sketched and shown in Fig. 1.102d.
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1
Xo(t) = E[x(t) —x(=1)]

Fort < -2,
x(®) =0
—x(t) = =8
1
Xo(t) = 5[0 — 8]
= —4
For -2 <t <2,
x(t) =2t+4
—x(t) =2t —4

1
xo(t) = 5[2t +4 4+ 2r — 4]
=2t

This is the equation of a straight line with slope 2 and passing through the origin.
Fort > 2,

x(t) =8
—x(-=t)=0
1

Xo(t) = 5[8 +0]
=4

The odd component of x(¢) is sketched as shown in Fig. 1.102e.

1.8.5 Energy and Power of Continuous Time Signals

Consider the electric circuit shown in Fig. 1.103 in which a resistor R is connected
across the voltage source v(¢). The current flowing through the resistor is i(#). The
instantaneous power consumed by the resistor is given by

Fig. 1.103 Electric circuit O >
with a resistor I i(r)
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P = i*(H)R

V(@)
= — (1.44)

If we assume R = 1 ohm, the power is expressed as normalized power which is given
by
P =11 (1.45)

The average power consumption by the circuit over the time ¢; <t < t, is given by
the following equation:

P= ! /tzvz(t)dt (1.46)
_(fz—fl)t ’

The average energy consumption which is the product of power and time is given as

E:/ZP dr = /2v2(t) dr (1.47)

n n

Similar to voltages and currents, many other physical variables such as force, temper-
ature, pressure, charge, efc. are available for other types of systems. As a convention,
similar terminologies for power and energy of continuous signal x(¢) and discrete
signal x[n] are defined and used. However, the “power” and “energy” defined here
are not related to physical power and energy. Thus, if x(#) represents a continuous
time signal, then the average power over an infinite time interval 7 is defined as

LT
P= L - / be(t) 2 dt (1.48)
-T

The expression for the total energy is expressed as

T
E= Lt / |x(1)|? dt (1.49)
T—o00
-T

If the energy signal does not converge, such signals have infinite energy. On the other
hand, if E converges, then the signal has finite energy. From Eqs. (1.48) and (1.49),
the following inferences are drawn and given in Table 1.3.

Signals may be neither energy nor power signals. But they cannot be both an
energy signal and a power signal. If it is one, it cannot be the other.
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Table 1.3 Properties of power and energy signal

145

Energy signal

Power signal

1. The total energy is obtained using
T 2
E= Lt H|” dt
AL

1. The average power is obtained using
P= Lt & [Tlx@®*ar
(Lt 3 )

2. For the energy signal 0 < E < oo,
the average power P = 0

2. For the power signal 0 < P < oo,
the energy E should be co

3. Non-periodic signals are
energy signals

3. Periodic signals are power signals. However,
all power signals need not be periodic

4. Energy signals are not time limited

4. Power signals exist over infinite time

B Example 1.58

Find the power, RMS value and energy of the following signals:

(a)
(b)

x(t) =Au(t)
x(0) = e u(t)

Solution:

(@) x(t) = Au(t)

1 T
P= Lt — | A%d:t

T—o2T
-T
For x(¢#) = Au(t), the signal starts at t = 0.
1 T 2o
P= Lt —AZ/ dt = —[1]
T—002T 2T 0
0
, T A’
= Lt AA—=—
T—o00 2T 2
AZ
P = — watts

RMS value of power is
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A
Prvs = —

/2

Since power is finite, energy E is infinite.
(b) x(t) = e Y u(t)
For this signal, ¢ varies from 0 to oco.

T

E= Lt | (et
T—o00

= Lt e %dr

T—o00

|
i

u D peer

- T—o00 6 0
1 —6T
o 6T£tc>0 [1 ¢ ]
1
E = — Joules
6

Since E is finite, power P = 0.

B Example 1.59

Find the power and energy of the following signals:

(a) x(t) = Acos(wot + ¢)
(b) x(t) = Asin(wot + @)

Solution:

(a) x(t) = Acos(wot + @)
Since the signal is periodic, it is necessarily a power signal and its energy £ = 0.
The power of the signal is determined as follows:

LTs o
P = T&tooﬁ A” cos”(wot + ¢)dt
or

But,
1 + cos2(wot + ¢)
2

cos(wot + ¢) =
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2 T

P= TEOOE [1 + cos2(wot + ¢)]dt
-T

Now consider the integral

T
/ cos 2(wot + ¢)dt

-T

— 1 [ in?2 t T

= 2_a)0 sin 2(wot + @)1_ 1

= L[sin 2(woT + ¢) — sin2(—woT + ¢)]
2600

1
= —[sin2¢ — sin2¢] [ woT =27]
Za)()
=0

(b) x(t) = A sin(wo? + ¢)

1
P= Lt — A2 sin? (wot + ¢)dt
T*>002
-T

11 = cos2(wot + ¢)]
T»ooZT 2

A2 T
Tétooﬁ /dt—/ cos 2(wot + @) | dt
-T -T

147
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Since [ cos 2(wot + ¢)dt = 0,
-T

Since P is finite, E = o0.

B Example 1.60

Find the power and energy of the following signals:

x(t) = 5cos(10t + ¢) 4+ 10sin(5¢ + @)

Solution:

x(t) = 5cos(10z + ¢) + 10sin(5¢ + ¢)
= x1(1) + x2(0)
where
X1(r) = 5 cos(10t + ¢)
x2(t) = 10sin(5¢t + ¢)
Let P, and P, be the powers of x| (¢) and x,(¢), respectively.
AT 25

P = — =125
2 2
A% 100
Pp=—=——=50
T2 2
The average power
P=P +P;
= 125450

P = 62.5 watts

Since the power is finite, energy E = oo.
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(a) +x() (b) bx(t) = u()—u(10—1)

u(t)

10

y
A
A
v

—u(10—1) _—1

Fig. 1.104 Representation of x(¢) = u(t) — u(10 — 1)

B Example 1.61

Find the power and energy of the following signal:

x(t) =5t —10<t<10
Solution:
Energy of the signal E is
10 3710
E= (50)dt = 25 [—]
10 3110
25
= — x 2000
3 X
50000
E = Joules

Power of the signal P is zero.

B Example 1.62

Find the energy and power of the following signal:

x(®) = u(t) —u(10 —1)

Solution:

The signal u(f) and —u(10 — t) are represented in Fig. 1.104a. In Fig. 1.104b, x(¢) =
u(t) — u(10 — ¢) is sketched. From Fig. 1.104b, the following equation for power is
written:
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1 0 2 r 2
P= Lt — —1)“dt 1)°dt
TWZT/( ) +/()

-T 10
1 0 T
:Tg@{m_ au

1
= - Lt —[T+T 10]

2T—o0T

1 1
) [2—_0}=1

2T—o0 T

If the power is finite, the energy £ = oco.

B Example 1.63

Determine the power and RMS value of the following signal.

x(1) = &% cos wot

(Anna University, 2007)
Solution:

jat 2
P = T—>002Tf |€'“" cos wot|“dt

¢ = cosat +jsinat

|é/¥| = v/cos?at + sin®at = 1
T
P = TLt 3T cos® wordt
— 00
r

= TEIOOE/ (1 4+ cos2wot)dt

Since [ T cos 2wotdt = 0, using Eq. (1.33),
Ir

T

1 1
P= Lt — | dt=-=2T
-T
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RMS value of power is

151

Prvs =

Sl -

=0.707

B Example 1.64

Find the power and energy of the following signals:

() x(1) = 10" u(t)

b)  x(r) =/HTY

Solution:

() x(¢) = 10e72™ y (1)

1
T—o002T

(Anna University, April, 2007)

T
P= Lt —/ 110> 2dt  [x(t) = 0 for ¢ < O]
0

100 1 [T
= — It —/ dt
2 ToooT

0
=50 l[T]—SO
= T =

Since power is finite, E = co.
(b) x(t) = ej(2t+7t/4)

|ejZ7rl| =1

()] = | =1

T

1
P= Lt —
T—o0 2T

-T

1
dt = —2T =1
2T
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(a) x(t) = tri(f) (b) x(t) =5tri(%)
1 5

»

1 T Rra—) 0 2

|
-

|
—_
o
~v

Fig. 1.105 Representation of triangular signals of Example 1.65

Since power is finite, E = oco.

B Example 1.65
Find the energy of the following signal:

t
H)y=5tri| =
x(1) Ti <2>
Solution:

The triangular signal x(#) = tri(¢) is shown in Fig. 1.105a. By amplitude multiplica-
tion and time expansion, x(f) = 5 tri (%) is obtained and shown in Fig. 1.105b. For
Fig. 1.105b, the following equation is written:

¢ is obtained as 5.
5
x(t)=—§t+c 0<tr<?2

c is obtained as 5.
Let E; be the energy for the time interval —2 < ¢ < 0 and E, energy for the
time interval 0 <t < 2.
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(a) x(f) = tri(f) (b) x() = tri(z—.2) ()
1 1= 1

x(1) = tri(fy—.2)

=1 0 1 ' 528 02 12t S8 02 121t

Fig. 1.106 Representation of x(1) = tri(ﬁ —-0.2)

2 5 2
Ez=/ <—§t+5> dt
0
2 /25
=/ <Zt2+25t—25t)dt

0
2513 25,1
=|:Z§+251—7t i|0
50
3
E=E+E=212
3 3

00
E = T Joules

Since energy is finite, the average power P = 0.

B Example 1.66
Find the energy of the following signal:

=i =2
X()— I'I<T)

Solution:

b =i =2
X()— II<T>

= tri(0.1f — .2)

Figure 1.106a shows x(¢) = tri(¢). The time shifted signal x(t) = tri(f — 0.2) is
shown in Fig. 1.106b. The time shift is 0.2 toward right. By time elongation by factor
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10, x(t) = tri(% — .2) is obtained and is shown in Fig. 1.106c¢. For Fig. 1.106¢, the

following equations are written:

1
1) = —t —-8<tr<2
x(1) 10 +c
Fortr=2,x(t) =1
=2+
10"
c=0.8
x(#) =0.1¢+0.8
1
= ——1t 2<t<12
x(®) 10 +c <t<
Fort=2,x(t) =1
P
0 "¢
c=1.2

x(t) = =01t + 1.2

Energy of the signal is given as

2 12
E:/ (0.1t+0.8)2dt+/ (=0.1t + 1.2)%dr
-8 2
=E +E

where 5
Ei = / (0.17 + 0.8)dr
-8

and
12
E2:/ (—0.17 + 1.2)%dr

2

1
100

2
E, / (1 + 8)%dt
—8

1
100

2
/ (> + 16t + 64)dt
-8
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(a) 4 x(t) = rect(t) (b) +x(t) = 2rect(7t)
2
1
i T > i — >
t -3 0 % t t -1 0 1 t

Fig. 1.107 Representation of rectangular function

1 [7 ) 2
= — | = + 8 + 64t
100[ T L

3
10
T3
12 1
E2=/ — (12 — 1)?dt
, 100
1 12 )
= — 2 — 241 + 144)dt
100 J, ( + 144)
1 t3 12
=— | = — 1277 + 144¢
100 | 3 5
10
T3
E_E+E_10+10_20
I T T

20
E = 3 Joules

Since the energy is finite, the average power is zero.

B Example 1.67
Find the energy of the following signal:

x(t) = 2rect (%) .

Solution: The rectangular or unit gate function is represented in Fig. 1.107a. It is
defined as
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Fig. 1.108 Representation

4 x(1)
of x(r) = 2rect(%) cos wot 2rect (1/2)
2
-t -1 0 1 "t
__________ <+— cos wt
-2

1
x()=1 —=-<t<

=0 otherwise

The rectangular signal with amplitude scaling and time elongation is shown in
Fig. 1.107b. From Fig. 1.107b, the following equation for energy is written:

1
E:/ 22t =4[1]", =8
-1

E = 8 Joules

Since the energy is finite, the average power = 0.
B Example 1.68

Find the energy of the following signal:

t
x(1) = 2rect <§) CoS wot

Solution:
t
x(t) = 2rect (z) coswpt —1<r=<l1

The above function is represented in Fig. 1.108. Here Ty = 2sec. Hence, wy =
(2 /Ty) = 7 rad/sec.

1
E = / (2 cos wot)dt
—1

VAT
:4/_1 <§+50052w0t)dt
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Since

1
/ cos2wotdt =0  (see Example 1.43)
~1

1

therefore, E = 2/ dt = 2[[]]_l =4
-1

E = 4 Joules

Since the energy is finite, the average power P = 0.
B Example 1.69

A trapezoidal pulse x(¢) is defined by

G-t 4<t<5

x() =41 —4<tr=<4
(t+35) —-5=<t<-4
(a) Determine total energy of x(¢).
(b) Sketch x(2t — 3).
(c) If y(¢) = %, determine the total energy of y(¢).

(Anna University, December, 2007)
Solution:

(a) To determine the total energy of x (¢).
The given trapezoid pulse x(¢) is represented in Fig. 1.109a. The total energy of
the signal is determined as described below:

—4 4 5
E:/ (t+5)2dt+/ (1)2dz+/ (5 —0)dt
-5 —4 4
—4 4 5
=/ (t2+10t+25)dt+/ dt+/ (> — 107 + 25)dt
-5 —4 4

l3 —4 4 t3 5
[— +58 + 25t:| + H + [— — 52+ 25t:|
3 s 4 L3 4

64 125 125
=_?+80_100+T_125+125+8+T_125

64
+125 — == 480 — 100

—1+8+1
T3 3
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(a) 4+ x(0) (b) b x(21—3)
1
| |
| | | |
' [ ' [
' | ' |
' | ' |
| | | |
-5 —4 0 4 5 1 ) -1 -5 0 3 4 1
© $3(0) =50
B
Rt a 15

Fig. 1.109 Example 1.69

26
E = Y Joules

(b) To sketch x (2t — 3)
x(t) in Fig. 1.109a is right shifted by 7y = 3 and time compressed by a factor 2.
x(2t — 3) is shown in Fig. 1.109b.
dx

(c) To determine the total energy for y(¢) = ;.

x(t) =5+t —S<t<—-4
dx(t)

1) = =1 —5<t<—-4

y() o <t=<

x(t) =1 —4<t<4
dx (1)

1) = =0 4 <t<4

y(@) o <t=<

x(t)=5—1t 4<tr<5
dx(t

(@) = x()=—1 4<t<5

dt
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The sketch of the above equations is shown in Fig. 1.109¢. From this figure, the
total energy is calculated as follows.

/ 6 dt+/( 1)2dt

=[S+ [l =1+1

E = 2 Joules

B Example 1.70
Consider the following CT signal.

x(t) =28(t+5) —25(t — 6)

Calculate the energy of the signal

Y(t)=/ x()dr

oo

Solution:

y(t) = /I x(t)dt

o0

:/ 25(z+5)dr—/ 28(r — 6)dr

o0 —0Q

=2u(t+5) — 2u(t — 6)

y(¢) is represented in Fig. 1.110. The energy of the signal y(¢) is calculated as

Fig. 1.110 Representation
of signal of Example 1.70 by




160 1 Representation of Signals

Fig. 1.111 Sketch of x(¢) of x(f)
Example 1.71 +

~v

6
E= / ly(0)|dt
5

6
= / (2)%dt
-5
6
=4[],

B Example 1.71

A certain signal is described by the following mathematical equations (Fig. 1.111).

2t 0<r<l1

2+sin27t 1<t<?2
x(t) =

4 —1¢ 2<t<4

0 otherwise

Sketch the signal x(¢). What is the energy of the signal?

Solution: x(t) is split up as

x(t) = x1(t) + x2(t) + x3(8)

where
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x1(t) = 2t 0<t<l1
Xp(t) =2+sin2xt 1<t<?2
x3(t) =4 —t 2<t<4

E1, E; and Ej5 are the corresponding energies for x;(¢), x,(¢) and x3(¢), respectively

1
a=fme%
0

1
= / 4% dr
0

2
&=/me%
1
2
= / (2 + sin 27 1)2dt
1
2
= / (4 + sin® 27t + 4 sin 27 1)dt
1

2
=/ 44+ 0.5(1 —cosdmt) + 4sin 2w t)dt
1

279 1
:/ — — —cosdnt+4sin2wt | dt
1 \2 2

|:9 1sin4dnt 4 ]2

4
= / (** — 8t + 16)dt
2
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r !
[— — 4 + 16ti|
3 2

64 8
== —64+64|—|=>—16+32
|5 oo [5-003]

8
=3
E=E+E+E
4 9 8
=373273
E =285

1.9 Classification of Discrete Time Signals

Like continuous time signals, discrete time signals are also classified as

1. Periodic and non-periodic signals.
2. Odd and even signals.
3. Power and energy signals.

They are discussed below with suitable examples.

1.9.1 Periodic and Non-Periodic DT Signals

A discrete time signal (sequence) x[n] is said to be periodic with period N which is
a positive integer if
x[n+ N]=x[n] foralln (1.50)

Consider the DT sequence shown in Fig. 1.112. The signal gets repeated for every
N. For Fig. 1.112, the following equation is written:

x[n 4+ mN] = x[n] foralln (1.51)
where m is any integer. The smallest positive integer N in Eq. (1.51) is called the

fundamental period Ny. Any sequence which is not periodic is said to be non-periodic
or aperiodic.
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4 x[n]

L L T

—3N  -2N —N 0 N ON 3N

Sy

Fig. 1.112 Periodic sequence

B Example 1.72

Show that complex exponential sequence x[n] = ¢/ is periodic and find the fun-
damental period.

Solution:
x[n] = "
x[n+N]= /oo tN)
— engnejwoN
=" if Y =1
woN = m2mw  where m is any integer.
2
N=m—
wo
or o m
20 — " _ rational number.
2 N

Thus, e/®" is periodic if % is rational. For m = 1, N = Ny. The corresponding fre-
quency Fy = NLO is the fundamental frequency. F is expressed in cycles and not Hz.
Similarly wy is expressed in radians and not in radians per second.

B Example 1.73
Consider the following DT Signal.

x[n] = sin(won + ¢)

Under what condition, the above signal is periodic.
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Solution:

x[n] = sin(won + @)
x[n+ N] = sin(wg(n + N) + ¢)

= sin(won + wolN + ¢)
= sin(won + ¢) if woN = 2mm
= x[n]

o

m .
— = — = rational
21 N

B Example 1.74

If xi[n] and x,[n] are periodic, then show that the sum of the composite signal
x[n] = x1[n] + x»[n] is also periodic with the Least Common Multiple (LCM) of the
fundamental period of individual signal.

Solution: Let N| and N, be the fundamental periods of x;[n] and x,[n], respectively.
Since both x| [n] and x,[n] are periodic,

x1[n] = x1[n + mN]
X2[n] = xp[n + kN, ]
x[n] = xi[n] + x2[n]
= x1[n + mN1] + x;[n + kN> ]

For x[n] to be periodic with period N,

x[n+N]=xi[n+ N]+x2[n+ N]
x[n] = x[n + N]
xi[n + mNi] + x2[n + kN> = xi[n + N] + x2[n + N]
The above equation is satisfied if
le = kN2 =N
m and k which are integers are chosen to satisfy the above equation. It implies that
N is the LCM of Ny and N,.
On similar line, it can be proved that if x;[n] and x,[n] are periodic signals with

fundamental period N; and N,, respectively, then x[n] = x;[n]x;[#] is periodic if

le :kN2 =N
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B Example 1.75
Find whether the following signals are periodic. If periodic, determine the funda-

mental period.
(@  x[n]=é€™
b . n
(b) x[n] = cos [§ — n]

©  xln] =sin* Zn
4
Solution:
(a) x[n] = e/™
wy =T
2
N=—m
wo
2 .
N=—=2 ifm=1
b4

x[n] is periodic with fundamental period 2.
(b) x[n] =cos[5 —n]

1

a)ozg
2

N = _nm: 16rm
wo

For any integer value of m, N is not integer. Hence, x[n] is not periodic.

x[n] is not periodic

(¢) x[n] = sin® an
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T

x[n] = sin Zn
1 1 2w
= - — —Ccos—n
2 2 4
= x1[n] + x2[n]
1 1
xi[n] = 3= E(l)" is periodic with Ny = 1
1 /4
Xa2[n] = —5 cos En
T
woy = 5
2w
N=—m=4d4m=4 form=1
wy
N1
N, 4
or 4N1 = N2 =N
N =4

B Example 1.76
Find the periodicity of the following DT signal

(] .2 n T
x[n] = sin —n + cos —n
3 2

(Anna University, December, 2007)
Solution:

1] = sin 2Zn + cos
Xln| = S1In —n COS —n
3 2

= x1[n] + x2[n]

L2
x1[n] = sin gnn

2

w) = -
3
2w 2w

N1 = —m = —3m1 =3 form1 =1
w1 2

T
Xz[n] = cos En

b

wy = E
2w 2

Ny = —my=—2m =4 formp =1
w7 T
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Ny 3
— =-0r4N; =3N, =N
N, 4

B Example 1.77

Determine whether the following signal is periodic. If periodic, find its fundamental

period.
ni nm
x[n] = cos (—) cos (—)
2 4

(Anna University, December, 2006)

Solution: Method 1:

x[n] = cos (%) cos (%)
= x1[n]xz[n]

n
x1[n] = cos -

b4
w)] = E
2w 2w
Ni=—m=—2m =4 form =1
w1 g
nmw
xa[n] ZCOST
T
wy = Z
2 2
N2=—nm2=—4m2=8 form2=l
w7 T
Ny 4 1
— =—-—=— or
N, 8 2
2Ny =N, =N
N =28

The signal is periodic and the fundamental period N = 8.

Method 2:
x[n] = cos (%) cos (%)
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Using the following formula, we get

cos(A + B) + cos(A — B) = cosAcosB — sinAsin B + cos A cos B + sin A sin B
= 2cosAsinB

1 1
cosAcosB = 2 cos(A + B) + 3 cos(A — B)
Substituting A = nw /2 and B = n /2, we get

[]_1 1+1 +1 I 1
xn_zcosnn >ta 2cosym 272

= 5 Ccos Zrm + 5 cos Znn

Choosing
[]_1 3
xi[n _zcos4nn
and
[n] = £ cos +
x[n _zcos4nn
we get
3
w|] = =TT
4
2 24
N1=—nm1=im1=8 form1=3
w1 3
1
C()Q—ZT[
2 24
Moo= Ty = o0, =8 formy =1
w? b
N 8
—:—:1
N> 8
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B Example 1.78

Test whether the following signals are periodic or not and if periodic, calculate the
fundamental period.

(@) x[n] = cos (%n) + sin (%n) + 3 cos (%n + %)

(b)  x[n]=éT" 47"

(Anna University, December, 2007)
Solution:

(a)
1= (5) 60 () 0 (35 )
= xi[n] + x2[n] + x3[n]

b4
x1[n] = cos En

T 21 2w 2
w; = —; N1=—=— form1=1
2 w1 T
N =4
e
xp[n] = sin <§n)
T 2 2r 8
wy = —; N2=—m2=— fOl‘m2=1
8 wy 4
N, =16
b4 b4
x3[n] = 3 cos (Zn + 3)
T 27‘[ 27'[4
w3==—; N3="my="o form=1
4 w3 T
N3 =8
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The signal is periodic.

(b)

x[n] = ejz—%” + ejBT”"
= x1[n] + xz[n]

22
xi1[n] = el

2 2 2

] = _jT’ | = _T[ml = —7[3 fOrml =1
3 w1 27

N =3

x[n] = o n

37 2r 2n

W) = —; N2 = —Mmp = —4m2
4 Wy 3

N2=8 form2=3
Ny 3

N, 8
8Ny =3N,=N=24
N =24

The signal is periodic with fundamental period N = 24.

1.9.2 0dd and Even DT Signals

Similar to continuous time signals, DT signals are also classified as odd and even
signals. The relationships are analogous to CT signals.
A discrete time signal x[n] is said to be an even signal if
x[—n] = x[n] (1.52)
A discrete time signal x[n] is said to be an odd signal if
x[—n] = —x[n] (1.53)
The signal x[n] can be expressed as the sum of odd and even signals as

x[n] = xe[n] + xo[n] (1.54)

The even and odd components of x[n] can be expressed as
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(a) (b)
nx[n] nx[n]
6 6
5 5
5
3 3 3 3
2
| ‘ | ‘ R
> T >
-4 -3 -2 |—-1|10 |1 2 3 4 n —4{ -3 l1—21—101 23{ 4 n
=2
-3 -3
—4 —4
Fig. 1.113 a Even function and b Odd function
Xe[n] = %[X[n] + x[—nl] (1.55)
1
xo[n] = 2 [x[n] — x[—n]] (1.56)

It is to be noted that

An even function has an odd part which is zero.

An odd function has an even part which is zero.

The product of two even signals or of two odd signals is an even signal.
The product of an odd and an even signal is an odd signal.

At n = 0, the odd signal is zero.

The even and odd signals are represented in Fig. 1.113a and b, respectively.

B Example 1.79

Determine whether the following functions are odd or even:

(a) x[n] = sin27n
(b) x[n] = cos2mn
Solution:
(a) x[n] =sin2nn
x[—n] = sin(—2mn) = —sin27n
= —x[n]

This is an odd signal.
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(b) x[n] =cos2nn

x[—n] = cos(—2mn) = cos2mn

= x[n]

This is an even signal.

B Example 1.80

Find the even and odd components of DT signal given below. Verify the same by
graphical method.

x[n] ={-2,1, 3, 5,4}
T

Solution: x[—n] is obtained by folding x[n]. Thus,
x[_n] = {47 _5’ 3’ 1’ _2}
T

—x[—n] ={-4,5, -3, -1, 2}
T

X[n] = 5 [x[n] + x[—nl]

N = N =N =

[{=2, 1,3, =5, 4} + {4, 5,3, 1, =2}]
1 1

[(—244), 1-75), 3 +T3)’ (=5+ 1), 4-2)]

xe[n] = {1, _2’T3’ -2, 1}

1
xo[n] = 3 [x[n] — x[—n]]

= 1[{—2, 1,3, =5,4}+{-4,5, =3, —1, 2}]

= % [(—2—-4),(1+5),(3 —%), (=5-1),4+2)]
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() b x[n] (b) b x[—n] © 5 *t-xn
4 4
3 3 2
1 1
! , 1 , —2 1 I=
—21—10 1 2n -2 —10121n =2[ -1 ollzn
-2 -2 -3
—5 —5 —4
(d 4 x[n] (e)  xoln]
3 3 3
1 1 [ ‘
T ! > >
-2 1—10 llZn —2{ -1 o llQn
-2 -2

x[n]=7 [x(m)+x(—n)]

Xo[nl=4 [x(n)—x(—n)]

Fig. 1.114 Graphical determination of even and odd function from x[n]

xoln] = {-3, 3,

T

0,-3,3

}

Odd and even components by graphical method.

Solution:

1.
2.
3.

Fig. 1.114c.

x[n] is represented in Fig. 1.114a.
x[—n] is obtained by folding x[#n] which is represented in Fig. 1.114b.
—x[n] is obtained by inverting x[—n] of Fig. 1.114b. This is represented in

. X.[n] = % [x[n] 4+ x[—n]]. Figure 1.114a, b sample wise are added and their ampli-

tudes are divided by the factor 2. This gives x.[n] and is represented in Fig. 1.114d.

xoln] = % [x[n] — x[—n]]. Figure 1.114a, c sample wise are added and their ampli-

tudes are divided by a factor 2 to get xo[n]. This is represented in Fig. 1.114e.
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Fig. 1.115 a Even function . b R
and b Odd function @) xeln] (b) Xoln]
1.5 1.5 15
[ ts| s { 5 51 [
[fr] |, ot
l o 1 n l l TTo 1 n
-5 -5 -5 -5
-1
-2 -15

B Example 1.81

Find the even and odd components of the following DT signal and sketch the same.

x[n] =1{-2, 1,2, —1, 3}

(Anna University, December, 2007)
Solution:

x[n] =1{-2,1, 2, —1, 3}
x[—n] = {3, -1, 2,1, _ZT}

1
Xe[n] = 3 {x[n] + x[—n]}
1
=—[{-2,1,2, —1,3}+ {3, -1,2, 1, =2
7 [ 7 } 4+ }]T

={15,-5,1,.5,-2,.5 1, -5, 15}

T
1
xp[n] = 3 [x[n] — x[—n]]
1
=3 [{_TZ’ 1,2, —1,3}—{3, -1, 2, 1, _2}]T

xoln] = {~15, .5, =1, —=.5,0, .5, 1, —.5, 1.5}
T

Even and odd components of x[n] are represented in Fig. 1.115a and b, respectively.
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B Example 1.82
Given x[n] and y[n]

x[—1]1=2
x[n] =1 0<n<5
x[6] = 0.5
=0 otherwise
ylnl = 2u[n]
Plot
1. x[n/2]
2. x[n]y[n/2]
3. Even part of x[n]
4. x[n] + y[n/2]16[n — 1]

(Anna University, December, 2011)
Solution:

1. For the given equation, x[n] is represented as shown in Fig. 1.116a. x[n/2] is
obtained by time expansion and is shown in Fig. 1.116b.
2.

yln] = 2u[n]
[5]= 23]
5] i
The step sequence is time expanded by 2 and amplitude multiplied by 2. y[5] is

sketched as shown in Fig. 1.116c.
3. The even part of a function is given by

1
Xey[n] = E[x[n] + x[—n]]
x[n] shown in Fig. 1.116a and x[—n] shown in Fig. 1.116f are added and divided

by a factor 2 to get x.y[n] and are shown in Fig. 1.116g.
4. y[n/2] is shown in Fig. 1.116¢c. Now

r[5lom=n=>[3]

n=1
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(a) 4 x[n]
2
“n 101 2 345 6 n
(b) 4 x[n/2]
2
[HEREEE;

(©) 4 y[n/2]
| y[n/2] at n=1
|
|
2 |
|
-n 012 4 6 8 10 n
(d) 4 x[n]
2
“h 2101 2 34567 n

Fig. 1.116 Plot of x[n] of Example 1.82. Figure of Example 1.82
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(e) 4 x[n]y[n/2]
2 2
2
{ ‘ |
“n 2 -1 0 2 4 6 8 10 12 n
(H 4 x[—n]
2
1 1 1 1 1 1
AR
7 =6 -5 —4 -3 —2 -1 0 1 7
(2 4 Xoy[71]
1.5 1.5
12 12 12 12 1 12 12 12 12
1/4[“‘ ““M
7 =6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 n

Fig. 1.116 (continued)

wheren =1

x[n]+y [g] 8ln — 1] = x[n]

x[n] is shown in Fig. 1.116a.
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1.9.3 Energy and Power of DT Signals

For a discrete time signal x[n], the total energy is defined as

E = i [x[n]]? (1.57)
n=—00
The average power is defined as
1 al 5
P= Lt aTD n;v |x[n]| (1.58)

From the definitions of energy and power, the following inferences are derived:

1. x[n] is an energy sequence iff 0 < E < oo. For finite energy signal, the average
power P = 0.

2. x[n] is a power sequence iff 0 < P < oco. For a sequence with average power
P being finite, the total energy E = oo.

3. Periodic signal is a power signal and vice versa is not true. Here the energy of
the signal per period is finite.

4. Signals which do not satisfy the definitions of total energy and average power
are neither termed as power signal nor energy signal. The following summation
formulae are very often used while evaluating the average power and total energy
of DT sequence.

1.
Ya-lm0 (1.59)
a = —— a .
e 1—-a
=N a=1
2.
o0 ) 1
nzzga =(1—a) a< 1 (1.60)
3 .
n __ a”
};a = 0T—w a<1 (1.61)
4.
et = 1 1.62
Zna _(l—a)2 a< (1.62)

n=0
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B Example 1.83

Determine whether the following signals are energy signals or power signals:

(a) x[n] = Aé[n]
(b) x[n] = u[n]
(c) x[n] = rampn
(d) x[n] = A
(e) x[n] = 2/
) x[n] = cos %n
Solution:
(a) x[n] = Ad[n]
x[n] = Aé[n]
=A n=0
=0 n#0

0

Energy E = Z(A)2
n=0

E = A?

For unit impulse, A = 1 and E = 1.
(®) x[n] =uln]; n =0

N
2
P= L (2N - 2; ()]

N

= Lt ——— 1
N—oo (2N+l) Z

n=0
But M [ 1=W+1)

N+1)
N—oo (2N + 1)
NO+3) 1

= Lt
N—oo N(2 + llv) 2

P=
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1
P=
2
E =00
(¢c) x[n] =rampn; n >0
N
2
P= Lt (2N+ Z |x[n]]
N

P_N»oo(zNJr 2;

But Zln\’:O l’l2 — N(N+l)6(2N+l)

NN +1)2N + 1)
NZoo (2N + D6

P =

Representation of Signals

The signal x[n] = n is neither power signal nor energy signal.

(@) x[n] =
— 1 . 2
=T n;wA

2 (o]

= Lt A—(ZN—H) [Z 1=(2N+1)}

N—oo (2N + 1)

n=—00

P=A?

E =0
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(e) x[n] = 2/t

N
P= It # Z |28/(rm+9)|2
N—oo (2N + 1) Y
N
P= Lt 4 e]'(nrr+9) 2
N—oo 2N + 1 _XN:l !

But [ = Tand ¥ 1 = 2N + 1)

b QN +1)
S Nooo 2N A41)

(f) x[n] =cos 3n
1 N T
P=——— 2=
(2N+1)_XN:COS n

- N
Since ) " cosn = 0,

1 N

P It Z (1 4+ cosmn)
N—oo (2N + 1) ~ 2

1 . (2N +1)
N—oo (2N + 1)

2
1
2

181

B Example 1.84

Determine the energy of the signal shown in Fig. 1.117 whose

x[n] = (%) uln]

(Anna University, December, 2007)
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Fig. L117 x{n] = ()7 uln] ‘

b x[n]

‘HIT

Solution:

1 2n
)

I

+
| —

|
S—
S}

+

Bl Example 1.85

Find the energy of the following sequence:

x[nl=n 0<n<4

Solution:
x[n]l =n
=1{0,1,2,3,4}

4
E = Z n’
n=0

=0+1+4+94+16
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4 x[n]
4 4 4 4
S 2 A 3 3
2 2 2
| | |
! ! 0 1
-5-4-3-2-1 01 2 3 4 5 6 7 8 9

Fig. 1.118 x[n] of Example 1.86

B Example 1.86

Determine the average power and the energy per period of the sequence shown in
Fig. 1.118.

Solution: The fundamental period N of the signal is 5. Hence, the average power per
period is

P—14 2
=<3

n=0

1
=50+1+4+9+16]

P=6

Average energy per period is

4
E = Z n?
n=0

=[04+14+4+9+16]
E =30

Total Energy = oo

B Example 1.87

Find the energy and power of the following signal:

x[n] = d"uln]
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for the following cases:
(@) lal <1

(b) lal=1
© lal>1

Representation of Signals

Solution:

(a) x[n] = a"u[n] where |a] <1andn > 0

E= i(a")2
n=0

=1+d*+a" +...

_ 1

1 —al?
P=0

(b) x[n] = a"u[n] where |a| =1
N
E= Lt 1"= Lt (N+1)
N—o00 N—o0

E =0

_ (N+1)
N—oo (2N + 1)

_ o, Na+ V)
N—oo N(2 + }V)

N =
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(¢) x[n] = a"ul[n] wherea > 1

N
E= Lt a’

N—o00

=l+a+a+---+d¥

E =00

N
1
P= Lt ——— "
zv»oo(zzv+1)n§“
1 1— N+1
I (I—=a""")
N—oo (N+1) (1—a)

P =o00

The signal is neither energy nor power signal.

B Example 1.88
Find the energy of the following signal:

x[n] = nu[n] — 2nu[n — 4] + nu[n — 8]

Solution:
x[n] = nu[n] — 2nuln — 4] + nu[n — 8]

xi[n] + xz[n] + x3[n]

x1[n], x2[n] and x3[n] are shown in Fig. 1.119a—c, respectively. Figure 1.119d repre-
sents x[n]. From Fig. 1.119d, the energy of the signal x[n] is obtained as

E=124+224+324+4>4+324+22+12
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(b)

+ x5[n]

123456789

_21u
01234 n —4%

o

(c) (d

x3[n]
4

il

0123456789101112 n

Fig. 1.119 DT energy signal of Example 1.88

B Example 1.89

Determine the value of power and energy of each of the following signals:

(@ x[n]=¢FHD
(b) x[n]= <%) uln]

Solution: (Anna University, April, 2008)

N
1 TN g
P= Lt A M
N—oo 2N + 1 g\;' |
1 N

zNﬁxaN+D§;]
N+
T QN+1)

‘P:landE:oo
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(b) x[n] =[3]" uln]

N 1 2n

Fe e 3(3)
_ ,i(l)”
N—o0 & 4
_ 14
C1-13

4
E:ganszO

B Example 1.90
Find the energy of the following DT signal

x[n] = (%) n>0

=3" n<0

(Anna University, April, 2005)

E= _i@)z” + i (%)2}

L —oo 0

Solution:
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11 +4
S 9[-31 3
_1+4
8 3
35
24
Summary

. Signals are broadly classified as Continuous Time (CT) and Discrete Time
(DT) signals. They are further classified as deterministic and stochastic,
periodic and non-periodic, odd and even and energy and power signals.

. Basic CT and DT signals include impulse, step, ramp, parabolic, rectangular
pulse, triangular pulse, signum function, sinc function, sinusoid, real and
complex exponentials.

. Basic operations on CT and DT signals include addition, multiplication,
amplitude scaling, time scaling , time shifting, reflection or folding and
amplitude inverted signals.

. In time shifting of CT signal, for x(z + #y) and x(—¢ — £y), the time shift
is made to the left of x(#) and x(—t¢), respectively, by #,. For x(t — o)
and x(—7 + 1), the time shift is made to the right of the x(¢) and x(—1),
respectively, by 7. Similar operation holds good for DT signals x[n + n],
x[—n — ngl, x[n — ng] and x[—n + ny] when shifted by ny.

. To plot CT and DT signals, the operation performed is in the following
sequence. The signal is folded (if necessary), time shifted, time scaled,
amplitude scaled and inverted.

. Signals are classified as even signals and odd signals. Even signals are
symmetric about the vertical axis whereas odd signals are anti-symmetric
about the time origin. Odd signals pass through the origin. The product of
two even signals or two odd signals is an even signal. The product of an
even and an odd signal is an odd signal.

. A CT signal which repeats itself for every T seconds or a DT signal for
every N sequence is called a periodic signal. If the signal is not periodic, it
is called an aperiodic or non-periodic signal. The necessary condition for
the composite of two or more signals to be periodic is that the individual
signal should be periodic.

. Assignal is an energy signal iff the total energy of the signal satisfies the con-
dition 0 < E < oo. A signal is called a power signal iff the average power
of the signal satisfies the condition 0 < P < oo. If the energy of a signal
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is finite, the average power is zero. If the power of the signal is finite, the
signal has infinite energy. All periodic signals are power signals. However,
all power signals need not be periodic. Signals which are deterministic and
non-periodic are usually energy signals. Some signals are neither energy
signal nor power signal.

Exercises

I. Short Answer Type Questions

1.

How are signals classified?

Signals are generally classified as CT and DT signal. They are further
classified as deterministic and non-deterministic, odd and even, periodic
and non-periodic and power and energy signals.

. What are odd and even signals?

A continuous CT signal is said to be an even signal if it satisfies the condition
x(—t) = x(¢) for all ¢. It is said to be an odd signal if x(—z) = —x(¢) for
all z. For a DT signal, if x[—n] = x[n] condition is satisfied, it is an even
sequence (signal). If x[—n] = —x[n], the sequence is called odd sequence.

. How even and odd components of a signal are mathematically expressed

for CT and DT signals?

1

Xe(t) = E[x(t) + x(=1)]
1

Xo(t) = E[x(t) — x(—1)]
1

x[n] = E{x[n] + x[—n]}

1
Xo[n] = E{x[n] — x[—nl}

. What are periodic and non-periodic signals?

A continuous time signal is said to be a periodic signal if it repeats itself for
every T sec. It satisfies the condition x(¢) = x(¢ + T) for all ¢. A discrete
time signal is said to be a period signal if it satisfies the condition x[n] =
x[n + N] for all n. A signal which is not periodic is said to be non-periodic.

. What is the fundamental period of a periodic signal? What is funda-

mental frequency?

A CT signal is said to be periodic if it satisfies the condition x(¢) =
x(t + T). If this condition is satisfied for T = Ty, it is also satisfied for
T = 2Ty, 3Ty, . ... The smallest value of T that satisfies the above condi-

tion is called fundamental period. The fundamental frequency fy = Tio Hz.

It is also expressed as wy = ZT_Z rad/sec.

189
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6. What are power and energy signals?
For a CT signal, the total energy is defined as

T
E= Lt / |x(7)|>dt
T—o00 -T

and the average power is defined as

T

1
P= Lt — |x(2)|dt
T—o0 2T J_r

The square root of P is called Root Mean Square (RMS) value of x(¢). For
a DT signal x[n], the total energy is defined as

o0
E = Z xz[n]
n=—oo
The average power is defined as
1 N
P= L :
L T n;Nx [n]

7. Determine whether the signal x[r] = cos[0.1zn] is periodic.
The signal x[n] is periodic with fundamental period Ny = 20.
8. Find whether the signal x[n] = 5 cos[6xn] is periodic.
The signal is periodic with fundamental period Ny = 1.
9. Whatis the condition that the signal x (£) = e*’u(t) to be energy signal?
For the signal x(¢) = e“u(t) to be energy signal, a < 0.
10. Is the unit step signal an energy signal?
The unit step has an average power P = % It is a power signal.
11. Determine the power and RMS value of the signal x (¢) = e/% cos wyt.
Average power P = % and RMS power Prvs = «/Li
12. What is the periodicity of x () = e/10071+30°9
The periodicity of the signal x(7) is T = %seo.
13. Find the average power of the signal.

x[n] = u[n] — u[ln — N]

The average power P = 1.
14. Find the total energy of
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x[a] ={1, 1,1}
T

The total energy E = 3.
15. If the discrete time signal x[n] = {0, 0, 0, 3, 2, 1, —1, —7, 6}, then find
y[n] = x[2n — 3].
y[n] =1{0, 0,0, 3, 1, =7}

16. What is the energy of the signal x[n] = u[n] — u[n — 6]?
E=6

17. Find the equivalence of the following functions (a) § (a?); (b) 6(—¢); (c)
t3(t); (d) sinzd(¢); (e) cosd(¢) and (f) x(2)d(¢t — ty).

(a) d(ar) = éﬁ ()

(b) 5(—=1)=4@)

(c) t8(t) =0

(d) sintd(t) =0

(e) costd(t) = 6(1)

(f) x(1)8(t — to) = x(to)

18. How do you represent an exponential e=%' for ¢ > 0 and ¢ < 0?
The everlasting exponential e~% is expressed as e~“u(t) for + > 0 and
e “u(—r) fort < 0.2
19. Find the value of 5¥25(t — 2).
(> +5)
—8(—2)=096(@—2
Y (t—2)

20. Find the odd and even components of e/% .
X.(t) = cos2t
Xxo(t) = sin 2t

II. Long Answer Type Questions

1. A triangular pulse signal x(7) is shown in Fig. 1.120a. Sketch the following
signals. (a) x(41); (b) x(4t + 3); (¢) x(—3¢ + 2); (d) x(§ +2); (e) x(3t — 2) and
) x(4t 4+ 3) + x(21).

2. Sketch the following CT functions. (a) x(¢) = 8u(5 — 1); (b) x(¢) = 36(t + 2);
(¢) x(f) = ramp( + 1); (d) x(r) = SrectEL; () x(r) = —tri'’ZL; () x(t) =
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(a) x(2) (b) x(41) (c) x(4t+3)
| /’1\ |
|
/\
|
. . . i

-1 0 1 ¢ -1 0 I Y -1 -3 1 0 Y
(d) 4 x(—3t+2) (e) x(£+2) () +xGr-2)
/\
|
o é »> >
0 i % 1 ¢ t
(@

Fig. 1.120 Operations of CT signals

u(t) —u(t—5); (g) x(t) =u@) —u+5); (h) x(¢2) = —ramp(t)u(t — 3); (i)
x(t) = u(1)(t + p)ramp(3 — 1) and (j) x() = rect(s + 2) — rect(r — 2).

3. Determine whether each of the following CT signals are periodic. If periodic,
determine the fundamental period (Fig. 1.121).

(a) x(t) = ¥

®)  x(n) =T

©  x(t)=sin <60m + %)

(d) x(t) = cos (607” — %) — sin 207t

T

. b4 wt b4
(e) x(t) = sin (8711‘ + §> + 5cos <? + 2) + 6 cos (771t — E)

®) x(t) = 30sin (8nt + %) cos (Znt + %) sin (57” — %)

(a) Periodic with period Ty = 7 sec. (b) Not periodic. (c) Periodic. Ty = 3]—0 sec.

(d) Periodic Ty = 75 sec. (e) Periodic Ty = 6sec. (f) Periodic Ty = 2 sec.
4. Sketch the even and odd parts of the following signals shown in Fig. 1.122a, b.
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(a) & Su(5—1) (b) 35(t+2) (c) ramp(t+1)

0 5 1 -t -2 0 t -1 0 1
(d) (e —trifg))
t Srect(L) 3 0 l‘ 5 .
|
|
|
|
_1 L )
—s 0 3 7
(f) (2) u(t)—u(t+5)
u(t)—u(t—5) _s 1
1
R -1
0 5 t
(h) O] t u(r+3%) ramp (3—1)
1
‘/"‘
o0 T

@

rect(t+2)—rect(t—2)
--11

Fig. 1.121 Operations of CT signals

193



194 1 Representation of Signals
(a) $ x(1)
2
0 2 T T
(d) # xo(0)
() 0
txe(t) 1
_2 N
1 2t
-1
-2 0 2t
) 1 x(0)
(e)
2 I
|
N -2 —1 [
P | 01 2
\ | |
|
| L
l | . ’
-2 -1 0 1 2 t
Fig. 1.122 Even and odd signals of CT signals
+ [[8(t+4)—8(t—4)]dz
1
—4 0 4 1
Fig. 1.123 Representationof x(t) = f[5 (t+4) =60 —4)]dt
A )C(t)
1 S S S

Fig. 1.124 Triangular wave
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(a)

(b)
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. Consider the CT signal x(t) = §(t +4) — §(t — 4). Sketch f x(t)dt and find the

energy of the signal (Fig. 1.123).
Energy E = 8.

. Find the energy of the following CT signal. (a) x(¢) = tri3¢; (b) x(¢) = 2tri(%);

(c) x(1) = rect10z; (d) 2rect({5); (e) sin(2r 7).
@E=3ME=2(E=14%()E=280and(e)E = ;.

. What is the average power of the triangular wave shown in Fig. 1.124.

=1
Average power P = 3 watts.

. For the following DT signal, find even and odd components

xln] = {1, =3, 2, 5, 4}

x[n] = {2,251, -1.5, 1, —1.5, 1, 2.5, 2}
T
xoln] = {=2, =2.5, —1, 1.5, 0, —1.5, 1, 2.5, 2}
T

. Find whether the following signals are periodic. If periodic, find the funda-

mental period. (a) x[n] = cos(g — 7); (b) x[n] = cos(§ + 5) +cos(§ — 7);
(c) x[n] = cos(ZX + ) + sin 1% and (d)x[n] = & + &4

(a) Not periodic. (b) Periodic with fundamental period Ny = 48 samples/sec. (c)
Periodic with fundamental period Ny = 24 samples/sec. (d) Non-periodic.
Given x[n] and y[n]

x[—-1]1=2
x[n] =1 1<n<5
[6] = !
B
=0 for other n
Plot (a) x[%] and (b) E, x[n]. (Anna University, 2007).

x[n] =12, 1,1, 1, 1, 1, 1, 0.5}

T
x[g] —1{2,0,1,0,1,0,1,0,1,0, 1,0, 1, 0.5)
T

x.[n] = {0.25, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.25}
T
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11.

12.

13.

14.

15.
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Find whether the following signal is periodic. If periodic, find the fundamental
period.

T . T . T
x[n] = cos (2nn + 5) + sin (57'”1 - Z> +sin (8”” + E)

The signal is periodic. Their fundamental period Ny = 2 samples/sec.
Determine whether the signal x(¢) = 3 cos ¢ + 4 cos(t/3) is periodic. If periodic,
find the period.
The fundamental period T = 67 is irrational and hence, the signal is not periodic.
Find the odd and even components of x[n] = §[n].

xln]l =0;  x.[n] =8[n]

Find the odd and even components of x(¢) = u(¢).
(1) = ot (" = ! t
X (1) = X xo(t) = 2sgn

Evaluate x(1) = cos (%1) 8(r — 4).

x() =0



Chapter 2 ®)
Continuous and Discrete Time Systems o

Learning Objectives

Under broader category, systems are classified as continuous and discrete time sys-
tems. The objectives of the chapters are to further classify them as

Linear and non-linear systems.

Time invariant and time varying systems.

Static and dynamic systems.

Causal and non-causal systems.

Stable and unstable systems.

Invertible and non-invertible systems.

To define the above properties of the system.

To illustrate these properties with numerical examples.

L B R 2B 2R ZR 2B 2

2.1 Introduction

A system is an interconnection of objects with a definite relationship with the objects
and attributes. Consider a simple R, L, C series electric circuit. The components
(objects) R, L and C when connected together form the system. The current flow in
the series circuit and the voltages across the elements R, L and C are the attributes. If
i is the current flowing in the circuit, the voltage across the resistor R is iR. Thus, the
object R and the attribute i have a definite relationship between them. The voltages
across any of these objects R, L and C can be taken as the output. Thus, the system
when excited by a signal, processes and produces signals as outputs in the same
form or in a modified form. Electrical motors, communication systems, automotive
vehicles, human body, government, stock markets etc. are examples of systems. The
block diagram representation of a system is shown in Fig.2.1.
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Excitation SYS;{E M Response
or Input Functional relationship or Output
x(£) or x[n] ¥(2) or y[n]

Fig. 2.1 Block diagram representation of system

InFig. 2.1 the system is excited by the input signal x(¢) or x[n]. Itis being processed
by the functional relationship of the system and the response is obtained as y(t) or
y[n]. The functional relationship includes differential equation or difference equation
or the system transfer function which is H (s) for CT system and H (z) for DT system.

2.2 Linear Time Invariant Continuous (LTIC) Time System

The block diagram of a continuous time system is shown in Fig.2.2a. x(t) is the
input signal which is continuous. The system with the functional relationship H (s)
produces the output y(¢f) which is also continuous. The system dynamics or the
functional relationship is written in the form of differential equation connecting x(t)
and y(7). If the Laplace transform of x(¢) and y(¢) are X (s) and Y (s) respectively, the
system functional relationship is written as

S _ ) 2.1
X(s)
(a)
x(1) . Hs) y(® .
X(s) Y(s)
(b) -
if) R
x(t) = e(t) cC—— eo(t) = y(1)

Fig. 2.2 a Block diagram of CT system. b R-L-C series electric circuit
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H (s) is called system function or system transfer function.
Consider the electric network shown in Fig. 2.2b. The following dynamic equation
is written for Fig.2.2b:

. di(ty 1 [
e(t) = Ri(t) + LT + Pl / i(t)dt 2.2)

1
eo(t) = C / i(t)dt (2.3)

In the continuous time system shown in Fig.2.2b. e(f) is represented by x(¢) and
eo(?) is represented by y(#). The system dynamic equations are given in Equations
(2.2) and (2.3).

2.3 Linear Time Invariant Discrete (LTID) Time System

Consider the discrete time system represented in block diagram as shown in Fig.2.3.
Here H[z] represents the functional relationship of x[n] and y[n]. The input and
output sequences x[n] and y[n] occur at only discrete interval of time n where n is
an integer. In DT system, the input and output are related by the difference equation
which is given below:

yln =21+ aryln — 11 + axy[n] = bx[n] 2.4

In Equation (2.4), y[n] is the output sequence. y[n — 1] and y[n — 2] are the delayed
output at n = 1 and n = 2 respectively.

2.4 Properties (Classification) of Continuous Time System

The continuous time system possesses the following properties and it is classified
accordingly.

1. Linear and non-linear systems.
2. Time invariant and time varying systems.

x[n] HEZ] yln]

v

.

Fig. 2.3 Block diagram of DT system
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3. Causal and non-causal systems.

4. Static and dynamic systems (Systems without and with memory).
5. Stable and unstable systems.

6. Invertible and non-invertible systems.

The above properties of LTIC time system are defined, described and illustrated with
examples below.

2.4.1 Linear and Non-linear Systems

For a linear system if an input x; (f) produces an output y; (#) and another input x, (¢)
when applied separately produces an output y,(#), then when both inputs x(1) =
[x1(¢) + x2(¢)] are applied to the system simultaneously will produce an output y(r) =
y1(®) + y2(r). Thus

x1(1) = y1(®)
x2(1) = y2(1)
[x1(®) +x2(0)] = [y1(®) +y2()] (2.5)

Equation (2.5) obeys the Additivity property of superposition theorem. Further, the
linear system should also satisfy the homogeneity or scaling property of superposi-
tion theorem. According to this property, if

ayxi () = ayy1(t)
arxz(t) = azy» (1)

then,

[aix1 () + axx2(t)] = [a1y1(?) + axy2(1)] (2.6)

Thus, for a continuous system to be linear, the weighted sum of several inputs
produces the weighted sum of outputs. In other words, it should satisfy the
homogeneity and additivity properties of superposition theorem. If the above
conditions are not satisfied the system is said to be non-linear.

Further it is necessary that for zero input, the output should also be zero for the
system to be linear.

Step By Step Procedure to Test Linearity
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1. Let

(@) = f(xi(0)
() = f(x(r)

Find the weighted sum of the output

y3(t) = a1y (1) + axy2(1)
y3() = a1 f(x1(1) + ar f(x2(1))

where a; and a, are called the weights.
2. For the linear combination of input [a;x;(¢) + a»x»(¢)] find the output for the
weighted sum of the input.

v4(t) = flaix () + axx(1)]

y3(t) = y4(2)

the system is linear. Otherwise the system is non-linear. The following examples,
illustrate the method of testing the linearity of continuous time systems.
4. If the output is not zero for zero input, the system will be non-linear.

B Example 2.1

Consider the following input-output equation of a certain system.
y(0) = [2x(0)

Determine whether the system is linear or non-linear.

Solution: () = [2)c(t)]2
= 4x°(1)
yi(0) = 4xi (1)
y2(t) = 4x3 (1)

The weighted sum of the output is,

() = aiyi(t) + axy2(t)
= da;x3 (1) + darx3 (1)

The output due to the weighted sum of the input [a;x; + axx>] is,
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ya(t) = 4[a1x; (1) + arxa (1)1
= dlajxi (t) + a3 (1) + 2a1a2x1 (X2 (1)]
y3(t) # ya(t)

Hence, the system is non-linear.

B Example 2.2

Consider the following systems. Determine whether each of them is linear.

(@)  y(r) = 5x(t) sin 10¢
®  y@® =3x®)+5

(©  yO =x@t+1)

d  y@) = Ex(0)

@ ¥y =x()

® yo = /f 10x(t)dt

]

@ Y=
0 YO =x(t=7) —x(5-1)

Solution:

(a) y(t) = 5x(t) sin 10¢
y1(t) = 5x;(¢) sin 10t
y2(t) = 5x;(¢) sin 10t

The weighted sum of the output is,
y3(1) = aryi(t) + azy2(t) = Ssin 101(a1x; (1) + axx2(1))
The output due to the weighted sum of the input is,

v4(t) = 5sin 10t(a1x1 (¢) + arx2 (1))
y3(1) = ya()

The system is Linear.
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b) y@)=3x(t)+5
i) =3x1(1) +5
y2(t) = 3x2(1) +5
y3() = ary1(t) + a2y ()
= 3(a1x1(t) + axx2(0)) + 5(a1 + az)
y4(t) = 3(a1x1(t) + axx2(1)) + 5
y3(2) # ya(?)

Further, if x(¢) = 0, y(#) = 5 and not zero.

’ The system is Non-linear.

) y) =2x(t+1)
yi(t) = xi(t+ 1)
Y1) = Pxa(t + 1)
¥ (t) = aryi(t) + axy2 (1)
= Plapx (t + 1) + axp(t + 1)]
ya(t) = Plax (t + 1) + apxa(t + 1)]
y3(t) = ya(t)

The system is Linear.

d) y@)=E,x (@) |
y(@®) = E[X(t) + x(—=1)]
1
(@) = E[xl () +x1(=1)]
1
@) = E[xz(l) + x2(—1)]

The weighted sum of the output is,

y3() = a1y1(t) + axy2(1)

1
= E[alxl () + axx2 (1) + arx1(—1) + axx(—1)]

The output due to the weighted sum of the input is,
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1
Slai(xi (@) + x1(=1) + a2 (2 (1) + x2(—1))]

v4(?) >

1
= E[alxl () + arxa (1) + arx1(—1) + arx(—1)]
y4()

y3(0)

The system is Linear.

(e) y(t) =x(t?)
yi(t) = x1 (%)
y2(t) = x2 (%)

The weighted sum of the output is,

y3() = a1y1(t) + azy2(1)
= a1x; (%) + arx2 (1)

The output due to the weighted sum of the input is,

ya(t) = a1x1 (%) + arxa (1)
() = ya(®)

‘ The system is Linear. ‘

0 y@©) =10 ' x(z)d< ,
@) = 10/ x1(v)dt

o0

y2() = 10 / (1)dt

oo

The weighted sum of the output is,

y3() = a1y1(t) + axy»(1)

=10 [alf xl(t)dr—i—az/ xz(t)dr]

The output due to the weighted sum of the input is,
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() = 10 [ / {ays (2) + azxz(f)}df}

o0

=10 |:{/ aj Xy (‘L')d‘[ +/ azxz(f)d'[}i|

y3() = y4(t)

‘ The system is Linear. ‘

(g) y@t) = e 20

For x(f) = 0,y(¢#) = 1 and not zero. Hence the system is non-linear. Also

yi(t) = e ®

»n@) =e
»(@) = aiyi(t) + axy(t) = alefle(’) + a287k2(t)
ya(t) = e 2@xran) — p=2an ) —2ax(0)

y3(t) # ya(?)

—2x2(1)

’ The system is Non-linear.

h) y®O =x@t-7-xG5-1)

@) =xt—-7—-xi5—-1)
@) =xt—-T7) —x0 -1

The weighted sum of the output is,

y3() = a1y1(t) + axy»()
=aixit—=7) —x16 =]+ alx2(@t —7) —x2(5 — 1)]

The output due to the weighted sum of the input is,

y4@) = ai[x1¢ =7) —x15 =]+ a2l —7) —x2(5 — 1)]
y3(1) = y4(1)

The system is Linear.
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Linearity Test for the System Described by Differential Equation

Step 1. Write down the system differential equation with responses y; () and y,(?)
for the inputs x; (#) and x, (¢) respectively.

Step 2. Multiply the y; (#) response equation with a; and y,(¢) response equation
with a, and add them.

Step 3. Write down the differential equation for the sum of the inputs x(¢) = a;x(¢)
+axx,(2).

Step 4. If y(¢) = a1y1(t) + axy»(¢) obtained in Steps 2 and 3 are same, the given
differential equation is linear. Otherwise the differential equation is non-
linear.

The following examples illustrate the above method.

B Example 2.3

Determine whether the following differential equations are linear or non-linear:

d
(@) % +10y(r) = x(1)
(b) % 1 10sin y(r) = 2x(7)
d
©) y@$ +10y() = 2x(2)
dy(t) _ dx(t)
(d) . + 5y(1) _X(I)T
d
) % +5y(t) = 22(1)
) % + Ty() + 15 = x(t)
Solution:
(a)
dy(t)

— 100 =)

Let y; be the output response due to the input x; and y, be the response due to
the input x,. Thus we may write the output responses due to the weights a; and
ap as

Vi — X1
apyiy — aix
Y2 — X2

azyr —> ArX)
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The output response due to the weight a; is

d(aiy)
dt

+ 10a1y; = aix

The output response due to the weight a; is

d(azy>)
dt

+ 10a2y; = axxz

The weighted sum of the response due to each input signal is,

d
E[alyl(t)] + 10a1y1 () = arxi (1)
d
E[az)’z O]+ 10a2y> () = ax»(t)

Adding the above two equations we get the weighted sum of the output as

d
E[am(t) + a2y2 (0] + 10[ary; (1) + azy2(1)] = [arx1 () + axx2(7)] (a)
The response of the system due to weighted sum of input is given as,

4 dy, (1) I dy> (1)
: dt : dt

+ 10[a1y () + a2y2(1)] = [a1x1(2) + azxx(1)]

d
E[am (1) + a2y2 ()] + 10[ary1 (1) + azy2(1)] = [a1x1 () + axx2 ()] (b)
Equations (a) and (b) are same. Also Eq. (a) or (b) is identical to the system

equation
dy(1)
— + 10y(1) = x(t
a y(t) = x(1)
with the input

x(t) = ajx((t) + axx2 (1)

and the output
y(@) = aryi(t) + a2 (1)

Therefore, when the input [a;x;(¢) + a,x,(?)] is applied, the system output
response is [a;y; () + a»y>(¢)]. Hence the system is linear. Also, when the input
is zero, the system response is obtained from

dy(1) B
7 + 10y(t) =0
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The above equation, when solved with zero initial conditions, y(#) = 0. For zero
input, the output is also zero.

The system is Linear.

(b) 2L 4 10sin y() = 2x(t)

% + 10siny(r) = 2x(¢)

The weighted sum of responses due to a;x;(f) and a,x;(t) are,
d .
E[alyl(t)] + 10sin a;y(t) = 2a;x(t)
d .
E[azyz(t)] + 10sin axy»(¢) = 2a2x,(2)

The weighted sum of the responses is obtained by adding the above two equa-
tions.

d
E[alyl(t) + ay2 ()] + 10sinayy; (1) + 10sinazy, (1) = 2[a1x1(2) + axx>(1)]
(@)

The output response due to weighted sum of inputs x(¢) = a;x;(¢) + ax»(¢) is,

d d . .
ala)’l(t) + azzyz(f) + 10a; siny; (¢) + 10az sin y,(¢) = 2[a1x; (1) + axx2(1)]

d
E[al)’l(t) + axy2(t) + 10[a; siny(t) + az siny,(2)] = 2[a1x1(t) + axx2(2)]
()

Equations (a) and (b) are not the same. Hence, it is not linear.

The system is Non-linear.

© yOLL +10y(t) = 2x (1)

y(r)% + 10y(1) = 2x(0)

The weighted output responses due to inputs a;x;(¢) and a,x;,(¢) are,
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d
al}’l(ﬂa[“l)’l(r)] + 10a1y (1) = 2a1x(?)
d
azyz(t)a[azyz(l)] + 10a2y,(2) = 2axx,(1)

The sum of the weighted response is due to x(¢) = ax;(¢) + axx,(¢) is obtained
by adding the above two equations.

d d
ayi (Z)E[Yl O]+ a3y2 (1) 7 2] + 10[a1y1 (?) + a2y2(D]=2[a1x1 (1) + azx2(1)] (a)
The response due to weighted sum of inputs x(¢) = a;x; (¢) + axx»(¢) is,

d d
aiyi (I)Em(t) + 10a1y1 (1) + azyz(t)Eyz(t) + 10azy(¢) = 2[a1x1(t) + azx2(1)]

d d
aiyi ([)EYI ®) + a2y2(l)ay2(t) + 10[a1y1 (1) + a2y2(D)] = 2[a1x1 (1) + axx2()]  (b)

Equations (a) and (b) are not equal. Hence, the system is not linear.

The system is Non-linear.

DO 4+5y(0) = x(O) 1.

The output response of the system due to the weight a; is

d(a1yr) dx
5 = _
at +dary; = ayx a

The output response of the system due to the weight a; is

d(azy>) dx;
R4S = i)
r +oaz2y> = axxy r
The weighted sum of the responses due to the above weight is obtained adding
the above two equations and is given below as,

— a1y +Cl +5a +aV Clx—+6lx— a
1 1)1 2Y2 1)1 2)2 141 1 242 1

The output of the system due to the input with weight a; is

dy1+5 dx
a)— a =aix;—
ldl 11 lldt

The output of the system due to the input with weight a, is
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d dx
az% +Sazy; = azxzd—tz
The output due to the sum of the weighted input is obtained by adding the above
two equations

d d. d.
E(al)’l + azy:) + S(aiyr + azxy2) = aﬂl% + aﬂz% (b)

Equation (a)=Equation (b)

The output response due to the weights a; and a; is the same when the input is
given the same weights. Further for x(¢) = 0, y(¢#) = 0 which can be obtained by

solving the equation

dy(1) _
7 +5y(@®) =0

with zero initial conditions.

The system is Linear.

Itis to be noted that when the system is described by the differential equation, the
system linearity is decided by the differential equation describing the dynamics
of the system and it is independent of the input.

©) %2 +5y() = x2@).
The output response of the system due to the weights a; and a, are written as

d
((;ltyl) + Sa1y; = alxl2 and

d(a
(d2y2) 4 Sazy, = ClzX%

Adding the above two equations we get,
d 2 2
d_x(alyl + axys) + S(aiy1 + azxyz) = aixy + axx; (a)
The outputs of the system due to the input with weights a; and a, are given by
d d
m% + Sa1y; = ale and az% + Sazy, = a2x§

The output due to the sum of the weighted inputs is obtained by adding the above
two equations

d
E(QIYI + axy2) + S(ayr + axyr) = arxt + arx3 (b)

Equation (a)=Equations (b)
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Further for x(¢) = 0, y(¢#) = 0 which can be obtained by solving the equation

dy(1) .
i +5y@®) =0

with zero initial conditions.

The system is Linear.

M7y +15=x.

Let y; be the response due to x; and y, be the response due to x;
yi—x; and y, = x2

The output response y; due to the weight a; is

5

d(a
( lyl) + 7Clly1 + 15 = aixy
dx

The output response y, due to the weight a, is

5 d(azy>)

4+ Taryr + 15 = arx

Adding the above two equations we get

Sd(alyl + azy?)

I + T(ary1 + azy2) + 15 = (arx; + a2y2) (@)

Let a; weight be given to the input x;. The response y; due to this weight is
obtained from

d
S5a, ﬂ + 7a1y1 + 15a; = aix;
dx

Let a, weight be given to the input x,. The response y, due to this weight is
obtained from

d
5612% + Tayys + 15a; = arx,
X

The output response equation due to the weighted sum of the inputs is obtained
by adding the above two equations.

d
5a(aly1 + axyz) + T(ariy1 + azy2) + 15(a1 + a2) = (a1x1 + azy2)  (b)
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Equation (a) is not equal to Eq. (b). Thus the weighted sum of the output is not
equal to the output due to the weighted sum of the input. Equation (b) is not the
same as the original equation.

‘ The system is Non-linear.

2.4.2 Time Invariant and Time Varying Systems

A continuous time system is said to be time invariant if the parameters of the sys-
tem do not change with time. The characteristics of such system are fixed over a
time. The input-output of a certain continuous time system is shown in (2.4) a and
b respectively. If the input is delayed by fy seconds, the characteristic of the output
response remains the same but delayed by 7y seconds. This is illustrated in Fig. 2.4c
and d respectively. This property is also illustrated in Fig.2.4e and f in block dia-

(a) A x0)
R
0 f
(©)
4 x(t—1p)
R
0 Iy >t
(e
x(t) o y(® o Delay Y(r—1p)
()
x(1) Delay x(t—1y) . " Y(t.5p)

Fig. 2.4 Time invariancy property
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gram form. In Fig. 2.4e the output y(¢) of the system H is delayed by 7y seconds to get
y(t — to) as the delayed output. The delayed output y(t — #y) of system H can also be
obtained by delaying the input x(¢) as x(t — #;). This is illustrated in Fig.2.4f. This
time delay of the system commutes only if the system is time invariant. The above
property will not apply if the system is time varying which can be easily proved.
Thus, to identify the time invariant system, the following steps are followed:

Step 1. For the delayed input x(¢ — fy) obtain the output y(¢, ty).

Step 2. Obtain the expression for the delayed output y(t — fy) by substituting t =
(t —1p).

Step 3. Ify(¢, 1) = y(t — tp), then the system is time invariant. Otherwise it is a time
varying system.

The following examples illustrate the method of identifying time invariancy.

B Example 2.4

Check whether the following systems are time invariant or not:

(a) y(t) = tx(?)

(b) y(t) = cosx(t)

© Yy =x(t)cosx(t)

@ oy =0
d? d

© 2y + 2230+ 5y(0) = x()

© Lo talm sy =20
dt dt

d 2
@ 0= [ );(t’)]

(h) y(t) = at’x(t) + btx(t — 2)

Solution: (Anna University, 2013)

(@) y@) =tx(t)

1. For the delayed input x(t — t;), the output y(¢, ty) is obtained as
y(t,10) = tx(t — o)

2. The delayed output y(t — o) is obtained by substituting t = ¢ — #; in the
given equation
y(t —10) = (1 — 19)x(t — 1o)
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3. y(t —to) # y(t, 1)
4.

’ The system is Time Varying.

(b) y(#) = cosx(¢)

1. y(t,t9) = cosx(t — to) [For Delayed input]
2. y(t — tp) = cosx(t — ty) [Delayed output]
3. y(t —t0) = y(t,10)

4,

The system is Time Invariant.

(©) y() =x(t)cosx(t)

1. y(t,19) = x(t — tp) cosx(t — tp) [For Delayed input]
2. y(t —ty) = x(t — tp) cos x(t — tp) [Delayed output]
3. y(t —to) = y(t,10)

4.

The system is Time Invariant.

d) y@t) =e >0
1. The output due to delayed input is,

y(t, 1) = =7

2. The delayed output is obtained by putting r = 1 — £,

¥t — 1) = 7200

3. y(t —to) = y(t, 1)
4.

‘ The system is Time Invariant.

© Ly@)+2Ly@) +5yt) = x()

The coefficients of the given differential equation are 1, 2 and 5 and they are
constants. They do not vary with time. Hence

‘ The system is Time Invariant.
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) Ly@)+2tLyt) +5y() = x(t)

The coefficient of % is 2¢ and it varies with respect to time. Hence

‘ The system is Time Varying.

2
(@ y@) = [£x®)]
1. For the delayed input x(t — ty) the output is obtained as

d 2
y(t,t0) = [Ex(t - fo)]

2. The delayed output is obtained by putting ¢ = ¢ — t in the given equation

d 2
Yt —1) = [zx(l - fo)]

3. y(t —to) = y(t, 1)
4,

The system is Time Invariant.

(h) y(t) = at®x(t) + btx(t —2)
The output y(z, fp) due to the delayed input x(¢ — 7o) is

y(t, 10) = at*x(t — to) + btx(t — tg — 2) (@)
The delayed output y(¢ — #;) is obtained by substituting t =t — #,.
Yt = 1) = alt — 10)x(t — 10) + b(t — 10)x(t — 10 — 2) (b)
From equations (a) and (b) we see

y(t, 10) # y(t — 1o)

The system is Time Varying.
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2.4.3 Static and Dynamic Systems
(Memoryless and System with Memory)

Consider the R-C series electrical circuit shown in Fig. 2.4a. The charge in the capac-
itor is determined by the current that has flown through it. By this mechanism the
capacitor remembers about some thing about its past. Similarly consider the mechan-
ical system in Fig. 2.4b. The stored energy in the mechanical spring depends on the
past history of the applied force. The present response of these systems which have
energy storing elements depends not only on the present excitation but also on the
past excitation which are remembered by these elements. Such systems are called
dynamic systems or systems with memory.

Consider the electrical network of Fig.2.4a in which only a resistor is connected.
The current flowing through the resistor depends on the present value of the excitation.
The response does not depend on the excitation at any other time. Such systems which
have no energy storing elements are called static systems or systems without memory.

A dynamic system is, therefore, defined as a system in which the output signal
at any specified time depends on the values of the input signals at the specific
time at other time also.

A static system is defined as a system in which the output signal at any
specified time depends on the present value of the input signal alone. Static
system is also called as instantaneous system

Consider the input x(¢) and output y(¢) at t = 0 as represented in Fig.2.4(c). If
the output at any instant of time depends upon the input which occurs at the same
instant of time without any deviation, (fy) = 0) the input is called the present input.
If the output at any instant 7y depends only on the value of the input x(¢) for # < £,
the input with respect to the output is called as past input. On the other hand if # > ¢,
then the input is called future input. Thus we have

t =ty, Present input.

t <ty, Pastinput.

t > ty, Future input.

The following examples illustrate the method of identifying static and dynamic
systems.

B Example 2.5

Determine whether the following systems are static or dynamic:

() yo)y=x@t+1)+5
b O =x?
(c) y(t) = x(t) sin 2t
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(d)
(e)

()

(@
(h)
(i)

217

y(0) =x(@t—3)+x3—1)

y(t>=x(t)

4
y() = / x(t)dt
% =+ S5y(t) = 2x(1)
y(t) =2x(t) + 3
Y = e

Solution:

@ y@)=xt+1)+5

y0)=x(1)+5

=0 A x(1)
x(1)
Future input—» <— Output
« |

The system response depends on the future input x(z + 1) where ¢ > ty. Hence

The system is Dynamic.

(b) y(t) =x(t?)
Fort =1,

y(1) =x(1) [t = to Present input]

Fort =2,

y(2) =x(4)
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x(1) 4
1=2 x(2)  x(4)
Future |<+— Output
input
—t 0 2 4 ¢ The response depends on the present and future

inputs. The output x(4) depends upon the future input x(2). Hence

The system is Dynamic.

(c) y(t) = x(¢t)sin2t
The system response depends on the present value of the input x(#). Due to sin 2¢,
only its magnitude varies from —1 to +1. Hence, the output depends upon the
present input since y(1) = x(1) sin 2.

The system is Static.

@ y@)=xt—-3)+x3—-1)
Fort =0,
¥(0) = x(=3) +x(3)

Consider the output
y(0) = x(=3) +x(3)

The input-output are represented below.

A )C(l)
A
Output—» =0
X _133) L+ Input x(0)
Output —»| x(3)
<«— Output
—t -3 0 3 f

The output x(—3) depends upon the past input. The output x(3) depends on Future
input. The system response depends on past and future values of input. Hence

The system is Dynamic.
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) y&)=x(%)
Fort =0, y(0) = x(0)
1
Fort =1, 1) = —
y() =x ( 4>

1
Fort=—1, y(-1) =x(—Z)

Consider the output y(0) = x(0) for t = 0. The output depends upon the present
input. Consider the output at t = 1

1) — 1
¥( )—x<z)

The input-output are shown below.

A X(I)
=1
Output x(1/4)
<— Past input x(1)
—t 0 1/4 1 [

The output x(1/4) depends upon the past input x(1). Now consider the output at

r=—
-1) = _1
¥( —x( 4>

The input-output are represented below.
A X(t)

Output t=—1
Future input x(— 1)\ x(—1/4)

"

~V

-t -1-14 0
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The output x(—1/4) depends upon future input x(—1). The system response
depends on present, future and past values of input. Hence

‘ The system is Dynamic.

® y@) = [ x(@)de
By integrating the input, the output is retained and stored in a memory from time
t to the infinite past. Hence

‘ The system is Dynamic.

() G +5y(0) =2x(0)
The input-output is described by a first order differential equation. It requires an
energy storing element which remembers the past history of the input applied.
Hence

The system is Dynamic.

(h) y(&) = 2x() +3
The output always depends on the present input. Hence

The system is Static.

(i) y(t) = 70
The output always depends on the present input only. Hence

‘ The system is Static.

2.4.4 Causal and Non-causal Systems

Consider a continuous time system excited by the signal x(¢). If the response (out-
put) depends on the present and past values of the input x (¢), the system is said
to be causal. In a causal signal, the output cannot start before the input is applied.
Hence, the causal system is also called non-anticipative system. On the other hand,
if the system acts on the knowledge of future input, before it is being applied such
systems are called anticipative or non-causal systems. Real time systems are all
causal systems.
Consider the system described by the following input-output equation

y(@) = x(t —3) + x(t + 3) .7)
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(a)

(b)

M

l iX(l) l y(@®)

— o

c )C(t) A
© i ¥(#) output
Future input r———-x(t—1t,) Past input
x(t+1,) - x(1) Present input
|
R N . 2 B, |
I 1
| |
e t=t, <t
| |
< 1 1 »
-t 0 fo t

Fig. 2.5 a, b Dynamic systems. ¢ Representation of present, past and future inputs graphically

For the input shown in Fig.2.5a, the output y(¢) is sketched and shown in Fig.2.5b.
The output y(¢) at time ¢ is given by the sum of the input values at (r — 3) which is 3
second before and at (¢ + 3) which is 3 second after. This is illustrated in Fig.2.5b.
Here the system responds to the future input x(¢ + 3) and it is non-causal system and
cannot be realizable in real time. The following examples illustrate the method of
identifying causal and non-causal systems.

B Example 2.6

Consider the continuous time systems described below by their input-output equa-
tions. Identify whether they are causal or non-causal.

(a)

(b)
(©
(d)
(e)
®)

y() =x C—l)

y(t) = x(¢) sin(1 + 1)

y(1) = x(1*)
y(t) = x(V/1)
y(©) = x(t+1)
y(®) =x(t—1)
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d
@ Y0 =_x®)

1+4
(h) y() 2/ x(t)dt

—4

Solution:

@ y@®) =x (%)

Fort =0, y(0)=x(0)
Fort = —4, y(—4) =x(—1)

Fortr=1, y(1)=x (%)

In the above three cases, the input-output represented as given below. The output
depends upon the present, future and past inputs. Since the output depends on
future value of input which is evident from y(—4) = x(—1).

The system is Non-causal.

x(1) 4 x(1) 4 x(®)
=0 t=—4 =1
<« Ou(;put x(—4) Output
*0) <«—Future input KA
Present
“— Input x(0) <«—Qutput x(1)
x(—1)
«— Past
input
> < >
—t 0 t -t —4-1 0 r—t 0 1/4 1 1
Present input Future input Past input

(b) y() =x(t)sin(1+1¢)

¥(0) = x(0) sin(1)
y(1) = x(1) sin(2)
y(=1) = x(=1)sin(0)

Thus at all time, the output depends on the present input only. Hence

The system is Causal.

(©) y(&) =x(t?)
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Fort =0, y(0) = x(0)
Fort=1, y(1) =x(1)
Fort =2, y(2)=x(4)

The system output depends on the present input as seen from y(0) = x(0) and
y(1) = x(1).

A x( f)
=2
Future
input
x(2) <«— Output
x(4)
—t 0 2 4 t

Future input

The system output y(¢) at t = 2, which is y(2) = x(4) depends on the future input
x(t). Hence

’ The system is Non-causal. ‘

d) y(®) =x(/1)

Atr = 0.64
y(.64) = x(.8)
A x(t)

1=0.64 Future

input x(0.64)

x(0.8)

<«— Output
AP 0 064 08 %

Future input
The output depends on the future input. Hence

The system is Non-causal.
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e) yt)y=xt+1
Fort =0,

y(0) = x(1)

The system output depends on the future input.

=0 tx@)
Futurea x(0)
input / Output
x(1)
—t 0 1 [

Hence

The system is Non-causal.

® y@&)=xt-1

Fort =0, y0) =x(—1)
Fort=1, y(1) =x(0)
Fort =2, y(2)=x(1)

The output depends on the past values of the input.

(= O A
Output 4 x(0)
~Sa
x(—=1) Past
input
—t 1 0 t

Hence

The system is Causal.
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@ y@® =Lx@)
0 = L0
dt
y(1) = %x(l)

The output depends on the present input. Hence

‘ The system is Causal. ‘

() y@) = [ x(x)de

t+4

yo = [x@] ",
=x(t+4) —x(t—4)

A

=0
Output 4 x(0)
~a
x(—1) Past
input
—1 -1 0 1

Fort =0,

¥(0) = x(4) — x(~4)

The output y(0) depends on future input x(4). Hence

‘ The system is Non-causal.

2.4.5 Stable and Unstable Systems

225

Consider a cone which is resting on its base as shown in Fig.2.7a. The cone at this
position when given a small disturbance, will stay in the same position with a small
displacement which is the new equilibrium state. Now this position of the cone is
said to be in stable state. On the other hand, consider the cone resting on its tip. When
the cone is given a small displacement (say an impulse) the contact of the tip with
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@ (b)
o 4y
1 Future input
Lx(t-i-3) ix(t*’:’)
present [~ f----- Past
input input

Fig. 2.6 A non-causal system

Fig. 2.7 Stable and unstable (a) (b)
systems

the resting surface is lost and it rolls over the surface. The output position (resting
on the tip) is never reached. This state of the cone is said to be unstable.

Consider a linear time invariant continuous time system which is excited by an
impulse as shown in block diagram of Fig.2.6a. The output response of the system
is shown in Fig.2.6b and c. In Fig. 2.6b the area under the impulse response curve is
finite. It can be mathematically proved, that such systems whose area of the impulse
response curve is finite, are said to be stable. On the other hand, consider Fig.2.6c.
The area under this impulse curve is infinite. Systems, which possess such an impulse
curve are said to be unstable.

A linear time invariant continuous time system is said to be Bounded Input
Bounded Output (BIBO) stable, if for any bounded input, it produces bounded
output. This also implies that for BIBO stability, the area under the impulse
response (output) curve should be finite.

The BIBO stability concept is mathematically expressed as follows. Let the input-
output of a linear time invariant system be expressed as,

y(@®) =flx@®)] forall¢t (2.8)
If |x(#)| is bounded, |y(#)| should also be bounded for the system to be stable.

ly@®| <My, <oco forallt (2.9)
[x(®)| <M, <oo forallt (2.10)

where |M,| and |M,| represent positive values. It can be easily established that the
necessary and sufficient condition for the LTIC time system to be stable is,



2.4 Properties (Classification) of Continuous Time System 227

(a) 0
G x(1) SYSTEM y(0)
0 t
(b) (c)
(@) ¢ y(®
0 t 0 t

Fig. 2.8 Impulse response of stable and unstable systems

y@) = /Oo |x(1)|dt < oo 2.11)

oo

The following examples illustrate the method of finding the stability of LTIC time
system.

B Example 2.7

Determine whether the systems described by the following equations: are BIBO
stable.

(a) y(8) = tx(t)

(b) y(t) = eV

(©) y(t) = x(t) sint

@ oy =te’u)

@  y=eut—3)
(f) y(t) = e > sin 2t u(r)

Solution:

(@) y@®) =tx(@)
If x(¢) is bounded, y(r) varies with respect to time and becomes unbounded.
Hence

The system is BIBO Unstable.
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(b) y(t) = e

Here
x() =e ¥ 0<t<oo
=¥ —o0o<t<0
o0
y(t) = / x(t)dt
—00

0 oo
:/ ezzdt+/ e 2dt
—00 0
1 0 oo
— _EZt _ 16—21
27 . 12

1

=—[1+1]=1
2[+] <00

The output is bounded and the system is stable.

The system is BIBO Stable.

(¢) y(#) = x(t)sint
It x(7) is bounded, y(#) is also bounded because sin ¢ will take a maximum value
of +1 and —1. Hence, y(?) is bounded.

The system is BIBO Stable.

(d) y(t) =te*u(t)
Here the output varies linearly as ¢ and also exponentially increasing due to ¢*.
Hence, |y(#)| = oo and the system is BIBO unstable. Mathematically this can
be proved as follows. For a causal system, |y(¢)| can be written as

o0
ly(0)| = / e dt
0

The following integration formula is used to evaluate the above integral.

o0 1 00
/ redt = —z[e‘”{at - 1}]
0 a 0

[62’{2t - 1}]20

[e®{200 — 1} + 1]

ly®| =

Al—a—

3
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The system is BIBO Unstable.

(e) y(t) =e*u(t -3)
The output response is exponentially increasing as ¢ increases with a time delay of
t = 3. Hence, the system is unstable. This is mathematically proved as follows:

ly(@®] =/ |x(2)|dt

oo

o0
= / e dr
3

-1

1
=00 — —e'?
4

The system is BIBO Unstable.

) y(t) = e ¥ sin2t u(t)
The output response is a function of exponential decay and a sinusoid. The
sinusoid will have a maximum value of +1 and —1. As ¢ increases, y(¢) will
exponentially decrease and the output is bounded. The result can be mathemat-
ically obtained as follows. For a causal signal u(t)

o0
ly()| = / e 2 sin 2t dt
0

Using the formula,

o0 e"{asinbt — beosat}],’
ar btdl — [ 0
A e Sin a2 T b2
we get,
O] = sys [ sin2s — cos21)]”
= Sin — COS
Y 24 22l° 0
1
= -< X
4

The system is BIBO Stable.
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(a)
ll System H Y (;t) Inverse system M
H-1
(b)
X(S) 1 Y(S) W(S) — X(S) ‘
S s >
System 1 System 2

Fig. 2.9 Representation of inverse system

2.4.6 Invertibility and Inverse System

Consider the system H which is excited with x(¢). The system produces the output
y(t). This signal is applied as the input to the inverse system H~! which produces the
output x(#). The block diagram representation of the system and the inverse system
is shown in Fig.2.9a. Form Fig.2.9a, the inverse system is defined as follows.
A system is said to be invertible if the distinct inputs give distinct output.
Consider the system shown in Fig.2.9b. The input-output relationship of system
1 is described as,

d t) =x(
Z3(0) = x(0)

Consider system 2, the input-output of this system is described by

d 1) =x(t
ZY(0) = x(0)

When these two systems are cascaded, the output response of the interconnected
system is same as the excitation of the system itself. The system which makes
this possible is called inverse system. Here unique excitation produces unique
response.

B Example 2.8
Consider the systems described by the equations given below:

(a) The impulse A() is given as
h(t) = 8(t) — 3e > u(t) + 4e *u(r)

(b)
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dy(t) B de(t) dx(t)
o +5y() = +2—— o — 8x(t)

Determine the inverse systems for the above. Are these systems both causal and
stable?

Solution:

@ h(@)=68@0) —3eu(t) + e *u(t)
Taking Laplace transform on both sides we get

H@s) =1 & + 4
s _——_—_—
s+3 s+4

. (s 4 8s+ 12)
T (5+3)(s+4)

The inverse of the above system is,

1 (S—|—3)(s—|—4)
H(s) s2+8s+12

H'(s) =

(s+3)(s+4)

H ()= "2
(s+2)(s+6)

The poles of H~! are ats = —2 and s = —6. Hence, the inverse systems is stable.
The region of convergence (ROC) (refer Chap. 8) is to the right of right most
pole s = —2. Hence, it is causal.

The inverse system is both Causal and Stable.

(b) L0 4 5y(r) = TEO 4240 8x(r)

Taklng Laplace transform on both sides of the above equation we get,

(s +5)Y(s) = (s> + 25 — 8)X(s)
Y(s) (s*+25—08)

H(s) = =
X(s) (s+5)
=D+
o (s+5)
The inverse system is,
1 (s+9)

H'(s) = =
H(s) (s—2)(s+4)
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(s+3)

_1 _
=56+

The poles of the inverse systems are at s = 2 and s = —4. The pole at s = 2 will
make the system unstable if the system is causal. For the system to be stable the
ROC should form a strip between s = 2 and s = —4 in which case it includes
the jw axis. In this case, the system has to be non-causal.

The system is not both Causal and Stable.

B Example 2.9

Determine whether the given system is memoryless, time invariant, linear, causal
and stable. Justify your answers.

y(t) = (cos 3¢) x(¢)

(Anna University, December, 2006)
Solution:

y(0) =x(0)
y(1) = cos 3x(1)
y(—=1) = cos 1x(—1)

1. The output depends only on the present input. Hence, the systems is memoryless
(static). Since the output does not depend on the future input, it is causal.
2. The output due to the delayed input is,

y(t,t9) = cos 3t x(t — ty)
The delayed output is obtained by substituting t = (¢ — fy) in the given equation

y(t —t9) = cos3(t — 19)x(t — tp)
(& —to) # y(t,1o)

The system is therefore time varying.
3. To test the linearity of the system, consider the given equation

y(t) = (cos 31)x(¢)
y1(#) = (cos 3r)x; (¢)
y2(t) = (cos 31)x2(1)
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The sum of the weighted output is
y3(t) = a1y1(t) + azxy2 (1) = cos 3t[arx; (1) + axx2(1)]
The output due to the weighted sum of input is,

y4(t) = (cos 3t)[arx () + ax2(1)]
y3(t) = ya(t)

‘ The system is Linear.

ly()] = cos 3|x(1)]

If x(¢) is bounded |y(?)| is also bounded. Hence, the system is stable.

The system is,

‘ (a) Static, (b) Time Variant, (¢) Linear, (d) Causal and (e) Stable. ‘

B Example 2.10
Verify whether the system given by

y(t) = x(t%)

is causal, instantaneous, linear and shift invariant.

(Anna University, May, 2006)
Solution:

1.

y(t) = x(t?)
¥(2) = x(4)

See Example 2.5b. The output depends on the future input. Hence, the system is
not causal.
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A x(t)
t=2

x(2) x(4)

Input «— Output

<
<

—t 0 2 4

1
2. Since the output depends on the present, and future inputs, it requires memory.

It is, therefore, not instantaneous.
3. The response due to the delayed input is,

y(t,10) = x[(1% — 19)]
The delayed output is obtained by putting t = ¢ — #; in the given equation

y(t — ) = x[(t — 19)*]
y(t,t0) # y(t —to)

Hence, the system is shift variant.

y(t) = x(t%)
yi(t) = x1 (%)
ya(t) = x2(1%)

The sum of the weighted output is,

y3() = a1y (t) + axy2(1)
= a1x1 (%) + a2 (1)

The output due to the weighted sum of the input is,

ya(t) = flax (1) + axxa (1)]
= a\x(*) + arxa (1)
y3(1) = y4(0)
The system is linear.

The system is
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’ (a) Non-causal, (b) Not Instantaneous, (c¢) Shift Variant and (d) Linear. ‘

B Example 2.11

Determine whether the system described by the following equation is static, linear,
time variant and causal.

y(@) = E[x(1)]

Solution:

L y(@®) = Ey[x(0)]

(1) = E,[x(1)]
= %[x(t) + x(=1)]

t=—1 A x(1) =1 A x(1)
A A
Output—>», Output—>»,
x(=1) x(—1)
Input —»| x(1) x(1)
Input
<«— Output <«— Output
hp -1 0 1 i hp -1 0 1 i
1
Fort = -1, y(-=1) = E[X(_l) +x(1)]
1
Fort=1, y(l) = E[x(l) +x(=1)]
For t = —1, the output depends on the present value of x(—1) and also the past value

of x(1). For r = 1, the output depends on the present value of x(1) and future value
of x(—1). Hence, the system is non-causal. Since x(1) requires memory, the system
is dynamic.

2.
1
YO = (@) + x(=0)]

The output due to the delayed input is,

1
y(t, 1) = E[x(t —tp) + x(—t —tp)]
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The delayed output is obtained by putting t =t — 1y
1
y(r—1) = E[x(t — o) +x(—t +1)]
y(t,10) # y(t —10)

Hence, the system is time variant.
3.

) = %[X(t) +x(—1)]
N0 = 310 @ +x(-0)
720 = 3000 + 0]
The weighted sum of the output is,

y3() = a1y (1) + axy2(1)
1
= E[alxl () + a1x1(—=1) + axxz (1) + arx(—1)]

The output due to the weighted sum of the input is,

va(t) = flaix; (1) + axxz(1)]

1

E[al{xl (@) +x1 (=D} + ax{x2(t) + x2(=1)}]
y3(t) = y4(t)

The system is linear.

The system is

(a) Dynamic, (b) Non-causal, (c) Time Variant and (d) Linear.

B Example 2.12

Determine whether the following system is static, time invariant, linear and causal.

d
3% +50y() = x(1)

Solution:

1. The system is described by differential equation. Hence, it is dynamic.
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2.

3.

In the given differential equation, the coefficient of y(¢) is 5t which is a function
of time #. Hence, the system is time varying.
The differential equations of the input a;x; and a,x, are written as follows:

d

3E[a1y1(t)] +5tayi(t) = axi ()
d

35[612)’2(0] + Stazy:(t) = axa (1)

Adding the above two equations we get

d
35[01)’1 () + acy2 ()] + 5tlary1 (1) + axy2 ()] = arx1 (1) + axx2 (1)
d
3Ey3(t) +5ty3(t) = a1x1(t) + axx2(¢)
where

y3() = ary1(t) + azya(t)

The differential equation for the weighted sum of input is written as,

d
35[611Y1 (@) + axy2 ()] + Stlayy (1) + a2y ()] = a1x1 (1) + axxx(1)
d
35}’40) + 5t y4(t) = arx1 (t) + axx2 ()
where

y4(t) = a1y (t) + azxy»(1)
y3(8) = ya(?)

Further when the input x(¢#) = 0, the output y(#) = 0. Hence, the system is
linear.

. From the given differential equation it is obvious that y(#) depends on the present

input only.

y(1) = x(1)
y(2) =x(2)

Hence, the system is causal.

The system is

(a) Dynamic, (b) Time Varying, (c) Linear and (d) Causal.




238 2 Continuous and Discrete Time Systems

B Example 2.13

Check whether the system having the input-output relation

y(t) = /t x(t)dt

o0

is linear and time invariant.

(Anna University, April, 2004)
Solution:

Ly =['_x(@dr

a1y (1) =f a1xi(t)dt

o]

aya(t) = f ars (v)d

o0

The weighted sum of the output is,

aryi (t) + azy» (1)
t t
/ aixy (‘L’)d‘L’ + a2/ azxz(r)dt

(o] —00

y3(0)

The output due to the weighted sum of input is,

V() = / [, () + @ (1) ldz
(1) = ya(®)

The system is linear.
2. The output due to the delayed input is,

t
s =[xt - e
—00
The delayed output due to the input is,

Yt —t) = / x(t — to)dt

o0

y(t, t0) = y(t — 1o)

The system is time invariant.
The system is both
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‘ (a) Linear and (b) Time Invariant.

239

B Example 2.14

A certain system is described by the following input-output equation

y(t) = x(t + 1) +x()

Determine whether the system is static, causal, time invariant, linear and stable.

Solution:

L y@®) =xt+1) +x(t?

¥(0) = x(1) + x(0)

The output component x(0) depends on the present input x(0) and the output
component x(1) depends on the future input x(0). To store the future input it
requires memory and hence, it is dynamic system. Since the output depends on

future input it is non-causal.
2. If the input is delayed by ¢, the output is,

y(t,t0) = x(t — to + 1) +x(t* — 1)

The delayed output due to the input is obtained by putting 1 = 1 — 1.

y(t — 1) = x(t — to + 1) + x(t — £9)?
y(t,t0) # y(t — 1)

The system is time variant.
3. The weighted sum of the output due to input is,

ayi(t) = ailx (t + 1) + x1(1%)]
ay(t) = azlxa(t + 1) + x2(1)]
() = aiyi(t) + axy2(1)

=ailxi (t + 1) 4+ x1()] + @zl (t + 1) + x,(6)]

The output due to the weighted sum of input is,

ya(®) = ai[xi(t + 1) +x1 ()] + a2l (t + 1) + x2 ()]

y3(1) = ya(t)

The system is linear.
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4. For the system, if input x(¢) is bounded, then the output y(¢) is also bounded.
Hence, the system is stable.

The system is

(a) Dynamic, (b) Non-causal, (c) Time Variant, (d) Linear and (e) Stable.

B Example 2.15

The input-output relationship of a certain system is given by the following equation:
yt)=x(t—7)—x2—1)

Determine whether the above system is linear and causal.

Solution:
LLy®)=xt -7 —x2—-1)

yO) =x(t =7 —-x2 -1
The weighted sum of the output due to the input is given as

y3(t) = a1y1(t) + azy2(1)
apy1 () = alx (¢t —=7) —x1(2 —1)]
ayr (1) = az[xo(t —=7) —x2(2 —1)]
() =ailxit =7) —x12 = D]+ ax(t —7) — 22 — 1)]

The output due to the weighted sum of input is,

ya(®) = ai[x1(t =7) —x12 =]+ a2l =7) —x22 —1)]
y3(8) = ya(2)

Further if the input x(#) = 0, the output y(¢) is also zero. The system is linear.
2.

y@O) =x@—=7) —x2—1)
Fort =0,
¥(0) = x(=7) —x(2)

The output x(—7) depends on the past input x(0) and the output —x(2) depends on
the future input x(0). Hence, it is non-causal.
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The system is

A t
=0 1O
Future
output 4
x( _p 7) x(0)
Input
—t —7 1 2 1
Present input Past
output
—x(2)

‘ (a) Linear and (b) Non-causal. ‘

2.5 Discrete Time System

The block diagram of a discrete time system is shown in Fig. 2.8. x[n] is the excitation
(input) signal and y[n] is the repones (output) signal of the DT system. H represents
the functional relationship between the input and output which is described by dif-
ference equation. The input-output signals appear at discrete interval of time n where
n=0,1,2... which is an integer. n can also take negative value of an integer.

2.6 Properties of Discrete Time System

Like CT systems, DT systems also possesses similar properties which are given
below:

Linear and non-linear

Time varying and time invariant

Causal and non-causal

Stable and unstable

Static (instantaneous) and dynamic (system without and with memory)
Invertibility and inverse.

A
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2.6.1 Linear and Non-linear Systems

A linear discrete time system obeys the property of superposition. As discussed for CT
system, the superposition property is composed of homogeneity and additivity. Let
x1[n] excitation produce y;[n] response and x;[n] produce y,[n] response. According
to additivity property of superposition theorem, if both x;[n] and x;[n] are applied
simultaneously, then

xi[n] + x2[n] = y1[n] + y2[n]

Let a;x;[n] and a,x,[n] be the inputs. According to the homogeneity (scaling) prop-
erty, when these signals are separately applied,

arxi[n] = ary;[n]

arxz[n] = azy»[n]

If ayxi[n] + axx»[n] are simultaneously applied the output is obtained by applying
superposition theorem as,

arxi[n] + axxa[n] = aryiln] + azxya[n]
In the above equation, a;x;[n] + axx;[n] is called the weighted sum of input and

aiyi[n] + axy;[n] is called the weighted sum of the output. Therefore, the following
procedure is followed to test the linearity of a DT system.

1. Express

yiln] = f(x1[n])
»2ln] = f(a[n])

2. Find the weighted sum of the output as
y3[nl = aiyi[n] + azy»[n]
3. Find the output y4[n] due to the weighted sum of input as
yalnl = f(a1x1[n] + azx2[n])

4. If y3[n] = y4[n], then given DT system is linear. Otherwise it is non-linear.
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The following examples illustrate the method of testing a DT system for its lin-
earity.

B Example 2.16

Test whether the following DT systems are linear or not:

(@  ylnl =x*[n]
(b) y[n] = x[4n + 1]
1
(c) y[n] = x[n] + m
)yl = x[n?]

(e)  yln] =x[n] +nx[n+1]

Solution:

(a) yln] = x*[n]

yilnl = x7[n)
yalnl = x3[n)

1. The weighted sum of the output y3[n] is,

y3[n] = a1y1[n] + azy»[n]
= aixi[n] + axx3[n]

2. The output y4[n] due to the weighted sum of the input is,

yalnl = [arxi[n] + axxx[n]]?
= afxf [n] + a%x%[n] + 2ayaxx1[n])x2[n]

y3[n] # yaln]

The system is Non-linear.

(b) yln] =x[4n + 1]
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aiyi[n] = ayx [4n + 1]
ayr[n] = ayxx[4n + 1]
y3[n] = a1yi[n] + azy»[n]

1. The weighted sum of the output is,

v3[n] = aryi[n] + azy»[n]
= aix1[4n + 1]+ arxp[4n + 1]

2. The output due to the weighted sum of the input is,

valn] = axi[4n + 1] + axxp[4n + 1]

y3[n] = y4[n]

’ The system is Linear. ‘

(©) ylnl=xInl+ i

1
aiyin] = ay |:x1[n] + m}

1
ay[n] = a [Xz[n] + m]

1. The weighted sum of the output y3[n] is,

y3[n] = a1yi[n] + azy»[n]

i| +a |:x2[n] +

1
=a |:xl[n]+ m}

xi(n+1)
2. The output due to the weighted sum of the input is,

valnl = flaix([n] + axx[n]]

1
= aix1[n] + axxz[n] + |:a1X1[n + 1]+ axa[n + 1]]

y3[n] # yaln]
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4. Further if x[n] = 0, the output y[n] is not zero and it is oco.

The system is Non-linear.

(d) y[n] = x[n?]

ayi[n] = arxi[n*]

azyaln] = ayxy[n’]
1. The weighted sum of the output y;[n] is,

y3[n] = aryi[n] + azy»[n]
= ayx;[n*] + ayxa[n?]

2. The output y4[n] due to the weighted sum of input is,

yaln] = ayxi[n*] + axxa[n]

y3[n] = y4[n]

The system is Linear.

(e) yln] = x[n] + nx[n +1]

ayyi[n] = ai[x([n] + nx([n + 1]]
ayz[n] = az[x;[n] + nxz[n + 1]]

1. The weighted sum of the output is,

y3[n] = a1yi[n] + azy»[n]
= ai[xi1[n] + nxi[n + 11] + az[x2[n] + nxz[n + 1]]

2. The output due to the weighted sum of the input is,

va[n] = arxi[n] + axxz[n] + ainx([n + 1] + azxnxz[n + 1]

y3[n] = y4[n]

245
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’ The system is Linear.

2.6.2 Time Invariant and Time Varying DT Systems

Consider the discrete time system represented in block diagram of Fig.2.9a. If the
input is x[n] then the output is y[n]. If the input is time delayed by ng, which becomes
x[n — ny], the output becomes y[n — ng]. The signal representation and the delayed
signals are shown in Fig. 2.9b and c respectively. Such systems are called time invari-
ant.

If an arbitrary excitation x[n] of a system causes a response y[n] and the
delayed excitation x[r — ny] where ny is any arbitrary integer causes y[n — ng]
then the system is said to be time invariant.

Procedure to Check Time Invariancy of DT Systems

1. For the delayed input x[n — ng] find the output y[n, ng].

2. Obtain the delayed output y[n — ng] by substituting n = n — ng in y[n].

3. Ify[n, ny] = y[n — np], the system is time invariant. Otherwise the system is time
varying.

The following examples illustrate the method of testing the time invariancy of DT sys-
tems.

B Example 2.17

Determine whether the following systems are time invariant or not:

(a) y[n] = nx[n]

]
(b) y[n] = x[2n]
(©) y[n] = x[—n]
(d) yln] = sin(x[n])
(e yln] = x[n)x[n — 1]

Solution:
(@) y[n] = nx[n]

1. The output for the delayed input x[n — ng] is obtained by delaying the input
x[n] as x[n — ng]. Thus

yln, no]l = nx[n — no]
2. The delayed output for the input x[r] is obtained by substituting n = n — ny.

yln — ngl = (n — ng)x[n — ny)
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3.

yln, nol # yln — nl

The system is Time Variant.

(b) yln] = x[2n]
The output due to delayed input is
yln,nol = x[2n — no)
The delayed output is,

yln —nol = x[2(n — no)]
= x[2n — 2ng]
yln, nol # y[n —ng]

The system is Time Varying.

(©) yln]l = x[-n]
The output due to delayed input is
yln, nol = x[—n — no)
The delayed output is,

yln — nol = x[—(n — np)]
= x[—n + ngl

yln, nol # yln — nol

The system is Time Varying.

(d) y[n] = sin(x[n])
The output due to delayed input is

yln, ngl = sin(x[n — no))
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The delayed output is,

yln —nol = sin(x[n — ngl)
yln,ngl = yln — no]

The system is Time Invariant.

(e) ylnl = x[n]x[n — 1]
The output due to delayed input is
yln,ngl = x[n — nolx[n — ng — 1]
The delayed output is,

yln —nol = x[n —nolx[n —ng — 1]
yln,ng] = yln — no]

The system is Time Invariant.

2.6.3 Causal and Non-causal DT Systems

A discrete time system is said to be causal if the response of the system depends
on the present or the past inputs applied. The systems is non-causal if the output
depends on the future input.

The following examples illustrate the method of identifying causal and non-causal
systems.

B Example 2.18

Determine whether the following systems are causal or not:

(a) ylnl = x[n—1]
(b) y[n] = x[n] + x[n — 1]
© yln — 1] = x[n]
(d) yln] = sin(x[n])
n+4

© = Y xk)
k=—00
-3

O ynl=) xk)

k=0
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Solution:
(@) y[n] =x[n—1] y[0] = x[—1]
y[1] = x[0]

x[n — 1] is the past input for the output y[n]. The output depends on the past
value of x[n]. Hence

‘ The system is Causal. ‘

A x[n]
Output x(—1)
A
n=0
Past
I input x[0]
—t —1 0 t

(b) yln] = x[n] + x[n —1]

Forn =0, y[0] = x[0] + x[—1]
Forn =1, y[1] = x[1]+ x[0]

Here x[n] is present value and x[n — 1] is past value. The output depends on the
present and past inputs. Hence

The system is Causal.

(©) yln —1] = x[n]
P xln] p=0
Ax[]]

Future
A x[0
input 1 X[ ] Output

| A

Putn=n+1
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yln] = x[n + 1]
y[0] = x[1]

The output depends on the future inputs. Hence

The system is Non-causal.

(d) ylr] =sinx[n] y[0] = sinx[0]
y[—1] = sinx[—1]

The output depends on the present input only. Hence

The system is Causal.

() ylnl= Y4 x[k]

k=—oc0

4
Y01 =) xlk]

= x[—oo]4+x[—o0 + 1]+ - - - +x[—1]4+x[0]4+-x[1]4x[2]+x[3]+x([4]

x[—oo] + x[—o0 + 1], ...,x[—1] = Future output for past input
x[0] = Present output for present input
x[1], x[2], x[3] and x[4] = Past output for future input

The output depends on past, present and future inputs. Hence

‘ The system is Non-causal.

(f) ylnl = Y2 x[k] -3
= 301 = 3 xlk]
k=0

= x[0] + x[—1] 4+ x[—2] 4+ x[-3]
x[0] = Present output for present input

x[—1],x[—2], x[—3] = Future outputs for past input

The output depends on the present and past inputs. Hence

The system is Causal.
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2.6.4 Stable and Unstable Systems

A discrete time system is said to be stable if for any bounded input, it produces
a bounded output. This implies that the impulse response

ylnl =) |hn]| < oo

is absolutely summable.
For a bounded input,

|x[n]] < M, < o0
the output
ly[n]l <M, < o0

From the above two conditions, it can be obtained
o0
yinl =" |hlnl| < oo
—00

The following examples illustrate the above procedure.

B Example 2.19

Check whether the DT systems described by the following equations are stable or not.

(@) yln] = sin x[n]
n+1

(b)  ylnl=) xlk]
k=0

x[n]

(©) yln] =e
(d) h{n] = 3"u[n + 3]

() yln] = x[—n — 3]

() yln] = x[n — 1] + x[n] + x[n + 1]
(®  hlnl=e"

(h) h[n] = nuln]

@) h[n] = 3"u[n — 3]

)] hln] = 2"u[—n — 1]
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Solution:

(a) y[n] = sinx[n] If x[n] is bounded, then sin x[n] is also bounded and so y[n] is
also bounded

The system is Stable.

(b) yIn] = Y3ty x[k]
Here as n — o0, y[n] — o0 and the output is unbounded. For bounded input n
should be a finite number.
In that case y[n] is bounded and the system is stable.

‘ The system is Stable. ‘ for n = finite

‘ The system is Unstable. ‘ for n = oo

x[n]

(©) ylnl=e
For |x[n]| bounded, e"!"!! is bounded and the system is stable.

‘ The system is Stable.

(d) h[n] = 3"uln + 3]

pinll =) 3"

n=-3
=37+ 2+ '+ +B + -+ (B

=0

The output is unbounded.

The system is Unstable.

(e) y[n] =x[—n — 3] If x[n] is bounded, x[—n] is also bounded, x[—n — 1] is
bounded and y[#n] is bounded.

The system is Stable.

(f) y[n] = d[n — 1] + 8[n] + 8[n + 1]
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y[0] = 8[—11+8[0] +8[1] =0+ 1+0=1
Y11 =8[0]+68[1]+ 6821 =1+0+0=1
Y11= 8[-2]1+8[-11+8[0]=0+0+1=1
y[—2] = 8[1]+ 8[2] +8[3] =04+0+0=0
y[2]1 = 8[1]1+8[2] +8[3]=0+04+0=0

o]

Minl =Y Akl =1+1+1=3 <00

—0Q

‘ The system is Stable.

(g) hln] = e

00 -1 oo oo 00
yln] = Ze'"' = Ze" + Ze’” = Ze’” + Ze’"
Y —0 0 1 0

=e¢'+e 4 Hlte fer

=el+e'+e? 4+ J+l+e ' +e?4---

1 1

T e e
_ e ! 1
SU—en T a—e
—1
I L P YR
e

‘ The system is Stable.

(h) h[n] = nuln]

o0
yinl=> n=1+42+4-400=00
0

’ The system is Unstable.

(i) h[n] =3"u[n — 3]

253
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’ The system is Unstable. ‘

(G) hln] =2"u[—-n —1]

—1 00 n
=Y 2= (%)

‘ The system is Stable. ‘

2.6.5 Static and Dynamic Systems

A discrete time system is said to be static (memoryless or instantaneous) if the
output response depends on the present value only and not on the past and
future values of excitation. Discrete systems described by difference equations
require memory and hence they are dynamic systems.

The following examples illustrate the method identifying static and dynamic dis-
crete systems.

B Example 2.20

Identify whether the following systems are static or dynamic:

(@) y[n] = x[3n]

(b) y[n] = sin(x[n])

(©) yln — 11+ y[n] = x[n]
(d) ylnl = sgn|x[n]|

Solution:

(a) ylnr] = x[3n]
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4 x[n] 4x[n] Ax[n]
n=0 ) |
n= n=—
Present ) 3]
mput Output x[—1]
p x[11 x[3]
resent Output
output —>1ad0] Future N «— | Past input
input
« p» <« < >
—n 0 n —n 0 1 3 n -n -3 -1 0 n

Forn =0, y[0] =x[0]
Forn =1, y[1]=x[3]
Forn=—1, y[—1]=x[-3]

The outputs y[0] = x[0], y[1] = x[3] and y[—1] = x[—3] depend upon the present
input, future input and past input respectively.

The system is Dynamic.

(b) y[n] = sin(x[n])

y[0] = sin(x[0])
y[1] = sin(x[1])

The output depends on the present input at all time. Hence

The system is Static.

(¢) yln — 11+ y[n] = x[n]
The system is described by first order difference equation which require memory.

Hence

‘ The system is Dynamic.

(d) yln] = sgn|x[n]|

1 forn >0

sgn|x[n]|
=—1 forn <0
M =x[1]=1
=11 = x[—1] = —1
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Fig. 2.10 Block diagram

representation of discrete

time system xln] yinl
—> H

The output depends on the present value of the input. Hence

The system is Static.

2.6.6 Invertible and Inverse Discrete Time Systems

A discrete time system is said to be invertible if distinct input leads to distinct
output. If a system is invertible then an inverse system exists.

Consider the system shown in Fig. 2.10. The input x[n] produces the output y[n].
This system is in cascade with its inverse system. The output of this system is nothing
but the difference of the two successive inputs y[n] — y[n — 1]. This is the input to the
original system. Thus, by connecting an inverse system in cascade with the original
system, the excitation signal x[n] is re-established provided the original system is
invertible. The concept of invertibility is very widely used in communications.

B Example 2.21

Determine whether the following systems are static, causal, time invariant, linear and
stable.

(a) y[n] = x[4n 4+ 1]

(b) y[nl = x[n] + nx[n + 1]
() ylnl = x[n]uln]

(d) yln] = logy x[n]

@©  ylnl=x’n]

) y[n] = x[n] cos[wn]

(Anna University, 2007 and 2013)
Solution:

(a) y[nl = x[4n +1]
1.

Forn =0, y[0]=x[1]
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@ [n] [n]
x[n n
H y
x[n] Time Del x[n—ng] [n,ny]
1menO elay ol H yun,ng
x[n] [n] [n—ng]
H Y »| Time Delay Y 0
(b) 4 x[n] yln]
A [ [ [
01 23 8 01 23 n
© 4 x[n—n] ylnng
0 ng ; 0 ng n

Fig. 2.11 Block diagram and signal representation to illustrate time invariancy of DT system

x[n]

yinl =, 3 xlk]

yln]

v

System

Fig. 2.12 Inverse discrete time system

wln] = y[n]—y[n—1]

w(n)=x[n]
>

Inverse System
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The output x[1] depends on future input, [x[0]].

=0 4 x[n]
Past
Future ¢ x[0] Output
Input >/ x[1]
—n 0 1 n

Hence

The system is Dynamic and Non-causal.

2. The output due to the delayed input is,
yln,nol = x[4n — no + 1]
The delayed output due to the input is,

y[n —ngl = x[4(n — no) + 1]
= x[4n — 4ng + 1]
yln, nol # yln — nol

‘ The system is Time Variant.

aryi[n] = aix[4n + 1]
ary2[n] = axxz[4n + 1]

The sum of weighted output due to the input is,

y3ln] = a1y1[n] + azy»[n]
= ax1[4n + 1] + axxp[4n + 1]

The output due to the weighted sum of input is,

valn]l = a1x([4n + 1] + axxo[4n + 1]
y3[n] = yaln]
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The system is Linear.

4. The input is time shifted and time compressed signal. As long as the input
is bounded the output is also bounded.

The system is Stable.

The system is

(1) Dynamic, (2) Non-causal, (3) Time Variant, (4) Linear and (5) Stable.

(b) yln]l =x[n]+nx[n+1]

1. Forn=1,
Y1 =x[1]+ 1 x x[2]

The outputs x[ 1] and x[2] depend upon present and future inputs respectively.

The system is Dynamic and Non-causal.

A x[n]

Input x[1]
Past output x[2]

Present output

v

| 4

2. The output due to the delayed input is,
yln,nol = x[n — nol + nx[n — no + 1]
The delayed output due to the input is,

yln —ngl = x[n — nol + (n — no)x[n — ny + 1]

yln, no] # yln — nol

‘ The system is Time Variant.




260 2 Continuous and Discrete Time Systems
3. The weighted sum of the output due to the input is,

y3[n] = a1yi[n] + azy»[n]
= a1xi[n] + ainxi[n + 1] + axxz[n] + asnxs[n + 1]

The output due to the weighted sum of the input is,

va[n] = ai{x([n] + nx([n + 11} + ax{x2[n] + nxz[n + 11}
y3[n] = yaln]

‘ The system is Linear. ‘

4. As long as x[n] is bounded, y[n] is also bounded provided # is finite.

‘ The system is Stable. ‘

Otherwise the system is unstable. The system is

(1) Dynamic, (2) Non-causal, (3) Time Variant, (4) Linear and (5) Stable.

() y[n] = x[n]uln]
1.

y[0] = x[0]«[0]
yl1] = x[1]ul1]

The output depends on present input only.

The system is Static and Causal.

2. For a causal signal n > 0. The weighted sum of the output due to input is,

y3[n] = aryi[n] + azy2[n]
= {a1x1[n] + axxz[n]}uln]

The output due to the weighted sum of input is,

valn] = {aix1[n] + axx2[n]}uln]

y3[n] = ys[n]
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The system is Linear.

3. The output due to the delayed input is,
yln, nol = xi[n — noJuln]
The delayed output due to the input is,

yln —nol = x1[n — nolu[n — nol

yln, nol # yln — nol

‘ The system is Time Variant. ‘

4. As long as x[n] is bounded, y[n] is also bounded.

‘ The system is Stable. ‘

The system is

\ (1) Static, (2) Causal, (3) Linear, (4) Time Variant and (5) Stable. \

(d) yln] =logq x[n]

L. y[0] = log,, x[0]
y[1] = logo x[1]
y[—1] = 10g1ox[_1]

The output depends on present input only.

The system is Static and Causal.

2. The weighted sum of the output due to input is,

y3[n] = aryiln] + azyz(n]
= ay logq x1[n] + az log o x2[n]

The output due to the weighted sum of input is,

va[n] = log g (aixi[n] + axx2[n])
yaln] # yaln]
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The system is Non-linear.

3. The output due to the delayed input is,
yln, nol = log,o x[n — np]
The delayed output due to input is,

yln — nol = logy x[n — no]

yln, nol = yln — nol

‘ The system is Time Invariant. ‘

4. As long as x[n] is bounded, log;, x[n] is bounded and y[n] is also bounded.

‘ The system is Stable. ‘

The system is

‘ (1) Static, (2) Causal, (3) Non-linear, (4) Time invariant and (5) Stable. ‘

(e) yln] = x*[n]

1. y[0] = x*[0]
y[1] = x*[1]

The output depends on present input only.

The system is Static and Causal.

2. The weighted sum of the output due to input is,

y3[n] = a1yi[n] + azy»[n]
= a;x}[n] + axx3[n)

The output due to weighted sum of input is,

yaln] = {arxi[n] + axxa[n])?
= afxf [n] + a%x% [n] 4+ 2ajaxx1[n]x2[n]

ya[n] # yaln]
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The system is Non-linear.

3. The output due to the delayed input is,
yln, nol = x*[n — no
The delayed output due to the input is,

yln — nol = x*[n — ng]

yln, nol = yln — nol

‘ The system is Time Invariant. ‘

4. If x[n] is bounded, x*[n] is bounded and y[r] is also bounded.

‘ The system is Stable. ‘

The system is

‘ (1) Static, (2) Causal, (3) Non-linear, (4) Time invariant and (5) Stable. ‘

(f) y[n] = x[n] cos[wn] For all values of n, the output y[n] depends on the present
input x[n] only. Hence the system is static and causal (memoriless). The weighted
sum of the output is,

yaln] = a1y1[n] + azy»[n]
= a;x1[n] cos[wn] + arx;[n] cos[wn]

The output due to the weighted sum of the input is,

ya[n] = [arxi[n] + axxz[n]] cos[wn]

y3[n] = yaln]

The output is zero when the input is zero. Hence the system is linear. The output
due to the delayed input is

y[n, no)] = x[n — ng] cos[wn]
The delayed output is given by

yln — ng] = x[n — np] cos[w(n — np)]

yln, nol # y[n — nol
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The system is time varying. As long as x[#n] is bounded, y[n] is also bounded.
Since cos[wn] varies from —1 to +1. Hence the system is BIBO stable. The
system is,

Static, Causal, Linear, Time varying and Stable.

Summary

1. The system is broadly classified as continuous and discrete time system.
2. The CT and DT systems are further classified based on the property of
causality, linearity, time invariancy, invertibility, memory and stability.

3. The definitions of the above properties are given which are same for both
CT and DT systems. Illustrative examples are given to explain these prop-

erties.

Exercises
I. Short Answer Type Questions

1. What are the properties of systems? Systems are generally classified
as continuous and discrete time systems. Further classifications of these
systems are done based on their properties which include (a) linear and
non-linear, (b) time invariant and time variant, (c) static and dynamic,
(d) causal and non-causal, (e) stable and unstable and (f) Invertible and
non-invertible.

2. Define system. What is linear system? A system is defined as the inter-
connection of objects with a definite relationship between objects and
attributes. A system is said to be linear if the weighted sum of several
inputs produce weighted sum of outputs. In other words, the system should
satisfy the homogeneity and additivity of super position theorem if it is to
be linear. Otherwise it is a non-linear system. For a linear system if the
input is zero the output should also be zero.

3. What is time invariant and time varying system? A system is said to
be time invariant if the output due to the delayed input is same as the
delayed output due to the input. If the continuous time system is described
by the differential equation its coefficients should be time independent
for the system to be time invariant. In the case of discrete time system,
the coefficients of the difference equation describing the system should
be time independent (constant) for the system to be time invariants. If the
above conditions are not satisfied the system (CT as well as DT) is said to
be time variant.
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4. What are static and dynamic systems? If the output of the system
depends only on the present input, the system is said to be static or instan-
taneous. If the output of the system depends on the past and future input,
the system is not static and it is called dynamic system. Static system does
not require memory and so it is called memoryless system. Dynamic sys-
tem requires memory and hence, it is called system with memory. System
which are described by differential and difference equations are dynamic
systems.

5. What are causal and non-causal systems? If the system output depends
on present and on past inputs, it is called causal system. If the system
output depends on future input it is called non-causal system.

6. What are stable and unstable systems? If the input is bounded and
output is also bounded, the system is called BIBO stable system. If the
input is bounded and the output is unbounded, the system is unstable.
System whose impulse response curve has finite area is also called stable
systems.

7. What are invertible and non-invertible systems? A system is said to be
invertible if the distinct inputs give distinct outputs.

8. State the condition for a discrete time LTI system to be causal and
stable. (Anna University, 2008)
A discrete time LTI system is said to be causal and stable if the poles
of the transfer function all lie in the left half s-plane and the Region of
Convergence (ROC) is to the right of the right most pole.

9. What is the overall impulse response of /2 (¢) and %, (¢) when they are

in (a) series (b) parallel? (Anna University, 2005)
(a) The overall impulse repones when £, (#) and h, () are in series is given
by

h(t) = h(2) * ha(2)
(b) If h;(¢) and h,(¢) are connected in parallel,
h(t) = (h (1) + ha(2)) * x(2)

10. Check whether the system having the input-output relation

t
y(t)=./: x(r)dT

o0

is linear and time invariant. (Anna University, 2004)
The system is linear. (See Example 2.2(f)) By differentiating the above
equation we get

dvie) _

r x(1)
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The coefficient of the differential equation is time independent and is
constant. Hence, it is a time invariant system.
11. Check whether the system classified by

x (1)

y(y)=e
is time invariant or not? (Anna University, 2007)
y(t, 19) = €7
Yt —19) =
y(t,10) = y(t — o)
The system is time invariant.

12. Determine whether the system described by the following input-
output relationship is linear and causal?

Y@ =x(-1)

(Anna University, 2007)
The system is linear and non-causal.
13. Is the system y(¢) = cos ¢ x (¢ — 5) time invariant?
y(t,t9) = costx(t —tog — S)
y(t — tg) = cos(t — to)x(t — top — S)
y(t,10) # y(t — 1)

The system is not time invariant.
14. A certain LTID time system has the following impulse response.

hin] = <%) uln — 2]

Is the system both causal and stable?
The response depends on the past input u[n — 2] and hence, it is causal.

-5
n=2

=-=-<0
6

The system is stable. The system is both causal and stable.



2.6 Properties of Discrete Time System 267

I1. Long Answer Type Questions

The systems given below have input x (¢) or x[r] and output y(¢) or y[n]. Deter-
mine whether each of them is (a) Static, (b) Casual, (¢) Time Invariant, (d)
Linear and (e) Stable.

1.
=4
Y = e x(0)]

(a) The system response requires memory. Hence, it is dynamic.

(b) The output depends on the present input only. Hence, it is causal.

(c) The output due to the delayed input is not the same as the delayed output.
Hence, it is time variant.

(d) The weighted sum of the output is the same as output due to weighted sum
of the input. Hence, the system is linear.

(e) Since %(e’Z’x(t)) is bounded y(¢) is also bounded and hence, the system is
stable.

Yy =x@)+10x(t -5 >0

(a) The output response depends on present and past inputs. Hence, it is
dynamic.

(b) The output does not depend on the future input. Hence, it is causal.

(c) The output due to the delayed input is same as the delayed output. Hence,
the system is time invariant.

(d) The weighted sum of the output is the same as output due to the weighted
sum of the input. Hence, it is linear.

(e) As long as the input x(¢) is bounded, x(¢ — 5) is also bounded. Hence, y(t)
is bounded. The system is stable.

y(t) = x(10¢)

(a) The system response depends on present, past and future inputs. Hence, it
is dynamic.

(b) Since the output depends on the future input, it is non-causal.

(c) The output due to the delayed input is not the same as the delayed output.
Hence, the system is time variant.

(d) The weighted sum of the output is the same as output due to the weighted
sum of the input. Hence, it is linear.

(e) If the input is bounded, the output is also bounded. The system is stable.

t
yit)=x (E)
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The output depends on present, past and future inputs.

(a) The system is dynamic.

(b) The system is non-causal.

(c) The output due to the delayed input is not the same as the delayed output.
The system is time variant.

(d) The weighted sum of the output will be the same as output due to the weighted
sum of the input. The system is linear.

(e) If the input x(ﬁ) is bounded, the output is also bounded. The system is
stable.

d
y(0) = Zx(t = 4)

(a) The system requires memory and so it is dynamic.

(b) The output depends on past inputs. Hence, it is causal.

(c) The output due to the delayed input is same as the delayed output. The
system is time invariant.

(d) The weighted sum of the output is the same as output due to the weighted
sum of the input. The system is linear.

(e) If the input is bounded, the output is also bounded. The system is stable.

yln] = x[5n]

(a) The system response depends on present, past and future inputs. Hence, it
is dynamic.

(b) Non-causal.

(c) The output due to the delayed input is not same as the delayed output. Hence,
it is time variant.

(d) The weighted sum of the output is same as output due to the weighted sum
of the input. The system is linear.

(e) If the input x[5n] is bounded, the output y[n] is also bounded. The system
is stable.

yln + 2]+ 3y[n + 1] + 4y[n] = x[n]

(a) The system is dynamic.

(b) The system is causal.

(c) The system is time invariant.
(d) The system is linear.

(e) The system is stable.

yln] = 5x[3"]
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(a) The system is dynamic.

(b) The system is non-causal.

(c) The system is time invariant.

(d) The system is linear.

(e) The system is stable if n is finite.

y[n] = sinQRrx[n]) + x[n + 1]

(a) The system is dynamic.

(b) The system is non-causal.

(c) The system is time invariant.

(d) The system is non-linear.

(e) The system is stable for n being finite.



Chapter 3 ®)
Time Domain Analysis of Continuous s
and Discrete Time Systems

Learning Objectives

4 To find the time response of an LTIC system by using convolution integral.

4 To find the convolution of two time signals. Both analytical and graphical meth-
ods are used.

4 To derive the properties of convolution of CT signals.

¢ To get the step response from impulse response and vice versa.

4 To represent discrete time signals in terms of impulses.

¢ To establish the properties of convolution sum.

¢ To find the convolution of DT signals.

¢ To obtain step response, causality and stability of DT system from impulse
response.

3.1 Introduction

A system as stated earlier performs a function. It operates on something and produces
something else. Thus, when a system is excited by the input, it produces a response
(output). Like signals, systems are also classified as Continuous Time (CT) and
Discrete Time (DT) systems. If the input to the system is continuous and the output
produced is also continuous, the system is called continuous time system. Such
systems are described by differential equations. On the other hand if the input to the
system is discrete in nature in the form of impulses, and if the output produced is
also in the form of impulses such systems are called discrete time systems. These
systems are represented in Fig. 3.1a and b, respectively.
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(@)
x(1) (@)

t t
Input x(¢ Output y(¢
(b)
() ¥(n)
n n
Input x(n Output y(n

Fig. 3.1 Representation of CT and DT systems

3.2 Time Response of Continuous Time System

A linear time invariant continuous time system is described by the following differ-
ential equation:

dy(n d"ly@) dy(1)
n—1— n t
an T g Ay @y (@)
d"x(t) d™x(t) dx(t)
=bym—— + by ———— + -+ b1 —— + byx(t 3.1
drm Yt ot "t owx® G

The coefficients a; and b; are constants. It should be noted that m < n for the system
to be Bounded Input-Bounded Output (BIBO) stable and to reduce the noise. The
total response consists of two parts.

They are

e Zero input response (response due to initial conditions).
e Zero state response (response due to input alone).

Zero input response is the response of the system when the input x(¢) = 0. The zero
input response is obtained due to the initial conditions alone. The zero state response
of the system is obtained when all the initial conditions are zero and only the input
x(t) alone is applied. The total response is the sum of zero input response and zero
state response. The solution of Eq. (3.1) for total response is obtained by the following
methods:
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e By the application of classical method which gives the complete solution in terms
of particular and homogeneous solutions.

e By the application of transform (Laplace and Fourier) techniques.

e By the method of convolution integral.

The transform techniques are very powerful compared to classical method to find
the solution of y(¢) of Eq.(3.1). These methods are discussed in detail in Chaps. 7
and 8. The solution obtained from convolution integral is discussed in this chapter.

3.3 The Unit Impulse Response

Consider the LTIC time system shown in Fig.3.2. Let the system be causal. Let the
input x(t) = &(¢), an impulse which is characterized as given below

5(t) =1 t=0
=0 t#0 (3.2)

The output response is now denoted by A (¢) which is called the impulse response of
the system. This is illustrated in Fig.3.2.

3.4 Unit Impulse Response and the Convolution Integral

Let x(¢) be any arbitrary input as shown in Fig.3.3a. Figure 3.3b shows the input
as a sum of narrow rectangular pulses. Consider the rectangular pulse shown
in Fig.3.3b in the shaded area. The width of the pulse is At =3A7r — 2Ar~.
The area of this pulse is x(2A1)A7. As At — 0, the pulse becomes a delta function
of strength x(2At)Art. The above delta function is represented as

x(2AT)A(T)8(t — 2AT)

The function x(¢#) is continuous and is the sum of the impulses occurring at
t =0, At, 2A7,...,nAt. This can be expressed as

3(1) 1

t t

h(t)

h
X0 LTIC SYSTEM ®
(0

Fig. 3.2 Impulse response of LTIC system
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b
(a) x(r) A ( ) X([) A

x(0)

»
>

t At 2AT 3AT nAt t

Fig. 3.3 Representation of any arbitrary input signal

Table 3.1 Output due to delta function

S.No Input x(r) Output y(t)

1. x(t) =8(1) y(@® = h(@)

2. x(t) = 8(t — nAT) y(t) = h(t — nA7)

3. x(t) = [x(nAt)AT][8(t — nAT)] y(t) = [x(nAt)At][h(t — nAT)]
4 0 = AzLLOn:Z_:OO o = ArLionZX_:oo

[x(nAT)][6(t — nAT)AT] [x(nAT)][h(t — nAT)AT]
[o¢]
X = Lt Zo.;x(nAt)(Ar)S(t — nAT) (3.3)

Let A(#) be the unit impulse response of a linear time invariant continuous system.
This is the output due to the input §(¢). The response of the system for the delta
function at r = nArt is therefore

y(t) = x(nAT)(AT)h(t — nAT) (3.4)

The input and the corresponding output pairs are shown in Table 3.1 and represented
in Fig.3.4.

For the series of impulses, the response is the summation of their respective
impulse responses. This is expressed mathematically as

o0

Y= Lt Z x(MAT)h(t — nAT)AT (3.5)

n=—00

When the limit At — 0, the summation becomes integration and the integration is
expressed as

y(t) = /OO x(t)h(t — t)dt (3.5a)

[e¢]
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(a)

34 h()
e e
b
(b) . h)
3(t—nAT)
nAT ™ nAt i
© x(nAT) h (t—nAT) At
h(t)

x(nAT1) At (t—nAr)

v

nAt ! nAT t

Fig. 3.4 The response of the system for delta function

The above integration is called convolution integral. The convolution operation of
the two time functions x(¢) and Ah(¢) is symbolically denoted by

y(1) = x(2) * h(1) (3.5b)

Thus, using convolution integral Eq.3.5a, one can get output response y(z) if the
input x(¢) and the impulse response A(t) are known. Equation 3.5a indeed gives the
zero state response of the system.

3.5 Step by Step Procedure to Solve Convolution

The following steps are followed to determine the output response using
convolution:

Step 1. Letx(¢) be the input signal and /(¢) the impulse response. Substitute t = 7
where t is an independent dummy variable and represent x(7) and h(7).
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Step 2.

Step 3.

Step 4.

Step 5.

3 Time Domain Analysis of Continuous and Discrete Time Systems

Represent x(7) in figure, invert A(t) as h(—t) and represent it in figure.
This is called folding of (7). Shift the inverted A(—71) along the 7 axis
and obtain h(t — 1) by giving very long negative shift.

Multiply the two signals x(t) and #(# — 7) and integrate over the overlap-
ping interval. For this x(7) is fixed and (¢ — 7) is moved toward the right
so that x(t) and A(¢t — t) overlap.

Whenever either x(7) or h(t — t) changes, the new time shift occurs. Iden-
tify the end of the current interval and the beginning of the new interval.
The output response y(¢) is calculated using Step 3.

Steps 3 and 4 are repeated for all intervals.

Thus, the output response y(¢) can be determined analytically using convolution
integral or by graphical method described above. The following are the properties of
convolution and are discussed below

3.6 Properties of Convolution

Some important properties of convolution integral include

The commutative property;

The distributive property;

The associative property;

The shift property;

The width property and

The convolution with unit impulse.

The above properties are discussed below.

3.6.1 The Commutative Property

According to this property, if y(¢) = x(¢) * h(t), then y(¢) can also be expressed as
y(t) = h(t) *x(1).

Proof According to Eq.(3.5), the output y(¢) is written in terms of convolution
integral as

y(t) = /OO x(Dh(t — 1)dt

oo

Putt — t = pand dt = —dp.

Fort =o00;p = —o0;and 1 = —00; p = 00
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W) = — /  x(t - ph(p)dp
+

o0

=/ x(t — p)h(p)dp

o0

= / h(p)x(t — p)dp

o0

y(1) = h(®) *x(1)

\x(z) * h(t) = h(t) * x(t) \ (3.6)

3.6.2 The Distributive Property

Consider the two systems with impulse responses /; () and &, (¢) connected in parallel
as shown in Fig. 3.5a. The reduced block diagram is shown in Fig. 3.5b. According
to the distributive property

x(1) * hi (1) + x(1) * ha (1) = x(1) % (hi (1) + ha (1))
Proof From Fig.3.5b, the following equation is written

y(@) = x(1) * (hi () + ha(2))
= x(t) * by (t) + x(@) * hy(¢)

Fig. 3.5 The distributive ()
property of convolution
(@)
» hy(t)
+
x(1) (0
+
h
0 ya(0)

(b)

x(1) (0
— hy(0) + hy(t) >
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For Fig. 3.5a, the following equations are written

yi(t) = / x(T)h (t — v)dT = x(t) * hi (?)

o0

n(t) = / xX(Dhy(t — T)dt = x(1) * ha (1)

o0

(@) = y1(6) + y2(2)
= x(t) * hy(t) + x(t) * hy (1)

From Fig. 3.5b, the following equation is written

¥ = / x(Ohi(t = 7) + hao(t — 7)]d7

o0

= x(t) * (hi(t) + hy (1))

Thus, the distributive property is proved as

[x(0) # P (1) + x(1) % ha(1) = x(0) * [ (1) + o (0] (3.7)

3.6.3 The Associative Property

According to this property

[x(2) * hy (D] * ho (1) = x(1) * [h1 (1) * hy (1))

Proof Consider the two systems connected in cascade with their impulse responses
hi(¢) and hy(¢) as shown in Fig.3.6. The excitation signal is x(¢), and the output
response is y(¢). From Fig. 3.6, the following equation is written. The output of the
first system is

() = / KOt — T)d

T=—00

The output of the second system is

o0

y(0) = yi(0) * hpy (1) = / yi(m)hy (1 — m)dm

m=—00

Fig. 3.6 The associative
property of convolution X0 () MIVEN hat) w
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= /OO |:/°° x(t)h(m — t)dri| hy(t — m)dm

Putm — 7 = g and dm = dq

y(1) = / x(7) [/ h(@h[(t — (g + t)]dQ} dt
T=—00 gq=—00

_ / x(r)[/ hl(q)hz[(t—r)—q]dCJ}df
T=—00 q=7oo

But ~
/ h(@ha[(t — ©) — qldg = hi(2) * hy (1) = h(t)
g=—00

Therefore,

y(t) = /oo x(D)h(t — t)dt
— x(1) % h(1)
V() = x(0) % T (1) % ha(1)]

| D () 5 by (01 % ha (1) = x(0) * [y (1) o ()] (3.8)

3.6.4 The Shift Property

According to the shift property
x()xh(t—=T)=yt—T)

Proof Letx(¢) and h(t) be the input and the impulse response functions, respectively.
Let h(¢) be shifted by T as h(t — T). Then, the convolution of these signals is given by

x(t) % h(t) = /-00 x(T)h(t — t)dt
x®)xh(t—T) = /OO x(t)h(t — T —T)dr

= /OO x(D)h[(t —T) — tldt

o]

=y(t—T)
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b
(a) () (b) ho)

© () = x(t) * h(t)

v

—t t
(I +Ty) —

Fig. 3.7 Width property of convolution

Thus,

[x() #h(t =T) =yt = T)] (3.9)

3.6.5 The Width Property

Let T} be the width of x(¢) and T, the width of /(¢). The width of y(¢) = x(¢) * h(¢)
is Ty + T>.

Proof Figure 3.7a shows x(¢) of T} width and Fig. 3.7b shows A(¢) which has a width
of T;. In convolution i(f — 7) is put in the extreme left and moved toward the right
keeping x(7) fixed. The leading edge of h(r — ) overlaps with the left most edge of
x(7) and passes through a width of x(7) which is 7. Thus, the duration of overlap
is (T2 + Tl).

3.7 Analytical Method of Convolution Operation
The following are the basic steps involved in convolution integral equation:

1. For the input signal x(z), express it as x(7).
2. Express impulse response function A(¢) as h(t — t) by substituting t = (t — 7).
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Integrate froi_oox(r)h(t — 1)dT to get y(1).
The limit of integration depends on the time limit of x(¢). For causal signals x(¢)

and A(t), the lower limit of convolution integral is zero and the upper limit is ¢.
Find y(1) = [ __x(t)h(t — t)dx.

T=—00

The following examples, illustrate this.

B Example 3.1

The impulse response of a certain systemis a(t) = e

~>'u(t). Find the output response

of the system for the input x(¢) = e~ 2u(r).

Solution:
1.
x() =e ¥
x(t) =e
h(t) = e
h(t) = e
h(=7) =€
h(t — 1) = 200
2. Both x(¢) and h(¢) are causal. Hence, the limit of convolution integral is from

0 to t. Thus, y() is expressed as

y(t) = / x(T)h(t — 1)dt
0

t
y(t) :/ e ey
0

t
— e—St/ e3td1,
0

[e’S’ is a constant when the integration is done for 7]

e 4 7t

3 [T

—5t

%[e” — 1u(r)

y(t) = %[e‘z’ — e u(t)

The graphical representation of convolution operation is shown in Fig. 3.8.
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1 1
[ 0 T > T
h(t—1)
! t<0
N g
© X(1) h(t—T)
=0
“— o ; =

Fig. 3.8 Graphical representation of convolution operation

In Fig.3.8, x(7) is fixed and h(r — 7) is shifted toward the right so that there is
overlapping between x(7) and h(t — 7).

Bl Example 3.2
Find y(¢) if x(¢#) = u(¢) and h(t) = u(t).
Solution:
1.
x(r)=1
2.
h(t) =1
h(—1) =1
hit—1)=1

3. Both x(#) and h(¢) are causal. Hence, the limit of integration is from O to ¢. Thus,
y(¢) is obtained from
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! t
y(1) =/ dt = 1],
0
y(1) = ()

B Example 3.3
Find y(?) if x(t) = e“u(t) and h(t) = u(7).
Solution:
1.
x(t) = e“u(t)
x(t) = ™
2.
h(t) = u(t)
h(t) = 1
hit—1)=1

3. Both x(#) and h(¢) are causal. Hence, the limit of integration is from O to ¢.
Thus, y(¢) is obtained from the following integral.

1
y(1) =/ e“tdt
0

-1l
a 0

1
y(®) = —[e” = 1u(t)
a

B Example 3.4
Find y(¢) if x(r) = e“"u(¢) and h(t) = e™'u(r).

Solution:
1.

x(t) = "'

x(t) ="’
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h(t) = e
h(—1) = e @7
h(t — 1) = @07

3. Both x(#) and h(¢) are causal signals. Hence, the limit of integration is from
0 to t. Thus, y(t) is obtained from the following integral.

t
y(t) — f ealreaz(t—r)dl,
0

t
:eagt/ e(al_aZ)TdT
0

art
— L[e(aﬁaz)f]l
(a1 —a2) 0

— e (a—a)r _ 4
(a1 —a2) le ]
[ea]t _ eazt]
yO) = ——Ful®)| a1 #Fa
(a1 — a2)

B Example 3.5
Find y(¢) if x(f) = e“u(t) and h(t) = e™u(t).
Solution:
1.
x(t) = e
x(t) = e**
2.
h(t) = e
h(t) = &

h(t — 1) = 407D

3. Both x(¢) and h(¢) are causal signals. Hence, the limit of integration is from
0 to 7. Thus, y(¢) is obtained from
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t
y(t) — / earea(t—r)dr
0

y(t) = te®u(t)

B Example 3.6
Find y(¢t) if x(f) = e ¥ u(t) and h(t) = 2 — e 2)u(r).

Solution:

1. It can be shown that

/oo x(t)h(t — t)dt = /oo x(t — )h(r)dt

o0 —00

The above property is used for convenience.

2.
h@) = (2 —e %)
h(t) =2 —e %)
3.
x(t) = e
x(t) =e "

x(t —1) =300

4. y(t) is obtained by taking the limit of integration from O to ¢ since x(¢) and A(z)
are causal signals

y(t) = / x(t — t)h(t)dt
0

t
= [ e300 — e M)dr

0

t
e / (26> — e%)dt
0

2 t
e—3t |:_e3t _ er:|
3 0
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y@) = [% + %6_3’ - e‘z’} u(r)

B Example 3.7

Convolve the signal
x() = e 2'u(r) with h(t) = u(r).

(Anna University, April, 2005)

Solution:
1.
x() =e ¥
x(t) =e
2.
h(t) = u(t)
h(t) = u(1)

h(t—1t)=ut—1)=1

3. Both x(¢) and h(¢) are causal signals. Hence,

y(l):/ x(D)h(t — 1)d7
0

t
= / e 2dt
0

Ly
=5[]

_ l 1 —2t
Y =l = e u@)

B Example 3.8
Find y(¢) if x(¢r) = t and h(¢) = u(z).

Solution:

1.

x(t) =t

x(t)=r1
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h(t) = u(t)
h(t—t)=uit—1)=1

3. Both x(¢) and h(¢) are causal. Hence

y(t):/ x(D)h(t — 1)d7
0

t
=/7,'d7,'
0

1
=3 [fz]to

(,)_l,z (0
y(t) = Stu

B Example 3.9
Find y(¢) if x(¢) = sinat u(¢) and h(t) = u(t).

(Anna University, December, 2007)

Solution:
1.
x(t) = sinat u(t)
x(t) = sinar
2.

h(t) = u(t)
h(t—t)=ult—1)=1

3. Both x(#) and k() are causal signals. Hence, y(¢) is determined from the follow-
ing integral:

y(t) =/ x(D)h(t — 1)dt
0

t
= / sinatdt
0

t
= —I:—COSQ'L’]
a 0



288 3 Time Domain Analysis of Continuous and Discrete Time Systems

y(t) = l[1 — cosat]u(t)
a

3.7.1 Convolution Operation of Non-causal Signals

For non-causal signals, the limit of convolution integral depends on the time limit
of x(#). These limits should be carefully evaluated and the convolution integral is
solved. The following examples illustrate the method of solving convolution integral
when the signal is non-causal.

B Example 3.10
Solve for y(¢) if h(t) = e'u(r) and x(¢) = e u(—1).

Solution:

1.

x(t) = e®'u(—1)

x(t) = e®Tu(—1)

2 The fixed signal is shown in Fig. 3.9a.

h(t) = e u(t)
h(t) = e“"“u(t)
h(t — 1) = ey — 1)

h(t), h(—71), and h(t — ) for t < 0 and ¢ > 0O are shown in Fig.3.9b, ¢, d and
e, respectively.

3. The overlapping of hA(t — t) with x(7) is shown in Fig.3.9f for t < 0 and in
Fig.3.9¢g for ¢t > 0. The overlapping occurs for —oo < t < ¢ and for —o0 <
T < 0, respectively.

4. Fort < 0, the convolution integral and the corresponding output y; () are given
below

y1(®) =/ x(T)h(t — T)dT

o]

1
— / eazrea](tfr)dt
—00

t
— ! / e(llz*al)fd.[
)

ea]f

— (az—al)f]t
(a2 —ay) I
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(@ (b)
4 x(1) 4 h(T)
1 /‘
= 0 4 = 0 X
© (d)
A h(—7) A h(t—1)
\ 1 1 t<0
ha 0 X A 10 %
(©)
x(1) h(t—7)
-1
t>0 t<0
A % -1 t o :
Overlapping
(€3]
x(T) h(t—7)
t>0
iﬁc [ 0 t :
Fig. 3.9 Graphical representation of convolution
art
— L e(az—al)l]
(a2 —ay)
iff @y > a; for convergence.
ar!
@) = ——u(=n
(a2 — ay)

289

5. For ¢t > 0, the overlapping occurs for —oo < 7 < 0. The convolution integral

and the corresponding output y,(¢) are given by
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0
ya(t) =/ x(D)h(t — t)dt

—0Q

0
— / eazreal(tft)d.[
—00

0
— ealt/ e(az—ul)td_[
(a2 — ay)

—00
[ewz—anr]goo
apt

et
(1) = ———u)
)= —"——Uu
(a2 —ay)
6. The output response y(¢) is the sum of y;(¢) and y,(¢). Thus,

y(@) = yi1(0) +y2(1)

[e®' u(—1) + e“'u(t)]
(@) = a) > a
(ar —ay)

B Example 3.11

Find y(¢) if x(t) = e¥u(—t) and h(f) = u(t — 2) using convolution integral.

Solution:

1. x(t) and h(t) are represented in Fig.3.10a and b, respectively.

2. Fig.3.10b is folded to get A(—7) and then time shifted to the extreme left and is
shown in Fig. 3.10c.

3. Figure 3.10a and c is combined in Fig.3.10d which represents x(t)h(t — 7) .
When h(t — t) is moved toward right it overlaps with x(t) for the time interval
—o0 < T <t — 2. Hence, the lower limit of integration is —oo and the upper
limit of convolution integral is (r — 2). Let y; (¢) be the output now.

t=2)
y1(?) / x(0)h(t — t)dt

o0

(1=2)
/_ Sdr = %[831]1:;

o0

= %[630*”]”(—; +2) t<2

4. When h(t — t) is moved further toward the right, the right edge of h(t — )
slides past the right edge of x(t) for T > 0. The lower limit of the convolution
integral is —oo and the upper limit is zero since for T > 0, there is no overlapping
between x(7) and A(¢t — 7). Let y,(¢) be the output now.
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(a) ) (b)
1

x(T)h(t—7)

7<0 or <2

i »>
0 T

-7

4 x(1) h(t—7)

T>0o0rr=2

A

02 » i

Fig. 3.10 Convolution of &'u(—t) and u(t — 2)

0 1 0
@) = / &Tdr = |:§€3i|
oo e

1
gu(t—Z) t>2

The total output response

y(0) = yi1(t) + y2(1)

y(t) = %[ew—%(—r +2) 4 u(r — 2)]

B Example 3.12

Find the convolution of the following signals

x(t) = e *'u(r) and h(r) = u(—1)

and plot the output response with respect to ¢.
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(®) A h(T)
1
—
-1 0 T
© =1 O N
1 ]
-t < >
-7 0 T -1 t 0 T
© Ax(Dh(t—1T) ® x(Dh(t—7)
h(t—1) J
. (1) t<0 t>0
b * ot *
(2
%u(ft) Aui(t)
—2
iz 0 7

Fig. 3.11 Convolution of x(r) = e 2u(r) and h(r) = u(—t) and the output response curve

Solution:

1.

x(t), h(t), h(t — 1) are shown in Fig.3.11a, b and c, respectively.

2. Figure 3.11d shows h(t — 7) where h(t — t) is left shifted to the extreme.

. Figure 3.11e shows x(t) and h(t — 7). Itis observed that for —oco < t < ¢, there

is no overlapping and hence y(¢) = 0. For ¢ < 0 there is overlapping and y(¢) is
found as follows.

o0
y(t) = / e dt
0

e =

. Fort > 0, x(v)h(t — v) is shown in Fig.3.11f.
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&0 1
() = / e dr == >0
; 2

1
() = Slu(=n + e u(t)]

6. The plot of y(#) with respect to ¢ is sketched and shown in Fig.3.11g.

B Example 3.13

Find the convolution of the following signals and find the output response

x(t) = u(t — 2)
ht) = u(t +2)

Solution:

1. x(#), h(t), x(7) and h(—1) and h(t — t) are shown in Fig.3.12a, b, c, d and e,
respectively.

2. h(t — t) when shifted to the extreme left is shown in Fig. 3.12f and with x(t).

3. h(t — ) when moved toward the right, it does not overlap for —oo < v < 2.
However, it overlaps for 2 < t < (t + 2). Hence, the limits of the convolu-
tion integration is from 7 = 2 to T = ¢ + 2. The overlapping area is shown in
Fig.3.12g.

4. y(t) is obtained from the following convolution integral by putting x(r) = 1 and
hit—1)=1

+2
y(t) = f x(D)h(t — T)dT
2t+2
= f dr = [t]5H
2

y(1) = tu(r)

5. The plot of y(t) with respect to time ¢ is shown in Fig. 3.12h which is a straight
line with unit slope.

B Example 3.14

Find the convolution of the signal shown in Fig.3.13a and b by graphical method.

(Anna University, December, 2006)
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(®)
x(t)=u(t-2) 4 h(t)=u(t+2)
L 1
2 i ) f
© (d)
4x(1) 4 h(-1)
N 1
h= 0o 2 * b 0o 2 T
© A h(t-1) ® X(Dh(t-1)
! h(t-T) | x(T)
>
e 0 (+2) > . 2 0 2 A
(9]
4 x(T)h(t—T1)
h(t-1) |1 x(T)
* 2 2 : >

Fig. 3.12 Convolution of x(t) = u(t — 2) and h(¢) = u(t + 2) and the output response curve

Solution:

1.

2.

The given rectangular or gate signals x(¢) and A(¢) are shown in Fig.3.13a and
b, respectively.

h(—7) is obtained by putting ¢ = t in A(¢) and then by folding (inversion). This
is shown in Fig. 3.13c.

. h(t — 7)is obtained by adding # with —t. (¢ — 1) is shifted to the extreme left so

that x(7) and k(¢ — t) do not have any overlapping. This is shown in Fig. 3.13d.

. Now A(t — ) is moved toward right so that it overlaps with x(t). The right edge

CD of h(t — 7) when slides past the left edge EF of x(t), overlapping starts. This
is shown in Fig. 3.13e. For one sliding at a time the time interval is —2 <t < 0
as seen from Fig.3.13e. Further, from the overlapping area, the lower limit of
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(@) ()

4 x(1) 4 h(t)
1 1
D 0 o Y 0 1
© A (1) @ 4 X(Dh(t—1)
A ¢ g 1xt) G
—»
B R _ B D F H
T 1 1 TS (1) -1 1T
@) 4 x(T)h(t—7)
h(t—T) 1
A E C G
x(T) 2=<r=<(
. F \ H D .
- (1) -1 0 (t+1) 1 T
® 4 x(T)h(t—n)
1
A E CG
t=0
. B,F D, H R
1 —1=—1 0 (t+1)=1 T
© 4 x(Dh(t—r)
h(—1)
E A G C
X 0<t<?2
. F B H D
= -1 0 (1) 1 (t+1) T

Fig. 3.13 Convolution of two gate signals
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()

4 x(D)h(t-T1)
2
x(7) 1 h(t-1) "
E G A
. F H B D
° -1 0 1 -1 #l 1
()
4y
2
1
(R E )
\ |
\ [
I \
l l
< 1 | >
—t -2 -1 0 1 2 t

Fig. 3.13 (continued)

integration is —1 and the upper limit is (z 4- 1). The following integral is solved.

t+1
y(t) =f x(D)h(t — 1)d7

1
t+1
= / dt
~1
+1
[
—1

y)=@¢+2)| —2<t<0 (a)

5. Now h(t — ) is further moved toward the right. When r = 0, AB edge coincides
with EF edge and CD edge coincides with GH edge simultaneously. This is shown
in Fig.3.13f.

From Fig.3.13f, the overlapping occurs during the interval —1 < v < 1.
Hence, the lower limit of the convolution integral is —1 and the upper limit is 1.
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1
y() = / x(t)h(t — v)dt

1

1
=/ dt
-1
1
=[],
®

6. h(t — 7) is further shifted toward the right. Now the right edge of x(t) which is
CD slides past the right edge of A(t — t) which is GH. The overlapping area is
shown in Fig.3.13g. This occurs during the time interval 0 < ¢ < 2. The lower
limit of the integral is (#+ — 1) and the upper limit is 1. Hence,

1
V1) = / (O =)

1
=/ dt
t—1

1
- I:r:lz—l

y)=Q2—-1 O0<t<?2 (c)

7. Considerh(t — t) fort > 2.Now h(t — 7) and x(7) do not overlap. Consequently
y(#) = 0. This is shown in Fig.3.13h.
8. Now equations (a), (b) and (c) are used to find y(¢) in the respective time interval.

y(it) =(t+2) —2<t<0
=2 t=0
=2-1 O0<t<2
=0 t>2
t -2 —1 0 1 2

y@®) | 0 1 2] 1 0

The time response graph is shown in Fig. 3.13i. Here, it should be noted that for
equation (a) for t = 0, y(t) = 2. From equation (b) for t = 0, y(¢) = 2.

9. The result can be easily obtained by using convolution property of Laplace
transform (LT) which is discussed in Chap. 8. The output is obtained as

Y1) = (t + 2ut +2) + (t — 2u(t —2) — 2tu(r) \
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B Example 3.15

Find the convolution of the two signals given below in Fig.3.14a and b.

(Anna University, December, 2005)

Fig. 3.14 Convolution of (a) (b)
two signals of Example 3.15 1 x(@ 4 k(o)

R 1 2 t
2 t
-1
d
© 4 x(=1) @ x(t-7)
1 -1
>
-2 : (+-2) f :
(e) A ho)
1
I 2 T
—qt———————
) A x(t—7)h(T)
x(t-7)
O<t<l1

h(T)
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(2) 4x(t=0)h(1)

1

x(t—71)

(h)

@

A x(t-1)h(1)

l<t<2
T
2<t<3
x(t—1)
.
T
x(t=1)
3<t<4
e
2 t T
()

Fig. 3.14 (continued)
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Solution:

1. Figure 3.14a and b represents x(¢) and h(¢). x(—7) and x(¢ — t) are shown in
Fig.3.14c and d, respectively. Fig. 3.14e represents (7).

2. In the present case, h(7) is kept fixed and x(# — 7) is moved toward right so that
it convolves with h(7).

3. The first overlapping of x(t — 7) and /() is shown in Fig. 3.14f. This occurs for
the time interval 0 < ¢ < 1. Here, the right edge of x(t — 7) slides past the left
edge of h(7).

The shaded area gives the overlapping. The time limit is from # = 0 to ¢.
Accordingly, the integration is carried out as follows:

y(t):/ x(t — D)h(t)dt
0

=/l1x1dr
0
=[],

0<r<1 ()

4. x(t — 7) is shifted to the right so that the leading edge crosses past of middle
edge of A(7) . The time interval is 1 < t < 2 before the next overlapping. This
is represented in Fig.3.14g.

For Fig. 3.14g, the following convolution integral is written

y(t) = / x(t — t)h(r)drt
0

=f01df_/l’df
=[], -]

=1—-t+1

l<t<2 (b)

5. x(t — ) is moved further toward the right so that its leading edge crosses 7 =
2 but the trailing edge is behind t = 1. This time duration is 2 < ¢ < 3. The
convolution graph is shown in Fig. 3.14h.

The convolution integral for Fig. 3.14i is written as
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6.

() = / ’ x(t — Dh(t)dt
1—12 ,
=/ dr—/ dt
=2 1

1 2
=[e].- [,

=1—-t+2-2+1

y)=Q2—-1 2<t<3 (c)

Now x(t — t) is moved to the right such that the trailing edge is past 7 = 1
but less than T = 2, the time duration for this convolution is 3 < ¢t < 4. The
convolution graph is shown in Fig. 3.14i.

For Fig. 3.141, the following convolution integral is written with the lower limit
as (t — 2) and the upper limit 2.

2
y@) = / x(t = v)h(r)dt
-2

2
:—/ dt
=2

yi)=(@t—4) 3<t<4 (d)

Fort > 4, thereis no overlapping between x(¢ — t) and A(t) and hence y(¢) = 0.

. Equations (a), (b), (c) and (d) are used to find y(¢) for the respective time duration

and are shown in the table below.

t 0| 05 1 1.5 21 25 3 3.5 4
(1) 0| 05 1 0.5 0 —0.5 —1 —0.5 0

The response curve y(¢) is plotted and its shown in Fig. 3.14j.

. Using convolution theorem of LT, the output response can be easily obtained as

yit) =t =20t — Dut — 1)+ 2@ —3u(t —3) — (t —du(t —4)

The plot of y(¢) using the above equation will give the same response as shown
in Fig.3.14;j.
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B Example 3.16

x(t) = u(t) —u(t—4)
h(t) = u(t) —u(t—1)
(a) Find y(¢) using convolution. Use graphical method.

(b) Verify the width property of convolution.
(c) Whatis y(¢) by LT using convolution theorem?

Solution:
(@)

x(t) = u(t) — u(t — 4) is represented in Fig. 3.15a.

h(t) = u(t) — u(t — 1) is represented in Fig.3.15b.

Figure 3.15¢ represents x(7) which is kept fixed.

Figure 3.15d represents h(—1).

By giving very long left shift #(z — 7) is represented in Fig.3.15.

x(t)h(t — 7) is represented in Fig.3.15f. Now Ah(# — t) is moved toward the
right so that there is overlapping between x(7) and h(¢ — 7).

7. The overlapping of x(t) and h(tr — 7) is shown in shaded area. The movement
of h(t — t) toward right is such that the right edge crosses past the left edge of
x(t). From Fig.3.15g, the limit of integration of the shaded area is from 0O to
t. The time interval is 0 < ¢t < 1 so that the right and left edges of h(t — t) do
not simultaneously cross over the left edge of x(t). The following convolution
integral is now solved.

A

y(t) =/ x(D)h(t — t)dt
0

= /ldt
0
y@) = [r];

0<t<1 (a)

8. The left edge of h(t — t) now crosses past the left edge of x(7). To make the
right edge of A(t — t) not to cross the right edge of x(t), the time duration
should be 1 < ¢ < 4. The overlapping portion of the convolution is shown in
Fig.3.15h. From the overlapping area, the limit of integration is from (¢ — 1) to
t. The following equation is solved for y(t).
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y@) = / x(D)h(t — t)dt
t—1

t
=f dt
t—1

t
- [r]z—l

(a) 4 x(H)=u(t)—u(t—4)
]A ‘ u(t)
i 1
4 f
I TN 2 ,
b
® 4 h(t) A h(t) = u(t)—u(t-1)
u(t)
1
1
1 f
”””””” “u1) I ’
d
© , (1) (d) A h(—)
1 1
4 : -1 :'t
(©) ()
h(t-1) 4 x(T)h(t—T1)
S ht—) 1
— x(T)
(+-1) t : (+=1) t :

Fig. 3.15 Convolution of x(f) = u(t) — u(t — 4) and h(¢) = u(t) — u(t — 1)
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304
® 4 x(T)h(t—7)
h(t=1) 1) 0<t<l
S | 0 t 4 :
h
® 4 x(Dh(t=7)
h(t—T)
)C(T) 1<t<4
1 4 -
()
A x(T)h(t—T)
x(T)
h(e=t) 4<t<5
-1 4 t ::
0 4 x(T)h(t-1)
1 x(T)
h(t—1) t>5
4 -1 t :

Fig. 3.15 (continued)
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bo=1] 1<r<4 (b)

9. The right edge of i(t — t) crosses past the right edge of x(7). The time interval
should be 4 < t < 5. Now the left edge of h(r — t) does not cross past the right
edge of x(t). From the shaded area, the lower limit of integration is (+ — 1) and
the upper limit is 4. Now the following equation is written for y(z).

4
y(t) = / x(T)h(t — t)dt
-1

4
=/ dt = [r];‘_l
-1

yoy=06-1 4<t<5 (c)

10. Fort > 5, thereis no overlapping between x(t) and (¢ — t) and hence y(¢) = 0.
11. Using equations (a), (b) and (c), y(¢) is found for the appropriate time interval
and tabulated below

[}
—
)
A~
W

t
y(t) 0 1 1 1 1 0

12. The response curve y(¢) is shown in Fig.3.14k.

(b) 1. The width of x(¢), T} = 4;
2. The width of h(¢), T, = 1;
3. Thewidthof y(t) =T1 + T =4+ 1=15;
This is verified from Fig. 3.15k.

(c) Convolution by LT method.
1. From Fig.3.15a
1
X(s) = —[1—e*]
s

2. From Fig.3.15b
1 ,
H(s) = ~[1 — "]
s

Y(s) = X(s)H(s)
1 e _4s
=s—2[1—63][1—e *]

1
— s_2[1 _e S — e—4s +€_5S]
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yt)y=t—(@C—Du@t—1)— (@t —Du(t —4)
4+ — Su(t —5)
Fort =0, y0) =0
t=1, y()=1
t=2, y)=2—-1=1
t=3, y3)=3-2=1
t=4, y4)=4-3-0=1
t=5 y5)=5-4—-14+0=0

The same result as in (a) is obtained without any laborious task.

B Example 3.17

Find the convolution of the signals shown in Fig. 3.16a and b. Verify the result using
convolution theorem of LT.

@, (b) . ho
3 2
0 2 1 4 0 3 1
d
© 4 h(-1) @ h(t-T)
-
33 N o R 4 0 g
(e)
2 X(Dh(-T)
3
h(t-T) s ()
—
(=3) =4 0 2 O

Fig. 3.16 Convolution of x(¢) and A(t) of Example 3.17
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®
x(T)h(t=7)
3
2
4<t<-2
x(1)
h(t-T)
= 3 0 r+d 2 s
(8
4 x(T)h(t-T1)
3 x(T)
2
-2<t<3
h(t-T)
-3 0 2 t+4 :
(h)
4 x(T)h(t-T)
3
x(1)
2
h(t-1) 3<t<5
-3 2 +4 T
i
® 4 x(T)h(t-T)
T
3 x(T)
by R t>5
(=0
h(t-7)
2 -3 t+4 ;
)
+ (@
12
| i i i |
. | | L\ 0=30-60
| | 6 | | |
H————  ERE N M e o ———— [N
| | | | | |
| | | | | |
| | | | | |
| | | | | |
< 1 1 1 1 1 »
—t 0 1 2 3 4 5 t

Fig. 3.16 (continued)
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Solution:

1. Theh(?) isexpressed as h(7) and folded. The folded #(—7) is shown in Fig. 3.16c¢.

2. h(t — 7) is obtained by adding ¢ to 4 and —3 in Fig. 3.16c and shifted to the left
most and is shown in Fig.3.16d.

3. x(t) and h(t — 7) are represented in Fig.3.16e.

4. h(t — 7) is shifted toward right. The overlapping of i(t — 7) with x(t) is shown
in Fig. 3.16f. The time interval is —4 < t < —2 so that change occurs one at a
time. The limit of integration is form O to (¢ 4+ 4). Thus, y(¢) is found as given
below.

144
) = / H(Oh()dr
0

t+4
= / 3 x 2dt
0

=[or],”

Iy =©t+24)| —4<t<-2 (a)

5. h(t — 7) is further shifted toward right. The right edge of x(t) is crossed first.
The overlapping area is shown in Fig.3.16g. The time duration is —2 < ¢ < 3
so that only one change occurs at a time. The limit of integration is from O to 2.
y(t) is obtained as given below.

2
y(t) = f x(t)h(t — t)dt
0

2
=/ 3 x 2dt
0
2
[+

—2<t<3 (b)

6. When h(t — t) is moved further to the right, its left edge crosses the left edge of
x(7). The overlapping area is shown in Fig. 3.16h. The time durationis3 < ¢ < 5.
The limit of integration is from (¢ — 3) to 2. y(¢) is obtained as given below
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2
y(@) =/ x(D)h(t — t)dt
-3

2
=/ 3 x 2dt
-3
2
= [or]
-3

Y(t) = 6[2 — t + 3]

()= (30— 61|

3<t<5S

309

()

7. Ifh(t — 7) is further moved to the right, for ¢ > 5, there is no overlapping between
x(t) and h(t — t) and therefore y(¢) = 0. This is shown in Fig. 3.16i.
8. For various time intervals, y(¢) is found and tabulated as given below

y(t) = (6t 4 24) —4<t<-=2

y(t) =12 —2<t<3

y(t) = (30 — 61) 3<t<5

y(i) =0 t>5
t —4 -3 -2 —1 1 4 5
() 0 6 12 12 12 12 12 12 6 0

9. Figure 3.16j shows the output response curve y(t). For the given x(t), the width
is Ty = 2 and for h(t) the width is T, = 7. Thus, the total width of y(¢) is
T =T + T, = 9. This is verified from Fig. 3.16;.

y(¢) from convolution property of LT.

1. The Laplace transform of x(¢) is

2 p—
X(s) = [ e dt = —
0

=[1—e ]

2. The Laplace transform of A(¢) is

3
H(s) =/ 2edt

4
_ _—2[e—“]3
s -4
2
— _[e4Y _ €—3S]

N

],



310 3 Time Domain Analysis of Continuous and Discrete Time Systems

Y(s) = X(s)H(s)

6 e s
— S_Z[l _6—23][643_6 3]

6
— _2[e4s _ eZ.Y _ e—3.v +e—5s]
s

y(t) = 6[(t + Du(t +4) — (¢ + 2)u(t +2) — (t — 3u(t — 3)
+(t — Su(t — 5))]
y(=4) =6[0] =0
y(=3)=6
y(=2)=6(2)=12
y(3) =6(7—54+0) =12
y4) =6
y5)=6(9—-7-2)=0

The same response y(#) is obtained here also with ease.

B Example 3.18

Find the output response y(#) for the signals shown in Fig.3.17a and b. Plot the
response curve y(f).

Solution:

1. The triangular wave x(¢) and the rectangular wave h(¢) are shown in Fig.3.17a
and b, respectively.
2. The slope of the triangular wave is % Hence,

1
x(t)zgt 0<t<S5

3. When A(t — t) is moved toward right, it overlaps with x(t) for -2 < < 2.
The limit of integration is 0 to ¢+ 2 as seen from the overlapping area of
Fig.3.17e. The output response during the above period is

t+2 1
y(t) = / —tdrt
o S

1
— E[t2]6+2

y(t):%[(t—}-Z)z] —2<t<?2 ()
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a b
(a) ) (b) A )
L 1
5 t 2 0 2
() (d)
A n(-1) h(t-1)
1 1
>
» < >
-2 0 2 T — -2 +2 "
2<t<2
-2 0 +2 5 T
®
4 x(Dh(t-T)
h h(t-1)
x(7) 2<t<3
0 12 2 5 T
(8
4 x(T)h(t-7)
] —
() h(-1) 3<t<?
-2 5 +2 T

Fig. 3.17 Convolution of a triangular and a rectangular waves
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()

4 (0
240 - - ‘
0.8¢
|
> : L-@1-2+an
16 [— = = ‘ «
| |
oy ! |
10 | ‘
|
|
< L ‘ >
~t -2 0 2 3 7 t
< T=9 »

Fig. 3.17 (continued)

4. When the left edge of h(# — t) crosses past the left edge of x(7), there is over-
lapping during the time interval 2 < ¢ < 3 with the limits of integration from
(t —2) to (¢t + 2). This is shown in Fig.3.17f. During this period, the output
response is obtained as given below.

t+2 1
/ —tdrt
-2 S

1
= ﬁ[rz];té

_i 2 72
= 1()[(t+2) (t=2)7]

2<t<3 (b)

5. When h(t — ) is moved further toward right, the right edge of (¢ — ) crosses
past the right edge of x(t). The overlapping occurs during the time interval
3 <t < 7. The limit of integration as seen from Fig.3.17g is from (r — 2) to 5.
During this period, the output response is obtained from the following integral.

31
y(t) :/ —tdt
=2 5
11 ,7°
o EI:T ]zfz

—125 r—2)?
_E[ — (-2

y(®)

1
Y0 = 15121 = P4l 3<t<7 (©)
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6. Further movement of (¢ — t) toward the right beyond t = 5 does not overlap
with x(t) and hence y = 0 for t > 7.
7. The expressions for the output response y(t) for different time intervals are given

below
y@® =0 t< -2
1
y(t>=ﬁ(t+2>2 —2<t<2
y(t) = 0.8¢ 2<t<3

1
y(t)=ﬁ(21—t2+4t) 3<t<7
y(&) =0 r>7

The above expressions are used to plot y(¢) and the responses curve is shown in
Fig.3.17h.

8. The width property of convolution is checked as follows. From Fig.3.17a and
b,wegetT) =5, T, = 4, respectively. Thus, wegetT =T+ T, =5+4=09.
From Fig. 3.17h, the width of y(#) is found as T = 9.

B Example 3.19

Consider the following signals:

x(t) = e 2

h(t) = u(t)

Using convolution, find y(¢).

Solution:

1. x(#) and h(¢) are represented in Fig.3.18a and b, respectively.

2. h(t — t) and x(7) are represented in Fig.3.18c.

3. For —oo <t < 0, the overlapping is shown in Fig.3.18c. The signals overlap
for the limits of integration from —oo to ¢. Hence,

t
y(1) =/ etdr <0

o0

1 t
-3
2 —o0
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(a) x(1) (b) 4 h()

d ¢
(d) lﬂx(T)h(t—T)
t>0
% = 0 t %

Fig. 3.18 Convolution of x(r) = e~2!l and h(r) = u(r)

4. Consider the overlapping for ¢ > 0. The limit of integration is from —oo to 0
and from O to . The expression for the output response is

0 '
y(t) =/ etdr +/ e 2dr
—00 0

1 27 0 P !
- E[e ]—w B _e ]0

N =

I o
y(t):l—ie t>0 (b)

5. The total response is the sum of (a) and (b).

—(1 [y 15
y(t) = ( — ze )u(t)—}- Ee u(—r)

B Example 3.20

Consider the following signals:

x(t) =2t O<t<l1
=@3-1 1<t<3
=0 elsewhere.

h(t) = u(t) —u( —2)

Find y(¢) by convolving x(¢) and h(t).
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Solution:

1. The given equation for x(¢) is a triangle which is shown in Fig. 3.19a. The equa-
tion for A(f) represents a pulse which is shown in Fig.3.19b. h(t — 7) is shown
in Fig.3.19c. Figure 3.19d represents the convolution of x(t) and h(t — 7). The
overlapping that takes place when h(¢ — 7) is moved toward the right at various
stages is shown in figures to follow.

2. Consider Fig.3.19e.

Fig. 3.19 Convolution of a (a) (b)
triangle and pulse x(0) 4 h(n=u(t)—u(t—2)

h(t—71)

-1 (1—2) t T

@ 4 x(Dh(t—71)

h(t—7)

|
|
|
|
t-2) ¢ 0 1 3 T

© A x(Dh(—T)

(1=2) t 1 3
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Fig. 3.19 (continued) ® » HOB—D)
1=r=<2
o) S
1 |
[
!
}
1 (t=2) 0 1t 3
® 4 x(Dh(t—1)
2<t<3
2 —_— e — =
! |
f
S0 a2 1 3 %
h
® 4 x(Dh(t—71)
315
x(T)
o
o) S
|
[
! — h(t—71)
[
0 11=2 3 ¢

3. Consider Fig.3.19f.
1 '
y(t) :/ 2tdTt —|—/ (3 —1)dr
0 1
27
= [tz](l] + |:3r - ?i|1

B P
- 2 2
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4. Consider Fig.3.19g.

1 t
y(t) = / 2tdt +/ 3 —1)dr
-2 1
_[2] 7
n [T :|t72 + |:3t B 7]]

= 1-:2—4+4z+3r—f—3+1
2 2

(1) = 3t2+7t 1 2<t<3
yi) = ) 5 ==

5. From Fig. 3.19h, the following equation is written for y(z).

3
@) = / B -1yt
-2

5]
= T — —
2 =2

9 t—2)?
=9—§—3t+6+( )

(t)—t2 5t+25 3<t<5
y =5 ) =r=

317

6. Fort > 5, there is no overlapping between x(t) and 4(t — t) and hence y(¢) = 0.

The value of y(¢) for different time intervals are listed below

(@ y() =+t 0<r<1
2 3
(b) y(t)=<3t—5—§) 1<t<?2
(c) y(t)=<—§t2+7t—£) 2<1<3
2 2 - -
12 25
(d) y(t)=(5—5t+7) 3<t<5

(e) y&)=0 t>5
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B Example 3.21

Find the output of a LTIC system with the impulse responses A(t) = §(t — 3) and
x(t) = (cos4t + cos7t).

(Anna University, 2004)
Solution: According to shifting property of convolution

y() = x(#) * 8(t — o)
=x(t —ty)

Applying the above property, we get

y(t) = cos4(t — 3) + cos7(t — 3)

B Example 3.22

The impulse response of an LTIC system is shown in Fig.3.20a. The input x(¢) =
8(t) — 8(t — 1.5). Find the response y(f) of the system.

(Anna University, 2004)

Fig. 3.20 Output response (a)

curve + h(@)

®) 4y®
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Solution: The given triangular wave /(¢) shown in Fig.3.20a is split up as two ramp
signals.
h(t) = tlu@®) —u(@ — D]+ 2 = Olu@ — 1) —ut — 2)]

(See also Example 3.88).

y(@) = h(1) * x(1)
= h(t) * [8(t) — 8(t — 1.5)]
= h(t) *8(t) — h(t) *6(t — 1.5)
= h(®) — h(t) *5(t — 1.5)
h(t) *8(t —1.5) = h(t — 1.5)

y@©) = tlu(®) —u — D]+ Q2 —D)u@ — 1) —u(t —2)]
—(t — 1.5)[u — 1.5) — u(t — 2.5)]
—[2—@—1.9][u@—2.5) —u — 3.5)]

=tu(t)+ 2 —-20ut—1)— (—1.5)
xu(t—15)— Q2 —u@®—2)+ Q2r—15)
xu(t —2.5) — (t — 3.5)u(t — 3.5)

The following table is prepared from the above equation.

t 0 1 1.5 2 2.5 3 t>35
y(t) 0 1 0.5 -0.5 —1 -0.5 0

The output response curve y(¢) is plotted and is shown in Fig. 3.20b.

Bl Example 3.23

The system shown in Fig. 3.21 is formed in connecting two systems in cascade. The
impulse response of the systems are given by hy(t) = e >u(t) and
hy(t) = 2e~"u(t). Find the overall impulse response of the system.

(Anna University, June, 2007)

Fig. 3.21 Two systems
connected in cascade L, () () 4))(:)
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Solution: Both h () and h,(t) are causal systems. The limits of integration is from
Otot

h(t) = e > u(r)
ha(7) = 2¢ " u(v)
ho(t —1) =2 Du@t —1)

The impulse response of the combined system is given by

h(t) = hi (1) * ho(2)
h(t) = / 2e e g

0
t
:264/ [e " 1dT
0
t

= —2¢! [e_’]
0

h(t) = —2e'[e™" — 1]

h(t) = 2™ — e () |

B Example 3.24

Show that
x() % 8(t — ty) = x(t — ty)
(Anna University, June, 2007)

Solution:

o0

x(®) *6(t — 1) = / 8(t —to)x(t — 1)drt
—0oQ
=X — T)le=s,

\x(r) % 8(t — o) = x(t — 1o)

B Example 3.25

Prove that t

x(t) xu(t) = / x(t)dt

o0

(Anna University, June, 2007)
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Solution:

x(t) *u(t) = / x(Du(t — t)dt

o0

Since

ult—1) =1 T <t

=0 T >t

The above equation can be written as

x(t) xu(t) = / x(t)dt

o0

B Example 3.26

The signals x () and y(¢) shown in Fig. 3.22a and b are, respectively, input and output
of an LTIC system. Sketch the response to the following inputs:

(@) b
4 x(t) ® ()
1 1
1 0 Lt —1 0 1 i
© 4 x(t—3) @ 4 y(1—3)
l - —
2 0 4 T
© ) ® )
2
2
=1 0 1 f -1 1 [

Fig. 3.22 Two signals x(¢) and y(¢)
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(& h
I 0)) ® 4 (0
-1 1 . -1 +1
 —t t
v —x(1) v =y
@) 4 3x(1) G) x(t—2)
3
T —
-1 0 1 i 1 3 i
(k) 4 3x(H)+x(1—2)
3
If—=="- ‘—‘
l .
-1 0 1 3
k
® 4 y(t=2)+3y(0)
3
&= due to 3x(7)
[ O N & due to x(1—2)

|
|
2 3 t

-1 0 1

Fig. 3.22 (continued)

1. x(t) = x(t — 3)

2. x(t) = 2x(1)

3. x(t) = =3x(t)

4. x(t) = x(t — 2) + 3x(t)

(Anna University, May, 2007)
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Solution:

1. x(t — 3) is shown in Fig.3.22c. It is time shifted by 3. The amplitude remains
at 1. Hence, the output with the same amplitude is to be time shifted by 3 to the
right. This is shown in Fig.3.22d.

2. Theinput x(¢) = 2x(¢).The amplitude is multiplied by a factor 2 without anytime
shift. The input and the output are shown in Fig. 3.22e and f, respectively.

3. x(t) = —3x(t) is shown in Fig.3.22g. Here, the amplitude is multiplied by a
factor —3 without anytime advance or delay. Therefore, the output should also
be multiplied by the factor —3. This is shown in Fig. 3.22h.

4. Theinputx(#) = x(t — 2) + 3x(#). The input x(¢) which is amplified by the factor
3 is shown as 3x(#) for —1 < ¢ < 1 in Fig.3.22i. The time delayed input x(#)
which is x(¢ — 2) is shown in Fig.3.22j for the time interval 1 < ¢ < 3. The
output due to input 3x(¢) for —1 < ¢ < 1 and the output due to input x(t — 2)
for 1 <t < 3 is shown in Fig.3.22k.

3.8 Causality of an Linear Time Invariant Continuous
Time System

An LTIC system is said to be causal iff the output y(#) depends only on the present
and past value of input. Consider the output response of a certain system whose
impulse response is i (t) and the input is x(¢). Using convolution integral, the output
response is obtained from the following equation.

y@) = / h(t)x(t — t)dt (3.10)

[e¢]

For a causal system i(7) = 0 for T < 0. Now Eq. (3.10) is written as

y(@) = /00 h(t)x(t — t)dt (3.11)
0

If a causal signal is applied to a non-causal system

y(t) = /00 x(D)h(t — T)dT

o0

=/ h(t)x(t — )dr (3.12)

—00

If a causal signal is applied to a causal system

y(t) = f x(Dh(t — 1)dt
0

_ / h(o)x(t — T)de (3.13)
0
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3.9 Stability of a Linear Time Invariant System

A linear time invariant continuous time system is said to be Bounded Input Bounded
Output (BIBO) stable if every bounded input applied to the input terminal results in
a bounded output. Such a stability is called external stability. On the other hand if a
system which is in equilibrium state and when a small disturbance is given, the system
comes back to the equilibrium state then the system is said to be internally stable. If
every bounded input produces bounded output, the system is said to be BIBO stable.
On the other hand, if even one bounded input produces unbounded output, the system
is said to be BIBO unstable. The BIBO stability can also be expressed in terms of
impulse response of the system. Consider the following convolution:

y(@) = h(z) * x(1)
=/ h(t)x(t — t)dt

[e.¢]

ly@®| = ‘/ h(t)x(t — 1)dt

< f S @I — Dl

oo

If x(¢) is bounded, then |x(t — )| < A < oo and

ly(@®] SA/ |h(t)ldT (3.14)

oo

For the output also to be bounded which will make the system stable

foo |h(t)|dT < 00 (3.15)

o0

Equation (3.15) is nothing but the area under the impulse response curve. This is the
necessary and sufficient condition for the system to be stable. The stable and unstable
response curves of an LTIC time system are shown in Fig. 3.23a and b, respectively.

Fig. 3.23 Impulse response h(t) h(t)
curves of stable and unstable
systems

(a) Stable (b) Unstable
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B Example 3.27

The impulse response of a certain system is given by
h(t) = e u(t — 2)

Determine the stability of the system.

Solution:

30) = / (o))

o0

o0
= / e dr
2

)

= —6_6

¥(1) = 8262 x 10~ < oo

The output response y(f) < oo which is finite and hence the system is BIBO stable.
The output response curve is shown in Fig.3.24 which shows the area under the
output response curve is finite. Hence, the system is BIBO stable.

B Example 3.28

The impulse response of an LTIC system is
h(t) = e sin 31 u(r)

Determine whether the given system is BIBO stable.

Fig. 3.24 Output response h(r)
curve of Example 3.27
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Solution:
h(t) = e~ sin 3t u(t)

o0
y(1) = / e~ sin 3rdt
0
For a causal system, the lower limit of integration is 0.
o0
y(1) = / le=% sin 3¢|dt
0

The above integration is solved using the following property of integration

t) = “sinbtdt = ——
y(@®) /0 e " sin gy

Herea=2;b=3

(0= >
YW =1
y(t)=13—3<oo

The system is BIBO stable.

B Example 3.29

A certain LTIC system has the following impulse response. Determine whether the
system is BIBO stable.
h(t) = e cos 2t u(t)

Solution:
h(t) = e cos 2t u(r)

This is a causal system and the output is expressed as

y(1) = / le= cos 2¢|dt
0

The above integration is solved using the following property

o0 a
/ e “coshtdt = ——
0 a2 +b2

Herea=3,b=2
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(n = >
YW= o1y

(t)—3
YW =3 =

The system is BIBO stable.

B Example 3.30

The impulse response of a certain LTIC system is given by
h(t) = te > u(?)

Determine the BIBO stability of the system.

Solution:
h(t) = te 2 u(t)
o0
¥(0) = / jte i
0

The above integration is solved using u — v method. Let u =¢, du=dt, dv =

e 2dt, v = —%e‘zl

o0
y(t) = uv —/ vdu
0
1 EaT B e
= |:t (——6_2’)] + —/ e 2dt
2 0 2 Jo

1 [~
:0 — —at
+2/0e

1
1) = —
y(?) 1<%

y(¢) is finite and hence the system is BIBO stable.

B Example 3.31

For a certain system, the impulse response A(t) is given by h(t) = e~ u(t). Deter-
mine the BIBO stability of the system.
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Solution: '
h(t) = e u(r)

For a causal system

y(®) =/0 |h(1)|dt

0]
= f le 4
0

o0 .
= / le™|le" |dt
0

le'| = |cost+jsint| = v/cos2t +sin’r =1

y(t) = /00 e~ 'dt
0

[

Since y(¢) is finite, the given system is BIBO stable.

B Example 3.32

Determine the BIBO stability of the system whose impulse response is

h(t) = eu(—t — 3)

Solution: The impulse response of the given system is shown in Fig. 3.25. It is non-
causal. The lower limit of integration is —oo and the upper limit is —3. Hence, the
output response is obtained from the following equation:

-3
y(t) = / | |at

[ee]

T

¥(1) = 4.11 x 10~ < oo

Since y(?) is finite, the system is BIBO stable.
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B Example 3.33

Determine whether the system described by the following response function is BIBO
stable.

Solution: From Fig.3.25a, the area under the impulse response curve is finite. The
system is therefore BIBO stable. This can also be proved mathematically as follows:

y() =/ |h(0)|dr

o0

0 00
=/ e’dt—i—/ e~ 'dt
—00 0
0 oo
=[] (-]
—00 0

=1-0-0+1

The system output is finite and hence the system is stable.

B Example 3.34

The system shown in Fig.3.26 is formed by connecting two systems in cascade. The
impulse response of the systems are given by &, (¢) and &, (¢), respectively. i (1) =
e 2'u(t) and hy(t) = 2e~'u(t). Determine if the overall system is BIBO stable.

(Anna University, May, 2007)

Fig. 3.25 Impulse response 4 h(1)
of Example 3.32. a The
Impulse response curve of
Example 333  rTTTTT 1
= =3 ’
4 h(p)
1
el
\4 Py
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Fig. 3.26 Impulse response
of two systems connected in
cascade

3 Time Domain Analysis of Continuous and Discrete Time Systems

x(1)

()

(D)

()

Solution: The overall impulse response h(t) = h(¢) * h,(t) is obtained in Example

3.23 as

h(@t) =2[e”" — e 2 u(r)

Since the system is causal, the following equation is obtained to determine the BIBO

stability.

y(®) =/0 |h(1)|dr

= / [e™" — e dt
0

=2 _e—l+le—2t =
2

0
3]
=2(1-=|=1
2

(i) =1< o0

Hence, the system is BIBO stable.

B Example 3.35

Find which of the following systems with the impulse response given are causal.

(a)
(b)
(©)
(d)
(e)
)
(8

e u(t)

e—all

e u(t—1)

et u(—t — 1)
e“u(—t+1)

eut+1)

Elut+1) +e “ut —1)

Solution:

(a) u(t) is the present input. Hence, the system is causal h(t) = 0 for t < 0.

(b) The impulse response depends on the present and future input. Hence, the system
is non-causal h(t) # 0 fort < O.
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(c¢) The impulse response depends on the past input u(¢ — 1). Hence, the system is
causal h(t) = 0 fort < 0.

(d) The impulse response depends on future input u(—¢ — 1). Hence, the system is
non-causal h(t) # 0 fort < 0.

(e) The impulse response depends on future input u(—¢ + 1). Hence, the system is
non-causal h(t) # 0 fort < 0.

(H The impulse response depends on future input u(z + 1). Hence, the system is
non-causal h(t) # 0 fort < 0.

(g) The impulse response depends on future input u(¢ + 1). Hence, it is non-causal
h(t) #0fort < 0.

3.10 Step Response from Impulse Response

The step response of an LTIC system can be obtained from the impulse response by
integrating it. Let s(¢)denote the step response. Consider the system with the impulse
response A(t). Let u(t) be the input signal. Using convolution, the following equation
is written:

s(t) = u(t) * h(t)
:/ h(tu(t — t)drt

[e¢]

s(t) =/ h(t)dt (3.16)

o0

For the causal system, the lower limit of integration is 0. Hence,

s(t) = / h(t)dt (3.17)
0

Thus, the step response is obtained by integrating the impulse response. The
impulse response is obtained by differentiating the step response s(z).

The following examples illustrate the method of obtaining step response from
impulse response.

B Example 3.36

The impulse response of a certain LTIC system is given by
h(t) = e Y u(r) — e > u(t)

Determine the step response of the system.
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(a) (b)
h(t) b h(t)=u(t+1)

—u(t—1)
1 u@+1)

—u(t—1)

Fig. 3.27 Plotof h(t) = u(t + 1) — u(t — 1)

Solution:
@) =[e™ — e 2 u(r)

The step response s(¢) is given by

s(t) = / h(t)dt
0

0
— _le—4t+le—21 '
4 2¢ ],
— 1 —4t 1 1 -2t 1
_[ ¢ Tit¢ 73

B Example 3.37

Find the step response whose impulse response is

ht) =ut+1) —u—1)

(Anna University, May, 2007)
Solution: The impulse response shown in Fig.3.27a can be represented as in
Fig.3.27b. From Fig. 3.27b, the step response is obtained as follows:

s(t):/_t h(r)drzf_ll dr = [r]l_l

o0
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B Example 3.38

The impulse response of a certain system is given by
h() =6() — 6@ —2)

Determine the step response.

Solution:
h(t) =6(t) —8(t —2)

The step response is obtained from the following convolution.

s(t) = h(t) * u(t)
=[8(t) —&6(t — 2)] * u(t)

using convolution property, 8 (¢) * u(t) = u(¢) and §(t — 2) * u(t) = u(t — 2) we get,

s(t) = u(t) —u(t —2)

the above result can also be obtained by integrating the impulse function which is a
step function.

B Example 3.39

Find the step response of the system whose impulse response is

t2
h(t) = Eu(t)

Solution:

t2
h(t) = Eu(t)

s(t) = /f %2(11:
0
411

J— t;
s(t) = g

3
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B Example 3.40

Find the step response of the system whose impulse response is

h(t) = e > u(t + 2)

Solution:

h(t) = e 'u(t + 2)
s(t) = / e 2dt

2
1
= _5[6—21]1_2
1
— _5[672[ 64]

s(t) = [27.3 — 0.5¢ " u(r + 2)

B Example 3.41

Find the step response of the system if the impulse response is
h(t) = e'u(t —2)

From the results so obtained find the impulse response.

Solution:

h(t) = eu(t — 2)

t 1 t
37 - 37
s(t) = /2 e’tdt = 3[6 ]2

s(t) = %[8’ — 403.47u(t — 2)

The impulse response /A(¢) is obtained by differentiating the step response

aso) _

h(r) = ult —2)




3.10 Step Response from Impulse Response

Important Points to Remember in Connection
with Convolution Integral

1. The convolution operation is expressed as

y(t) = /OO x(T)h(t — 1)dT

[ee]

The symbolic representation of convolution is
y(1) = x(1) * h(1)

“x” indicates convolution operation.
2. For the causal signal, the convolution integral is given by

y(t) =/ x(D)h(t — t)dt
0

For the non-causal signal, the convolution is given by

y(t) = / x(t)h(t — t)dt

o]

3. The commutative property of convolution is
x(t) * h(t) = h(t) * x(1)
oo oo
/ x(D)h(t — t)dt = / x(t — h(t)dt

[e¢] —00

4. The distributive property of convolution is

y(1) = x(1) * h(7)

where
h(t) = (h (1) + hao (D))

5. The associative property of convolution is
[x(@) % by (D] % ho (1) = x(2) * [~ () * ha(1)]

6. The shifting property of convolution is

x(t—p)xh(t—q) =yt —p—q)

335
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7. The width property of convolution is that the width of
x@)xh(@®) =T+ 1>

where T1=width of x(#) and T,=width of h(t).
8. The convolution with an impulse is

x(t) % 8(t) = x(1)
9. The convolution with the delayed impulse is
x(t) x8(t — tg) = x(t — ty))

10. The convolution with unit step is

x(t) xu(t) = / x(v)dt
0

11. The convolution with a delayed step is

x(t) xu(t —ty) = / x(r)dt

—0Q

12. System causality
For a causal system h(t) = 0 for r < 0.

13. The necessary and sufficient condition for the system to be bounded input
bounded output stable is

/ |h(t)|dT < 00

oo
14. The step response from impulse response is obtained from
t
s(t) = / h(t)drt
—00

The impulse response is obtained by differentiating step response.

3.11 Representation of Discrete Time Signals
in Terms of Impulses

As discussed in the previous chapter, the discrete time signal is represented as a
sequence of impulses. If these sequences of impulses are expressed mathematically,
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it will help us develop the characterization of any Linear Time Invariant Discrete
(LTID) time system.

Consider the sequence of impulse signals shown in Fig.3.28a. The time shifted
impulse sequences are shown in Fig. 3.28b—e for the sequence interval —4 < n < 3,
the impulses are represented as x(—4), x(—3), x(—2), x(—1), x(0), x(1), x(2) and
x(3). The signal say at n = —3 is mathematically expressed as

x(=3)d(n+3)=x(-3) n=-3
=0 n#-3
d(n+4),8(n+3),...,8(n—3) are unit impulses occurring at n = —4, n = —3,

...,n = 3. These sequences of impulses are shown in Fig.3.28a. These sequences
are mathematically expressed as

x(n) =x(=4Hd(n+4) +x(=3)6(n+3)+--- +x2)é(n —2) +x(3)d(n — 3)

Fig. 3.28 Sequence of (a)

impulse signals tx(n)

(b)

tx(n)

x(—=3)d (n+3)=—2
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Fig. 3.28 (continued)

()
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t x(n)

2
X(—2)8(n+2)=2
e T P S S R
(d)
d x(n)
2
x(0)d(n)=2
S S8 3 2 S o 1 2 3 4
(e)
t x(n)
x(3)3(n—3)=—1
-n 4 -3 —2 -1 "

In general, if these sequences occur in the interval —oo < n < 00, then x(n) is math-

ematically expressed as

[ee]

x(n) = Z x(k)8(n — k)

k=—00

(3.18)

3.12 The Discrete Time Unit Impulse Response

Let §(n — k) be unit impulse which is shifted by k. It has value 1 corresponding
to value k. Let A (n) denote the response of the linear time invariant discrete time
system. By superposition theorem, the output response y(n) to the input x(n) is
obtained as the weighted linear combination of these responses. Thus, the impulse
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x(n) = (k) d(n—k) y(n) =2x(k) h(n)
S DISCRETE TIME k=

SYSTEM

Fig. 3.29 Input-output of DT system

response y(n) can be expressed as
oo

Yy =) x(hi(n) (3.19)
k=—00

Thus, if we know the response of a linear system to the set of shifted unit impulses,
it is possible to determine the response to any arbitrary input sequence. The block
diagram of DT system is shown in Fig.3.29.

3.13 The Convolution Sum

Similar to linear time invariant continuous time system where the convolution integral
was made use of in determining the output response of the system, in discrete time
system the convolution sum or superposition sum is used to determine the output
sequence. For any arbitrary x(n), knowing the impulse response sequence Ay (1), the
output response y(n) is obtained as explained below.

Let h_y(n), ho(n), hi(n) be the impulse responses to the input x(n)§(n + 1),
x(n)é(n) and x(n)d(n — 1). By applying superposition theorem, it is possible to
get y(n) which is nothing but the linear combination of the responses due to the
individual shifted impulses. Consider the signals x(n), h_;(n), ho(n) and h;(n) rep-
resented in Fig.3.30a, b, c and d, respectively. The signal x(—1)8(n + 1) is obtained
from x(n) at n = —1. Similarly, x(2)4(n) is obtained from x(n) at n = 0. Similarly,
x(1)é(n — 1), x(2)6(n — 2) can be obtained. The product of x(—1)§(n + 1)h_;(n)
gives y(—1). Similarly x(0)é(n)ho(n) gives y(0) and x(1)é(n — 1)h;(n) gives y(1)
evaluated at n = 1. These signals are represented in Fig.3.31.

From Fig.3.31a—k the values of y(n) for —oo < n < oo are calculated from
x(n)h(n) by summing up all these values for a given n. Thus,

n=-1, y(=)=-3+2—-1=-2
n=0, y0) =4=4
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Fig. 3.30 Input and impulse (a) . (b)
response sequences )

(©) (d)

h_,(n)
1
[
11 2
—1
-2
h,(n)

n=1, y1)=—-15-2-2=-55
n=2, y2)=15-44+1=-15

The sketch of y(n) is shown in Fig.3.31k. Thus, the response y(n) at any instant n is
nothing but the superposition of the input at every point of n. Since §(n — k) is the
time shifted version of §(n), the response A (n) is the time shifted version of %y (n)

which can be represented as
hg(n) = ho(n — k)

Now, the equation for the convolution sum can be written as

oo

ym) = Y x(ho(n — k)

k=—00

For convenience if we drop the subscript on hy(n — k), the above equation is

written as

o]

ym) = > x(K)h(n - k)

k=—00

(3.20)

The above equation is referred to as the convolution sum or superposition sum.
h(n) is the impulse response of the LTID time system for the input §(n). The convo-

lution sum is symbolically represented as



3.13 The Convolution Sum

@ W=Dd@+1) @ @ t x(—Dh_,(n)
15
1 15
A 1 Z‘—l[Ollzﬁ‘l OJIZ;
-1 -15
)
=3
(d) 2 x(0)3(n) (e) hy(n) () ¢ x(0)A(0)
2 2
0 1 o 11 2
-1 « .
=1 Jo J1 ]2 =
i ‘
=2
(@ tx()d(n—1) (h) hy(n) 2
| P
—1 ‘01 2 n O t x(1)h ()
1
21
—11 o2
)
()] x(n) (k) y(n)
4
2
T
=T o 11 n I=tlo i erf
-2
-1 -15

Fig. 3.31 Convolution sum of discrete signals
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y(n) = x(n) * h(n) (3.21)

There are different methods available to get the solution of y(n) by the convolution
method, and they are described and illustrated below with examples. The properties
of convolution which will be useful for solving convolution sum are discussed first
as follows.

3.14 Properties of Convolution Sum

3.14.1 Distributive Property

Two linear time invariant discrete time systems connected in parallel are shown in
Fig.3.32a with their impulse responses h;(n) and ki, (n). According to convolution
sum

yi(n) = x(n) * hy(n)
2(n) = x(n) * hy(n)
y(n) = y1(n) + y2(n)
= x(n) * hy(n) + x(n) * ha(n)

Yy = Y x(h(—k)+ Y x(Kh(n—k)
k=—00 k=—00
= Y x(Olh(n —k) + hy(n — k)]
k=—00

Substituting h(n — k) = [h;(n — k) + ha(n — k)], we get

y) = Y x(k)h(n — k)
k=—o0
= x(n) * h(n)
() = x(0) * [ () + ha ()] (3.22)

3.14.2 Associative Property of Convolution

According to this property y(n) = x(n) % [h;(n) * hy(n)] = [x(n) % hy(n)] * hy(n).
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Fig. 3.32 Distributive (a)
property of convolution y,(m)
hy(n) >
SYSTEM 1
x(n) (: y(n)
SYSTEM 2
y,(n)
hy(n) >
(b)
) - Y =x(n) h(n)
h(v)=h,(n)+h.(n) Ho—h(m+ ()
Fig. 3.33 Associative (a)
property of convolution x(n) y(n)
hy(n) » ha(n)
yi(n)
System 1 System 2
(b)
x(n) y(n)
—_— h(n)=h (n)*h,(n) —

Proof Consider two linear time invariant discrete time systems connected in cascade
as shown in Fig.3.33a with their impulse responses h;(n) and h;(n), respectively.
From Fig. 3.33a, the following equations are written:

yi(n) = x(n) * hi(n)

o]

k=—00

ya) = y1(n) x ha(n)

k=—00
9]

k=—00

> x(hi(n—k)

= Y nohn—k

> x(p)hk — pha(n — k)
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Putting (k — p) = g in the above equation, we get

oo

Yy = " x(p) Y h(@hn—p—q)

p=—00 g=—00
= Y x(p) Y hin—p)
p=—00 g=-00
= Y x(p)h(n —p)

p=—00

|y(n) = x(n) * h(n)

where .
h(n) = Y hi(@)ha(n — q)
g=—00
[ h(n) = hy () * hy(n) |
Hence,

y(n) = x(n) * (hi(n) * hy(n))

y(n) = [x(n) * hi(n)] * ha(n)

y(n) = x(n) * [h1(n) * hy(n)]

3.14.3 Commutative Property of Convolution

According to commutative property
hi(n) * hy(n) = ha(n) * hi(n)

Proof Consider the following convolution

hy(n) * ha(n) = Z hy (k)ha (n — k)

k=—00

Put n — k = p in the above equation.

(3.23)
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Fig. 3.34 Width property of (@) 4 x(m) (b) 4 h(n)
convolution

hi(n) % hy(n) = Y hi(n—p)ha(p)

p=—00

= Y h(p)h(—p)

p=—00

|1 (n) % ha(n) = ha(n)  hy (n) | (3.24)

3.14.4 Shifting Property of Convolution

Let x(n) and h(n) be two sequences. The output response y(n) is expressed as

y(n) = x(n) * h(n)

If the sequences x(n) and h(n) are shifted by p and g, respectively, as x(n — p) and
h(n — q) then

[x(1—p)xh(n—q) =y(n—p—q) (3.25)

3.14.5 The Width Property of Convolution

Consider the sequences x(n) and 4(n) which are shown in Fig.3.34a and b, respec-
tively. Let the width of x(n) be 7; and that of h(n) be T,. Then, the width
of y(n) = x(n) * h(n) is T = T| + T». For the sequences represented in Fig.3.34,
T) =4 and T, = 5. The width of y(n) shouldbe T =4 +5 =9.

3.14.6 Convolution with an Impulse

Let x(n) be the discrete time signal. When this signal convolves with an impulse § (1)
then
x(n) * 6(n) = x(n)
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Proof
x(n) * 8(n) = Z x(k)8(n — k)
k=—00
dn—k)y=1 for n=k
=0 forn#k

x(n) #8(n) =Y x(k)
k=n

\ x(n) * 8(n) = x(n) \ (3.26)

3.14.7 Convolution with Delayed Impulse

If the sequence x(n) convolves with §(n — ng) then

x(n) *8(n — ng) = x(n — ng)
Proof

o0

x(m)#8(n—ng) = Y x(k)8(n—k —ng)

k=—00
8(71—]{—}’1()):1 ifk:l’l—}’l()
=0 ifk#n—ng
x(m)x8(n—no) = Y x(k)8((n—ng) — k)

k=n—ny

\x(n) % 8(n — ng) = x(n — ng) \ (3.27)

3.14.8 Convolution with Unit Step

x(n) % u(n) = Z x(k)
k=—00
Proof
x(n) xu(n) = Z x(KHun — k)
k=—o0

un—k)=1 forallk
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]

x(n) * u(n) = Z x(k) (3.28)

k=—00

3.14.9 Convolution with Delayed Step

If x(n) convolves with delayed step u(n — ng), then

x(n) xu(n —ng) = Z x(k)
k=—00
Proof
x(n) x u(n — ng) = Z x(kK)u(n — k — ng)
k=—00

un—ng) =1 forn > ny

=0 forn<ng

n—ngo

x(n) * u(n — ng) = Z x(k) (3.29)

k=—00

3.14.10 System Causality from Convolution

A linear time invariant discrete time system is said to be causal iff the impulse
response does not exist for n < 0.

Proof The output response can be written in terms of impulse response and input
signal as follows:

y) = " h(k)x(n — k)

k=—00

1 n
= > h(x(n—k) + > hk)x(n — k)

k=—00 k=0

Fork <O



348 3 Time Domain Analysis of Continuous and Discrete Time Systems

1

Yy = > h(k)x(n— k)

k=—00

The response depends on future inputs x(n + k), x(n +k — 1),...,x(n+1). Fora
causal system, the output response should not depend on future input. Hence,

1
> h(x(n—k)=0 or h(k)=0 for k<0

k=—00

Changing k as n,

forn < 0 (3.30)

3.14.11 BIBO Stability from Convolution

A linear time invariant discrete time system is said to be BIBO stable iff its impulse
response is absolutely summable. It is mathematically expressed as

o0

Yy = Y |h(n)] < oo

Proof e
ym) = Y x(k)h(n — k)

k=—o00
= Z h(k)x(n — k)

k=—00

ly(m)|

> hkx(n— k)

k=—o0

The magnitude of the sum of the terms is always less than or equal to the sum of the
magnitude. Thus,

o0

< Y h®)|x(n— k)]

k=—00

Z h(k)x(n — k)

k=—00

For a bounded input, |x(n — k)| < oco. Let it be M,

)| <M, Y kb))

k=—00
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For the bounded output [y(n)| < oo. Let it be M,

o0
Z lh(k)| = M, < 00
k=—o00

y(n) < MM, < o0

Changing k = n in the impulse response summation, we get

> k)] < oo (3.31)

n=—oo

o]
n=—00

In other words, Y
be BIBO stable.

|h(n)| is summable and finite for the discrete time system to

3.14.12 Step Response in Terms of Impulse Response
of a LTDT System

The step response s(n) is obtained from the impulse response as

s(m) = h(k)
k=0

Proof Let

1. y(n) = s(n) for step input.
2. h(n) = Impulse response
3. x(n) = u(n) =step input sequence

The convolution of h(n) and x(n) is expressed as

o]

sty =Y h(kyu(n — k)
k=—o00
un—k)=1 n>k
=0 n<k

s(n) = > hk) x 1
k=0

s(n) = Z h(k)
k=0
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The properties of LTID system convolution and the connected results are summa-
rized below.

Important Points to Remember in Connection
with Convolution Sum

1. The convolution sum is mathematically expressed as

y(n) = x(n) * h(n)

o0

ym) = Y x(k)h(n — k)

k=—00

“x” denotes convolution operation.
2. The commutative property of convolution is

x(n) x h(n) = h(n) * x(n)
3. The distributive property of convolution is
y(n) = x(n) * h(n)

where
h(n) = hy(n) + hy(n)

4. The associative property of convolution is
[x(n) * hi ()] * ha(n) = x(n) * [h1(n) * ha(n)]
5. The shifting property of convolution is
x(n=p)xhin—q) =yn—p—q)
6. The width property of convolution is
x(m) x h(m)] =T, + T

where T1=width of x(n) sequence and T,=width of /(n) sequence.
7. The convolution with an impulse is

x(n) * §(n) = x(n)

8. The convolution with delayed impulse is
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x(n) x8(n — ng) = x(n — ng)

9. Convolution with unit step is

[o¢]
x(n) x u(n) = Z x(k)
k=—o00
10. Convolution with a delayed step is
[o.¢]
x(n) xu(n — ng) = Z x(k —n — ng)
k=—00

11. System causality in terms of impulse response is
hin) =0 forn <0

12. The necessary and sufficient BIBO stability condition is

o0
|h(n)]| < o0
n=—oo

In other words |h(n)| should be absolutely summable.

13. Step response s(n) is obtained from impulse response using the following math-
ematical expression:

s(m) =Y h(k)
k=0

3.15 Response Using Convolution Sum

If the impulse response A(n) is known, the output response y(n) can be obtained for
any input sequence x(n) by using the following methods:

e Analytical methods and
e Graphical method

In analytical method, y(n) is obtained by

— Using mathematical expression for the convolution sum
— Multiplication method

— Tabulation method.

— Matrix method.
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3.15.1 Analytical Method Using Convolution Sum

B Example 3.42

The impulse response i (n) of a certain LTID system is given by h(n) = a"u(n) where
0 < a < 1. The system is excited by x(n) = u(n), a step sequence. Find y(n) using
convolution sum.

(Anna University, December, 2006)
Solution: The impulse response and input sequences are represented in Fig.3.35a
and b, respectively. They are causal sequences. Hence, the convolution sum given in
Eq.(3.20) is written as follows:

x(n) = u(n)
x(k) =utk) =1
h(n) = d"u(n)

h(n —k) = d"*un — k)
u(k) = 1
un—k) =1

n

y) = Y x(k)h(n — k)

k=—0

=Y (@™

k=-0
()
= an _
k=—0 a

The above expression is simplified using the finite summation formula

n Ak_ (1_An+1)
2. 4= (1-4)

k=—

Fig. 3.35 Representation of (@) *h(n)=a"u(n) (b) 4 x(n)=u(n)
h(n) and x(n) sequences
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Therefore,
SR E)
_ (1 _ an+1)
y(n) = mu(n)
B Example 3.43
x(n) = u(n)
h(n) = un)

Find
y(n) = x(n) * h(n)

Solution: The excitation sequence x(n) and the impulse response sequence h(n)
are shown in Fig.3.36a and b, respectively. Since these two signals are causal, the
convolution sum can be written as follows:

n

NOEDINON
k=0

=) Z(l) = Zl
k=0

k=0

According to finite summation formula

n

Zl=(l+n)

k=0

Fig. 3.36 Representation of (@) 4 x(m)=u(n) (b) + h(n)=u(n)
x(n) = u(n) and h(n) = u(n)
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Therefore

y(n) = (1 +nju(n)

B Example 3.44

x(n) = u(n)
h(n) = (0.6)"u(n)

Find
y(n) = x(n) * h(n)

Solution:

x(n) =17
x(k) = 1*
h(n) = (0.6)"u(n)
h(n — k) = (0.6)" *u(n — k)

i = ) 140.6)"

k=—0

= (0.6)" Y _1%(0.6)*
k=0

n | k
= (0.6)" —
093 (56)
k=0
1
P kol
[1 - 5]
[Using Finite Summation Formula]
[(0.6)"! — 1]
0.6) — 1

y(n) = 2.5[1 — (0.6)" ' u(n)

B Example 3.45

x(n) = d*u(n)
h(n) = b"u(n)
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Find
y(n) = x(n) * h(n)

Solution: x(n) and h(n) are causal and hence the range of convolution sum is 0 <
k <n.

x(n) = d"u(n)

x(k) = du(k)

h(n) = b"u(n)
h(n—k) = b"*u(n — k)

y(n) =" x(k)h(n — k)

k=0

i . a k
=03 (3)
k=0
0= )
1-9%

[Using Finite Summation Formula]

=b

(bn-H _ an+1)
y(n) = W”(”)

B Example 3.46

x(n) = (é) u(n)

h(n) = 3"u(n)

Find
y(m) = x(n) * h(n)

Solution:

x(n) = (é) u(n)
1\
x(k) = <§> u(k)
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h(n) = 3"u(n)
h(n —k) = 3" *u(n — k)

For causal x(n) * h(n)

y(n) = x(k)h(n — k)

k=0
n k
-3 (3)
k=0

n 1 k
£
= 15

Using finite summation formula, we get

[l — 5]
y(n) =3"——=
(1-%)
B 3,1[15"+1 —-1] 15
N (14) 157!

y(n) = (15" — 1u(n)

14(5)"

B Example 3.47

x(n) = (0.6)"u(n)
h(n) = (0.2)"u(n)

Find
y(n) = x(n) * h(n)

Solution:

x(n) = (0.6)"u(n)

x(n — k) = (0.6)" *u(n — k)
h(n) = (0.2)"u(n)
h(k) = (0.2)%u(k)
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Both x(n) and h(n) are causal signals. Hence, the summation of convolution is 0 <
k < n. In this problem, we use commutative property of convolution.

x(n) * h(n) = h(k) * x(n)

y(n) =" h(k)x(n — k)
k=0

- Z(o.z)k((m)"—k
k=0

= ) 1 .
k=0

Using finite summation formula, we get

[1 - 5]
yn) = (0.6)"t—F
(1-3)
W3 -1] 3
¥ = 06"

y(n) = 0.5(0.2)"[3"" — 1]u(n) \

B Example 3.48

Two discrete time systems with impulse responses % (n) and h,(n) are connected in
cascade as shown in Fig.3.37. Determine the unit sample response of the intercon-
nected system.

Solution:
y(m) = x(n) * h(n)

where
h(n) = hi(n) x hy(n)

x(n) y(n)

hl(n):(%)nu(n) » hz(n):(%)nu(n)

System 1 System 2

Fig. 3.37 Impulse response of two systems connected in cascade
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For a sample

x(n) = 8(n)
x(n) * h(n) = §(n) * h(n)
= h(n)

= hi(n) * ha(n)
Therefore,

y(n) = hi(n) * hy(n)

1 k
hy(k) = <§) u(k)

B Example 3.49

Determine the convolution of the signals

x(n) = cosmwnu(n)

1 n
h(n) = (5) u(n)

(Anna University, May, 2007)
Solution:

x(n) = coswnu(n)
= (=D"u(n)
x(k) = (=D u(k)
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] n
h(n) = (z) u(n)

1 n—k
h(in —k) = <§> u(n — k)

Both x(n) and h(n) are casual. Hence, the convolution sum takes the range of 0 <
k <n.

y) =Y x(k)h(n — k)
k=0

. 1

()

203

1 n n ‘

=< ) Z[( Q)]

e

l) — (- 2)n+1]
[1—(=2)]

n—k

2

(_) [ ( 2)I1+1]

1 n
<§> [1 4 2(=2)"Ju(n)

W= /N

y(n) =

W =

B Example 3.50

x(n) = (0.2)"u(n)
h(n) = (0.2) "u(—n)

Find
y(m) = x(n) * h(n)

Solution: The signal x(n) is a casual signal and i(n) is an anti-causal signal. x(k)
is shown in Fig. 3.38a and & (k) is shown in Fig. 3.38b, respectively. h(—k) is shown
in Fig.3.38c and h(n — k) shifted to the extreme left for n < 0 and to the right for
n > 0. They are shown in Fig.3.38d and e, respectively.



360 3 Time Domain Analysis of Continuous and Discrete Time Systems

(@ 4 x(k) (b) h(k)
1 1
012345 k K 3210 k
(c) 4 h(=k) (d h(n—k)
1
}1 n<0
01234 k “k n 3-2-10 k
(e) 4 h(n—k) () y(n)
1
{ n>0 { {
T | R RN A P
on k -n  4-32-101234 n

Fig. 3.38 Convolution of casual and anti-causal signals

y(n) = x(n) x h(n)

o]

= > x(k)h(n— k)

k=—00

= Z 0.2 uk)(0.2)" " Pu(—(n — k))

k=—00

=(02)"" Z 0.2)* u(k)uk — n)

k=—00

When h(n — k) is moved toward the right, it overlaps with x(k) for n < 0 and for
n>0.Forn<0
1 k>0

Dulk —n) =
u(kyu( n) 0  otherwise
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Now the limits of summation of y(n) is 0 < k < oo. Therefore,

ym) = (0.2)™" Y 1021
k=0
—n 1
=02 [1 = (0.2)2]
y(n) = 0.2 n<0
0.96

Forn > 0
1 fork>n

0  otherwise

u(k)utk —n) = [

The limits of the summation of y(n) isn < k < 00

o0

y(n) = Z(o.z)ku(k)(0.2)*<"*k>u(—n +k)
k=n

= (027" 102’1

k=n

Using the finite summation formula

>a= g
l1—a
k=n
we get
B (0‘2)2n
=02)7"| ———
y(n) = (0.2) [ 00
2)"
= ©-2) n>0.
0.96
In general
0.2)M!
y(n) = (0.9)6 for all n

The response y(n) is plotted and is shown in Fig. 3.38f.
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. HM

lx%(zo" O Q)

< ! . » hd
—k —6-5-4-3-2— 1012 k —k 0‘1234567 k
C
© 4 h(n—k)
. r”%’ X
k L k

Fig. 3.39 Representation of signals for Example 3.51

B Example 3.51

Find
y(m) = x(n) * h(n)

Solution: Figure 3.39a, b and ¢ show x(k), h(k) and h(n — k), respectively.

n—4

() = x(n) % h(n) = Y x(K)h(n — k)

k=—6

From Fig. 3.39a, the following equation is written.

< —6
(1) k=-6

From Fig. 3.39b, the following equation is written.

x(k) =
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0 n—k)<dork>n—4

hin — k) = (é)k (n—k)>4ork<n—4

When h(n — k) is moved toward the right, h(n — k) overlaps with x(k) atn > —2

0 n< -2
)’(n) = n=4 n—
T ez

using the following summation formula

k a
Z() P

we get

|
-]
<

B Example 3.52

A linear time invariant discrete time system has the following impulse response.

1 n
h(n) = (§> u(n)

The system is excited by the signal x(n)=u(n) determine the output of the system at
n=-6,n==6andn = 12.

Solution: x(k), h(k) and h(n — k) are shown in Fig.3.40a, b and c, respectively. At
n = —6, h(n — k) < 0 and it does not overlap with x(k) and hence y(n) = 0. For
n > 0, the following equation is written:
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Fig. 3.40 Representation of (@) 4 x(b) (b) 4 h(k)
signals for Example 3.51 \ ‘ w 1
; { AV
00123 o' 1234 k

S
ko 4

y(n) = x(n) * h(n)

=Y x(mh(k)

k=0

_ Z (l)”"
= (1 Z(z)k

)
_( ) 1(1 —22+>l
-(3)

N |

1
2
! Q" = Du(n)
2

Substituting n = 6

1\°
y(6)=<§) [2" —1]

127
6
y(6) = 7
Substituting n = 12
1 12
y(12)=<—> 2% -1
2
8191
12) = —
Y(12) = 7596
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Fig. 3.41 Signals of (a) 4 x(k) (b) 4 h(k)
Example 3.53 ‘
012 3 E 012 3 4 5 i
(©) ‘h(nk)
% -4 0 %

B Example 3.53

x(n) = u(n)
h(n) = un —4)

Find
y(n) = x(n) * h(n)

Solution: The signals x(k), h(k) and h(n — k) are shown in Fig.3.41a, b and c,
respectively. Figure 3.41c is moved toward right so that it overlaps with x(k). Over-
lapping occurs for n — 4 < k < oco. Therefore, the limit of convolution sumis k = 0
tok=m—4)

n—4

Y =Y x(kh(n—k) n>4

k=0

n—4
=Zl=(n—3)

k=0

Y =m-3)| nz4
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B Example 3.54

A linear time invariant system has the following impulse response:
h(n) = [u(n) — u(n — 6)]
The system is excited by
x(n) =[u(n—1) —uln —95)]

Determine the output of the system.

(@) 4 x(k) () 4 h(k)
1 1
0 1 2 3 4 ]i lo 1 2 3 4 5 i
©) h(n—k)
1
‘ n<0
% 5 4 3 2 1 0
f ?
n=>5 n
() h(n—k)

1

1<n<4
2 2 2 o > 3 4k
n-5 2
(e) h(n—k)
1 .
4<n<6
OT 1 2 3 4 5 6 7 8 «k
n-5 Z

Fig. 3.42 Convolution sum for Example 3.54. Response plot of Example 3.52
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() 4 h(n—k)
1
6<n<9
0 t 4 7 T 9 %
n-5 n
(2 4 h(n—k)
1
n>9
0 t s o f 3
n-5 n
(h) 4 y(n)
4 4
3
2 2
1 1
X Lo |
0 2 31 4 5 8 9 10 n

Fig. 3.42 (continued)

Solution:
Method 1

1. x(k), h(k) and h(n — k) are represented in Fig.3.42a, b and c, respectively. For
n = 0, there is no overlapping and hence y(n) = 0.

2. Overlapping interval 1:

h(n — k) when moved toward right overlaps with x(k) when the leading edge
(rightedge) of h(n — k) crosses past the left edge x(k). This happens whenn > 1.
This overlapping does not change until n < 4. Hence, the overlapping interval
18 1 < n < 4 The summation interval is fromk = 1to k = n.

yimy=y"1
k=1

The finite summation formula used is

N>

Zl:Ng—Nl—i—l

k=N,



368

3 Time Domain Analysis of Continuous and Discrete Time Systems

Therefore,
yim)=n—14+1=n 1<n<ds

This is shown in Fig.3.42d.

. Overlapping interval 2:

For n > 4, the right edge of h(n — k) crosses past the right edge of x(k). This
change of overlapping occurs during the time interval 4 < n < 6. The output
during this interval is y; (n)
4
nm =Y 1 4<n<6
k=1

=4-1+1
=4

This is shown in Fig. 3.42e.

. Overlapping interval 3:

When the left edge of h(n — k) crosses past the left edge of x(k), there is overlap-
ping and it continues untiln = 4. The overlapping interval is therefore 6 < n < 9.
The output is y3(n). The limits of summation 1is from
k=n—-5tok=4

4
=Y 1

k=n—5
=—-n+54+4+1
=10—-n 6<n<9

This is shown in Fig. 3.42f.

. For n > 9, there is no overlapping and hence y(n) = 0. This is shown in

Fig.3.42g. Hence, the output response y;(n), y>(n) and y3(n) are summed up
with their respective time interval to get the total response y(n).

y(n) =n l<n<4
y(n) =4 4<n<6
yn)=10—-n 6<n<9

The values of y(n) for 1 <n < 10 is shown in the following table. y(n) =
{0,1,2,3,4,4,4,3,2, 1}

y(n) 0 1 2 3 4| 4| 4| 3 2 1
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7. The plot of y(n) with respect to n is shown in Fig. 3.42h.

8. To check the width property of convolution. The width property can be easily
checked. The number of elements of i(n) is T} = 4. The number of elements of
h(n)is T, = 6. The width propertyof y(n) isT =T+ T, —1=6+4—-1=0.
From Fig. 3.42h, it is seen that y(n) has 9 elements.

Method 2
1. x(k) and h(k) can be expressed by the following sequences

x(n)y=n—1)+n—-2)+6n—3)+5(n—4)
hin)=m)+5(n—1)+8n—2)+6n—3)+8n—4)+s(n—1>5)

y(n) = h(n) * x(n)
=hm)*[n—1D+8n—2)+6(n—3)+8(n—4)]
= h(n) % 8(n — 1) + h(n) % 8(n — 2) + h(n) % 8(n — 3) + h(n) * 8(n — 4)
= y1(n) + y2(n) + y3(n) + y4(n)

where

yi(n) = h(n) x8(n—1)
y2(n) = h(n) x8(n — 2)
y3(n) = h(n) x§(n —3)
ya(n) = h(n) x§(n —4)

By using the property h(n) x §(n — 1) = h(n — 1), we get

yin)=8n—1)+én—-2)+8n—-3)+(mn—4)+3(n—5)+3(n—06)
y2(n) = h(n) x §(n — 2)

(=2 481 —3) 4+ 8 —4) +5(—5)+8(n—6)+8n—"T)
y3(n) = h(n) xé(n — 3)

— 3 —3) 48— +8(n—5)+5(n—6)+8(n—T)+8n—8)
ya(n) = 8(n—4) +8(n—5)+8(n—6) +8(n—T) +8(n — 8) + 8(n — 9)
y(n) = y1(n) + y2(n) + y3(n) + ya(n)

yn)=n—1)+25(n—2)4+36(n—3)+45(n—4) +46(n —95)
+45(n —6)+36(n—6)+25(n—7) +5(n—9)
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@) 4 x(k)=ulk)—u(k—4) (®) 4 h(k)=d*

©
h(n—k)=a"»

'T[{ .

—k n 0 k

Fig. 3.43 Representation of signals for Example 3.53

[y =1{0,1,2,3,4,4,4,3,2, 1|

The same result is analytically obtained in a simpler way as illustrated above.

B Example 3.55

x(n) = uln) —un—4)

h(n) =d'u(n) O0<a<l

Find
y(n) = x(n) * h(n)

Solution:

1. Time interval 0 < n < 3:
x(k) = u(k) — u(k —4) is shown in Fig. 3.43a. h(k) is represented in Fig. 3.43b
and A(n — k) is shown in Fig. 3.43c.

2. Overlapping between x(k) and h(n — k) does not occur for k < 0 or n < 0.
Therefore y(n) = 0 forn < 0.

3. When h(n — k) is moved toward right, the right edge of h(n — k) overlaps with
the left edge of x(k). The overlapping occurs for the time interval 0 < n < 3.
The summation of limits are therefore from O to n. Therefore,
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y(n) = Za"‘kl
k=0

n 1 k
:an —_
>(z)
1=z
a-1h
@+ — 1)
CED

_ (1 _ anJrl) 0 3

4. Time interval n > 3:

When h(n — k) moves further toward the right for n > 3, the overlapping con-
tinues and the limit of the convolution sumis 0 <k <3

3

y) =Y x(k)h(n — k)

k=0

B Example 3.56

x(n) = [u(n) —u(n — 6)]
h(n) = d"[u(n) —u(n —3)] where 0 <a <1

Find (Fig.3.44)
y(n) = x(n) * h(n)
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(a) 4 x(k)=u(k)—u(k—6) (b) u(k)—u(k=3)
1 1
0 1 2 3 4 5k lo 1 2 %
(© 4 h(ky=a"{u(k)—u(k=3)] (Y] h(n—k)
1
0 1 2 ; -k (n-2) n i

Fig. 3.44 Representation of signals for Example 3.56

Solution:

1. Forn < 0, h(n — k) and x(k) do not overlap. Hence,
y(n) =0forn <0

2. When h(n — k) is moved toward right h(n — k) overlaps with x(k) for the time
interval 0 < n < 2. Here, the limits of the convolution sumis 0 <k <5

1 0<k<5
x(k) = -7
0 otherwise

a™h p<n

0 otherwise

h(n—k):{

y(n):Za"—k 0<n<?2

(1 _ an-H)

y(n) = -
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3. For n > 2, the left edge of h(n — k) slides over the left edge of x(k). But the
right edge of h(n — k) is within the right edge of x(k). For this the time duration
is 2 < n < 5. Here, the limit of the convolution sumis (n —2) <k <n

yhy= Y at

k=n—2

Putp=k—n+2

p=0
2 1 P
~[£0
:aZ[l_“%]

(1-a
(I-a

y(n) = 2<n<S5

4. For n > 5, the right edge of h(n — k) slides past the right edge of x(k). The left
edge of h(n — k) is within the right edge of x(k) if n < 7. Hence, the time interval
is 5 < n < 7. The limits of the convolution sumis (n —2) < k < 5.

y(n):Za”’k 5<n<7

k=n—2

using the following summation formula
at —a"
( ) =

we get
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o[- ()]
(:-1)
Lt () - ()]

(I-a
B an75 [1 _ a87n]

(I—a)

5<n<7

5. Forn > 7, the left edge of h(n — k) leaves the right edge of x(k) and there is no
overlapping between x(k) and h(n — k). Consequently y(n) = 0 forn > 7.

B Example 3.57

The impulse response of a certain LTID system is given by
h(n) =un+1) —un —4)
The system is excited by the following signal.
x(n) =un) —2u(n —2) +un —4)

Analytically derive an expression for y(n) = h(n) % x(n) and plot the same.

Solution:

1. u(n), —2u(n — 2) and u(n — 4) are shown in Fig.3.45a, b and c, respectively.
From these figure x(n) = u(n) — 2u(n — 2) + u(n — 4) is obtained and repre-
sented in Fig.3.45d.

2. h(n) = u(n+ 1) — u(n — 4) is represented in Fig.3.45e. From this figure, we
geth(n) = {1,1,1,1,1}.

T
3.

y(n) = h(n) x x(n)

x(n)=8mn)+n—1)—86(n—2)—86(n—23)

y(n) = h(n) *8(n) + h(n) *§(n — 1) — h(n) * §(n —2) — h(n) * 6(n — 3)
=h(n)+h(n—1) — h(n —2) — h(n — 3)
= y1(n) +y2(n) + y3(n) + y4(n)

where

yim) =h(n)=6n+1)+8n)+d(n—1)+8(n—2)+6(n—23)
yvon)=hn—1)=§m)+én—1)+8n—-2)+8mn—3)+5(n—4)
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@ 1 u) ® 5 5as o n
1 ‘ ‘ ‘ ‘ ‘ o
{ } { e e
ol 1 2 3 n —2u(n—2)
(©) *u(n—4) (d) t x(m)=u(n)—2u(n—2)+u(n—4)

(e) h(n) ) +ym)=hn)*x(n)
2 L]
| L]
{ [ { { . 1 N T 1401 16 n
T o0 1 2 3 » B ‘4

Fig. 3.45 Signal representation of Example 3.57

yy(n) = —h(n—2) = —8(n—1) —8(n—2) —8(n—3) —8(n —4) — 8(n — 5)
ya(n) = —h(n—3) = —8(n—2) —8(n—3) —8(n—4) —8(n—5) — 8(n — 6)

) =8+ 1) +28(n) +8(n—1) —8(n—4) —28(n — 5) — 8(n — 6)

)’(”) = {17 27 ]3 03 03 _15 _2» _]}
T

The output response y(n) is represented in Fig. 3.45f.

B Example 3.58

x(n) =2"u(—n —2)
h(n) = u(n—1)



376 3 Time Domain Analysis of Continuous and Discrete Time Systems

Fig. 3.46 Signal (a) x()=2%(—k=2) (b) +h()=u(k—1)
representation of Example
3.58

[

—|
—* ox"‘
= oo~

&
v
—
T
I
I
[\ EE—,

“x —4-3-2 0 k ol 1 k
(© h(n—k)
“k (n-1) 0 k

Find
y(m) = x(n) * h(n)

by analytical method (Fig. 3.46).

Solution:

x(k)=0 fork > -2

=25 fork < -2
hin—k)=0 fork>n—1
=1 fork<n-—1

1. Time interval —oo < n < —1.
When h(n — k) is moved from extreme left toward right, the right edge of h(n —
k) starts overlapping with the left edge of x(k) during the interval —oco < k <
n — 1. Hence, the summation interval is from —oo to (n — 1).

n—1
y(n) = Z 2 _oo<n<-—1

k=—00

=2n71+2n72+2n73+._.

11 1
ym) =214+ -+ S+ 5+
2 22

23
1
n—1
2

—0o<n<-—1
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2. Time interval n > —1.
For n > —1, the right edge of h(n — k) slides past the right edge of x(k) where
there is transition. The limits of convolution sum is therefore —oco < k < —2.

-2
Yy =Y 2 n>-l

k=—00
> 2

Using the summation formula

n

[ee] 0 a
anm) =3

we get

B Example 3.59

Whatis the response of an LTID system with impulse response h(n) = &(n) + 25(n —
1) for the input x(n) = {1,2,3}?

(Anna University, April, 2005)
Solution:

h(n) = 8(n) +28(n — 1)
x(n) = {1,2,3}
=8(n) +28(n—1)+38(n —2)

The output response y(n) is obtained by the following convolution

h(n) = h(n) * x(n)
= h(n) * 8(n) + h(n) *28(n — 1) + h(n) * 38(n — 2)
= y1(n) + y2(n) + y3(n)
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Fig. 3.47 Response of y(n) 7
Example 3.59 6
4
1
0 1 2 3 n
where

yi(n) = h(n) x 8(n) = h(n)

yo(n) = h(n) x28(n — 1) = 2h(n — 1)

y3(n) = h(n) *38(n — 2) = 3h(n —2)

yi(n) = h(n) =48(n) +28(n—1)

yo(n) =2h(n—1) =28(n—1) +46(n — 2)
y3(n) =3h(n —2) =38(n —2) + 65(n — 3)

yn) =686n)+45(n—1)+76(n —2) + 65(n — 3)

The response is plotted and is shown in Fig.3.47.

B Example 3.60

Find the overall impulse response of the system shown in Fig. 3.48a if

l n
hy(n) = <§> u(n)

1 n
hy(n) = <§> u(n)

1 n
h3(n) = (§> u(n)

(Anna University, April, 2004)

Solution:

1. The block diagram of the system of Example 3.60 is shown in Fig.3.48a. Its
equivalence by block diagram reduction technique is shown in Fig. 3.48b.

2. From Fig. 3.48b, itis seen that the blocks /; and k3 are in cascade and their convo-
lution is A * h3. Similarly, i, (n) and h3(n) are in cascade and their convolution
is hp(n) * h3(n). The block diagram of the above step is shown in Fig. 3.48c.
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(a)

N
x(n) y(n)
—

o hyn) h(n)
(b)

o hn)
x(n)

N
©

» h,(n)sh,(n)

x(n) . , () y(n)

p h,(n)*h,(n)

Fig. 3.48 Block diagram representation and its equivalence Example 3.60. ¢ Block diagram of
Step 2

3. From Fig. 3.48c, the following equations are obtained

y(m) = [ (n) * ha(n) + h1(n) + ha(n) * h3(n)] * x(n)
x(n) =8(n)

Therefore,

y(n) = [h1(n) * h3(n) + hi(n) + ha(n) * h3(n)] * (n)
= hi(n) *x h3(n) + hi(n) + ha(n) * h3(n)
= y1(n) + y2(n) + y3(n)
y1(n) = hy(n) * h3(n)
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Since the impulse response of all the blocks are causal, the limits of convolution
sumis 0 <k <n.

3 50+D)

5 1 n [5n+1 _ 3n+1]
yi(n) = 5 (-) ——  u(n)

1 n
y2(n) =hi(n) = <§) u(n)

v3(n) = hy(n) * h3(n)

5 1 n [5n+1 _ 2n+1]
y3(n) = 3 <§> T”(n)

y(m) = yi(n) + y2(n) + y3(n)

5 1 n [5n+1 _ 3n+1] 1 n 5 1 n [5n+1 _ 2n+1]
o= [ () S0 T e
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3.15.2 Convolution Sum of Two Sequences by
Multiplication Method

Let

x(n) = {x1, x2, x3, x4}

h(n) = {h1, ho, h3}
T

The convolution of these two sequences x(n) * h(n) is obtained as given below

1. Write down x(n) and h(n) one below the other

X1 X2 X3 X4

hy hy h3

2. Carry out the multiplication of the first row by the second row as given below

X Xy X3 X4

h hy hy

hsx, h3xy h})@} hsxa}

hoxy hox, hoxs hoxy
h,x,} hixy hixs hyxy

> h3x3,hoxy-An

> h3xyA )

> hyxpoxsxasAs

> haxy X0, hiX3oAg

> hox xo-As

4>hlxI:A6

3. Arrange the sequences so obtained as given below

y(n) = {Aq, As, Ag, A3, ATz, Ay}

4. Let N; = width of the x(n) sequence to the left and N, = width of the h(n)
sequence to the left.
The width of the output sequence y(n) to the leftis N = N; 4+ N,. In the example
illustrated above N; = 2 and N, = 2.Inthe y(n) sequence, the arrow correspond-
ing to n = 0 is marked such that to the left of the arrow N = N; + N, =4 is
marked which is at A;. From y(n) sequence y(0) = Az; y(1) = Ay; y(—1) = As;
Y(=2) = Ag; y(—=3) = As and y(—4) = As.
The width property can also be easily checked. For x(n) the width T; = 4. For
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h(n),the width 7, = 3. Thewidthofy(n) =T =T+ T, — 1 =4+3—-1=6.

It is to be noted here the above method follows the theory explained in
Example 3.54, Method 2 and also in Example 3.59.

The following examples illustrate the above method.

B Example 3.61

Whatis the response of an LTID system with impulse response h(n) = &(n) + 25(n —
1) for the input x(n) = {1, 2, 3}.

Solution:

h(n) =8(n) +28(n — 1)
=1{1, 2)
T

x(n) = {1, 2, 3}
0

where Ny =0, N =0, N=N; +N, =0andT1 =2, 1, =3, T=3+2—-1=4

12
1 23
36
2 4
12
14 76

y(n) ={1, 4, 7, 6}
)

The same result as in Example 3.59 is obtained.

B Example 3.62
Find the convolution of x(n) = {1,2,3,4,5} with h(n) = {1,2,3,3,2, 1}.

(Anna University, May, 2005)
Solution: When no arrow is marked in x(n) or h(n), the signals are to be taken as
causal and therefore Ny = 0,N; =0and N =N, +N, =0; T, =6, T, =5, T =
6+5—1=10.
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The following multiplication is done.

1 2 3 3 2 1
1 2 3 4 5
5 10 15 15 10 5
4 8 12 12 8 4
36 9 9 3
2 4 6 6 4 2

1 2 3 3 2 1

1 4 10 19 30 36 35 26 14 5

y(n) = {IT’ 4, 10, 19, 30, 36, 35, 26, 14, 5}

B Example 3.63

Find the linear convolution of

x(n) = {IT’ 2,3,4,5, 6}

and

h(n) = {2, —4, 6, —8}
T

(Anna University, April, 2004)
Solution:

1 2 3 4 5 6
2 4 6 -8
-8 —16 —24 -—32 —40 -48
6 12 18 24 30 36
—4 -8 -12 —16 -20 -24
2 4 6 8 10 12
20 4 0 —4 -8 —26 -4 —48

here Ny =0; N, =0and N =0;7T, =6, T, =4and T =6+4—1=09.

yn) =1{2,0, 4,0, -4, =8, —26, —4, —48}
T




384 3 Time Domain Analysis of Continuous and Discrete Time Systems

B Example 3.64

x(n) ={-1/2, T2, 1/3, 3/2}

h(n) ={1, —1/2, %/3}

Find y(n) by convolution method.

Solution: Here Ny = 1; N, =2and Ny + N, =3;T1 =4, T, =3andT =4 +3 —
1=6.

1 1 3
-5 2 3 Z
13
1 _— z
2 3
I 4 2 )
1 13 31 93
1 4 1 36 4
—— 2 = zZ
2 3 2
L.
2 4 3 36

1 9 8 19
=\Y"5 T _19 P 1
yin) { 2 4 3 }

Bl Example 3.65

Find the convolution of the following

x(n) = u(n) —3u(n —2) +2u(n — 4)
h(n) =u(n+1) —u(n — 8)

Solution:

1. x(n) and h(n) are represented in Fig. 3.49a and d, respectively.
From Fig.3.49a, x(n) is written as

x(n)={1,1,-2,-2}y N =0;T,=4
T
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(a) (b)
a A x(n) 1 A .X(l’l)
u(n) 2 2 2 2u(n—4)
« 1|1
1 [ f [ eee
1 ‘2 ‘3‘4 5 " 203 n
-3 =33 31— -2 -2
h(n)
I @
1 ARERRREN
-1/0 1 2 rr: —1 I 2 3 4 5 6 738
-1 -1
—u(n—238)
Fig. 3.49 Representation of x(n) and A (n) of Example 3.65
From Fig.3.49d, h(n) is written as
hn)y={1,1,1,1,1, 1,1, 1,1} N, =1;,T, =9
T
2. The following multiplication is carried out:
1 1 1 1 1 1 1 1 1
1 1 -2 =2
-2 -2 -2 -2 =2 =2 =2 =2 =2
-2 -2 -2 -2 =2 =2 =2 =2 =2
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 2 0 -2 -2 -2 -2 =2 =2 -3 -4 =2

N=N+N,=04+1=1andT=T1+T,—1=44+9—-1=12.

yn) ={1,2,0,-2,-2,-2,-2,-2,-2,-3,—-4, -2}
T

385
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3.15.3 Convolution Sum by Tabulation Method

The convolution sum of two sequences x(n) and h(n) to obtain y(n) by tabulation
method is explained below

1. Let
x(n) = {x1,x2, ..., X))}
h(n) = {hi,ho, ..., hy}
Mark xi,x,,...,x, in columns and &, (n), hy(n), ..., h(n) in rows.

2. The h; row is completed by multiplying the corresponding column. Thus when
h; row crosses with x; column, the product becomes x;/;. Similarly, when A
row crosses with x, column, the product becomes /;x;. Thus, all the elements
rowwise are determined and tabulated.

3. Draw the diagonal dotted lines as shown in Table 3.2.

4. By adding the elements in a particular diagonal gives y(n).

5. The value of N and T of the sequence y(n) are determined as explained in the
previous examples.

From Table 3.2, y(n) is obtained and is given below.

From diagonal 1,  y(0) = xh
From diagonal 2,  y(1) = x1hy + x2h
From diagonal 3,  y(2) = x1h3 + x2hy + x3h

From diagonal 4,  y(3) = x1ha + x2h3 + x3hp + x4l

From diagonal 5,  y(4) = x1hs + xp2h4 + x3h3 + X455 + Xx5h)
From diagonal 6,  y(5) = x2hs + x3h4 + x4h3 + x5h>

From diagonal 7,  y(6) = x3hs + x4h4 + x5h3

From diagonal 8,  y(7) = x4hs + x5hy

From diagonal 9,  y(8) = xshs

y(n) = {y(0), y(1), ¥(2), y(3), y4), y(5), y(6), y(7), y(8)}

From the y(n), the width property T = T + T, can be easily checked. The arrow
1 corresponding to n = 0 is decided by N, and N,. The following examples
illustrate the above method.
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Table 3.2 Tabulation method of convolution

¥(0) (1) ¥(2) ¥(3) y(4)
B e e Y e e
7 7/ 7
// // 7/ //
h, x, h, L7 x, h, L x; by 7 x, h, L xs b,
v 7/ 7
e /// /// /// ///
diagonal I —p» 7 e L 7 L +— y(5)
7/
s’ // , /// ///
h2 xl h // 'xl h2 // x’% h2 7 x4 h2 ’ xS hZ
Vi // // // //
7
/7 /// /// /// /7
. 7/
diagonal 2 —» // L e /,’ L «— y(6)
, e , , e
7
h3 o hz ’ % h3 B3 hz y X4 hz X hs d
/ 4 s 4 ’
s e / e ’
d ’ s , ’
diagonal 3 ‘ / ‘ ‘ a
iagonal 3 —» / - 0 e L «— ¥(7)
h V' x h 7 x h S x. h 7 x, h ’/xh q
4 174 , 274 3774 , 474 54 7
’ // 7 7 /
// 4 // // 4
Ve 7
. e 7 e e L
diagonal 4 —> - L L e v — y(8)
7 , /
4 7/ 7 s’ 7/
h, x, h, / x, h, X hy |7 x, by /7 x by
7 7 /7 /
// // // //
diagonal 5 —p ’ ‘ ’
diagonal 6—T diagonal 7—T diagonal 8—‘r diagonal 9 )

B Example 3.66

x(n) = {1,2,3,4,5}
h(n) ={1,2,3,3,2, 1}

Find
y(n) = x(n) * h(n)

(Anna University, April, 2005)
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Solution:
x(n) —»

y(0)=1 y(H=4 y2)=10 y(3)=19 y#)=30
1 2 3 4 5

7 o 7 .7 7
/ 4 ’ ’ s
I 1X1, 1x2,7 1X3 7 1X4 ,7 1X5 .7
L L,/ L,/ e s y(5)=36
, / / s e
/ ’ ’
/ ’ s ’ 7
/ s s / 4 /]
/ ’ s 4 i ,
’ / / 7 , ,
/// /// 7 7 “
’ e —
2| ax1 7 axa 2x3,0 axa S axs |YOTH
// // // /, //
y ’ s , s
, s 7 ’ 7 e
// // // // // /,
/ 4 / Y
’ s z 4 ’
’ 4 s 4 s (7):26
o 3| 3x1,” 3x2” 3x3 7 ax4 35 Y
l // // // // ///
7 7/ 7 // , //
// // // , // P
. /// // /// // /// (8) 14
7/ Vi =
3| 3x17 3x2. 3x3 7 3x4 " 3x5,/ y
s 2
/// /// // // /// 7
, , // // // //
// // / / s’ Z
, s // 7/ /7
’ . . . . 9)=5
2| 2X1.7 2X2,7 2X3 7 2X4, 2X5, ¥
4 // // // //
// // // // //
L7 s ’ , ’ 7
’ i /7 ’ 7 7
’ %z
1f 1x1 .7 1xX2 7 1X3 7 1x4 7 1X5 7
4 7 e 7 Y2
et /7 e e L
// // // // V2
7 4 7/ 4 //
s 4 7 4 7
/ 4 / 4 Ve

y(n) I &l,4,10,19,30,36, 35,26, 14, 5¢

Since Ny =0 and N, =0, N = N| + N, = 0. Therefore, the first diagonal corre-
sponds to y(0). Further, x(n) has 71 = 5 and h(n) has T, = 6. Hence y(n) has a
widthof T =T+ T, — 1 =546 — 1 = 10. Thus, y(n) starts with y(0) and goes
up to y(9). They are calculated from the respective diagonal.

y0)=1x1=1

y1)=2x14+1x2=4
y2)=3x14+2x24+1x3=10
yB)=3x14+3x24+2x3+1x4=19

y4) =2x14+3%x24+3x34+2x4+1x5=30
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yO) =1x14+2x2+3x34+3x44+2x5=36
y6) =1x24+2x3+3x44+3x5=35
y(7) =1x34+2x4+3x5=26
y@8) =1x44+2x5=14
y@9) =1x5=5
y(n) = {1,4,10, 19, 30, 36, 35, 26, 14, 5}
B Example 3.67
Find the linear convolution of
x(n) =1{1,2, 3,4}
T
h(n) = {29 _47 6, _8}
T
Plot the response y(n).
Solution:
x(n) —
¥(=5)=2 y(=4=0 y(=3)=4 y(=2)=0
I |2 |3 14
7 7 7
// // //
2x1,/ »x2, 7 2x3 0 ax4 S
//// /// /// /// 4—}7(_1):_14
—4| —4x1.”  —4x2,”  —4x3 . -4x4,
h(n) «— y(0)=0
6| 6x1 6x2,/” 6x3 6x4.
// // // //
/// /// /// /// <—)/(1):_32
‘ /// //// ///
-8 —8x1 7 —8x2 .. —-8x3, —8x4,”
/// /// /// ///
// // // //

The tabulation of x(n) and h(n) is shown above. T} = 4 and T, = 4 and hence
T=T+T,—1=4+4—1="7.There should be 7 diagonals in the table. N; = 2
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Fig. 3.50 Response plot of ty(n)
Example 3.67

-32

and N, = 3 and therefore N = N| + N, = 2 + 3 = 5. There should be five elements
to the left of y(0) out of the total of seven. Therefore, the first diagonal corresponds
to y(—5) and the last diagonal corresponds to y(1). They are calculated as follows:

V(=5 =2x1=2
y(—4) =—-4x14+2x2=0
y(=3)=6x1—-4x2+2x3=4
V(=2)=-8x14+6x2—-4x3+2x4=0
y(=1)=—-8x2+6x3—-4x4=—-14
y(0) = —-8x34+6x4=0
y(1) = -8 x4=-32

y(n) ={2,0,4,0,—14, OT, —32}

y(n) is plotted as shown in Fig.3.50.

3.15.4 Convolution Sum of Two Sequences by Matrix Method

By this method, the data sequences are represented as a matrix. Let 7'} be the length of
the signal x(n) and T, be the length of 4(n). The X matrix is formed with a dimension
of (Ty + T, — 1) x T, and a H matrix is formed with a dimension of 7, x 1. The Y
matrix is obtained as

Y =XH

The output response y(n) is obtained by putting the arrow mark (1) in the appropriate
place by determining the range of N as explained in previous cases.
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The formation of X matrix is as follows. The first column of X is formed from
the sequence of x(n). The other elements of X are formed as explained below. H
is a column matrix which is nothing but the transpose of /(n). Consider x(n) =
{x1,x2,%3, x4} and h(n) = {h1, hy, h3}

xlOOO h1
X2 X1 00
X3XZX10 ]’lz
X = | x4 x3 X2 X1 ; H=
O)C4X3)C2 /’l3
0 O)C4X3
000ux/,, 0/ 4

The elements of the matrix X are completed by diagonalizing with x|, then x;, x3, x4
and so on. The Y matrix is obtained by multiplying the matrices X and H. To satisfy
the multiplication property of matrix, the last row of H is put as 0.

Y =XH
_xl 00 O_ _hl_
X2 X1 00
X3 X2 X1 0 h2
Y = | x4 x3 X0 X1
0 X4 X3 X2 /’l3
00 X4 X3
[000x]|0]
¥(0) x1hy
y(1) Xohi + x1ho
v — | Y| _ | wmh+xeh +xihs
y(3) X4hy + x3h + xoh3
y4) Xahy + x3h3
| y(5) Xgh3

The following examples illustrate the above method.

B Example 3.68

x(n) ={1,2,3,4,5, 6}
h(n) = {2, —4, 6, =8}

Find
y(n) = x(n) * h(n)
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by matrix method.

Solution:

100000 2
210000
321000 —4
432100
543210 6
X=1654321 ; H=
065432 -8
006543
000654 0
000065

000006/, 0/ 6x1

Y =XH

[1x2=2

2x2—-1%x4=0
3x2—-2x44+1x6=4

4x2—-3x44+2x6—-8=0

Y=|5x2—-4x44+3x6—-2x8=—4
6x2—-5x44+4x6—-3x8=-8
—6x4+5x6—4x8=-26
6x6—-—5x8=—-4

| —6 x8=—48

For x(n), N; = 0 and for h(n), N, = 0. For y(n), N = 0 therefore in the above matrix,
the first row corresponds to y(0).

y(n) =1{2,0, 4, 0, —4, —8, —26, —4, —48}
PN=0

B Example 3.69

Find the convolution sum for the following sequences
x(n)={1, 1,0, 1, 1}
T

h(n) = {1, =2, =3, 4}
T
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Solution:

10000
11000
01100
10110
11011
01101
00110
00011
00001

9%x5

5x1

< N=4-3

3.16 Convolution Sum by Graphical Method
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The procedure for the determination of convolution sum by graphical method is
similar to the convolution integral of continuous time system. The following steps

are followed.

1. Representx(n) versus nin a graph. Replace n by k and x (k) versus k is represented

in a graph. One can straightaway plot x (k) versus k.
2. Similar to Step 1, plot i(k) versus k.
3. By folding A(k), obtain h(—k).
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4.
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By adding “n” to h(—k), obtain h(n — k). Shift h(n — k) to the extreme left. Start
moving h(n — k) toward the right so that x(k) and h(n — k) overlap each other. It
is to be noted that x(k) should be kept fixed and /(n — k) alone should be moved
by one sample at an instant. Calculate y(n) at that instant.

. The procedure is repeated at other instants and at each time y(n) is calculated.

When there is no overlapping, the movement of h(n — k) is stopped and here
y(n) = 0.

The following examples illustrate this graphical procedure.

B Example 3.70

Compute the convolution of the two sequences x(n) and A(n) shown in Fig.3.51a
and b, respectively, and plot y(n) versus n. Use graphical method.

(Anna University, December, 2006)

Solution:

1.
2.

10.

Figure 3.51a shows the sequence of x(n) and Fig. 3.51b the sequence of h(n)
n is replaced by k and x(k) and h(k) are represented in Fig.3.51c and d, respec-
tively.

. h(—k) is obtained from h(k) by folding and is shown in Fig.3.51e.
. nis added in h(—k) and h(n — k) is obtained. A(n — k) is moved to the extreme

left so that there is no overlapping between x(k) and h(n — k) initially. This is
shown in Fig.3.51f.

. x(k) is fixed and h(n — k) is moved toward right so that it overlaps with x (k). At

n = —1, the first overlapping occurs and y(—1) = 1 x 2 = 2. This is shown in
Fig.3.51c and g.

. When h(n — k) is moved toward right by one more sample (now n = 0), the plot

of x(k) and h(n — k) is shown in Fig.3.5lThand y(n) =1 x 1 +2 x 2 = 5.

. Forn = 1, the plot of x(k) and h(n — k) is shown in Fig. 3.511 and the overlapping

is shown in dotted line. y(1) = 1 x 2 = 2.

. For n = 2, the plot of x(k) and h(n — k) is shown in Fig.3.51j. Here, there is no

overlapping. Hence y(2) = 0.

. Ny =2 and N, = 0. Therefore, N = N; + N, =2, T) = 3 and T, = 3. There-

foreT=T+T,—1=5

«~—T=5—
y(n) =10, 2, 5, 2, 0}
V=2

The plot of y(n) is shown in Fig.3.51k.
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B Example 3.71

Find the linear convolution of

x(n) = {1, 2,3,4,5)
h(n) = {1, 2, 3,3, 2, 1}

Use graphical methods.
(Anna University, December, 2007)
(@) 4 x(n) (®) h(n)
2 2
1 1
-2 -1 0 ; 0 2 ;1
(© 4 x(k) (d) h(k)
2 2
1 1
-2 -1 0 Ii 0 2 7{ 1
(e h(=k) () h(n—k)
2 2
1 1
- 10 n-2) (n-1) 0ok
(€ h(-1-k)
2
1
-3 -2 0 i

Fig. 3.51 Signal representation of Example 3.57
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(h) 4 x(k) () x(k)
2 2
1 1
-2 1-10 k -2 1-10 ¥
| | |
R L 1
|
I I |
i | ! h(1—k)
} 2 I
| Lo
\1 n=0 }
¥(0)=5 |
1 n=1
» 1)=2
2 -1 0 k ‘ Y
0 k
(]) 4 x(k) (k) 4 y(n)
2
1 5
k 2 2
X h2—k) [ [
2 —n —1 0 1 =n
n=2
1 no overlapping
0 1 k

Fig. 3.51 (continued)

Solution:

1. x(k) is shown in Fig.3.52a and h(k) is shown in Fig.3.52b. h(n — k) is shown
in Fig.3.52c. h(n — k) is moved toward right so that it overlaps with x(k). This
happens at n = 0. The sample with strength 1 in x(k) and the sample A (k) with
strength 1 at n = 0 overlap as in Fig. 3.52d. The product of these two samples is
y0O)=1x1=1.
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2.

10.

11.

12.

h(n — k) is moved further toward right by one more sample n = 1. Now this is
shown in Fig.3.52e. The product of the overlapping samples for n = 1 is shown
by dotted lines) y(1) =1 x2+2 x 1 =4.

. Forn = 2, x(k) and h(n — k) are shown in Fig. 3.52f. 3 samples in each of x(k)

and h(n — k) overlap. Hence, y(2) =1 x34+2x2+3 x 1 =10.

. For n =3, x(k) and h(n — k) are shown in Fig.3.52g. Here 4 samples overlap.

Hence,y(3) =1 x34+2x3+3x2+4x1=19.

. For n =4, x(k) and h(n — k) are shown in Fig.3.52h y(4) =1 x2+2 x 3 +

3x3+4x2+5x1=30.

. For n =5, x(k) and h(n — k) are shown in Fig.3.52i. Here 5 samples overlap.

yO)=1x14+2x243x34+4x3+5x2=236.

. For n = 6, x(k) and h(n — k) are shown in Fig.3.52j. Here 4 samples overlap.

y06) =2x14+3x2+4%x34+5x3=35.

. Forn =7, x(k) and h(n — k) are shown in Fig.3.52k. Here 3 samples overlap.

Hence, y(7) =3 x14+4x2+4+5x 3 =26.

. For n = 8, x(k) and h(n — k) are shown in Fig.3.52l. Here 2 samples overlap.

Hence, y(8) =4 x 14+5x2=14.

Forn = 9,x(k) and h(n — k) are shown in Fig. 3.52m. Here one sample overlaps.
y9) =5x1=5.

For n = 10, x(k) and h(n — k) does not overlap with any of the samples of x (k).
Hence, y(10) = 0.

For x(n), N; = 0 and for h(n), N, = 0. Hence, N = N; + N, = 0.Forx(n),T| =
5 and for h(n), T, = 6. Hence, widthof y(n) =T+ T, — 1 =5+6 — 1 = 10.

y(n) = {1, 4, 10, 19, 30, 36, 35, 26, 14, 5}
T

B Example 3.72

x(n) =2u(n+2) —2u(n) — 3u(n — 1) + 3u(n — 3)
h(n) = —u(n+ 1) +3u(n) — Su(n — 1) + 3u(n — 2)

Find

y(n) = x(n) * h(n)

by graphical convolution.

Solution:

1.

x(n) =2u(n +2) —2u(n) —3u(n — 1) + 3u(n — 3)
=1{2, 2,0, -3, -3}
T
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Fig.
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This is represented in Fig. 3.53(a) with n replaced by k.
h(n) = —u(n+ 1) + 3u(n) — Su(n — 1) + 3u(n — 2)

={-1,2, -3}
T

This is represented in Fig. 3.53b with n replaced by k.

. h(n — k) is created and put to the extreme left and is shown in Fig. 3.53c.
. h(n — k) is moved toward right sample by sample. The first overlapping between

x(k) and h(n — k) occurs when n = —3 which is shown in Fig. 3.53d. The dotted
line shows the overlapping with x(k). Atn = —3, y(—3) is obtained as y(—3) =
2 x (—1)=-2.

. Forn = —2,x(k) and h(—2 — k) are shown in Fig. 3.53e. The overlaps are shown

by dotted lines.
y(=2)=2x(-1)+2x2=2

. Forn = —1,x(k) and h(—1 — k) are shown in Fig. 3.53f. The overlaps are shown

in dotted lines. y(—1) =2 x (=3)+2 x 2 = 2.

. For n =0, x(k) and h(—k) are shown in Fig.3.53g. The overlaps are shown in

dotted lines. y(0) =2 x (-3)+0+ (3 x 1) = —3.

. Forn =1, x(k) and h(1 — k) are shown in Fig.3.53h. The overlaps are shown

in dotted lines. y(1) = (=3 x 2) + (-3 x —1) = —3.

@ 400 s (b))

A~

=V

=)
NF——eow
WH——e W
B e NS
N f—e —

=v

(c) 4 h(n—k)

Sl

(n=5)

=V

3.52 Convolution of Example 3.71
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A x(k)

(e)

4 x(k)

3.16 Convolution Sum by Graphical Method

(d)

A;. A2
—
A2 X =)
N
g i
<t on
X (NS A%
— - NS
[Sa} F I A v <t
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< <t @ -—
-~ |
N ~ —
— — ] N
IIIIIIIIIIIIIIIIIIII -—] Ne———— L
(==} [\l
|||||| < o = ~Ne— T e ]
= g}
7 Clp .
= — ~ o
T e 5 me——]
— _
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= Ne——— &0 = o—
_ N —
o—— <
— |
A
A2
<t
v < y
(e}
- te————— N
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N - N
& nNe——— e -
— | —
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g —— e
< = =
< I Py
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n ne—
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- Q
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h N o——
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I Il
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e () S
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3

2

1
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Fig. 3.52 (continued)
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Fig. 3.52 (continued)
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(m) x(k) 45 (m)  x(k)

0 | k
|
|
hO—k) | n=9 h(10—k) n=10
| ¥(9)=5X1=5 no overlapping
Il 33 33
P2 2 2 2
it i
r . 1 r .,
0123456789 & 012345678910 %

Fig. 3.52 (continued)

8. Forn =2, x(k) and h(2 — k) are shown in Fig. 3.53i. The overlaps are shown in
dotted lines. y(2) = (=3 x —=3) + (=3 x 2) = 3.
9. For n = 3, x(k) and h(3 — k) are shown in Fig. 3.53]. The overlapping is shown
in dotted line. y(3) = (=3 x —3) = 9.
10. For n = 4, x(k) and h(4 — k) are shown in Fig. 3.53k. There is no overlapping
and y(3) = 0.
11. Forthe givenx(n), Ny = 2 and for h(n), N, = 1.Hencefory(n), N =N, + N, =
2 + 1 = 3. The width of x(n) is T} = 5 and that of h(n) is T, = 3. Hence, the
widthof y(n) isT =T+ T, —1=54+3-1=7.

12.
ym) ={-2, 2, =2, -3, =3, 3, 9}
<~ N=3—-> 1
n=0
< —— T =7 N

B Example 3.73

Find the convolution of x(n) with h(n)

x(n) =ad"u(n) where 0 <a <1

1 <
hn) = 0<n<
0 n>10

(Anna University, April, 2004)
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b
(a) + 200 (b) + 1o
2 2
* [ 2
|
l
—21 -1 o I |2 ST Jo N k
| ~1
E -3 -3 -3
(© : + h(n—k)
2 l
|
n—1 { n+1 : .
} n 0 k
|
N |
U
@ 4 h(—3—k) n=-3
| H=3)=2X(~1)=-2
4l 3 12 o k
~1
-3
©
202 4tk
[ s
=3 =2 -1 o ll lk
N
5 i1 A h(=2-k) n=-—2
[ i Y(—2)=2X(—1)+2x2=2
=3[ -2 |1 k
~1
-3

Fig. 3.53 Graphical method of obtaining y(n) of Example 3.72
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() 4 x(k) (2) 4 x(k)
2 2 2 2
3—2 3—1 0 Jl 2k -2 3—1 T2k
Pl e L e 3 _3
b -3 -3 1 !
} } Ay(—1— } 4 x(—k)
e I I
| | =— | !
L —2x-3 | L 30=2X(-3)
o AR 12| H0axD=-3
sz S > J—] o 1o, "
(h) 4 x(k) () 4 x(k)
2 2 2 2
0 Jl 2 % -2 -1 o Il 2k
‘ 73\ \73 ° 73\ \73
$h1-0) | T A
P y(D=(=3X%2) [ y(@)=(=3X-3)
5 | H-3x-D=-3 | 21 +H—3%2)=3
[ | |
1 2% J 3k 2 1
-1 -1
-3
-3
)] 4 x(k) (k) 4 x(k)
2 2 2 2
-2 -1 or ri -2 ~1 0J1 Jzi
—34 43 -3 -3
Ah(3—h) | n=3 Ah(d—k no overlapping n=4
HhG=0 | y3)=-3x-3=9 @b @=o
P2 2
] I
1 |23 [4 &% 01 2 [3 4]5 &
-1 -1
-3

Fig. 3.53 (continued)
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(@) 4 x(ky=aku(k) (b) 4 h(k)=1
1‘
1
fe ., s HHHHR
0123456 k 012345678 9k
(©) h(=k) (d) h(n—k)
n<0
1
p? 0 % -9 n0 &
(e) h(n—k) (f) 4 h(n—k)
O0<n<9
% 1o 0 % -9 P

Fig. 3.54 Convolution sum of Example 3.73

Solution:

1. x(k) = d*u(k) is shown in Fig. 3.54a.
2. h(k), h(—k) are shown in Fig.3.54b and c, respectively. h(n — k) is shown in
Fig.3.54d.

3. h(n — k) is moved toward right so that it overlaps with x(k). The right edge of
h(n — k) slides past the left edge of x(k) for n = 0. The overlapping continues

without change until the left edge of h(n — k) slides past the right edge of x (k).
Hence, the summation limitis 0 <k <n

n

y(n) = " x(k)h(n — k)

k=0
n

_ k

—Ea 0<n<9
k=0

Using finite summation formula, we get
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y(n) =

(1 __an+1)

(I-a
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0<n<9

4. If h(n — k) is shifted further a change occurs when the left edge of h(n — k)
slides past the left edge of x(k) as shown in Fig. 3.54f. The summation interval

k=n
Yy =Y d

k=n—9

isfromn—9<k<n

Putk—n+9=p,k—n=p—9=0orp=09. The lower limit of summation

is p = 0 and the upper limit is p = 9. Now a* = a"~

we get

p=9

y(n) =

Using the finite summation formula

a9 gP

a9 Zap

%a. Substituting the above,

Z _ (1 —a' )
~"  (-a
1— 10
y(n) = a9 ((_1 —aa)) n>9
y@n) =0 forn <0
- (1— a(nJrl)) for 0 0
yn) =—— orU<n=<
(I—-a)
g (1 —a'")
_ ,(n=9)
y(n) =a <(1—a)) n>9

3.17 Deconvolution

The deconvolution is the process of getting x(n) if h(n) and y(n) are known. As per

convolution sum

k=00

y) = Y x(k)h(n — k)

k=—

[e.¢]
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If we assume that x(n) and h(n) are one sided finite sequences the above equation is
written as

k=n

Yy = Y x(k)h(n — k)

k=—00

y(0) = h(0)x(0)

y(1) = h(1)x(0) 4+ h(0)x(1)
¥(2) = h(2)x(0) + ~(D)x(1) + h(0)x(2)

N
ow 0

x(0) = 70)

y(1) = h(1)x(0) + ~(0)x(1)

_ y() = A)x(0)

*D 1(0)

Knowing x(0), ~(0), h(1) and y(1), we can find x(1). From y(2), the following
equation is written.

_ Y@ — h(2)x(0) — h()x(1)

x(2) 0
In general
k=n—1
x(n) =ym) — Y x(Kh(n—k)
k=0

B Example 3.74

y(n) ={1, 5,10, 11, 8, 4, 1}
T

h(n) = {1, 2, 1}
T

Find x(n).

(Anna University, April, 2003)
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Solution: The number of samples in h(n), y(n), and x(n) are Ty =3, T =7,T, =5,
respectively. The following relationship holds good.

T=T+T,—-1
In=T-T+1
=7-34+1=5

Thus, x(0), x(1), x(2), x(3) and x(4) are to be determined.

Forn=0 0 |
x(O) = )Q = - =
o) 1
Forn=1
oy —x(Oh()  5-1x2
W= =1 =’
Forn=2
(@) = Y5 x (2 — k)
@)= 1(0)
_ y(2) = x(0)h(2) — x(1)A(1)
B h(0)
10—1x1-3x2
= 1 =10-1-6=3
Forn=23
k=2
x(3) = y(3) = > o x(k)h(3 — k)
h(0)
_ y(3) = x(0)h(3) — x(DA3) — x(Dh(2) — x(2)h(1)
B h(0)
11—-1x0—-3x1—-3x2
= =2
1
Forn =4,
k=3
(@) = YD~ Lico*BAG— B
7(0)
y(4) — x(0)h(4) — x(DA(3) — x(2)h(2) — x(3)h(1)

h(0)
8—1x0—3x0—3x1—2x2_
0 =

x(4) = 1
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x(n) =11, 3, 3,2, 1}
T

B Example 3.75
Find x(n) given h(n) = {1, 2, 3, 2} and y(n) = {3, 8, 17, 25, 26, 23, 10}.

Solution: The number of samples in y(n), h(n), x(n) is T =7, T} = 4, T, respec-
tively.

T=T1+T,—-1

Ty=T—T +1
=7—4+1=4
x(n) = {x(0), x(1), x(2), x(3)}
_y0 _3_
W=7 =173
xa%:ﬂn—x@MU):8—3x2:2
h(0) 1
k=1
XQ2) = yQ2) = ) o x(k)h(2 — k)
1(0)
_ y(2) = x(0)h(2) — x(1)h(1)
- h(0)

17-3x3-2x2
1

x(2) =4
k=2
x(3) =y(3) = Y _x(kh(3 - k)
k=0
_ yB3) = x(0hB3) = x(DAQ2) = x(2)h(1)

h(0)
_25—3x2—2x3—4x2_
= ] =

5

Hence

[x(n) = (3,2, 4, 5}|
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3.18 Step Response of the System
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Equation (3.32) gives the step response of the discrete time system if the impulse

response h(n) is known

k=n
s(n) = Z h(k)
k=0

(3.32)

The following examples illustrate how to find step response from impulse response.

B Example 3.76

Find the step response of the system whose impulse response is

h(n) = a"u(n) where 0 < a < 1

Solution:
s(n) =Y h(k)
k=0

s(n) = iak
k=0

Using the finite summation formula, we get

(1 _ an+1)

(I—-a)

s(n) =

B Example 3.77

Find the step response whose impulse response is given by

h(in) =6(n—1)+686(n—-1>5)

Solution:
s(n) = h(n)xun) =[(n—1)+8(n—75)] *xu(n)
=dén—1)*xum) +6(n—>5) *u(n)

By using the property §(n — 1) * u(n) = u(n — 1), we get
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‘s(n):u(n—l)—i—u(n—S)‘

B Example 3.78
Find the step response of the system whose impulse response is

1\"

w50

Solution:

k=0
-5 @' -D1
- @G-1n 3

_ LN
s(n) = 3 (3) 3 Dun)

B Example 3.79
Find the step response if the impulse response /(n) = u(n)

Solution:
n

s(m) =Y h(k) =Y _u(k)
k=0 k=0
= Zl
k=0
s(n)=(n+1)

3.19 Stability from Impulse Response

From Eq.(3.31), for the discrete time system to be bounded input output stable,
M;(n) = Z:O —oo 1B(n)| < 00. The following examples illustrate this.
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B Example 3.80

The impulse response of a certain system is
h(n) = d"u(n) where 0 < a < 1

Find whether the system is BIBO stable.

Solution: h(n) is causal. Hence

> 1
M,(n) = at = < 0
nX:(; (1—a)

Hence, the system is BIBO stable.

B Example 3.81
h(n) = a"u(—n)

Find whether the system is BIBO stable.

Solution:

Mym)= > d"

For n > 0, u(n) = 0. Hence,

My(n) = Z a’
n=—oo
o0 o 1 n
£e-50)
n=0 n=0 a
1
= T
a a
- a—1 =

Hence, the system is BIBO stable.

B Example 3.82
h(n)y =d"u(n —1) where a>1

Find whether the system is BIBO stable.




412 3 Time Domain Analysis of Continuous and Discrete Time Systems

3

Fig. 3.55 Impulse response

A — Ny
plot of Example 3.82 h(n)=a"u(n—1)

il

0o 1 2

N 4

Fig. 3.56 Impulse response

A —n _
plot of Example 3.83 h(n)=2"u(5-n) .
24
2 2}
2

L 41
a3
)
2 -10 12 3 4 5 6 n

Solution: The impulse response plot of 1(n) = a"u(n — 1) is shown in Fig. 3.55, and
it is noticed that the sequence is not summable. Hence, the system is unstable.

My(n) = Za"
n=1

=a—|—a2+a3+...

The system is BIBO unstable.

B Example 3.83
h(n) =2"u(5 — n)

Find whether the system is BIBO stable

Solution: The impulse response plot of 4(n) = 2"u(5 — n) is shown in Fig. 3.56.
u(5—n)=0forn > 5.For —oo >n <5, h(n) = 2"
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5
Mym) = ) 2"

n=—0o0

0 5
= > 240

n=—00 1

() 5
=Y 24y

n=0 1
00 1 n 5
= ZO <§> + ;2”
5

1
= 27— 1
1—1/2+20:

(1-29
1-2
=1+2°-1=2°

=2+ 1

M, (n) =2° < 0o

The system is BIBO stable.

B Example 3.84

h(n) = e

Find whether the system is BIBO stable (Fig.3.57).

Solution:

[e¢]

M,(n) = Z el

n=—oo

-1 oo

Z eSn + Zefﬁz
n=0

n=—0o0

o0 o]

— 2875’1 + Zefﬁt
n=0

n=1

e e

Mv (n) =
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4 h(n) = e~ Sl

» 1

1] | 1.

—-n -4 -3 -2 -1 0 1 2 3 4

A

Svy

Fig. 3.57 Impulse responses plot of Example 3.84

1 -5
_H e 0136 < 00
(I—e)

M, (n) = 1.0136

M, (n) is finite and hence the system is stable.

3.20 System Causality

From expression (3.30) the impulse response function A(n) = 0 for n < 0 for the
system to be causal. This is illustrated in the following examples.

B Example 3.85

h(n) = a"u(—n)

Find whether the system is causal.

Solution: The impulse response plot of 4(n) is shown in Fig. 3.58. From Fig. 3.58, itis
evident thatatn = —1, h(—1) = }l and is not zero. Hence, the system is non-causal.
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Fig. 3.58 Impulse response 4 h(n) =d"u(—n)
of Example 3.85
n<0 1 n>0

“n 4 -3 2 -1 0 1 3 3 n
Fig. 3.59 Impulse response 4 h(n) = a'u(n—1)
of Example 3.86
where a > 1
n<0
n>0

——e
—————o
v

B Example 3.86

h(n) =d"'u(n —1) wherea > 1

Find whether the system is causal.

Solution: The plot of h(n) = a"u(n — 1) is shown in Fig. 3.59. It is observed that for
n < 0, h(n) = 0. Hence, the system is causal.

B Example 3.87
h(n) = e~

Find whether the system is causal.

Solution: The impulse response plot of 4(n) is shown in Fig. 3.60.

hn)=e " n=>0
=" n<0

h(n) #0 forn < 0.

Hence, the system is non-causal.
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N h(n) _ e*a\/z\

n<0 n>0
» |

1] | |

—-n -4 -3 -2 -1 0 1 2 3 4

Sv

Fig. 3.60 Impulse response of Example 3.87

B Example 3.88

The impulse response of a certain linear time invariant continuous time system is
shown in Fig.3.61a. The system is excited with the input x(¢#) which is shown in
Fig.3.61b. Derive expressions for the output response y(#) using convolution method.

Solution:

1. Figure 3.61a and b show x(¢) and h(t), respectively. x(t) and h(t) are obtained
by putting t = 7 in x(¢) and h(t), respectively. x(—1) is obtained by folding x(7)
and is shown in Fig.3.61c. x(t — 1) is obtained by adding ¢ in x(—71). x(t — 1)
is shifted to the extreme left and is shown in Fig.3.61d.

2. h(r)is kept fixed and x(t — 7) is shifted toward right so that there is overlapping
between h(t) and x(t — 7).

3. Time interval —1 < ¢ < 0.

During the above time interval the right edge of x(# — t) slides past the left edge
of h(t). Here the input is in the form of impulse. The output y(¢) is obtained
using the property,

h(t) * x(t — ty) = h(t — to)

In the above interval (Fig.3.61e).

h(t) =3t

x(t) =25(t+1)

y(@) = h(z) * x(1)
=3x2(0t+1)
=6(+1)
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4. Time interval 0 < ¢ < 1 (Fig.3.61f).
During the above time interval, the second transition occurs. The transition
should be one at a time where there is a change in i(7). The right edge of
x(t — 7) slides past t = 1. Here,

h(t) =4 —1)

x(f) = 28(t + 1)

y(@) = h(z) * x(1)
=2[4—(t+ D]
=23 -1

5. Time interval 1 < ¢ < 2 (Fig.3.61g).
During the interval, the left edge of x(r — 7) slides past the left edge of (7).

® s
3
2
f T 0 1
(© 4 x(—1) (d) A x(t—T)
3 3
2 2
<L> —
-1 0 1 T —1 (1) (t+1) 0 7
(© (®

—1<t<0 O<t<l1

(=1 oG+ 4 7 t—1) 0 1(t+1) 4 7

Fig. 3.61 Convolution of two signals of Example 3.88
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@ A x(t—71) h(T) M A x(t—T1) h(T)
3 k,i,‘ 1<t<2 2<t<3
! 2
0(—1)1  (+1) 4 o 0 1=+ 4 7
O, Oy
x(t—1) h(T) 3<1<5 x(t—T1) h(T) 5
R R— ‘ 3 K] N— ‘ 3
! 2 ! 2
0 1 - 40tD 0 1 A G-1) G+ %

(k)

Fig. 3.61 (continued)

y(1) = h(®) * x(2)
=3x3(—1)+24—(+1)
— (7t —3)

6. Time interval 2 < ¢ < 3 (Fig.3.61h).
During the above interval the left edge of x(r — 7) slides past h(t) att = 1.

y(t) = h(t) % x(2)
=34 —-@—-D]+2[4—-@+1)]
=21-5¢
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7. Time interval 3 < ¢ < 5 (Fig.3.61i).

In this interval the right edge of x(t — 7) slides past the right edge of 4(7).

y(@#) =h@) xx(t) =3[4—-(¢—1)]=15-3t

8. Time interval ¢t > 5 (Fig. 3.61j).

When ¢ > 5, x(t — 7) does not overlap with 4(t) and hence y(¢) = 0.

The output response is given in Fig.3.61k.

y(i)=6(+1) —1<t<0
=23 -1 O0<t<1

= (7t -3) l<t<?2

= (21 — 51) 2<t<3

= (15-13p 3<t<5

=0 t>5

t “1[ 0] 1 30 4] =5
vy | 0 6| 4| 11| 6| 3] 0

419

B Example 3.89

x[n] = 3"u[—n]

Find

y[nl = x[n] * h[n]

and h[n] = u[n].

Solution:

1.

x[k] which is obtained from x[n] is shown in Figs.3.62a. Similarly, h[k] is
sketched in Fig.3.62b. h(n — k) for n < 0 and for n > 0 are shown in Fig.3.62c

and d, respectively.

. When h[n — k]is moved toward the right it overlaps with x[n] and the overlapping

interval is —oo < k < n. The output response y[#n] is obtained from the following

convolution sum.

yinl= Y 3)F

k=—00

0

k=—n
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a b
(a) K] ( )Ah[k]
1 1
ilc 0 Z < 0o 1 2 3 E
© A h(n—k) (d N
1
n<0 n>0
—>
—k + 0 ko —k o ¢t k
n n
Fig. 3.62 x[k] and h[k] of Example 3.89
Using the following finite summation formula,
S n
k a
Za = O<a<l1
(I—-a)
k=n
we get
l —n
3
1
— _(3)l+n n<o0

For the interval n > 0,
1

0 0 lk
= 20 =3(3) =15
3

k=0

k=—00

3
n>0
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10.

11.

12.

ylnl = %(3)‘“ n<0

= - n>0

Summary

. If h(?) is the impulse response of an LTIC system and if x(¢) is the input,

then the output of the system y() is obtained using the convolution integral.
The output is given by

y(t) = /oo h(t — t)x(t)dt

The convolution integral has commutative, distributive, associative, shift
and width properties.

. Analytical as well as graphical methods are available for solving the con-

volution integral.
If the area under the impulse response curve is finite, then the LTIC system
is said to be BIBO stable.

. From the impulse response of an LTIC system by integrating it, the step

response is obtained.

For a causal system the impulse response /() = 0 for ¢ < 0.

If h(n) is the impulse response of an LTID system and if x(r) is the input,
then the output of the system y(n) is obtained using convolution sum. The

output is given by
[o¢]

Yy = Y x(k)h(n — k)

k=—o00

. The convolution sum has commutative, distributive, associative, shift and

width properties.

Analytical as well as graphical methods are available for solving the con-
volution sum.

A discrete time system is said to be causal if the impulse response i(n) = 0
forn < 0.

If the impulse response of a discrete time system is absolutely summable,
then the system is said to be BIBO stable.

Step response s(n) is obtained from impulse response /(n) using the math-
ematical expression

s(n) = Z h(k)
k=0
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Exercises

I. Short Answer Type Questions

1.

What is the convolution integral or superposition integral?
If () is the impulse response of an LTIC system and if it is excited by
the signal x(#), then the output y(¢) is expressed as

~+o00
MOES / x(T)h(t — 7)dt

o0

The above equation is referred to as the convolution or superposition inte-
gral. Symbolically, it is written as

y(1) = x(1) * h(7)

Outline the procedure to evaluate the convolution integral?

(a) Graph x(7) by substituting = 7 in x(¢) and keep it fixed.

(b) Obtain i(7). By folding get h(—t). Graph A(t — 7).

(c) Keeping x(7) fixed move h(t — 7) so that it overlaps with x(7).

(d) Multiply x(t) and A(# — t) and integrate for —co < T < ©o to obtain

y(@).

. What are the properties of convolution integral?

The properties of convolution integral are

(a) The commutative property;
(b) The distributive property;
(c) The associative property;
(d) The shift property; and

(e) The width property.

What is convolution sum?
If A(n) is the impulse response of a linear time invariant discrete time
system and if x(n) is input, then the output y(n) is obtained from the

following equation
[.¢]

ym) = Y x(h(n — k)

k=—00

The above equation is called convolution sum. Symbolically it is repre-
sented as

y(n) = x(n) * h(n)

. How impulse response is related to stability of the system?

For an LTIC system if the area under the impulse response curve is finite,
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the system is BIBO stable. In other words, f_oooo |h(7)|dT should be abso-
lutely integrable. For a LTID time system to be stable the impulse response
Z,fifoo h(k) should be absolutely summable.

6. How impulse response is related to causality of the system?
For an LTIC system to be causal, the impulse response h(#) = 0 for t < 0.
For an LTID system to be causal, the impulse response h(n) = 0 forn < 0.

7. How step response is obtained from impulse response of an LTIC and
LTID systems?
The step response of an LTIC system is obtained by integrating its impulse
response. The step response of an LTID system is obtained by summing
its impulse response (Fig. 3.63).

8. Evaluate x(n) * §(n) and x(n) * §(n — ny)?

x(n) x 6(n) = x(n)

x(n) * 6(n — ng) = x(n — ngp)
9. Evaluate x(¢) # 6(¢) and x(¢) % 6(t — tp)?

x(1) % 6(t) = x(1)
x(t) * 8(t — tg) = x(t — tp)

10. Evaluate x(t — ;) #* h(t — 15)?
x(t—n)xh(t—n) =yt —t —t)
11. The response of LTIC system to step input is y(¢) = 1 — e~ . Find its

impulse response?

h(t) = % =3¢

12. Ifx(n) =6(n) —26(n —1) +38(n —2) — 6(n + 1). Expressx(n — 1)
in terms of sequences?

x(n—=1)=86mn—1)—25(n —2)+35(n—3) — d(n)

13. Sketch x(¢) = u(t + 3) — u(t — 3)?
14. h(n) = (%)" u(n). Find A so that h(n) — Ah(n — 1) = §(n)?

n n—1
h(n) —h(n—1) = (%) u(n) — A (%) un —1)

IfA=1/2
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Fig. 3.63 x(1) = +x()
u(t +3) — u(t —3).

I1. Long Answer Type Questions

1. x(t) = e>u(—t) and h(t) = u(t — 10). Find y(¢) = x(¢) % h(t)?

1
vy =2 1210

—1 t>10
=3 >

2. x(t) =u(t —2) —u(t —6) and h(t) = e >u(t). Find y(¢) = x(t) % h(t)?
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1
wn=§u—f”4n 2<t<6

1
- ge*Sf[e” -1 6<r<o0

3.x()=u(@®)—u(t—1and h(t) =t; 0 <t < 2.Find y(¢t) = x(¢) * h(t)?

y(i) =0 t<0
1,
= —t O<tr<l1
2

I
T~
-~
|
N —
S~
(=
A
-

A
o

4, x(t) =u(t —2) —u(t —5) and h(t) = e *u(t). Find (a) y(¢) = x(¢) * h(¢)

and (b) y(t) = &\ « h(t)?

(a) wo=iu—f“4n 2<1t<6

1
= Ze*“’[ez“ -1 6<t<o

(b) y(1) = e Dyt —2) — eIyt — 5)

5. Consider the impulse responde i(¢) and excitation signal x(¢) shown in
Fig.3.64a and b, respectively. Using convolution find y(t) = x(¢) % h(¢)?

y(@#) =0 t< =2
=6(t+2) —2<t=<-1
=2(1 -2t —1=<t=<0

y() =21 —1) 0<r=<l1
=0 t>1

6. x(t) and h(¢) signals are shown in Fig. 3.65a and b, respectively. Find
y@) =x() % h()?

y(t) =0 t<0

12
— 0<r=<l
2
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a b
@ L (b)
3 x(1)
2 iiiiii |
l 1
l
|
| . \
0 1 2 1 -2 -1 0 1
Fig. 3.64 Impulse response and excitation signals of Problem 5
a b
(a) ) ® , H)
1F-—-—- 1
0 1 t 0 2 't
Fig. 3.65 Signals x(¢) and h(t) of Problem 6
1
= — 1<t<?2
2
1, 3
=|—-=tr+2t— = 2<t<3
< 2 2>

7. x(t) = e *u(t) and h(t) = u(t — 3). Find y(t) = x(¢) * h(t)?
() = }1[1 — e @ - 3)

8. Find the step response of the system whose impulse response is given as
h(t) = (e —e3Nu(r)? ) | |
-5t -3
H=|—-——= = t
s(1) [ 53¢ T3¢ }u()
9. Determine whether the following LTIC time systems whose impulse response
given below are stable. (a) h(t) = e 3t/ y(t) and (b) h(t) =
e sin 3tu(t)?

1
(a) y(t) = 3 < oo B.IB.O. stable.

3
(b) y(t) = v < oo B.IB.O. stable.
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@ ®) i

LI L

o 1 2 3 a4 0 1 2

Vv

Fig. 3.66 x[n] and h[n] for Problem 13

10.

11.

12.

13.

x[nl=uln —4] —uln — 10] and h[n] = u[n — 5] — u[n — 16]. Find
y[n] = x[n] * h[n]?

y[n] = (n —8) 9<n<13
=6 10<n <19
=(25—-n) 20<n<24
=0 n> 24

x[n] = 4"u[—n — 2] and h[n] = u[n — J. Find y[n] = x[n] * h[n]?

n

y[n]:%[z} n<0

1

= — n>0
12

Determine whether the following LTID time systems whose impulse response
given below are stable. (a) h[n] =nsin2znul[n], (b) h[n]=
5"u[—n] and (¢) h[n] = 27"u[n — 5]?

(a) y[n] = oo B.I.B.O. unstable.

1
(b)  ylnl=7 <co  BILB.O.stble.

1
(©) y[n] = 3 < 00 B.I.B.O. stable.

x[n]and y[r] are shown in Fig. 3.66a and b, respectively. Derive expression
for y[n] = x[n] # h[n]and hence obtain the sequence y[n]by substituting
numerical values. Verify the results by multiplication method?
yinl=m+1) 0<n<?2
=(6—n) 3<n<S5
=0 n>>5

yln] = {IT, 2,3,3,2,1}
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Fig. 3.67 y[n] of Problem 4 y(n) 1 1
14

The same answer is obtained by multiplication method (Fig. 3.67).

14. h[n] = u[n] — u[n — 6] and x[n] =6[n — 3] — 6[rn — 5]. Find y[n] =
x[n] % h[n] and sketch the same?

15. x[r] = e *u[n] and h[n] = 3 "u[n]. Find y[n] = x[n] * h[n]?

_ [3¢* — (3¢*) "uln]
- [3¢2 — 1]

yln]

16. x[n] = (0.5)" u[n] and h[n] = (0.9)"u[n]. Find y[n] = x[n] * h[n]?

y[n] = 2.5[0.9""" — 0.5 u[n]



Chapter 4 ®
Fourier Series Analysis of Continuous s
Time Signals

Learning Objectives

¢ To represent the periodic continuous time signal by trigonometric Fourier series.
4 To represent the CT signal by polar Fourier series.

¢ To determine the exponential Fourier series and Fourier spectra.

¢ To establish the properties of Fourier series.

¢ To establish Parseval’s theorem and Dirichlet conditions.

4.1 Introduction

Sinusoidal input signals are often used to study the response of the system which
gives useful information. If a linear time invariant system is excited by a complex
sinusoid, the output response is also a complex sinusoid of the same frequency as
the input. However, the amplitude of such a sinusoid is different from the input
amplitude and also has a phase shift. If the system is excited by the signal which
is a weighted superposition of the complex sinusoids, the system output is also a
weighted superposition of the system response to each complex sinusoid. Thus, any
arbitrary excitation signal x(¢) can be expressed as a linear combination of complex
sinusoids. The output is obtained by summing up the responses to the individual
complex sinusoids using superposition. However, expressing any arbitrary real func-
tion as a linear combination of complex sinusoids is a matter of concern. Baron
Jean Baptiste Joseph Fourier (1768-1830), a French mathematician represented
an arbitrary signal x(¢) in the form of a linear combination of complex sinusoids and is
called as Fourier Series. In a Fourier series, representation of a periodical signal, the
higher frequency sines and cosines have frequencies that are integer multiples of the
fundamental frequency. These multiples are called harmonic numbers. The study
of signals using sinusoids has widespread applications in every branch of science
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and engineering. This great mathematical poem, which finds wide applications in
modern communication, signal processing, antenna design and several other fields,
was not shown much enthusiasm by the scientific world during its inception. Fourier
could not get the results published for the lack of mathematical rigor. The vehe-
ment opposition came from his fellow countrymen and great mathematical wizards
Lagrange and Laplace. However, fifteen years later, after several tireless attempts,
Fourier successfully published the results in the form of text which is a classic now.

Fourier, born on 21-03-1768, in France, was the son of a tailor. Being orphaned
at the age of eight, Fourier was educated in a local military college where he showed
his brilliance in mathematics. When the French revolution broke out, many intel-
lectuals decided to leave France to save themselves from the growing barbarism.
Fourier escaped the guillotine twice. Napoleon Bonaparte, a soldier scientist cap-
tured power in France, after the historical French revolution and stopped prosecu-
tion of intellectuals. The French ruler, who himself was a great scientist, appointed
Fourier chair of mathematics academy in which he served with distinction when he
was just 26 years of age. He was honored as the Baron of the empire by Napoleon
in 1809. When Napoleon was exiled by King Louis XVIII, Fourier was identified
as a Bonapartist and was treated with all disgrace. Napoleon came back to power
within a year of his exile from Elba. However, he was defeated by the English captain
Nelson in the battle of Waterloo and the great warrior scientist died in 1821 at St.
Helena Island, where he was in exile for the second time. Fourier should have again
become an orphan, but with the help of his former student who was now a prefect
of Paris. He was appointed as the statistical bureau of the seine and subsequently, in
1827, elected to the powerful position of secretary of the Paris Academy of Science.

While carrying out investigations on the propagation of heat in solid bodies,
Fourier was able to establish the Fourier series and Fourier integral. In 1807, when
he was 40 years of age, Fourier published his results. He claimed that any arbitrary
function can always be expressed as a sum of sinusoids. For the lack of rigor and
generality, the judges, including the great French mathematicians Lagrange, Laplace,
Legendre, Monge and Lacroix, criticized Fourier’s work, but appreciated the nov-
elty and importance of the work. Fourier could not defend the criticisms since the
necessary tools were not available with him at that time. However, in the year 1829,
Dirichlet proved most of the claims of Fourier by putting a few restrictions (Dirichlet
conditions).

Fifteen years after the paper was rejected mainly due to the vehement opposition
given by Lagrange and to some extent by Laplace, Fourier published his results in
expanded form as a text which has now become a classic in the area of mathematics,
science and engineering applications. The great mathematician who laid the founda-
tion of signal representation and analysis died on 16-05-1830, when he was 63 years
old.
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4.2 Periodic Signal Representation by Fourier Series

A continuous time signal x(¢) is said to be periodic if there is a positive non-zero
value of T for which
x(t+T)=x(@) forallt 4.1)

The fundamental period Ty of x(¢) is the smallest positive value of T for which
271

Eq.(4.1) is satisfied. = is called fundamental frequency f; and wy = is called
fundamental radian frequency The real sinusoidal signal
x(t) = cos(wot + @) 4.2)
and the complex exponential signal
x(t) = ™ (4.3)

have been proved in Chap. 1 as periodic signals as Eq. (4.1) is applicable in the above
cases. The prerequisite for the representation of any arbitrary continuous signal
x(¢) in Fourier series is that it should be periodic. Non-periodic signals cannot
be represented by Fourier series but can be represented by Fourier transform
which is discussed later.

4.3 Different Forms of Fourier Series Representation

Any arbitrary real or complex x(¢) signal which is periodic with fundamental period
Ty can be expressed as a sum of a sinusoid of period Tj and its harmonics. They are
represented in the following forms of Fourier series:

1. Trigonometric Fourier series.
2. Complex exponential Fourier series.
3. Polar or Harmonic form Fourier series.

The above Fourier series representations are described below with illustrated exam-
ples.

4.3.1 Trigonometric Fourier Series

Consider any arbitrary continuous time signal x(#). This arbitrary signal can be split
up as sines and cosines of fundamental frequency wy and all of its harmonics are
expressed as given below.
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o0
x(t) =ap + Z a, cos nwot + b, sin nwyt

n=1

4.4)

Equation (4.4) is the Fourier series representation of an arbitrary signal x(¢) in trigono-

metric form.

In Eq. (4.4), ag corresponds to the zeroth harmonic or DC. The expression for the

constant term ag and the amplitudes of the harmonic can be derived as

1
= — 1) dt
ap T x(1)

To

2
a, = — /x(t) cos nwot dt
To
To

2
b, = — /x(t) sin nwot dt
Ty
To

In Egs. (4.5), (4.6) and (4.7)

1 2
TO = —_— = —
foo o
Ty = Fundamental period of x(¢) in seconds;
fo = Fundamental frequency in Hz.;
wo = Radian frequency in rad/second.

(4.5)

(4.6)

4.7)

For the detailed derivation of the above equations, one may refer to standard
textbooks. Equation (4.4) is valid iff x (¢) is periodic.

To Prove the periodicity of x(t)

The periodicity x(¢) is proved if x(¢#) = x(¢ + Tp). Substituting (¢ + Ty) in place of ¢
in Eq. (4.4), the following equation is obtained.

o0 o0
x(t +Tp) = ag + Z a, cos nwy(t + Tp) + Z b, sin nwy (t + Ty)

n=1 n=1

o0 o0
=agp+ Z a, cos(nwot + nwoTy) + Z b, sin(nwot + nwoTy)

n=1 n=1
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o0 o0
x(t + Ty) = ap + Z a, cos(nwot + 27n) + Z by, sin(nwot + 27 n)

n=1 n=1

oo o0
=ap+ Z a, cos(nwot) + Z b,, sin nwgt

n=1 n=1

[ x(t+ To) =x(1) | (4.8)

Thus, it is established, if x(¢) is periodic, at t = T every sinusoid starts and repeats
the same over the next Ty seconds and so on. The followings points are to be noted
while the coefficients ay, a,, and b, are determined. It can be proved that

1. If the periodical signal x(#) is symmetrical with respect to the time axis, then the
coefficient ay = 0.

2. If the periodical signal x(#) represents an even function, only cosine terms in FS
exists and therefore b, = 0.

3. If the periodical signal x(#) represents an odd function, only sine terms in FS
exists and therefore a, = 0.

4.3.2 Complex Exponential Fourier Series

By using Euler’s identity, the complex sinusoids can always be expressed in terms
of exponentials. Thus, the trigonometric Fourier series of Equation (4.4) can be
represented as

o0
x(t) — Z Dnejwont (49)
n=—0oQ
where
1 )
D, =— /x(t)e‘f“"’”tdt (4.10)
Ty
To

Equation (4.9) represents exponential Fourier series and D, is the coefficient of the
exponential Fourier series. For detailed derivation of Equation (4.10), one may refer
to standard textbooks. It is to be noticed here that Eq. (4.9) is in a compact form and it
is much more convenient to handle compared to trigonometric Fourier series. Further,
determination of the coefficients D,, using Eq. (4.10) is much easier compared to ay, a,
and b, in Eq. (4.4). For these reasons many authors prefer exponential Fourier series
representation of signals. The coefficients D,, are related to trigonometric Fourier
series coefficients a,, and b,, as
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DO =d
1

D, = E(an —Jjbn) (4.11)

D} =conjugate of D,

1
= E(an +]bn)

4.3.3 Polar or Harmonic Form Fourier Series

The results derived in Sects. 4.31 and 4.32 are applicable if x(¢) is real or complex.
When x(¢) is real, the coefficients of trigonometric Fourier series a, and b,, are real.
In such cases, Eq. (4.4) can be expressed in a compact form as

x(t) = Co+ Y _ C,cos(nwot — b,) (4.12)

n=1

where C,, and 6, are related to a, and b,, as

Co =ay

C,=,/a+ b2 4.13)
1 <bn>
6, = tan —
a,

Equation (4.12) is also called as compact form Fourier series or cosine form
Fourier series.

The coefficients of compact form Fourier series and exponential form Fourier
series are related as

Dy = C

1
\D,| = |Di| = EC” (4.14)
/D, =6,; /Df= -6,

For detailed derivations of Equations (4.13) and (4.14), one may refer to standard
textbooks. Table 4.1 gives the different form of Fourier series representation, their
coefficients and their equivalence.
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Table 4.1 Different forms of fourier series representation
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FS Form Coefficients Equivalence
1. Trigonometric ay = TLO [ x(ndt ayg = Co = Dy
To

o0
x(t) = ap + Y a cos nwot
n=1

a, = %0 [ x(2) cos nwot dt
To

ay — jb, = Cpe® = 2D,

+b,, sin nwot

by = =

T J x(2) sin nwot dt

To

a, + jb, = Cnefjen = ZD;';

2. Exponential

) .
x()= Y Dy

Dy = & [ x(t)e "0l dy C,=2ID,| n=>1
n=—00 0 To
3. Polar or compact cosine Co =aop 6, = 4D,
o0
x(t) = Co+ Y. Cycos(n™ —6,) | C, = /a2 + b2
n=1
6, = tan~! (%)
A .X(t)
1 [—
-5 -3 -1 0 |1 3 5 7t

- Ty ——»

Fig. 4.1 A rectangular wave of Example 4.1

The following examples illustrate the method of determining the Fourier series
(FS) in the above three forms.

B Example 4.1

Find the trigonometric Fourier series for the periodic signal shown in Fig.4.1.

Solution:

1. From Fig.4.1, it is evident that the waveform is symmetrical with respect to the
time axis t. Hence, ag = 0.

2. By folding x(¢) across the vertical axis, it is observed that x(¢) = x(—¢) which
shows that the function of the signal is even. Hence, b, = 0.
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From Fig.4.1, it is easily obtained that the fundamental period Ty = 4 seconds

and the fundamental radian frequency wy = ZT—’S = 7 radians per second. From
Eq. (4.4), the trigonometric Fourier series is written as

oo
x(t) =ap + Z [a,, cos nwyt + b, sin nwpt]

n=1

But

x(t) =1 for —1<t<1
=—1 for 1 <tr<3

Substituting ap = 0 and b, = 0, and wp = 7

x(t) = Zan cos %t

n=1

Il
N |
(]
o
7]
L
IS
-~
+
F\.;w
~~
|
—_
~
(@]
]
@
L
S
L 1

1 . nnt ! ; 3
=—|{—=—sin — —{ —sin —
2| \nm 2 ), nmw 1
1[,nn+,nn+,nn+_nn]
= — |sin — —+ sin — + sin — + sin —
nmw 2 2 2 2
4 . nm
= —sin —
nmw 2
=0 for n = even
4
= — forn=1,5,9,13,...
ni
4
=—— forn=3,7,11,15,...
nmw

o0
nw
x(t) = Zan cos 7t
n=1

|~

1) =
x(®) ERE T R T R

T 1 3 1 hY4 1 r
cosEt— —COS —1t + = COS —1 — = COS —t
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A x(t)

-2 —1 1 V r t

——Ty—»

Fig. 4.2 Saw tooth waveform

W Example 4.2
For the periodic signal shown in Fig. 4.2, determine the trigonometric Fourier series.
Solution:

1. From Fig.4.2, Ty = 2 seconds and wy = ZT—Z = . The signal is symmetrical

with respect to time axis and hence ap = 0. Also, from Fig.4.2, it is evident
that x(f) = —x(—1), and therefore, the signal is an odd signal and a,, = 0. The
Fourier series for such a signal is, therefore

o0
xX(t) =Y bysinnawt.
n=1
2. The coefficient b, is determined as follows:

x(t) =t —1=<tr<1

2 1
— / t sin nwot dt
To J

1
= f tsinnmtdt
-1

by

The above integral is solved using the infinite integral

/udv:uv—/vdu

Letu =+t du=dt
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. 1
dv = /smnntdt; Yy = ——cosnmt
nmw

1
t 1 .
b, = | ——cosnmt + ﬁ[smnnt]
nw ., nm

2 . .
= ——cosnmw + [sinnm + sinnm]
nw

n2m?

since sinnmw = 0,

2
b, = —— cosnm
nw

[0 ]
x(t) = an sin nwt

n=1

2 1 1
x(t) = — |sinmt — —sin2nwt + —sin 37wt + ...
T 2 3

B Example 4.3

Find the trigonometric Fourier series for the signal shown in Fig.4.3.

(Anna University, December 2006)
Solution:

1. From Fig.4.3, Ty = 27 and wy = ZT—’O’ = 1. The signal is neither odd nor even.
Further, it is not symmetrical with respect to the time axis. So the coefficients,
ap, a, and b,, are to be evaluated.

A x(t)

~V

—4m —2m 0 2m 4ar

Fig. 4.3 Saw tooth signal of Example 4.3
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2.

t 1
x(t) = — 0 <t <2nm (foraramp signal the slope is —
2 2

1 2

ayg = —
Ty

N =

ayg =

2

2
= — — cosnt dt
TQ 0 2

1 2
= — tcosnt dt
272 /0

/cos ntdt; v
uy — / vdu

1 t sin nt
22

1
—[04+04+1-1
2n2[+ + ]

an

Letu=1t,du=dt

sin nt

dv

n

an

2
cosnt "

2

)

n n

0

a, =0

(This is due to half wave symmetry).

2 2
b, = — — sinnt dt
T() 0 27T
1 tcosnt sinnt]*" ]
= — |- [using u-v method]
2n? n nr |,
1 27
= —|——cos2mn
272 n
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B Example 4.4

Determine the trigonometric Fourier series representation of a full wave rectified
signal.

(Anna University, April 2005)
Solution:

1. The full wave rectified signal is shown in Fig.4.4. Here Tp =m and
2

wy = To =2.
2. The signal is not symmetrical with respect to time axis. Therefore, ay is calculated
as follows:
1 / 4
ag = — x(0)dt
Ty Jo
where

x(t) =sint O0<t<wm

1 T
aoz—/ sin t dt
T Jo

~V

v

<—T0 4’{

Fig. 4.4 A full wave rectifier
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3.
x(t) = x(—1)

The given signal represents an even function, and therefore

b,=0

2 T
a, = — / sin t cos nawot dt
T Jo

2 T
= — / sin f cos 2nt dt
T Jo

Using the property,
. L. .
sinA cos B = 3 [sin(A + B) + sin(A — B)]
the above integral is written as

1 [ 1 [
a, = —/ sin(2n + l)tdt—l——/ sin(1 — 2n)t dt
T Jo T Jo

1 cos@n+ 1" 1 [ cos(l—2m)]"
Tx|l  @n+D ]0 ;[_ (1 —2n) ]0
1 [ cos@n+1m+1 1 cos(l —2n)mw + 1
“xl T @t ] E[_ (1—2n) ]
11— (=2 = (=1l
x|l et (1—2n)i|
17 2 2
=;_(2n+1)+(1—2n)]
21 -=2n+2n+1
x|l d—am ]
4
T —an)

(1) 2+4i ! 2nt
x(t) =—+— —————cos2n
T (1 —4n?)
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A x(t)

0 2

— Tp=2m——»

Fig. 4.5 A half wave rectified sine function

Bl Example 4.5

Obtain the Fourier series expression of a half wave sine wave.

(Anna University, December 2007)
Solution:

1. T():Q,JTEIHdG)():%:%—Z:]

x(t) =Asint 0<rtr<m

1 s
ag = — Asintdt
27 0
A T A
:—[—cost] = —
21 0 T
A
apg = —
T
2.
2 T
a, = — Asint cosnt dt
27 0
AT

g T
= / sin(1 + n)tdt+/ sin(1 — n)tdt:|
0 0

2 |
A [ cos(1+mnt cos(1—n)t]”"
2t (+m  (-n ]O
A [1—cos(l+nm 1—cos(l—n)m
el (+n (1—n) ]
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_i[ 2 N 2 ]_ 2A
S22t ld4n  (A-n] wd-—n?

2A
(1l —n?)

n# 1

a, =

Since forn = 1, a, = 00, a, is calculated as follows: Forn =1,

1 T
a = — Asintcostdt

2 0
A T
= — [ sin 2t dt
2 0
A

= E[— cos 2t]g =0

T
/ Asintsin nt dt
0

/ﬂ {cos(1 — n)t — cos(1 + n)t} dt]
LJ/o

[sin(1 —n)t sin(1 +n)t]”"

I—nm) — (+n ]0
[sin(1 —n)w —sin0  sin(1 + n) +sin0
(1 —n) B (1 +n) }

Rl> §l> 8> o

b,=0 n#1

For n = 1, by = oo and therefore b, is calculated as follows:

2 o
by = — Asintsint dt
27 0
A,
= — Asin” tdt
T Jo

A d A sin2¢ 7"
= — (1 —cos2t)dt| = — |t —
27 0 2 2 0

443
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A x(t)

—— — — — — — =
~Y

e

Fig. 4.6 Representation of x() = 12

b

(ST

x(t) = — + —smt+zmcosnt

B Example 4.6

Determine the Fourier series representation of the signal x(r) = ¢? for all values of
‘t’ which exists in the interval (—1, 1).

(Anna University, May, 2007)
Solution:

1. For the given signal Ty = 2 and wy = 2T—’(: =m.

I\JIN

/ 2 cosnrt dt
1

2 cosnrt dr

I
\

-1
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Applying [ udv = uv — [ vdu twice for the above equation, we get

,sinnmt 2t 2
a, = |t + cosnmt —
n

1
sinnwt
niw n*m? 33 i|1

cosnmw — 3 sinnmw +

sin nrw 2 2 sin nw
niw n’m? 33 ni

L2 2 2
COS NI — sin nmw
n2m? w3

sinnt =0 foralln

4
a, = COS NI
272
4
a, = ——(=1)"
n?m?

3. From Fig.4.6, it is evident that x(¢) is an even function and therefore b, = 0.
4,

1 4 (="
x(t)=§ —22:: )cosnm

1 4 1 1
x(t) = 3 + = [—cosm—i— ZcosZm— §cos3m+...]

4.4 Properties of Fourier Series

4.4.1 Linearity

Let x;(¢) and x;(¢) be two periodic signals with the same period 7y. Let D,; and
D,;» be the Fourier series coefficients in complex exponential form. Let x(¢) be the
composite signal of x;(#) and x,(#) which are related as

x(t) = Ax(t) + Bxx (1) (4.15)

where A and B are constants.
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From Eq. (4.10)

1 )
Dy = — | xi(He 7" dr 4.16)
Ty
To
1 .
Dy =— | xp(0)e"'dr “4.17)
Ty
To

Let D, be the Fourier series coefficient of x(¢)

1 —jnwot
D, = — | x(t)e™"™'dt (4.18)
Ty
To
1 )
= / [Ax; (1) + Bxy(t)]e /"' dt 4.19)
0 .
1 —jnwot 1 —jnawot
= — | Axi()e™"™'dt + — | Bxy(t)e™"™'dt (4.20)
o T,
To T()

‘ D, = ADnl + BDy;

.21

The Fourier series coefficient of the composite signal x(¢) is the linear combi-
nation of individual signal.

4.4.2 Time Shifting Property

According to the time shifting property, if the periodic signal x (¢) with funda-
mental period 7 is time shifted, the periodicity remains the same and the FS
coefficient is multiplied by the factor e=—/"®o%,

Proof Let x(t) be time shifted by #,. Now the time shifted signal is x(t — #y). The
Fourier series coefficient of x(¢) is

1 )
D, = — [ x(t)e7"'dt 4.22)
Ty
To

Let D, be the FS coefficient for the time shifted signal.

1 .
Dy = — f x(t — ty)e " gt (4.23)
Ty
To
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Substitute T = (¢ — #p) in the above equation

D,y = i /X(-L-)e*j"wo(fﬂo)dr
Ty
Ty

—jnwot; 1 —jnwyt
= e — | x(r)e T4y (4.24)
To
To
Dy = e, | (4.25)

4.4.3 Time Reversal Property

According to the time reversal property, if the signal x (¢) is time reversed, the
periodicity remains the same with the time reversal in the FS coefficient.

Proof Let x(¢) be the signal with period T, and the FS coefficient D,,. If x(¢) is time
reversed, the signal becomes x(—¢). Let D_,, be the FS coefficient of x(—1¢).

1 ,
D, = — [ x(—=He"™'ds (4.26)
Ty
To
Let us substitute T = —¢
1 —j(—n)wyt
D,=— | x(v)e”’ 0t (—dTt) 4.27)
Ty
To
1 —j(—n)wot
=—— [ x(v)e™ Tdt (4.28)
Ty
To
D,=-D_,

4.4.4 Time Scaling Property

According to time scaling property, if x (¢) is periodic with fundamental period
Ty, then x(at) where a is any positive real number, is also periodic but with a
fundamental period of %
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Proof Let D, be the FS coefficient of x(at).

1 )
D, = —/x(at)e_]"‘”“’dt (4.29)
Ty
To

Letar =1

1 . T
Dy = — | x(v)e"*udr
aT()
Ty

Dy = —D,q (4.30)
a

4.4.5 Multiplication Property

According to multiplication property, if x;(¢) and x,(¢) are the two signals
having the periodicity 7j, then the Fourier coefficient of the product of these
two signals is given by

00
D, = Z AB,_;

I=—00
where A; and B, are the FS coefficients of x1(¢) and x,(¢) respectively.

Proof Let

x(1) = x1(1) X x2(1)

1 .
D, = — | x()e"™'dt
Ty
To

1 )
Dy = — | [x1(t) x x2(t)] e "' dt

Ty
To
1 [ >
= — Z A,ejlwo’i|x2(t)ej”"’°’dt
TO T I=—00

> 1
= Z A— / X (1) =heot gy
Ty

I=—00 T



4.4 Properties of Fourier Series 449

oo
Dy= ) AByi (4.31)

I=—00

4.4.6 Conjugation Property

According to this property, that the FS coefficients have conjugate symmetric
property

Proof D_, =D

x(f) = Z D, el

n=—00

X (t) = [ i Dnej”“’o’i|

Nn=—00
o0

% —jnwot
E Dje

n=—0oo

Letl = —n,

X (f) = Z D* el (4.32)

I=—00

Thus during conjugation, FS coefficient becomes conjugate and time reversed.

4.4.7 Differentiation Property

If a periodical signal x (¢) is differentiated, the FS coefficient is multiplied by
the factor jnw.

Proof

x(f) = Z D, el

n=—0oo
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d‘x(t) - . jwont
e n;oo]wonDne’ 0
o
= 3" Dl 4.33)
n=—0oo

where Di = jwonD,,. Thus, when the signal x(¢) is differentiated, its FS coefficient
is multiplied by the factor jwn.

4.4.8 Integration Property

According to the integration property, the FS coefficient of x (¢) when x (¢) is

integrated becomes.
1

Jwon

D,

Proof
o0
x(t) = Z D, "'

n=—o00
Integrating both sides we get

t

! o0
/ x(f) = / D, e dy

) —oco =7

S Dnejnwot
- Z jwon

n=—0oo

> D" (4.34)

n=—00

where D,'1 = AwlOnD,,. Thus, when the signal x(¢) is integrated, its FS coefficient is

divided by the factor jwgn.

4.4.9 Parseval’s Theorem

According to Parseval’s theorem, that the total average power in a periodic
signal is the sum of the average powers in all its components which is the sum
of the squared value of FS coefficients.
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Proof The average power in a periodic signal is given by
1 2
P=— | |x()|"dt
Ty
To

1 *
P = ?O x(®) [x(O)]* dt

To
i/x(t) i D, et *dt
To £ "

T(J n=—00

o0
£3 1 —jwont
= E Dn—/x(t)e") dt
Ty

n=—oo

To
= DD,
n=—oo
o0
P= "D, (4.35a)
n=—0o0
For a real x(¢), |D_,| = |D,|
o0
P=Dj+2) D, (4.35b)
n=1
For a trigonometric Fourier series,
1 [o¢]
R 2
P=Ci+5 2_1: C? (4.35¢)

B Example 4.7

Find the Fourier series representation for the signal

x(t) = 3 cos (%t + %)

and hence find the power.

(Anna University, April, 2008)



452 4 Fourier Series Analysis of Continuous Time Signals

Solution:

x(t) = 3cos (zt + z)

2 4
_ E [ej(n/21+71/4) +e—j(%l+n/4)]
2
3

— _e/'n/4e~/"”/2)t + %e—jn/4e—j7r/2t

Compare this with complex exponential Fourier series

o0
A T
x(t) = n;oo D,e™™"  where wy = 5

i D, "

n=—0o0

x(t) = D_1e72" + Dy el7! (b)

IS

Dy =2 [ T yjsi n]
= = COS — sin —
! 4 /oy

\SY N}
| W

Comparing Egs. (a) and (b), we get

3 3

D =——(1 ), |Di| = =
1 2\/§(+1) [D1] 3

D —3(1 ); IDI—3
_1_2«/5 J)s —1—2

> o, > 3\ 3\ 9

n=—00

B Example 4.8
Find the Fourier series of the following signals. Also, find the power using Fourier

series coefficients.

(a) x(t) = 2cos 3t + 3sin 2t
(b) x(f) = cos’ ¢t
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Solution:

(a) x(t) =2cos3t + 3sin 2t

1.
2 2
wo =35 To=—=—
wo1 3
2 2w
o =2, Tp=—=—=m
w2 2
T()1 i 2 B 2
T02 - 3 B 3
T() = 3T01 = 2T02 =2
27 2w
a)O = — = — = 1
T() 2

2. Using Euler’s Formula, x(#) can be expressed as

x(t) — (€j3t 4 €7j3t) + .3_2(6]'21 _ €7j2[)
J

. 3 . 3.
— —j3t s —Jj2t 8131 _ -_e/2t
e +12e + 12

x(t) can also be expressed in complex exponential form as

x(t) =Y D"

n=—00
00
- Y b
n=—00

Equating the two equations for x(¢), we get

R a3 = jnt
et j5e +é —]Ee/ = ZDne]

n=—0oo

Putting n = £3

D;=1 and D_3=1\

Putting n = +2

D, = 3 and D —'3
2 = ]2 72—]2

All other D,, = 0.

453
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Power P = |D_3|* + |D_5)* + |D3)* + |Ds|?

=1+ §2+12+ AN
o 2 2) T 2°

x(t) = cos> ¢t

(b) x(t) = cos®t

1
= —[1 + cos 2¢]

2
0)():2
1 1 [e;2t + e—th] o0 )
== i S Dneﬂnt
X0 =5+ 5 > >
n=—o00
Forn = 0;
1
D():E
Forn = +1;
1 1
Di=- and D_| = -
4 4
Power P = D? + D*, + D? 1+1+1 3
W = = — _— _—= =,
0Tt T T4 T 16 16— 8
B Example 4.9

Find the exponential Fourier series for the signal shown in Fig.4.7.

(Anna University, December 2007)

4 x(t)=cost

~+Y

Fig. 4.7 Signal of Example 4.9
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Solution:
-7 b4
x(t) =cost — <t=<—
2 2
To =10
21
wy=— =027

Ty

Ty
1 )
D,=— /x(t)eﬁ“’””’dt
Ty
0

/2
1 .
=7 coste /M dt
—/2
/2
1 . . )
— % / (e/t —I—eﬁ[)effo'z"”’dt
—/2
/2 /2
1 , )
- e/(lf.Znn)tdt + / e*j(1+.2nn)tdt
20 /
—m/2 —m/2

1 1 1 /2 1 . /2

_ (1—2n7) (1+.2n7)

= T [¢ i t]fn/z + - [/ t]fn/z
20 |j(1 — 2nm) j( + 2nm)

= Zio {ﬁ [ef%(l—.Znn) + e+j7r/2(l_'2nn,)]
JU = 2nw
_'(1+—12) [eijﬂ/2(1+.2nn) _ ei”/2(1+-2n7r)]}
J .2nmw
1 1 .n(l o)+ 1 .n(1+2 :
= — | ——sin—(1 — 2n7 ——————sin — o
10 [ (1 = 2nm) 2 T 20 02

1
= o0 =0 [(1 4 .2n7) cos 0.1n? + (1 — 2n7) cos(0.1n7?)]

_ 0.2 cos 0.1nm?
T (1 — 0.04n272)

.x(t): Z Dnejo.Zﬂnt

n=—00

n
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Dy =02

D_y =D, =0.1818
D_y =D, =0.135
D_3 = D3 = 0.0783
D_y =D,y =0.026

x(t) = Z D,

n=—00
= Do + Dy (e70%" 4 &0271) 4 D, (e7TO4 4 04T
+D; (00T 0671y 4 (eI 4 08T

x(t) =[0.2 4+ 0.3636 cos 0.2t + 0.27 cos 0.4t
+0.1566 cos 0.67r¢ + 0.052 cos 0.8t + - - - ]

Bl Example 4.10

Consider the waveform shown in Fig. 4.8. Determine the complex exponential Fourier
series.

Solution:

1. From Fig.4.8, Ty = 2 and wy = 2T—7; =T =g

A x(t)

-~V

Fig. 4.8 Signal of Example 4.10
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2.

7
D, = — | x(H)e " gy
n To/ ()
0

1 2
D, = l-/e_j’””dt — l/e_j’"”dt
2 2
0 1
1 1 1 1 N
— —jnmt - —jnmt
= 2 (Sjnm) [ o 2(—jnm) 7],
— 2(_;’17[) [efjmr — 1= e*jm‘[2 +e*jm'[]
- —21mj (e =2] [ e =1]
1 )
_ _ ,—jnw
B jnm [1 € ]

1
= —[1 —cosnm]
jnm

2
D,=—
jamw

where n is an odd number. For even number n, cosnmr = 1
3.

X(f): i Dnejlmt

n=—00

ad 1

2 .
N = — e/(2m+1)nt
x(®) b4 mz 2m+1

i

where m is any integer which will be equivalent to n being odd integer.

2
D_y=—-——;
jm
x_1(t) = D_leijnt
2
Dy = —;
jr

x41(t) = Dyge™

457
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x1(t) = x41() +x_1(1)

— i[ejnt _efjﬂt]
jm

4
= —sin(wt) (Fundamental component)
Vg

()3
Ds=—-—=)3
jm ) 3

x_3(t) = D_ze 3!

N EAYS
+3 = i 3’

x43(t) = Dizel™™
x3(1) = x43(8) +x-3(0)

— <%) %[ej?)ﬂt _ gfj37'[f]
J

4\ 1
= <—> —sin(37t) (Third harmonic)
)3
Similarly, x5(#) can be obtained as

4\ 1
x5(1) = (—) 3 sin(57t) (Fifth harmonics)
T

x(1) = [x1(1) +x3(0) + x5(0) + -]

4 1 1
x(t) = — |:sinnt+ —sin3mwt 4 —sin5m‘~|—-~-i|
jm 3 5

B Example 4.11
Let

t 0
1) = -
x(®) {Z—t 1<tr<2

be a periodic signal with fundamental period Ty = 2 and Fourier coefficients ay.

(a) Determine the value of ag.

(b) Determine the Fourier series representation of %.

(c) Use the result of part (b) and the differentiation property of FS to help determine
the Fourier series coefficients of x (7).

(Anna University, May 2008)
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Solution:

(a)

t 0<tr<l1
x(t) =
2—t 1<t<?2

The above equation represents a triangle in the given time interval and the peri-
odical signal with period Ty = 2 is shown in Fig.4.9.

2
wy=—=1
0 T

The Fourier series coefficient a is determined as follows:

7
= — tdt
ap Tofx()
0

1 2
1 1
=— | tdt+ = 2 —t)dt
2/ +2/< )
0 1

(a)
Ax(t)
1
-5 -4 -3 -2 -1 0 1 2 3 4 5 t
b
®) 4 dx(1)
dr
1
-4 =3 [=2 -1 Jo 1 2 3 4 |5 t
_] I

Fig. 4.9 a A triangular wave and b Derivative of triangular wave
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= +12zt22
B 202 2 |,

1
2
l[422+}
4

ag =

l\)l>—‘

1
2

(b) Differentiating the given x(t), we get

) 1 0=<i<1
d -1 1<t<2

This is the square wave and is shown in Fig.4.9b. Figures 4.8 and 4.9b are
the rectangular waves with the amplitude and periodicity. The exponential FS
coefficient of Fig. 4.8 has been determined as

D), = — where n is an odd integer.
jnw
2 . .
= ——— where m is any integer.
jCm+ Hm
dx(t .
( ) — X(I) = § Cm+1)mt
dt jr = C2m+1)

(c) x(¢) in the Fourier exponential form can be written as follows:

x(t) = i D, "ot

n=—0o0

dx(t)

Z (jnwo) D, ™™

n=—00

From the result derived in part (b)
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where 7 is an odd integer.

x(t) = Dy + Z D,,e’”m

n=—00

Do=a0=§

n=2m+1  where m is any integer

1
x(t) = =

_ i Z 1 jm+1)t
2 7w A~ Qm+1)?

Since n is a squared function. D_; = Dy, D_, = D, etc

2
D_y =Dy = 2
2 —jmt +jmt
x1(t) = ——2[e T et
T
= ——cosmt (Fundamental component)
b4
23\ 1
Pa=bu=-{5)5
21 . )
x3(t) = __2_[6—137“ + et
79

4 1
=—= |:— cos(3nt):| (Third harmonic)
2|9

Similarly, x5(#) can be obtained as

1) = ii St
Xs()——n [25008( n)}

1 4 1 1
x(t) = 3T |:cos(m) + 5 cos(3mt) + % cos(5wt) + - - ]

461
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A x(t)

—-11 =10 -9 -1 0 1 9 10 11 t

Fig. 4.10 Signal of Example 4.12

B Example 4.12

For the signal shown in Fig.4.10. Determine the exponential Fourier series.

Solution:
To =10
_ 21 i
Y= 75
1
1 -
D, = — [ 2e7"dt
Ty
-1
1
= 3 e 5 gy
10
-1
RN
5 wjn -1
__ [e—j% _ e”%]
jmn
2
D, = —sinﬂ for all nbut n # 0
n 5
Forn =0
2 sin %
DO - n—0 g %
2
Dy=-=04
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o0
T —jmnt

2 1
x(1) =04+~ Z —sin Tne”

n=—0o0

2 . -7
D_; = ——sin— =0.374
T 5

2 .7
D, = —sin— =0.374
b4 5

x1(t) = D,l(e*JO-Z”’) +D+1(6+j0'2m)
= 0_374[6710.27” + e*jO.Zm]

= 0.748 cos 0.2r ¢t (Fundamental component)
1 -2
D_, = ——sin —r
b4 5
= 0.303

D, =D_, =0.303
xQ(t) — 0.303[6—/‘0.47” + e+j0.4m]
= 0.606 cos(0.47¢) (Second harmonic)
D_; = —i sin —37
3 5
=02
D+3 = D,3 =02
X3(1) = 0.2[e /067! 4 (H06T
= 0.4 cos(0.6r¢) (Third harmonic)

x(t) = Do + x1(t) + x2(t) + x3() + - - -

‘x(t) = 0.4 4 [0.748 cos(0.2rt) + 0.606 cos(0.4m¢t) + 0.4 cos(0.67rt) + - - - ] ‘

Note: Forn = 5,10, 15,20, ...
D,=0

B Example 4.13

Determine the exponential and trigonometric Fourier series of a train of impulse
with periodicity Tp = 1. Verify the exponential and trigonometric coefficients rela-
tionship.
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x(1)

~V

-3 -2 -1 0 1 2 3
Fig. 4.11 Periodic train of impulses
Solution:
Tp =1 and wy=2m

To determine the exponential FS coefficients

Ty
1 . 1 12 .
Dn = — 8([) e nwot gy — / 8(t) e—JZrmtdt
Ty To J-1p2
0
Over this interval, D, = TLO
1
Dn = — = 1
Ty
Dy =1

x(t) = Z D, e/t

n=—0o0

o0

x(t) = Z ej27'rnt

n=—00

To determine the Trigonometric Fourier series

1 [T
== S(t) dt
ap T/o (1)
! 1
an = — =
0 Ty

Since the train of impulses is an even signal b, = 0.
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To
a, = — §(t) cos nwot dt
To Jo
2
= — = 2
Ty

oo
x(t) = ap + Z a, cos nwyt

n=1

n=1

o0
x@t) =1+ Z 2 cos 2mnt

Cl():D():l
Dnza—nzzzl
2 2

465

Thus, the relationships between trigonometric and exponential Fourier series coeffi-

cients are verified.

B Example 4.14

For the periodic signal x(¢#) = e~ with a period Ty = 1 second, find the Fourier series

m

(a) Exponential form,

(b) Trigonometric form,

(c) Polar form, and

(d) Verity the relationships of FS coefficients.

Solution:

(a) Exponential Fourier series
x(t) is plotted as shown in Fig. 4.12.

Fig. 4.12 Exponentially decaying periodic signal

~+V
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To =1
2
wy)y = — = 21
To
To '
D, = — x(t)e "ot gy
To Jo

1
2/ e—te—jnZTrtdl
0

1
— / ef(l+j2nn)td[
0

_ _; [ —(1+j27rn)t]l

T (1 +j27n) 0

T a +1'2 = ert]
j2mn
1 _ i

= (1 +j27n) [1-¢] [ e™=1]
0.632 0.632

Dy=—— Dl = ———
(1+j2mn) V147202
Dy = 0.632

x(t) = i D, /"ot

n=—0o0

j2mwnt

> 1
x(t) = 0.632’1;)o NaEwre

D — 0.632
"+ 4nn?
Since n is a squared function
D_, = D+n
0.632
D = ——
V1+4n?
=0.1

.XI(t) — D_l[eﬂm +e*j27‘[l]
=2 x0.1cos2mt
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= 0.2cos2nt (Fundamental component)
_ 0.632

Doy= 2"
VI +4n2 x4
= 0.05

x(t) = 0.1cosdmt (Second harmonic)
0.632

D=
V1+472 %9
= 0.0335

x3(t) = 0.067 cos(0.67¢) (Third harmonic)
x(t) = Do +x1(t) +x2(8) +x3(t) + - - -

‘x(t) =[0.632 4+ 0.2cos 2t + 0.1 cos4nt + 0.067 cos 6t + - - -

(b) Trigonometric Fourier series

1 To
a=— | x(t)dt
0 To/o
—t

1
:/edt
0

=(—-¢")
ap = 0.632
To
a, = — x(1) cos wont dt
To Jo
1
= 2] e~ ' cos2mnt dt
0
Using the property
a. . b
/be“’cosbtdt _ [e"(acos bt + bsin br)
a ((12 + bZ) a
2 [ 2nt(e™) + e 2mnsin2 ]l
a, = ———5 5| —cosZmnt(e e 2nnsin2nn
(1 +4m2n?) 0

467
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2
T (U +4nn?) [e7! {—cos2mn + 27nsin 27wn} + 1]
m°n
= -1
= Urammy ¢
1.264
ay = ————————
(14 472n?)

To

2
b, = — [ x(¢) sin wont dt
Ty

0
1
= Zfe” sin 2w nt dt
0

Using the property
b b
f esinbtdt = ———— [e"’[a sin bt — b cos bt]]
p (a% + b?) a
we get,
b 2 {*f[ in27nt — 2 2;]}1
=-—————1¢ '[—sin27nt — 2nncos2wn
" (1 + 4n2n?) 0
2 1
=———— —|—¢ (sin2nn+ 2nwncos2nn) + 2nn
(T any ¢ )+ 2]
drrn
by=—— (1 —¢!
(1+ 4n2n2)( )
_ 2.53mn
" 1+4nn?

o0 o0
x(t) = ap + Z a, cos wont + Z b, sin wont

n=1 n=1
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o0
n
1) =0.632 + 1.264 ——————cos2mnt
x(1) ’?21 (1 + 472 n

o0

n .
+ 2537'[ Z m sin 27Tl’lt

n=1

Forn=1
x1(t) = 0.312cos 2t + 0.196 sin 27w ¢

0.196
= /(0.312)2 + (0.196)2 cos (Zm — tan~! m)

= 0.2cosmt —0°)
= 0.2cos(2mt) (Fundamental component)

Forn =2
Xp(t) = 0.159 cos4mt + 0.1sindnwt

= 0.1cos(4nt) (First harmonic)

Forn=3
x3(t) = 0.0106 cos 6t + 0.0666 sin 677t

= 0.067 cos 677t
x(t) = ap + x1(t) + x2(t) 4+ x3(7)

‘x(t) =[0.632 4+ 0.2cos 2t + 0.1 cos4mt + 0.067 cos 6t + - - - |

(c) Polar form Fourier series (cosine form FS)

o0
x(t) = Co+ Y _ Cycos(awont — 6,)

n=1

C()Za()
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/(L6 + 64r%n%)

T (I +4ntey)
c 1.265
! V1 + 47262
2.53
6, = tan~! o7 =tan ' 27n =0
1.264
2\ V1.6 + 6.472n2

cos[2mrnt]

x(t) = 0.632+ Y

n=1

(1 + 472n2)

ad 1.265
X() =0.632+ Y

— [ +4n2m2)

cos2mnt

(d) 1. ap = C() = DO = 0.632
2.

|D|—C”— 1265 0632
Y2 2/T+4nt? 1+ anin?

Ch=,a2+0b2

_ V(1.264)2 +2.532722
B (1 +472n2)
V1.6(1 + 472n%)
(1 +4n22)

1.265

JA F4n2n2

4.5 Existence of Fourier Series—the Dirichlet Conditions

The continuous Fourier series of the signal x(t), is represented in the following form.

x(t) = Z D, > (4.36)

n=—00
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where
To

D, x()e 7> dr (4.37)

Ty Jo

and n represents the harmonic number.

If the integral in Eq. (4.37) diverges, CTFS cannot be found for x(¢). If certain
constraints are puton x(¢), Eq. (4.37) converges and the conditions are called Dirichlet
conditions. The Dirichlet Conditions are:

1. The signal x(¢) must be absolutely integrable over the time interval 7, < ¢ <
to + Tp. The above condition implies that

to+To
/ X ()| df < o0 (4.38)

to

2. The signal x(¢) must have a finite number of maxima and minima in the time
interval tp <t < tg + Tp.

3. The signal x(#) must have finite number of discontinuities in the time interval
ty <t <ty+ Tp.

4.6 Convergence of Continuous Time Fourier Series

The arbitrary signal x(¢) can be expressed by FS in Eq. (4.4), if it is periodic. It does
not mean that every periodic signal can be expressed by FS. When the series uses
a fixed number of terms, then it guarantees convergence. If the energy difference
between the signal x(#) and the corresponding finite term series approaches zero, as
the number of terms approaches infinity, such a series is said to be convergent in the
mean. The Fourier series of x(#) converges in the mean if it has finite energy over
one period. This can be expressed as

E= | |x(|dt < oo (4.39)

To

When conditions (4.39) are satisfied, the Fourier series converges in the mean and
also guarantees that the Fourier coefficient is finite.

4.7 Fourier Series Spectrum

The plot of Fourier series coefficients with respect to w is called Fourier series
spectrum. In exponential Fourier series and in polar Fourier series, the Fourier series,
the FS coefficients D, and C, are complex. Thus, these coefficients have magnitude
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and angle. Thus, the plots of D, versus n and ZD,, versus n are called exponential
Fourier spectra. Similarly, the plots of |C,| versus n and ZC, versus n are called
trigonometric Fourier spectra. The following examples illustrate the above methods.

B Example 4.15

For the Example 4.14, plot the exponential Fourier spectra for the periodic signal
x(t) shown in Fig.4.12.

Solution: The exponential Fourier series coefficient of Fig.4.12 has been derived as

0.632 0.632
= / —tan" ' 27n

Dn = -
1+27n 1+ 4n2n2

Forn =20
Dy = 0.63220°
Forn = +1,

Dy =D_; =0.1£F81°

D, =D_, =0.05/F85.5°

Dy =D_3=2335x 1024 F87°
Dy=D_,=25x 102/ F877°
Ds=D_s =2 x 1072/ F88.2°
D¢ =D_g = 1.68 x 1072/ F 88.5°
D; =D_7 =144 x 10724 F88.7°

The magnitude spectrum of D, is shown in Fig.4.13a and the phase spectrum is
Fig.4.13b. Note: @ = nwy = 2mn or n = 5> which is a function of frequency.
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Aanl
a
(@ 0.632
1 1
.05 .05
0 025 .0335 I N .0335 025 0o
.0168 . . . . 0168 0144
O I ITT?v=
-7 -6 -5 4 -3 -2 -1 0 1 2 3 4 5 6 71 n
-n
b
®) g5 7 88.5° 4|Dn
88.2°
87.7°
87°

87—87.7:88 .
—88.5"_ g8

Fig. 4.13 Frequency spectra of Example 4.15. a Magnitude spectrum and b Phase angle spectrum

Bl Example 4.16

Find the trigonometric and exponential series representation of the signal whose
mathematical description is given as

1 0<r<7%
0 §§t<T
x(t+T) =x()

x(t) =

Using the differentiation property of E.S., determine the exponential F.S. coefficient
and verify the results.

(Anna University, 2009 and 2013)
Solution:

1. Trigonometric F.S. Representation
The mathematical description is sketched as the waveform in Fig.4.14a and its

derivative in Fig.4.14b. From Fig.4.14a
To=T

and
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() 1 x(®
1
“t -7 —T/2 0 T/2 T 0.5T =t
dx(t
® $o0=G
1 1 A 1
“t T ~T/2 0 T/2 T ='E
vl vl
_dx(t)
© +90="45
1a
b 0 2 %
-1

Fig. 4.14 a, b Representation of x(¢) and dx(¢)/dt of Example 4.16. ¢ Representation of impulses
in one period
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21 2
CUO = — = —
Ty T
The trigonometric E.S. coefficients are determined using Egs. (4.5), (4.6) and
4.7

1
ag = — | x(t)dt
T Ty
1 (72

ap =

a, = — [ x(t) cos wontdt
Ty Jr,

2 T/2
= — f 1 cos wyntdt
T Jo

2 1 . T/2
= — —— [SIn wynt
T won [ 0 ]0

27T [ 2 172
= ——— | SiIn —nt
T 27n T 0

= —sinnwn
n

=0 (forall n)

2
b, = x(1) sin wontdt

F0 To
2 T/2
= —/ 1 sin wontdt
T Jo
2 1 )2
b, = ——— [— cos wont
Ta)on[ wontly
2 T 2n T
=—=—|—cos—n-—1
T 2ntn T 2

= —1|1 — cosmn]
147
=0 (for even values of n)

2
R — (for odd values of n)
n
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o o0
x(t) = ap + Z a, cos wont + Z b,, sin wont

n=1 n=1

1+2§: i t  (for odd val f n)
= — —_ S1n won oro values o1 n
2 o S— 0

t) = 1+2 i 2ﬂt +1' 32nt +1' 5271[ +
X = 2 - Sin T 3SIII T 5Sln T

2. Exponential F.S. Representation of x(¢)
The exponential E.S. coefficient is given by

1 .
— | x(t)e /" !gy

D, =
T, To
1 T/2
=— / Le /ot gy
T Jo

= ; I:e—j"wol:l
T(—jna)o) 0
-1 T [e—jnen/rw/z) _ 1]
jT 2mn

Sl ]
j2nn
1 .
= —- [cosnn—]smnn—l]
Jj2mn
1
Jj2mn
=0 (for even values of n)

[1 — cosn| [sin wn = O for any integer value of n]

1
= —  (for odd values of n)
jmn

But Dy is to be calculated from first principle since D,,|,—o = oo.

1 [T

= — 1dt
Ty Jo

D,
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The E.S. is written as

o0
x(t) = Dy + Z D,

n=—00

Forn = £1
| R
xl(t) = —el( 7/T)
jm
| R
x_1(f) = ——e D
| .
X1(0) 4+ x_1 (1) = — [OT/D — iCx/D1]
jm
2 2r
= —sin —t¢
T T
Forn = 43
x3(t) = Le+j(2ﬂ/T)3t
’ j3m
x_3() = _Le—j(Zn/T)&

j3m

1 . )
)C3(l‘) +x73(l) = — [e](27T/T)3l _ e—](27T/T)3l]
j3m

2 . 2
= —sin|{3— )¢
3 T
Thus, x(¢) is written as

A — 1 2 (. 2nt 1 . 3 27r3
x()_[§+;{sm(?>+§sm <? t)+}i|

3. Exponential E.S. Using Differentiation Technique
The derivative of x(7) is sketched as a train of pulses in Fig.4.14b. Let

dx(1)
dt

g =

Let D), be the exponential E.S. coefficient of g(¢). Consider the pulses in one
cycle which is represented in the Fig. 4.14c. From Fig. 4.14c, the F.S. coefficient

is written as
D, = —[1 — o T/)]

[1 — =@/ D]

Nl =N -
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[1—e7™]

[1 — cosmn] (which exists for n is odd)
(for n is even)

D =

n

Nl SN =N =

Using the differentiation property 4.47, we get

(jwon)D, = D,
D},
Dn = -
Jwon
B 2
T jT@n/T)n
1

B jrn

Thus, identical results are obtained as in part (2) of the problem in few simpler
steps. The E.S. of x(¢) following end stage of part (2) of the problem we write

= 2+ 2 Lsin (o) + 2sin3 () + Ssins () +
X = 3 - S T 3Sln T 5S1n T

B Example 4.17
Consider the triangular wave x(¢) shown in Fig.4.15a.

(a) Find the trigonometric Fourier series using differentiation technique.
(b) Find the exponential F.S. using differentiation technique.

Solution: The equation of the triangle of x() can be written as follows.
The slope of the straight line of triangle is,

The equation of the straight line of the triangle is,
3
1) =—=t
x(1) 1 +c
Att = 0; x(t) = 3 and hence ¢ = 3.

3
x(t):—zt+3 0<tr<4
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()

~

dx(t
o $a(0=52
3 A
-t —12 -8 —4 0 4 8 12 7
—3/4

Fig. 4.15 Triangular wave of Example 4.17. a x(¢) and b dx(r) /dt

()

To Determine E.S. of the Train of Impulses and the DC Term
Differentiating the above equation with respect to  we get

de() 3
7R +358(0)

Considering all the triangles, the above equation is written as

dx() 3 > B
= 4+3Z$(t 4n)

n=—0oo

where 7 is an integer. The above equation is represented in Fig.4.15b. Using
trigonometric Fourier series, the train of impulses can be represented as follows.

The periodicity of the impulses is given by

To = 4 sec
and
2 T
C()() = — = —
Ty 2
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Ty

1
ag = — 35 (t)dt
0 Ty Jo

3 4
= Z/o S(t)dt

IR

Since the train of impulses represents an even function b, = 0 and q,, is deter-
mined using Eq. (4.6).

2 (D
a, = — x(1) cos nwytdt
To Jo

2x3 [* T T
== /OS(I)COSEntdt [B(t)cosantzz?(t)]

3 4
= 5/0 S(t)dt

| W

Thus, the E.S. of the train of pulses is written using Eq. (4.4)

o0 oo oo
Z 35(t — 4n) <E> ap + Z a, cos nwyt + Z b, sin nwyt

n=-—o00 n=1 n=1
3 3o T
= 7 + 3 ;cos (Ent)

Taking the DC term into account we get the F.S. of dx(¢)/dt as given below

dx(t) rs 3 3w« T 3
a a3 -3

dx(t) Fs 3 — P
o <~ 3 ;cos <5nt) (a)
To Find the E.S. of the Train of Triangle (x())

Using Eq.(4.4), the E.S. of the series of the triangles is obtained as explained
below
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s o0 oo
x(t) «—ag + Z a, cos wont + Z b, sin wynt
n=1 n=1

Differentiating the above equation, we get

dx(t)
dt

o0 oo
<E> Z a,won(— sin wont) + Z b,won(cos wont) b)

n=1 n=1

Comparing Egs. (a) and (b), we get

a, =0
3
bna)onzz
3\2
b,=|=— |-
" <2n>n
3
 7mn
2

To
ag = — x(t)dt
0 To/o

The E.S. of x(¢) is written as

3 «—3 .7
X(t)=§+n2:1:551n5nt

x(t)=;+%{sin(%t)—|—%sinZ(%t)—l—%sirﬁ(%;)_p...}

Summary of Steps Followed

1. The given signal x(¢) is differentiated and dx(t)/dt is represented in graph
which is in the form of train of impulses and a DC term.

2. Since the series of impulses represent an even function, the E.S. coefficient
b, = 0. Find ay and g, using Egs. (4.5) and (4.6).

3. With these coefficients express dx(¢)/dt in E.S.
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4. x(t) is expressed by the analysis equation as

o0
FS .
x(t) <— ap + E (a,, cos wont + b, sin wynt)

n=1

4l) xs,

[o¢]
7 Z —a,won sin wont + b,won cos wont
t

n=1

5. Compare the coefficients obtained in step (3) with those obtained in step (4)
and get a, and b,, which are E.S. coefficients of x(¢).

6. Find a¢ using Eq. (4.5).

7. Express x(¢) in E.S. using Eq. (4.4).

(b) To Determine the F.S. Using Exponential F.S. The Train of Impulses
The exponential Fourier series and the E.S. coefficients are obtained using
Egs. (4.9) and (4.10), respectively. The first derivative of the signal x(¢) is repre-
sented in Fig.4.15b. The E.S. coefficient for the train of impulses is determined

as
1 —jnwot —jnw,t
D, = — | §@e?'dt [§@)e " =1]
Ty Jr,
3 4
= - S(t)dt
4f0 @)
3
4
dx(f) s 3 3 < .
_ - - e]wom
dt 4+4 Z
n=—0o0o
de(t) rs 3 3 =
_ - e e/(n/Z)nt
di 4+4n;>o @

Fourier Series for the Triangle

The E.S. for the triangle is determined as follows:

1 —jnwot
D,=— [ x(t)e™'dt
Ty Jr,

x(t) = Z D, el

dx(t) - . jawont
7 = n_Z DnQna)O)e/ 0

=—00
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d};(tt) _ n;w D, (jn % ) ST/ 2m (b)

Comparing Egs. (a) and (b), we get

D(,n )_3
") Ty

oo
E D ejw()llt
n

n=—00

—ji i le/'(n/Z)m
2 n

n=-—00

x(1)

The values of n is substituted from —oo to 400 except n = 0. At n = 0; Dy =
3

CZ():E
3
xo(f)=§
Forn =
3
x(t) = —j5— "
2
;3 ( nt+" n[>
= —j— (cos — sin —
o ! TS
Forn=—1

.3 T .. 7
x_1(t) = +]§ (cos Et —jsin Et>

37, T
x1(t) +x_1(t) = —]—T[ [2] sin —t]

Forn =42
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31 .
X)) = —jgi(elm)

31
x_o(1) = +JE§(€ 7
31, .
i [t _ pint
1 S

X2 (t) X2 (t)
9 [ i t]
= —|SIn7|w

3
= —sin (ZZI)
2 2

Similarly forn =3

I
x3(0) +x-(1) = —sin (3%)

In general, x(¢) is written as

x(@) = ; + % |:sin (%t) + % sin (2gt) + % sin (3%;) +. ]

The same result using trigonometric F.S. as well as exponential F.S. was obtained.

B Example 4.18

Consider the waveform shown in Fig.4.1. Using differentiation and integration prop-
erties of F.S., determine the exponential Fourier series coefficient and hence x(7).
Verify the results so obtained with that of Example 4.1.

Solution: The first derivative of the signal shown in Fig.4.1 is shown in Fig.4.16a
which is in the form of train of impulses which is alternatively going positive and
negative with amplitude 2. Consider the impulses in one cycle which is shown in
Fig.4.16b. Here,
dx (1)
dt

=2[8(t+1) — 8 — 1)]

Let D), be the E.S. coefficient for these impulses. From Fig.4.1.

To = 4 sec
and
2 T d/
= — = —rad/s
W= T

From Fig.4.16b, D;, can be written as
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’ 2 jwon —jwon
D, = —[¢"" —e¢ ]
4
= jsin won

According to integration property, D,, the complex exponential E.S. coefficient of
x(t) can be written as

D/
Dn = _n
Jwon
_jsinwon
N j(,()()n
_ 2sin(n/2)n
B Tn
2
= —sin m (for n is odd)
n 2
=0 (for nis even)
(a) 2 2O

A
~+
|

—_

=)

—

)
~V

=2
(b) 2 2O
2
—t : -1 0 1 ! 3t

! i
! I
! I
! I
! I
| 2

|
:< To #:

Fig. 4.16 Signal representation of first derivative of signal in Fig.4.1. a dx(¢) /dt and b dx(t) /dt in
one period T
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Since the waveform x(#) is symmetrical with respect to t, Dy = 0.
Using Eq. (4.9), we write

x(t) =Y D,

n=—00
where n # 0. Forn = £1
2 jwot —jwot
x1(t) = — [ + e
T
4
= — cos wyt
T
4 T
= —cos —t
T 2
Forn = -3
2 .
D ;= sin (—— X 3)
- x3
_ 2
T o7 x3
Forn =3
o= (3 )
= sin ([ — x
BT 3 2
_ 2
T o7 x3
_X3(t) = (D73efjw0t +D3e]a)01)
= _zl[eff(3ﬂ/2)l + ef(371/2)t]
T3
Forn =43

x3(t) = —;% cos (3%t>

Thus, we write

x(t) =

(”r) ! (3”t)+1 sTi4
COS 2 3COS 2 5COS2

NN
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The same resultis obtained in Example 4.1. The number of steps and the mathematical
operations involved in the above method are very less.

B Example 4.19

Consider periodic waveform shown in Fig.4.17a. Using differentiation and integra-
tion properties of F.S. determine the exponential E.S. coefficient and hence E.S. x(7).

Solution: The given signal is represented in Fig.4.17a. The signal x(¢) repeats itself
for every period Ty = 2 sec. Hence, the fundamental frequency is

2
wy = — = 7 rad/s.
Ty

From Fig.4.17a, the mathematical description for x(¢) is given as

4t Loyl

x(t)—{ ]2— <32

41-1n L<r<?
x(t+T)=x@)

1 1

dx(l‘)= 4 —§§t<§

dt -4 1<t<3

x(t+T) =x(t)

dx(t)/dt is represented in Fig.4.17b. When dx(¢) /dt is further differentiated at mul-
tiplies of :i:% the up going and down going impulses occur and in other places, the
signal is zero. This is represented in Fig.4.17c. Let us consider only the impulses
within one period Ty = 2 sec. Att = —1/2 we have 8§(¢ + 1/2) and att = 1/2 we
have 83(r — 1/2). If we denote D), as the exponential F.S. coefficient, then we may
write

8

D, = — [em/z)won _ e—j(%mon]
Ty

where Ty = 2 sec.
A
D, = j8sin —won
2
= j8sin —mn
JEN S

Using integration property of E.S., the exponential E.S. of x(¢) is written as
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(a) 4 X(t)

3/2

|
~+
|
—
|
|
|
|
| S
N
o
W
Ny _____ =
~+V

A dX(t)
(b) gt
4
—t —32 —1 —050 05 3/2 t
-4
© L P
dt
8 8
) -3/ 1 R
—t -1 -12 0 0.5 | 3/2 t
| |
I I
: I
-3 ! -8 i
I I
|« To > |

Fig. 4.17 Representation of x(¢) of Example 4.19 and its derivatives
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__Db

" (jwon)?
—j8
— sin zn (for all odd values ofn)
7202 2
=0 (for even values ofn)

Since x(¢) is symmetrical with respect to time axis, Dy = 0. The E.S. of x(¢) is written
using Eq. (4.9) as

oo
x(t) =Y D"

n=-—o00
BT
= ?n;w = sin Ene’
Forn = —1 o
—Jjo . 4 J
D_, = 5~ sin (—15) = oy
Forn=1
—j8 . /m
D] = ?sm (E)
Jj8
T
x1(t) = [D,le_jwom +D1€jw0m]
]8 [ejm‘ _ e*jnt] ]
=5, X 2j
b4 2j
Forn = +1
16 .
x1(t) = =) sint
Forn = +£3
o 16 [1 . At
X = —— | =sin3nx
3 72 |9
Forn = +£5

(t)—l6 1 -
X5 = 25smn
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Summing up x; (¢), x2(¢), x3(t), . . ., we get x(¢) as

16 1 1
x(t) = = [sinm— §sin3m+gsin5m—~--i|

B Example 4.20

Consider the waveform whose mathematical description is given by

x()y =7 |1 <1
x(t+T) = x(t)

Sketch the signal x (7). Using differentiation and integration properties, find the expo-
nential E.S. coefficient, and hence express x(¢) in Fourier series.

Solution:
x() =7 <1

This waveform which is periodic is shown in Fig.4.18a. The same waveform is
given in Example 4.6 and is represented in Fig.4.6. Example 4.6 was solved using
trigonometric F.S. The same problem is solved, using differentiation and integration
properties of exponential F.S.

x(0) =1
when differentiated becomes
dx(t)
=2t
dt

This waveform is shown in Fig.4.18b. When dx(¢)/dt is further differentiated, we
get

d*x(t)
=2-28(t+1)—26(t—1
> (t+1)—28(— 1)
=g1(0) + &)
where
=2 <l
and

&) =206+ 1)+ 48— 1]

g1(t) and g(¢) are represented in Fig. 4.18c and d, respectively. When g;(¢) is
differentiated
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(b) 2= DO

~+V

(@

(e) Ag _ dgl ®)

~+V

-2

Fig. 4.18 Waveform of Example 4.20 and its derivatives

dg (1)
t

" =2[6(t+1)—d8(r—1)]

is obtained and is sketched in Fig. 4.18e. From these, the exponential F.S. coefficient
is obtained as given below

Dy = — [ 4 ]
Ty
= —2coswon
Dg3 = %[elwo" — e /@]
= +j2sin wyn

where Ty = 2 sec;



492 4 Fourier Series Analysis of Continuous Time Signals

21

b1
= — = — =g rad/s
To 2

20

The exponential E.S. coefficient of x(f) is obtained using integration property as

_ Dg n Dgs
(jwon)*  (jwon)?
+2costn  2sinmn

w2n? +J (jwon)?

n

Since sin wn = 0 for all integer values of n

+2cosmn
D, = 2,2
T’n

(=D"
=2 m2n?

where n # 0

1 1
D, :—/ x(t)dt
0 Ty J1
1

1
—/ 2dr
2 )

Forn = +1

Forn = 42

41
X (1) = +F 7 o8 27 (t)

Forn = £3

4 11
x3(t) = -3 §cos 3 (t)

Using Eq. (4.9) we write
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1 4 1 1
x(t) = §+F[—cosnt+ ZcosZnt— §cos?,m‘_|_...i|

B Example 4.21

Consider the waveform which has the following mathematical description

241t —2<t<l1
x(t) =11 [t <1
2—t 1<t<?2
x(t+4) =x()

(a) Sketch the form.
(b) Using differentiation technique find the exponential E.S. coefficient.
(c) Using exponential E.S. coefficient write the E.S. of x(z).

Solution:

(a) For the given mathematical description, the waveform is represented as x(¢) in
Fig.4.19a.

(b) The first and second derivatives of x(¢) are shown in Fig. 4.19b and c, respectively.

(c) Let D;, be the exponential E.S. coefficient of the waveform shown in Fig.4.19c.
From this figure, D/, is written as

/_i 2won —j2won _i jwon —jwon
Dy = o [ 4 ] L[ o]

where Ty = 4 sec;
, 1 /4
D, == [cos Tn — Cos —n]
2 2
Using the integration property of E.S.; D, is calculated as

D,

D, =
" (ja)gn)z
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a
(a) At
1
Nm
| | | | | |
| | | | | |
| | | | | |
1 1 1 1 1 1 >
—t —6 -5 -3 -2 -1 0 1 2 3 5 6t
(b) 4 dx® (©
dt dPx(t)
] de
1 1 |
1 2 .
-t —2 -1 0 t —t —2 -1 0 1 2t
B D I -1 -1

Fig. 4.19 a Waveform of Example 4.23. b First derivative of the waveform. ¢ Second derivative of

the waveform

2 T
[cos TN — COS En]

x(t) can be expressed in Fourier series as

2
x(1) = T2
Forn = +1
2
x1(t) "
4 (7‘[
= —cos|—
w2 2
Forn =42
2
x(1) = -

o]

Z [cos TN — COS %n] el

n=—00

T . .
= _ [cosn — cos E] [e_f(”/z)’” + e’(”/z)”’]

t) (Fundamental component)

COS 27T — COSTT

5 ] [e—jm + e/'rrr]

4 T .
= — [—— cos (25t)i| (Second harmonic)
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Forn = £3
x3(t) = ———— | cos 3w — cos En [e P20 4 B/
72 %9 2
411 (3”t) (Third harmonic)
= —|-cos (3= ird harmonic
2|9 2

1 1
Dozi[/ (t+2)dt+/ (2—t)dti|
To )2 -1
P -1 1 277
HE +2tl2 + [t],l + [ZI - 5]]}

LD T IS S S
2 2 2 2

W A= B

The E.S. representation of x(f) is

0= 5[ (5) o () o5+

B Example 4.22

Consider the periodic signal shown in Fig.4.20a. By using the differentiation tech-
nique, determine the exponential E.S. coefficient, and hence obtain the E.S.

Solution: The given signal is shown in Fig. 4.20a. As seen from this figure 7y = 4 sec

and hence )
T
wyg = — = —rad/s
o 2

For x(¢) the following mathematical description is given using straight line equation
for one period.

2t+2 -2<t<0
x() =
—2t+2 0<t<?2

Differentiating the above equations, we get

o 2 —2<1<0
d -2 0<t<2?2
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(a) 4 x(Y)

A

~+V

(b) 2+ dx®)

A\ 4
y
A 4

©) 2 Px®

o
N

—4 —4

Fig.4.20 The derivative signals of x(¢). (a) Triangular waveform of Example 4.22. b First derivative
and ¢ Second derivative
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The first derivative of the signal is shown in Fig.4.20b. Further, differentiating the
signal, we get

48(t+2) —2<t<0
—45(1) t=0
45(t—2) 0<t<?2

dx(t)
dr?

The train of impulses is shown in Fig. 4.20c. Consider the impulses between any one
period Ty = 4sec as shown in Fig.4.20c. The two impulses —45 and 45(¢t — 2) lie
within a period. Let D/, be the exponential E.S. coefficient of these impulses. This
can be written as

1 .
D, = —[—4 + 4¢ 20
7! e

4
= Z[_l + cos 2won — j sin 2wyn]

=[—1+4cosmn —jsinmn] (sintn = O for all n)
= (—=1+cosmn)
= —2  (for odd values of n)

=0 (for even values of n)

The exponential series coefficient D,, for the original signal is obtained from

D/
"7 (won)?
8
~ T2
Using Eq. (4.9), x(¢) is expressed in E.S. as
x(1) = i 5o
= 7202

where n is odd and Dy = 0 since x(¢) is symmetrical with respect to the time axis.
Forn = %1

8 . .
xi(t) = ﬁ[el(ﬂ/Z)t 4 e—](ﬂ/Z)l]

16 T
= — cos —t
w2 2

Forn =43
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x3() = il[eﬁ(ﬂﬂ)z + e—j3(ﬂ/2)z]
729
16 [ 1
== [5 cos 3%t]
T
x(@) =x1(8) +x3(t) + - -

x(t) = :{—2 [cos (%t) + écos (3%t) + % cos (5%;) + .. ]

B Example 4.23

Consider the signal shown in Fig.4.21. Using the property of the E.S. and the results
obtained in Example 4.22 determine x(¢). The signal is shown for one period of the
periodic signal whose Ty = 4 sec.

Solution: Let x;(t) be the signal of Example 4.22.
(1) = 2+ x,(1)
The signal shown in Fig.4.20a is shifted up by a magnitude of 2 to get the signal

represented in Fig. 4.21. Hence, aD.C. term of 42 is introduced in the F.S. of Example
4.22. Thus the E.S. of Example 4.23 is written as

25

0 =2+ 22 [cos o+ L cos 3Tt + - cos 5% +
= — |cos =t + = cos3—=1+ ——cos5—t+---
x 2 2' "o 2 2

P x(t)

~V

—t -2 0 2

Fig. 4.21 Signal of Example 4.23
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B Example 4.24

Consider the signal shown in Fig.4.22. Using the property of the E.S. and the results
obtained in Example 4.22 determine x(z).

Solution: The signal shown in Fig.4.22 lags behind the signal shown in Fig.4.20 by
7 /2 radians. Other things remaining the same, the results obtained in Example 4.22
is modified with a phase shift of /2 rad. lagging.

x(t)=g[cos(%t—%)—i—écos(?a%t—%)—i—%cos(S%t—%)—i—-'-}

0 =28 lenZrt 3%t LainsZrs
= — [sin=t+ ~sin3=r+ —sin5=¢+---
B e R R R

B Example 4.25

Consider the waveform shown in Fig.4.23. Using the property of the E.S. and the
results obtained in Example 4.23 express x(t) of the signal shown in Fig.4.23 in E.S.

Solution: The signal shown in Fig.4.23 is same as shown in Fig. 4.20 except x(¢) of
Fig.4.20 is time expanded as x(#/2) in Fig.4.23. The periodicity T} is changed from
4 sec. to 8 sec. now and the fundamental frequency as

wo = T rad/s
4

The time compression or elongation does not bring any change in the F.S. coefficients.
However, the fundamental frequency and the harmonics have changes according to

4 x(t)

|Ak

)

Fig. 4.22 Signal waveform of Example 4.24
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4 x(t)=x(at)

Fig. 4.23 Signal representation of Example 4.25

the changed radian frequency wgy/2. Thus, the result obtained in Example 4.22 is
modified as follows for the Example 4.25.

x(t) = g [cos (%t) + %cos (3%1) + % cos (5%;) + .. :|

Summary

1. Any arbitrary periodic signal x(¢) can be represented in the form a linear
combination of complex sinusoids. Such a representation is called Fourier
series. The higher frequency sines and cosines have frequencies that are
integer multiples of the fundamental frequency.

2. The Fourier series can be represented in any one of the following forms:

(a) Trigonometry form.
(b) Complex exponential form.
(c) Polar or Harmonic or Cosine form.

The coefficients of the above forms have definite relationships between
them.
3. The Fourier series possesses the following properties:

(a) Linearity,
(b) Time shifting,
(c¢) Time reversal,



4.7 Fourier Series Spectrum 501

(d) Time scaling,

(e) Multiplication,

(f) Conjugation,

(g) Differentiation and
(h) Integration.

4. The Parseval’s theorem on Fourier series states that the total average power
in a periodic signal is the sum of the average powers in all its components
which is the sum of the squared value of Fourier series coefficients.

5. Dirichlet showed that if x() satisfies certain conditions, the Fourier series
of x(f) is guaranteed. These conditions are called Dirichlet conditions.

6. The magnitude and phase angle of Fourier series coefficients plotted versus
frequency w are called Fourier spectra of the signal x(z).

7. The exponential Fourier series is preferred to other types of representations
because it is more compact and the mathematical operations involved are
less.

Exercises
L. Short Answer Type Questions

1. What is a Fourier series?
Any arbitrary periodic signal x(¢) can be expressed as a sum of sinusoids
and all its harmonics. Such an infinite series is known as Fourier series.
2. What are the different forms of representing Fourier series?
The different forms of representing Fourier series are:

(a) Trigonometric Fourier series
(b) Polar (compact or cosine form) Fourier series
(c) Exponential form Fourier series

3. Give mathematical expression for trigonometric Fourier series?

oo
x(t) = ag + Z (a,cosnwot + b,sinnwot)

n=1

where
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1
ag = — | x(t)dt
=7 ()
To
2
a, = — [ x(t)cos nwytdt
Ty
To

2
b, = — /x(t)sin nwotdt
Ty
To

ap, a,, and b, are called the coefficients of trigonometric Fourier series.
4. What is the effect of symmetry in trigonometric Fourier series?
If x(¢) has an odd symmetry, a,, = 0. If x(¢) has even symmetry b, = 0. If
x(#) is symmetrical with respect to the time axis, ag = 0.
5. What is half wave symmetry?
If the periodic signal x(#) when shifted by half the period remains
unchanged except for a sign, the signal is said to be half wave symmetry.
Mathematically, it is expressed as

X <t — %) = —x(1)

For the signal with half wave symmetry, all the even numbered harmonics
vanish.
6. Give the mathematical expression for the cosine Fourier series?

o0
x(t) = Co+ Y _ Cycosn(nayt — 6,)

n=1
where
C() =
C,=,/a+ D2
b
0, = tan~' =2
ay

7. Give mathematical expression for the exponential Fourier series?

x(t)= Y Dy

n=—0oo

where
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1 )
D, = — [ x(t)e 7" dt
Ty
To

8. How the coefficients of exponential Fourier series are related to the
coefficients of trigonometric and cosine Fourier series?

D() =dy = Co
1 ,
D, = 5 [an _an]
1
|Dn| ==C,
2

9. Why exponential Fourier series is preferred to represent the Fourier
series?
The exponential Fourier series is more compact and the system’s response
to exponential signal is simpler.
10. What do you understand by Fourier spectrum?

The Fourier series expresses a periodic signal x(#) as a sum of sinusoids of
fundamental frequency wy and their higher harmonics 2wy, 3wy, . . . , nwy.
Corresponding to these frequencies, the amplitudes and phases are deter-
mined. The plot of these amplitudes versus n which is proportional to nwg
is termed as amplitude spectrum. The plot of phase angle 0, versus n is
called phase spectrum.
11. What do you understand by existence of Fourier series?

For the existence of Fourier series, its coefficients should exist. The exis-
tence of these coefficients is guaranteed iff x(¢) is absolutely integrable.
In other words

/ lx(®)| dt < o0

To

12. What do you understand by convergence of Fourier series in the
mean?
The periodic signal x(#) which has finite energy over one period guaran-
tees the convergence in the mean of its Fourier series. Mathematically, it
is expressed as

/ x(®)| dt < oo
Ty

13. What are Dirichlet conditions?
Fourier at the time of presenting his papers, could not successfully defend,
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the existence Fourier series which is infinite. He could not also give con-
vincing reply when there is discontinuities in x(¢). The answers to these
questions came from the great mathematician Dirichlet in the form of
certain constraints. These constraints are called Dirichlet conditions and
they are:

(a) The function x(#) must be absolutely integrable.

(b) The function x(¢) should have finite number discontinuities in one
period.

(c) The function x(¢) should contain only a finite number of maxima and
minima in one period.

14. What do you understand by Parseval’s theorem as applied to Fourier
series?
According to Parseval’s theorem, that the power of the periodic signal is
equal to the sum of the powers of its Fourier coefficients

1 o0
P=C+ 5 Y Cl  (For cosine FS)

n=1

o
P = Z D, |? (Exponential FS)
n=—oo

[e¢]
P=Dj+2) ID,>  (x(t) = real)

n=1

15. What are differentiating and integrating properties of Fourier series?
If a periodical signal x(¢) is differentiated the Fourier series coefficient gets
multiplied by the factor jnw,. Suppose D, is the Fourier series coefficient
t of x(#). Then the Fourier series coefficient of d’;(t’ ) is JjwonD,,. This is
the differentiation property of Fourier series. If the periodic signal x(¢) is
integrated, then the Fourier series coefficient gets divided by jwgn. If D, is
the coefficient of exponential Fourier series of x(), then the Fourier series

coefficient of [ x(t)dr is L_p,. This is called the integration property of

jwoh
T J®o

Fourier series.

II. Long Answer Type Questions

1. Determine the Trigonometric and exponential Fourier series representation
of the signal x (¢) shown in Fig. 4.24?

T —T 2r 2w
0 0 To T

(a) Trigonometric or quadratic Fourier series.
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x(1)

I

~|

+

Q|

]2

S| =
2.

Ve
=
‘a
3

N—"
(@]

Q

w

=
[\S)
E

(b) Exponential Fourier series.
T, nwT
D, = —sinc (—)
T
x(t) = —sinc (—) T

2. Consider the following signal.

1 2
x(t) = cos <5t + 30") + sin (gt + 60°)

Determine (a) whether the signal is periodic, (b) find the fundamental period
and frequency, (c) what harmonics are present in x(¢), (d) Determine the
coefficients of exponential Fourier series and (e) Determine the power of the
signal using Parseval’s theorem?

(a) The signal is periodic.
(b) The fundamental period Ty = 307 and the fundamental radian frequency

wy = %
(c) Third and sixth harmonics are present.
(d
A .)C(t)
1
rhH T (rH L -3 0§ Lg% T @R o

Fig. 4.24 Signal x(¢) for Problem 1
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A x(t)
2L
1
I
. >
-4 -3 -2 -1 0 1 2 3 4 5 6 t
Fig. 4.25 Signal x(¢) for Problem 3
(a) 4 x(®)
T T T T T T v
-3 -2 -1 0 1 2 3 !
(b) 41Dy
1.72
0.136
0.068
0.046 0.034
! ? ,
0 1 2 3 4 n

Fig. 4.26 a x(¢) signal and b Amplitude spectrum of D,,

A X([)

—— — — — — — —
~V

—21r —-ma—1 —m 0 ™ 2w 2w+1 3w 4w

Fig. 4.27 Signal of Problem 5
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1 1
m=ZNiHLD4=ﬂ%Lﬂ

1 1
D6=Z[~/§—j]; D_6=Z[«/§+j]
©)
P=iDs+ DR+ D2+ D=ty
e 3 -3 6 —6 _4 4 4 4_ .

3. For the signal shown in Fig. 4.25, determine the coefficients of exponential
Fourier series?

4. Find the exponential Fourier series coefficients for the signal shown in
Fig. 4.26a and plot its amplitude and phase spectrum?

To=1;, wy=2m
1.72

V14 4n?n?

6, =0

The amplitude spectrum in shown in Fig. 4.16b.
5. Consider the signal shown in Fig.4.27. Determine the exponential Fourier
series coefficients?

Q2r —1)

4
D= —— [e7" 1]
" 2an?

Dy =




Chapter 5 ®)
Fourier Series Analysis of Discrete Time s
Signals

Learning Objectives

¢ To represent the discrete time signal by exponential Fourier series.
4 To determine the exponential Fourier series coefficients.

¢ To determine the Fourier spectra of discrete time signal.

¢ To determine the properties of discrete time Fourier series.

5.1 Introduction

In Chap. 4, the continuous time periodic signal x(#) was represented in Fourier series
as a sum of sinusoids or exponentials. In this chapter, a similar development is made
to represent the periodic discrete time signal x[n] by Fourier series. Even though the
Fourier series can be expressed in trigonometric form, because of its compactness
and ease of getting the solution, exponential form of Fourier series is preferred and
is discussed in this chapter.

5.2 Periodicity of Discrete Time Signal

A periodic discrete time signal x[n] is said to be periodic if it repeats itself after every
Ny samples. Consider the sinusoids cos Qn. This is said to be periodic if €2 /2 is a
rational number. This can be proved as follows:

x[n] = cos 2n
x[n 4+ Ng] = cos Q2 (n + Ny)
=cosQn iff QNy =2mm

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 509
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where m is an integer. Since N is an integer

Q

— = — = arational number.
2 N()

A sinusoid cos Qn or exponential ¢/ is periodic only if

Q m .
— = — arational number (5.1
27 N()

The periodicity Ny is determined by choosing the smallest value of m that will make
m(2m/2) an integer. The fundamental radian frequency

2
Qo = — rad/sample 5.2)
Ny

5.3 DT Signal Representation by Fourier Series

Consider the following exponential Fourier series

e/’gn e:l:jQOn e:tZQon
> 5 PR

The above series will have infinite number of harmonics. Now consider the discrete
time exponentials whose frequencies are multiplied by integer multiples of 2. Thus

ej(Q:i:erm)n — eane:thHmn
=% [+ eHPM — | for any integer value m] (5.3)
Equation (5.3) implies that any kth harmonic is identical to (k 4+ Ny)th harmonic.
Thus, the first harmonic is identical to (Ny + 1)nd harmonic, the second harmonic is
identical to (Nyp + 2)nd harmonic and so on. Thus, if N is the periodicity of x[n]
there will be only V, independent harmonics and they are repeated in identical
manner for every Ny. Unlike continuous time signal which has infinite number
of harmonics, DT signal has finite harmonics.
Now consider the exponentials &0 wherek = 0,1,2, ..., (Ny — 1). The Fourier
series for the Ny harmonics can be expressed as

(No—1) '
x[n]= ) Dyel" (5.4)
k=0

To determine Dy in Eq. (5.4), multiply both sides of (5.4) by e=/"n
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(No—1)
E Dkeij()ne*ij[)n
k=0

x[n]efijon —

Summing both sides of the above equation from n = 0 to (Ny — 1), we get

(No—1) No—1) (No—1)

Z x[n]em%on — Z Z Dyel-mQon

n=0 n=0 k=0
(No—1) (No—1)
-3 o 3 e
k=0 n=0
But
(No—1)
>t =g fork #m
n=0
(No—1)
= 1 fork =m
n=
Equation (5.6) becomes
(No—1) ‘
> xlnle " = DNy
n=0
1 (No—1) '
Dy = — x[n]eImsn

Now the DTFS of x[n] is, therefore, written as by changing m = k

(No—1)

x[n] = Z Dy e/Fon
k=0

(No—1)

_ —jkQon
Dk—lvo Z x[n]e /0

n=0

Equations (5.8) and (5.9) are called Discrete time Fourier series pairs.

511

(5.5)

(5.6)

(5.7)

(5.8)

(5.9
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5.4 Fourier Spectra of x[n]

In Eq.(5.9), if we substitute for k in the range 0 < k < (Ny — 1), we obtain the
exponential Fourier series coefficients Do, D1/, Dye/>®" . Dy, —1)e/ ™0~ 1)90".
The corresponding frequencies are 0, 2y, 22, . .., (Ng — I)QO, where Qy = =
2n Fy, Where  is radian frequency in radian per sample Ny is fundamental perlod
and Fy = —O is the fundamental frequency in cycles per sample. x[n] with periodicity
Ny can be represented by DTFS with sinusoids of fundamental frequency €2 and its
higher harmonics as given by Eq. (5.8). The coefficient Dy can be expressed as

Dy = |Dy|e/“P* (5.10)

The plot of | Dy | versus € is known as magnitude spectrum. Similarly, the plot
/Dy, versus  is known as phase spectrum.

5.5 Properties of Discrete Time Fourier Series

5.5.1 Linearity Property

Let x;[n] and x,[n] be two periodic signals with fundamental period Ny. According
to linearity property, the linear combinations of these two signals is also periodic
with the same fundamental frequency Ny.

Proof Let

x[n] = Axi[n] + Bx[n]
(No—1)

Dy = — E xi [n]e 7<on
No
k=0

(No—1)

—_ —jkQon
Dyp = No Z xa[n]e

(No—1)

— E ij()n

No i3
(No—1) 1 1 .
= Y {Anlnl + Bl e
No No
k=0
(No—1D) (No—1D)

= — Z xi[n]e R 4 E > xplnle
0

k=0
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‘Dk = ADy + BDy, ‘

x[n] = Ax[n] + Bxo[n] &3 AD,, + BDs»

5.5.2 Time Shifting Property

If x[n] is time shifted by ny, then the periodicity of x[n — ng] is same as x[n].

Proof The Fourier coefficients of x[n] is

1 (No—1)
Dy = — x[n]e*on
=N ;0 [n]

The Fourier coefficients of x[n — ng] is Dy,

(No—1)

Z x[n — ngle/*<n

_FO k=0
Let (n —ng) =lorn = (I + ny)

(No—1)

Z x[l]e—ﬂ(Qo(l-Hm)

k=0

Dy = —
" Ny
No—1)

1 . .
— lvefjkﬂono § x[l]efjkﬁol
0 k=0

—jkQ0m,
Dy, = €77 Dy

DIFS _;
x[n — ngl < e *omp,

5.5.3 Time Reversal Property

If x[n] with fundamental period Ny, is the time reversal, the fundamental period is
not changed but the Fourier coefficient changes its sign.
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Proof For x[n];

Dy = L (NOX:_I)x[n]e’ijO”
TN k=0
For x[—n];
D, — 1 (NOZ_]) jkSQon
= ]70 - x[—n]e
Let us substitute / = —n
D 1 (NOX_:U 1kl
k= ]70 o x[]

(No—1)
- Z x[{]e /RS0l
No
k=0

5.5.4 Multiplication Property

According to this property, if x| [n] and x;[n] are two DT signals with Fourier series
coefficients as D; and D, then the Fourier series coefficient of Z[n] = x;[n] x x;[n]
is

No—1
Dy = Z DDy,
q=0

Proof

1 (No—1) 4
Dy=— ) xln]e "
T
n=0
(No—1)

—jq<2

Dy = D xalnle "
0

n=0

(No—1)

Dy = — xi[n] x xp[n]e 7*bn



5.5 Properties of Discrete Time Fourier Series 515

1 (No—1) (No—1)
_ iqSon —jkSQon
=N E x1[n] E D, e
n=0 q=0

(No—1) (No—1)

1 ) )
= Z D, Z x1[n]/4%0m g=/KSton
0

q=0 n=0
(No—1) 1 (No—1) A A
— Z Dyj— Z x1[n]e 9% g=ikS0n
No
q=0 n=0
(No—1) 1 (No—1)
—jk—g)S
= D"]V xy[n]e k- 0%on
q=0 0 n=0
(No—1)

D= ) DyDiy
q=0

5.5.5 Conjugation Property

According to this property, the discrete time Fourier coefficient of x*[n] conjugate
and time reversal of that of x[n].

Proof

(No—1)

x*[n] — Z [Dkejkﬂgil]*
k=0
(No—1)

_ % —jkQon
= E Die

k=0
Let! = —k

(No—1)
x*[n] = Z D;‘e’m“"
=0

DTFS
Dy <— D*,
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5.5.6 Difference Property

According to this property, the Fourier series of the first difference is given by

x[n] — x[n — 1] Z5[1 — e p,

Proof

(No—1)
— Z Dkejkﬂf)l’l
k=0

(No—1)

x[n—1] = Z Dy e/F =D

k=0
(No—1) , No—1) '
x[n] —x[n—1] = Z Dye*Shon Z Dy e*So =D
k=0
(No—1)
— Z Dkejkﬂon(l _ e*ijo)
k=0
x[n] — x[n — 11 28 (1 — e p,

5.5.7 Parseval’s Theorem

According to Parseval’s theorem, the total average power of a discrete periodic signal
x[n] equals the sum of the average powers in individual harmonic components which
is expressed as the sum of the squared value of the Fourier series coefficients Dy
(Table5.1).

Proof The average power of discrete periodic signal is given by

1 (No—1)
P=_— x[n]]*
(No—1)
=— Z [x[n]x[n]|*
n=0

(No—1) (No—1)
= — Z x[n]{ Z D, e’m”"}
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Table 5.1 Properties of Discrete time Fourier series
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Property Periodic signal x[n] Fourier series coefficients
Linearity Ax1[n] + Bxa[n] ADy1 + BDy>
Time shifting x[n — ng) e *omp,
Time reversal x[—n] D_y
(No—1)

Multiplication x1[n] x xp[n] Z DyDy_,

g=<Np>
Conjugation x*[n] D*, .
First difference x[n] — x[n — 1] (1 — e kSomyp,

Parseval’s theorem

_r 2
P=3 > Ixdnl|

n=<Np>

P= Y I

k=<Np>

Y ol
k=0 No

(No—1)

(No—1)

n=0

= Z D; Dy
k=0

(No—1)

P= Y IDf
k=0

Z x[n]e—jkfzon

B Example 5.1

Find the discrete time Fourier series of

x[n] =sin0.27n

Sketch the amplitude and phase spectra.

Solution:

x[n] =
Qp =

No =

No

1 .
Dy = o Z x[n]e /<R

sin0.27n

0.2

2mrm 2w

Q 027

10 form =1
(No—1)

0 n=0

=10m
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choosing —5 < k < 5 we get

4
1 .
Dy = 10 _2_5 sin 0.2 ne/0-2mkn
1 4
_ j2rn __ ,—2mwny,—j2mkn
= _20j E [€ e le

n=-5

4 4
1 . .
— e/.Znn(l—k) _ e—J.Znn(l+k)
|2 >

n=-—5 n=-5

In the above equation, the summation on the right hand side is zero for all values of

k except for k = 1 and k = —1. For these values, these summations will be equal to
Ny = 10. Hence

1 1
D = —[Ny] = — =0.54-90°
1 20j[ 0] %

1 1
D_| = ——[Ny] = —— = 0.5290°
1 20j[ o] %

x[n] = D_1e /%" 4+ Dyl

1 . .
— 2_j[_e—jOA27m 4 e/O.ZJ'm]

The plot of Dy and ZDy are shown in Figs.5.1a, b, respectively.
Alternative Method

x[n] = sin0.27n
Qo =027

. 2

027

1 . .
sin0.27n = —[2™" — ¢772™")
2j

o =10

Also
. L iom  —jo
sin0.2rn = — [ — ¢™/*]
2j

Comparing the above two equations we get
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(a) 4Dy
0.5
,,,,,,, U b
1 1
| |
i i R
-Q —2m —2m 0 2w 2m Q
(b) * D
-=|m/2
ﬁNO =10
-2 —2m 21 Q
J—-Y,)

Fig. 5.1 Discrete Fourier spectra of Dy of Example 5.1

D_y=D_1,10=Dg =

%

1
sin(0.27n) = %
J

[ej.Znn _ ejl.SJm]

B Example 5.2

Find the discrete Fourier series representation of

x[n] = cos0.2n
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Solution:
x[n] = cos0.27n
Qo =027
2
No==2 =10
Q
1 . )
cos02mn = E[eﬁzﬂn + e—].2rm]
Also

1 . .
cos0.2rn = 5[6790" + e*JQoﬂ]
Comparing the above two equations of x[n] we get

D=

1
D_1=D_1410=Dy = 5

1 . )
COS[O.ZTL’H] = E[g]QU" + elgﬂon]
1 j.2mwn j1.8wn
cos[0.2rrn] = E[eﬁ 4 /18]
Note:
ej1.87rn — ej.2nne—j,27m
— e—j.2ﬂn [ ej271n — 1]
B Example 5.3

Find the Fourier series of

X|n] =CO0S —n + Sin —n
5 6

Solution:

[n] T+ sin =
x[n] = cos —n + sin —n
5 6

T
901:§
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2
Noj= —— =10
T ws)
T
Qu = ra
N, 7
0 = =
27 (n/6)
Ny = LCM of 10 and 12
= 60
o — 27 _ 27
7Ny 60
1
=—
30
xlnl = L[ 4 o] 4 L [JEn o]
2 2j

Expressing the above series in terms of €2, we get

R 1., '
x[n] — _ [e]6§20n + 8769011] + — [61590n _ 67]590,1]
2 2j
6= 75 ~6 = D660 = Ds4 = 5
D< — ! D.<=D — D — 1
T -5 = Dosve0 = Dss = =

1. 1 . 1 . 1 .
— _6]690n _e]54§20n _61590” _ _e]SSQon
x[n] [ 7 +t5 * 5 -

j 2
where Qo = §5
D¢ = l; Dsy = !
2 2
Ds = l; Dss = 1
2 2

Other values of D, = 0.

B Example 5.4

Find the discrete Fourier series coefficients and the Fourier series for the function

x[n] = sin’ (%n)
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Solution:

where Qo = %

5 Fourier Series Analysis of Discrete Time Signals

T 12 [1 = I
I:Singl/l] = 2_]-(9"’11—6_16”)i|

T
6 2 2 3
T
=1
2
N0=—nx3:6
T
x[n]—smzzn
6

1 1 .
= — — —[¢3" —j5n
> 4[ +e7/5"]
1 .
o E — [e]QOH + eﬁ]Qon]
1
Dy = >
1
D =—-
4
1
D_y=D_146=Ds = —7
1, 1.
x[n] == — Zolon _ Z ,i5%on
2 4 4
1
D0=E
1
D =—-
4
1
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(a) A x[n]
——— — — P — o — — — — — — ;_l ___________________________
-10 -5 012345678910 n
(b) Dy
1/5
e
I
I
I
I eeo e
|
I
oo oo b »
012345 k

Fig. 5.2 a x[n] and b Fourier spectra representation

All other Fourier series coefficients are zero.

Bl Example 5.5

Find the following sequence find Fourier series coefficients and plot the frequency
spectra.

x[n] = Z 8[n — 5k

k=—00

Solution: The sequence

x[n]= ) 8ln— 5kl = {1,0,0,0,0}

k=—00

and Ny = 5. The plot of x[n] is shown in Fig.5.2a.
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No—1

x[n] = Z Dy e/kon
k=0

No—1
D, = — x[n]e—ijon
' NO n=0
No=>5
2r 2«
QO = —= —
No 5
1< ,
Dy =< > x0le 5 [ x[1],x[2], x[3], x[4] are all 0]
n=0
1
= - all
5

The Fourier coefficients of x[n] are sketched in Fig.5.2b.

B Example 5.6

Consider the periodic sequence with period Ny = 12

(H" 0<n<©6
x[n] =
0 6<n<l1l1

Sketch x[n], also sketch the magnitude spectrum of the Fourier coefficient.

Solution:
The given x[n] is sketched as shown in Fig.5.3a. From Fig.5.3a, it is evident that

Ny = 12, and therefore, Qo = ?V—’Z = 21—7; =%

5
1 .
Dy = — E x[n]e/Sokmn
No et

5
e*j%kn

1
12 e

Applying the summation formula

the above equation is written as
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(a) x[n]
______ ‘ I‘HH E
—8-7-6-5-4-3-2-101234567 8910111213 n
(b) % D,
5
5e
228 324
118 118
{ I 086 .086 I
, , 1 ] , | | ,
012345678 910I1112

Fig. 5.3 a x[n] sequence and b D magnitude spectra

1 [ =)
P33 e

1 [ ed5[e% — 9
S22 [ — e

-k

1 o se | SIn SF

Dy = — — e *iz - k2
12 sin *%

12

where k =0,1,2,...,11.
For k =0,

The following table is prepared:
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4 x[n]

3 3

N

-5 -4 -3-2-1 0 1

e O
N f——e —
N e
w
OF—-e
)
.
)

Svy

10

Fig. 5.4 x[n] of Example5.7

k1O 1 |21 3 (4 5 |6/ 7 |8 9 [10] 11
|Dy|]0.5]0.228]0]0.118|0]0.086|0(0.086|0]0.118| 0 {0324

the plot of Dy versus k is shown in Fig.5.3b.

W Example 5.7
Determine the Fourier series coefficients for the sequence shown in Fig.5.4.
Solution:
No=5
2 2
QO = —= —
No 5
1 (No—1) A
Dy = — x[n]e/S0kn
0 n=0
1 &
Dy = g;[()JrlJerrerzu

4
1 2 AT
D, = 3 E x[n]e_-’zT”
n=0
= [0+ ¢S +207F 43¢5 4467

1
= g[—2.5 +j3.46] = 0.85£125.85°
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\Dl — 0.85/125.85°

4
] > am
5 2 dlnle 5"

n=0

S
I

- 16w

S0+ eI 2075 43¢ 4467

1
5[_2'5 +70.812] = 0.526£162°

\Dz = 0.526/162°

4
1 ;0
D; = 3 ;x[n]e_]%"

1 _j6r _jizm _jisn o
:g[O—i—eJS +2¢75 4375 +4e™ 5]

\D3 —=0.526/198°

;321

1 87 l6x 2
= g[O—i—e_-’sT —i—Ze_-’l?T +3e_’% +4e75]

Dy = 0.85£234°
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528
B Example 5.8
Find the power of the following signals using Parseval’s theorem.
(@  xln]=cos o +sin "
a x[n] = cos — + sin —
5 6
)T

(b) x[n] = sin gn

Solution:
(a) In Example 5.3, for x[n] = cos % + sin % the Fourier series coefficients have

been determined as

Ds = l; |Ds| = !
2 2
1 1
D—5=—2—j; |D—5|=§
Dol =+ D=+
2 2

P = |Ds|* +|D_s|* + |Dg|* + |D_¢|*
1 1 1 1

atataty

P=1

(b) InExample 5.4, the Fourier series coefficient for x[n] = sin’ g have been deter-

mined as Dy = 13 |Dy| = —1; |Ds| = —1

Power P = |Dy|?> + |D1|* + |Ds|?
1 1 1

1716 16

B Example 5.9
For a periodic sampled gate function shown in Fig.5.5, find the discrete Fourier

series.
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4 x[n]
1
=27 =24 =21 -3-2-10123 21 24 27 n
Fig. 5.5 Sampled gate function
Solution:
No =24
2 T
QO = ——= —
No 12
1 .
Dy = — x[n]e/kshn
k= 2 Al
n=<Ny>
3
= i e_j%n
24 =
Using the summation formula
,
o Yo
(x—=1D

we get

-4k .k
1 | e % —eRE }

24 e — 1
j.5k ek ok
1 e_len e—j3.5% _ 6/3.5%
=31 j-5k ek ok
24 o~ | eSE — @5T

1 sin (3f;’k)

24 (3)
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B Example 5.10

Find the Fourier series coefficients for the following sequences.

(a) x[n] =2cos2.2nrn+ 4sin3.4mn
(b) x[n] =2cos2.2nn+4sin3.3nn

Solution:

(a) x[n] =2cos2.2xn +4sin3.4nn

Qo =227
2 2
Not = ——m="20 =10 form =11
Q()] 221
Q()z = 34x
2
N02=—m=10 form =17
34n
No = LCM OfN()1 and N()z
=10
2
QO = — =027
No

)C[I’l] — [ej2427'm + e*jZ.Znn] + %[ej3.4m1 _ e*j344rm]
Expressing the above sequence in terms of 2, we get

x[n] — [ejllﬂgn 4 e*jlngn] + %[6/1790}1 _ e*j1790’l]

Diy=1; D_yy=D_ji;10=D_1 =1
2 2
= D_oyzpio=D_7=—~
J J

x[n] = [efllﬂg + e—jﬂo] + %[6179011 _ e_7QOn]
]

Dy =1
D, =1
2
Dy =~
J
2
D_;=—-
J
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(b) x[n] =2cos2.2nn +4sin3.3xn

Qo =22n
21
N()[ = Em =10 (m = 22)
902 =337
2
N() = LCM OfN()] and N()2
=20
2
QO = —T[ =0.17
20

531

, . 1 . .
.X[I’l] — [e]2.27'”l 4 e*jZ.ZHn] + _‘[6/3.37'”1 _ 67/3.37”1]

2j

Expressing the above sequence in terms of 2y, we get

x[n] — [ejZZQon + e*jZZQon] + %[613390" _
J

Dy=1, D_p=D_nn=D,=1

¢33

1

D3z =—; D_s53=D 33100=D_13=—;

2j’

2j

, , | .
x[n] — [e/ZZQUn + e—]ZQon] + 5[6]339071 _ e—j]3Qol‘l]

D,=1
1
D33=2—J.
1
D_;3=— Z

B Example 5.11

Find the Fourier coefficients and Fourier series of the discrete signal.

x[n] =4cos3.3n(n—4)
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Solution:
Qo =337
2 2
No=Zm=T"133 m=33
Qo 2.2
=20
Let

xi1[n] = 4cos3.3wn
— Q[N 4 33T
— [eiQONIi —|—€7jQ°7m]

Comparing the above equations, we get

D=2
D_1=D_1420=Dpy=2
X1 [n] — 2[8]'52011 + el9an]

According to time shifting theory, the Fourier coefficients of time shifted signal is

Dy = e”kQO"ODi where ny = 4

_ gfjkn.ani
Thus, the modified Fourier series coefficients are

D1 — 26—13.27[

D2 — 2e—19><13.27'[

x[n] = 2[61'90("74) + ejl990(n—4)]

B Example 5.12

Find the discrete time Fourier series, and also find the Fourier coefficients for the
signal x[n] shown in Fig.5.6.
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3 4t 3
2

11,11

—-8-7-6-5-4-3-2-1 0 1

iR

Fig. 5.6 x[n] of Example5.12

Solution:
Ny =8
2 T
QO = —= —
No 4
1 (No/2) .
Dk = 170 Z x[n]e_JQ"k"
n=—(No/2)
13
=g O alnle i
n=—4
where k =0,1,2,3,4,5,6 and 7.
Fork =0,
1
Do=gl0+14+2+3+443+2+1]
Fork =1,
D, =

3
Z x[nle™ "
n=—4

[o+e/3% +2¢/% 435 +4+3e7F 4273 +e"37"]

| — 0| — oo~

3n+2 rr+3 n+2
Ccos — CcOoS — CcoSs —
4 2 4
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Dy = 0.8535

Fork =2,

3
1 x
D, = 3 Z x[n]e™72"
n=—4
1 ;3 : Iy . . 37
=3 [0+e’37 267 367 +4+3e7T 42077 +e_’37]
1
4

3n T
C0$7+2c0sn+30055+2

Fork =3
1< ;
D; = 3 Z x[nle 7"
n=—4
1 Jor ax 3n e _om o _iom
=§[o+ef4 F20% 43T 44437 42073 +e/4]
1 9 3 3
=Z|:COSTJT+ZCOS§+3COST”+2]
D; = 0.146
Fork =4

3
1 )
D, = 3 E x[n]e ™"

n=—4

1 A A , , . A
=3 [0+ " + 267 + 36 +4+ 7 + 2777 43677 ]

1
= Z[cos3n +2cos2m + 3cosm + 2]

Fork =5
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3
1 .
Ds = gné_ x[n]eijST"
1 . 151 - 10 St - 151 - 10 - S
=3 [O—i-e’% $26F 437 4 A4 eV 4207 +3e_-’57]
1 |: 157 107

5
y cosT+ZCosT+3cosTN+2i|

3
1 )
D6 = g ’12574)(?[71]6_}1'5”"

1 . . . . . .
— g|:0_+_e/4.57'[ +2€/37‘[ +3e/1.5n +4+67‘]4.5T[ +2€7/3n +3efjl.5n]

1
= 7 [cos4.5m +2cos3m + 3cos1.57 + 2]

Fork =7

3
1 )
D7 = g Z .X[l’l]e_jljsnn
n=—4
1
8
1
= 1 [cos5.25m + 2cos3.57 + 3cos 1.757w + 2]

[0 +ej3><14757r 4 26j3.57r 4 3ejl.757t 144 €7j3><1'75” +267j3.57'[ 4 367j1.757'[]

D7 = 0.8535
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Summary

. Any arbitrary periodic discrete time signal x[n] with fundamental period

Ny and fundamental radian frequency €2y is expressed in Fourier series as

(No—1)

x[n] = Z Dy e/Fon
k=0

where Dy, is called exponential Fourier series coefficient.

. The Fourier series coefficient Dy is determined from

(No—1)

Dy = — x[n]e/ksn
% X

. The expression for x[n] and Dy are called Fourier series pair.
. For discrete time Fourier signal x[n], the Fourier series coefficients are

finite which are repeated for every fundamental period Ny. This is contrary
to continuous time signal x(#) which has infinite number of harmonics.

. Fourier series possesses, linearity, time shifting, time reversal, multiplica-

tion, conjugation and first difference properties.

. Using Parseval’s theorem, the average power of discrete time signal x[n]

can be determined by summing up the squared values of discrete Fourier
series coefficients over one period using the following formula.

(No—1)

P= ) IDif
k=0



Chapter 6 ®
Fourier Transform Analysis Giese
of Continuous Time Signals

Learning Objectives

¢ To define the Fourier transform for continuous time signal which is aperiodic.

4 To derive the properties of Fourier transform and demonstrate with examples.

¢ To find the magnitude and phase angle spectrum of Fourier transform.

¢ To solve the differential equation by partial fraction method using Fourier trans-
form (FT).

6.1 Introduction

In Chap.4, periodic signals were represented as a sum of everlasting sinusoids
or exponentials. The Fourier series method of analysis of such periodic signals is
indeed a very powerful tool. However, FS fails when applied to aperiodic signals. To
overcome this major limitation, an aperiodic signal x(¢) is expressed as a continuous
sum (integral) of everlasting exponentials. Such a representation is called Fourier
integral which is basically a Fourier series with fundamental frequency tending to
zero. By such representation, the aperiodic signal x(¢) in the time domain is trans-
formed to X (jw) in the frequency domain. The transformations from x(¢) to X (jw)
and from X (jw) to x(¢) are called Fourier transform and inverse Fourier transform,
respectively. They are also called Fourier transform pairs.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 537
S. Palani, Signals and Systems,
https://doi.org/10.1007/978-3-030-75742-7_6
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6.2 Representation of Aperiodic Signal
by Fourier Integral—The Fourier Transform

If an aperiodic signal is viewed as a periodic signal with an infinite period, then it
can be represented by Fourier series. In such a situation, as the period increases,
the fundamental frequency decreases, and the frequency components become closer.
Now the Fourier series sum becomes an integral.

Consider the periodic signal x(7) defined as follows:

1, |t < T

x(t) =
® 0, Ty <lt|<%

The above signal is represented as a periodic square wave in Fig. 6.1. The exponential
Fourier series coefficients D,, can be determined as

_ 2sin (}’la)o Tl)

D, = (6.1)
(nawoT)
where wy = 27” The Fourier series coefficients TD,, are obtained as
2 si T
D, = 2sin(nawoT) 6.2)

(nawo)

For a fixed value of Ty, the plot of TD, represents a sinc function. Equation (6.2)
is plotted for 2wy, 4wy and 8wy, and they are represented in Fig.6.2a, b and c,
respectively.

A x(t)

~V

—2T -r T -1, T, T T 2T
2 2

Fig. 6.1 A continuous time periodic square wave
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@) ATD,,
T=4T,
—2wmg 20‘)0
I v I >
O \_‘/ w
(b) A 1D,
T=8T1
—4wg 4oy
PaiN X Y ST ,
0 NV o
(c) 4 TDy,
- 8(.00

Fig. 6.2 Fourier series coefficients for different values of T

FromFig. 6.2, itis evident that as T increases (the fundamental frequency wy =

2
T

decreases), the samples of TD,, become closer and closer. As T becomes very large,
the original periodic square wave becomes a rectangular pulse. As T — oo, TD,,

becomes continuous.

Let x(¢) be a non-periodic square wave as represented in Fig. 6.3.

() =0

[t| > Ty

The periodic signal x(¢) formed by repeating x(¢) with fundamental period T is shown

inFig.6.1.If T — oo

Lt x(t) = x()
T—o00
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Fig. 6.3 A continuous time A%(1)
aperiodic square wave

-7, 0 T, 7

The Fourier series coefficients of a periodic signal are written as (Fig. 6.1)

)2 '
D, = —/ x(t)e " dt (6.3)
T ) _rp

The periodic signal x(#) can be expressed in Fourier series as

x(f) = Z D, e/ (6.4)

n=—0o0

Tx(t)= Y TD, "™ (6.5)

n=—00

Let

X(nwy) = TD,
/2 _
= / x(t)e "t dt

T2

l [e¢]
— jnwot
x0 == Y D,
n=—0o0
l o0
=5 X (nwo) e wy (6.6)

n=—0o0

AsT — 00, wy = 27” — 0 and nwy = w which is continuous. Further, the summa-
tion in Eq. (6.6) becomes an integration. Thus, Eq. (6.6) is written as

X(jw) = / ” x(t)e™" di| for all w (6.7)

o]
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1 &0 .
x(t) = —/ X(w)d“ da forall t (6.8)
27 J_o

Equation (6.7) is called analysis equation while Eq. (6.8) is called synthesis equation.
Equations (6.7) and (6.8) are called Fourier transform pair. Equation (6.7) transforms
the time function x(¢) to frequency function X (jw) and so it is called Fourier trans-
form. Equation (6.8) converts the frequency function to time function and hence it
is called inverse Fourier transform. These transformations are also denoted as given
below.

X(jo) = Flx(1)]

x(1) <5 X(jw) (6.9)
x(1) = F'[X(jw)]

X(jo) <5 x(r)

Note: The time function x(¢) is always denoted by a lower case letter and the
frequency function X (jw) by a capital letter. Further, when x (¢) is Fourier
transformed, it becomes complex and so it is denoted as X (j ). In some litera-
ture, X (jw) is also represented simply as X (w).

6.3 Convergence of Fourier Transforms—The Dirichlet
Conditions

As in the case of continuous time periodic signals, the following conditions (Dirichlet
Conditions) are sufficient for the convergence of X (jw).

1. x(¢) is absolutely integrable or square integrable. That is

/OO [x(@®)| dt < o0

oo

foo Ix(1)>dt < oo

oo

2. x(t) should have finite number of maxima and minima within any finite interval.
3. x(¢) has a finite number of discontinuities within any finite interval.

However, signals which do not satisfy these conditions can have Fourier trans-
forms if impulse functions are included in the transform.
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6.4 Fourier Spectra

The Fourier transform of X(jw) of x(f) is, in general, complex and can be
expressed as

X(jw) = [X(jo)| [X(w)

The plot of [X(jw)| versus w is called magnitude spectrum of X (jw). The plot of
X(jw) versus w is called phase spectrum. The amplitude (magnitude) and phase
spectra are together called Fourier spectrum which is nothing but frequency response
of X (jw) for the frequency range —oco < w < o0.

6.5 Connection Between the Fourier Transform
and Laplace Transform

By definitions,

X(jw) = / ” x(H)e 7 dt (6.10)

oo

and the Laplace transform is given by

X(s) = / h x(t)e ™ dt 6.11)

[e¢]

From Egs. (6.10) and (6.11), it is observed that the Fourier transform is a special case
of the Laplace transform in which s = jw. Substituting s = o + jw in Eq. (6.11), we
get

o0

X(o +jw) = / x(t)e” OO gy

—00

= / [x()e e dt

oo

= F[x(t)e "]

Thus, the bilateral Laplace transform of x(#) is nothing but the Fourier transform of
x(t)e~?". This implies that if the jw axis is the ROC of the Laplace transformation,
it is the Fourier transform.
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Note: The statement that Fourier transform can be obtained from Laplace trans-
form by replacing s by jw is true only if x(¢) is absolutely integrable. If x (¢) is
not absolutely integrable, the above statement is erroneous.

The following examples illustrate the method of finding Fourier transform of non-
periodic signals.

B Example 6.1

Find the Fourier transform of the following time functions and sketch their Fourier
spectra (amplitude and phase).

(a) x(1) = 8(1)
(b) x(t) = sgn (1)
(c) x(t)=1 for all ¢
(d) x(t) = u(r) and x(¢t) = u(—t)
(e) x®) =e "u®); a>0
(f) x()=e " a>0
(2 x(t) = e u(t); a>0
x(t) = e™u(—1)

Solution:

(a) x(2) =4(t)

X(jw) = / ” S(H)e " dt

oo
o0
= / S(t)dt [6(t) =0 fort#0
—00
=1 =1 forr=0]
s(1) <51
Fourier Spectra of §(t)

8(w) = 1 which is independent of frequency. Hence, the amplitude spectrum is
constant at all w and the phase spectrum is zero at all . §(¢) and its Fourier
spectra are shown in Fig. 6.4a, b and c, respectively.
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(a)
x(2)

6 Fourier Transform Analysis of Continuous Time Signals

(b)

 3()

(©
Tt

(1)

>
> >
t

0

Fig. 6.4 Representation of §(¢) and its spectra

(b) x(¢) = sgn(?)

1 >0
sgn(t) =30 =0
-1 t<0
e .
F[sgn(?)] :/ x(t)e " dt
—0o0

0 00
= —/ eIt dt—i—/ e dt
—00 0

For the first integral in the right side of the above equations when the lower limit
—oo is applied, it becomes indeterminate and is not integrable. The problem can
be solved by the use of a TRICK. x(¢) is multiplied by e~ and the limiting
value of @ — 0 is considered.

0
Fle=sgn(r)] = /
0

o0
—ee It dt—i—/ e e ¥ dt
0

Fle sgn()] = /

—00

o0
_e(a_jw)t dt + / e_(a+jw)t dt
0

-1 i 0 1 i 00
F —alt| N = Lt (a—jw)t _ —(a+jw)t
[e Sgn( )] a—0 |:Cl _]w {e }700 (Cl —i—]u)) {e }0
-1 1 1 1 2
= Lt — + — | =—+-—=—
=0 (a—jw) a+jo| jo jo jo

FT 2
sgn(t) <«— —
w

The same result is derived by a simpler method at a later stage.
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(a) (b) .
4 x(t)=sgn(?) [ X(jo)l
—t 0 =t >
- 0 ®
-1
(© ,
4 [X(jw)
/2
A 0 &5
—m/2
Fig. 6.5 Representation of sgn() and its spectra
Fourier Spectra of sgn(t)
2
—/-90° >0
) 2 w
X(jw)=—=
Jw 2
—/90° <0
w

x(t) = sgn(t), | X(jw)| = 2 and X(jw) are represented in Fig.6.5a, b and c,

w
respectively.

() x(t) =1; for all ¢

1 o0 .
F[8(w)] = —/ S(w)d™ dw
27 J_o
Since §(w)e'® = §(w),
i 1o
F[8(w)] = — 8(w)dw
27 J_ oo
=L sinceé(a))z{1 a)=0.
2 0 otherwise
1 Fr
— <« =§(w)
2

1 <L — 278(w)
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(a) (b) _
4 x(7) x(jw)
) 21d(w)
—t 0 7 -0 o s

Fig. 6.6 Representation of x(t) = 1 and its FT

The above result shows that a constant signal x(¢#) = 1 for all #, when Fourier
transformed becomes an impulse 27 §(w). x(¢) and X (jw) are represented in
Fig.6.6a and b, respectively.

(d) x(t) =u(t) and x(t) = u(—t)

0 t<O
1) =
x(®) {1 t>0

Finding the FT of unit step u(¢) by direct integration yields an indeterminate value
as is evident from the following equation because it has a jump discontinuity at
t=0.

00 .
X(jo) :/ e dt
0

1 .00
o —jot
=il

When the upper limit oo is applied, the integral does not converge. So the problem
is approached by considering u() as

R
u(t) = 5 + Esgn(t)

Figure 6.7 represents %sgn(t), % and u(t). From Fig.6.7, u(t) = % + %sgn(t)

Flut)]=F [%] + %F sgn(z)

F [%:| =1 §(w) [From Example 6.1(c)]

1 1
F |:—sgn(t)i| = — [From Example 6.1(b)]
2 jo
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(a) (b) ()
4 0.5sgn(?) 4 4 x(1)=.5+.5sgn(r)
0.5 1
05—
0 ( 0 " 0 (
-0.5

Fig. 6.7 Representation of u(¢) in terms of signum function

Flu(n] = é(w) + i
jo

The same result is obtained in a simpler way which is presented at a later stage.
From FT property, which is explained later,

Flx(=0] = X(—jw)

Flu(=t)] =7 §(w) — i
](,()

e x(t) =e u(t);a>0

0 .
X(jo) =/ e eIV dt
0

o0 .
— / e—(a+ja))t dt
0

- - [e—(u-‘rjw)l]go

The signal x(z), the amplitude spectrum |X (jw)| and phase spectrum (X (jw) are
shown in Fig.6.8a, b and c, respectively.
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@ (b) .
A x(t) A |X(](,0)|
1 1
a
AR 0)

0 g -0 0 ®
© £ (X(jo)
.
_____________ S e
= >
____________________ a4
____________________ a2 T

Fig. 6.8 Representation of x(f) = e~ u(f) and its FT spectra
6 x@)=e;a>0
S .
X(jw) =f x(t)e ™" dt
_O [ee)
=/ ee /“”dt+/ el dt
— 0
0 [ee]
:/ (a—]w)t dl—‘r—/ —(a+]w)t dr
— 0
1 0 1700
X(iw) = (a—jw)t _ e—(a-'r]w)t
(] ) ((1 —]a)) [ ]—oo ((1 +ja)) [ ]0
1 1

=@ T atjo

2a

Xo) =3

2a
a2 + (,()2

[e-eh] T,
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Fourier Spectra

X(jw)] = -2
@ T 242
X({w) =0

The Fourier phase spectrum is zero at all frequencies. The representation of x(f)

and its Fourier amplitude spectrum are shown in Fig. 6.9a and b, respectively.
(@ x(t) =e u®); a>0

00 .
X(jw) = / e e dt
0

o0
= / eIt gy
0

1

— (a—jw)t]>®
- (Cl _]a)) [e ]0

If the upper limit is applied to the above integral, the Fourier integral does not
converge. Hence, FT does not exist for x (¢) = e“u(t).

x(t) = e”u(—1)

a>0
x(—=t) = e "u(t)
From Example 6.1(e), it is derived as
Fle “u(t)] = ——
[ 0] @tjo)

Flx(—1)] = X(—jo)

Fle"u(—1)] =

a—jow
(a) (b) )
0 AX(jw)
2
eat a
~a, “— e—at
—t 0 7 - 0 o

Fig. 6.9 Representation of e=?l and its amplitude spectrum
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The above result can be derived from the first principle as explained below.

0

F[e“’u(—t)]:/ eI dt

—00

0
= [ ewra
—00

1 S0
— (a—jow)t
=g

1

F at _ -
[e®u(=0)] @—jo)

B Example 6.2

Consider the rectangular pulse shown in Fig. 6.10a which is the gate function. Find
the FT and sketch the Fourier spectra.

(Anna University, April, 2004)
Solution: Method 1:

x(t) = 1 t|<T

T
X (jw) = / le 7 dt

T
o
[e/'wT _ e—ij]
Jjw
. 2T sin T
oT

= 2T'sinc wT

\X(jw) = 2Tsinc wT

Method 2: From Fig. 6.10b, the FT is obtained as

F |:dx(t)] _ [e]Tw _ eiij] (a)

dt

Using the integration property of FT, we get

Fx(H)] = ,i[d‘Tw — ¢l 4+ 7X(0)8 (w)
Jow
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() $x(0) (b)

1 A d)LCi(tt) = x(f)

Fig. 6.10 a Representation of gate function. b Differentiated gate function
where x = dx/dt. Putting @ = 0 in equation (a), X 0 =0

E [eij _ e—ij]

Flx(l =~ %

2 .
= —sinwT
w

sin T
oT

2T

\X(jw) — 2TsincwT

Frequency Spectra of Gate Function

Amplitude Spectrum
Atw =0,
. 2sinwT  2sin0
X (je)| = = =2
T 0
Atw =+,

IX(w)| =0, wheren =1,2,3,...
Phase Spectrum
b1 .
F0r0<a)<§, X({w) =0

b4 2
For — -, X(jw) =
orT<w<T (jw)=m

The amplitude and phase spectra are shown in Fig. 6.11a and b, respectively.
Note: Since # = —x, in Fig. 6.11b, IX(jw) is marked as =.
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4 X (o)

a
(@) )

—3m 3w

T T
< Y R
o | 2m @ 0 ly_m  12m O

I T | T} | O=7 T I

l l w l 1 l

| | 1 | | |
® | : XGa) | | |

I I ‘77777772T 777777 | | I
P — - T >

Fig. 6.11 Fourier spectra of gate function

B Example 6.3
For the following signal x(¢), find the FT and FT spectra

e >0
xn=111] =0
—e™ t <0

Solution: The signal x(¢) is sketched as shown in Fig.6.12.

X(jw) = / ” x(De " dt

o0

0 ) ot , oo ,
:/ —e‘”e"“”dr—}—/ le /! dt+/ e eI dy
—00 0- 0t

0 0t o0
= —f el dt+/ e/t dt+/ e~ @ gy
—o0 0 o+

—1 L0 1
N (a—jo)t -
XGo) = iy [ L + 0= T

—1 1
= ajo atrjo

[e—(a+jw)t](‘;i

—2jw

X0 = o)
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553
A X([)
1
4z o W
* 0 %
e'—2y
-1
Fig. 6.12 Anti-symmetry exponential decay pulse
(a) 4 X(jo) (b) HXGw)
ol
2
s 5 3
— 72
= 0 3
Fig. 6.13 a Amplitude spectra and b Phase spectra
Fourier Transform Spectra
2w
X(w)| = ———=
XGo)l = s
T
—— w>0
X(jw) = 72
- w<0

2

The frequency spectra for —0o < w < oo are shown in Fig. 6.13a and b.

B Example 6.4

Consider the triangular pulse shown in Fig.6.14. Find the FT and its amplitude

spectrum.
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Fig. 6.14 Representation of 4x(1)
triangular pulse

4

h
4

Solution:

x() =2(1-11+2) [f]=2

) = (2t +4) -2=<1=0
T la-20 0<t<?2

0 2
X(jw) =/ (21 +4)e ™ dr +/ (4 —200e7" di
) 0
= Xi(jo) + Xz (jw)

0
X, (]a)) = / 2t + 4)€_jwl dt
)
Letu=2t+4;du=2dt;dv=e7dt;andv = —jiwe’j‘“’

X (jw) = uv—fvdu

-1y .1 2 o .
|:(2t +4) (—) e‘f“”] +— | e7dr
Jw -2 JwJ2
-4 2 2
Xi(jo) = —+ — — —2€/2w
jo 0 o

2
X (jo) = / (4 — 20)e 7 dt
0

Letu = (4 —21);du= —2dt; dv = e dt; and v = —jLwe—fwf

X5 (jw) =uv—/vdu

—1 7 2
= |:(4 — 2[) (—> eﬂ”’] - f eijwt dt
Jw o J®Jo



6.5 Connection Between the Fourier Transform and Laplace Transform 555

. 4 2 2
XZ(](U) = ‘]; — E [e 7 Z]O
4 2 )
- —j2w _
o w? [e ]]

X(jw) = X1 (jw) + Xz (jw)
4 2 2 L. 4

- __ T P 20} i
ja)+a)2 w? +ja) w2’ +a)2
4 4

:—2——2c032w
w w
4

=a7[—cos2a)+1]

.2

= — sin

w? @

: 2
sm w
w

‘X(ja)) = 8sinc® w

The above problem can be solved using FT property in a few steps which are explained
at a later stage.

Fourier Spectra
IX (jw)| = 8sinc® w
X({w) =0° forall w

The magnitude spectra are represented in Fig.6.15.

Note: The FT of rectangular, triangular and other signals can be easily deter-
mined by following the properties of FT which are discussed below.

+ X(jo)

8

<

—o —37 =2 —r 0 ™ 2T 31

v

Fig. 6.15 Magnitude spectrum of a triangular wave
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6.6 Properties of Fourier Transform

The Fourier transform possesses the following properties and using them, the same
results are easily obtained. These properties are

Linearity,

Time shifting,

Conjugation and conjugation symmetry,
Differentiation,

Integration,

Time scaling and time reversal,
Frequency shifting,

Duality,

Time convolution and

Parseval’s Theorem.

COXIANE P~

—_

6.6.1 Linearity

If
FT .
x1(t) «— X1(jw)
FT .
X () «— Xo(jw)
then

[Ax1(1) + Bxa(£)] < [AX)(jw) + BXa(jo)]

Proof Let x(t) = Ax1(t) + Bx,(t)

X(jw) = / ” x(H)e 7 dt

oo

= / [Ax;(t) + Bxy(t)]e " dt

S . 00 .
=A/ x1(t)e ! —l—B/ X2 (e ™" dt

o0 —00

\X(jw) = AX|(jo) +szgw)\ (6.12)
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6.6.2 Time Shifting

If
x(1) PLUN X(jw)
then
x(t — 1g) <55 eTUNX (je)
Proof
S .
Flx(t —to)] = / x(t — ty)e ™ dt
—00
Let (t —t)) = pand dt =dp
o0 .
Flx(t — 19)] = / xX(p)e ) dp
—00

[o¢]
= e’j“”(’/ x(p)e P dp

[e¢]

FIx(t — 10)] = ¢ 7 X (jo) | (6.13)

6.6.3 Conjugation and Conjugation Symmetry

If
x() <5 X(jw)
then
X(1) < X (=jo)
Proof

Flx*(0)] = X*(jw) = [ / ” x()e 7 dt]

—00

= f xX* ()™ dt

0]
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Replacing w by (—w),

X*(—jow) = / ” x* (e " dt

o0

(X" (Sj) = X(w)| i (1) s real x*(1) = x(1)

Also

\X(—jw) = X*(jw) \ (6.14)

6.6.4 Differentiation in Time

It
() <5 X (o)

then

dx(t
);(t) I joX (o)

Proof

Flx(H)] = % /Oo X(jw)e'® dw

o0

dt 21 0

=joX(jw)

d’; (tt) I o X (o) (6.15)

In general,
[d" x(t)
| dr”

} = (jo)" X(jo)



6.6 Properties of Fourier Transform

6.6.5 Differentiation in Frequency

If
Flx()] = X(jo)
then
.d
Flix()] = j =X (o)
Proof

X(jw) = f ~ x(t)e 7 dt

%[X(jw)] = f_ —jtx()e " dt
= —jF[tx(1)]
x(n)] <L ;X0

6.6.6 Time Integration

If
Flx(D] = X(jo)
then
F |:/t x(7) dr] = ,iX(jw) + 7X(0) §(w)
NS jo
Proof Let

y(t) = /t x(t)dr

[ee]

Differentiating the above equation, we get

559

(6.16)
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d

Using differentiation property, we get
X(jw) = joY (jo)

The differentiation in the time domain corresponds to multiplication by jw in the
frequency domain.

Y(jw) = (i) X (o)
jo

if the initial condition X (0) = 0.

If X(jw) # 0 at @ = 0, then y(¢) is not integrable and FT does not exist.
However, this problem is overcome by including impulses in the transform. The
value at w = 0 is modified by adding 7 X (0) and the FT is written as

F [/ x(t)dr] LN ,iX(jw) + 7X(0) §(w) (6.17)
jw

—00

6.6.7 Time Scaling

If
Flx(] = X(jo)
then
1 (ja))
Flx(at)] = —X | —
la| a
Proof

Flx(at)] = / h x(at)e 7 dt

[ee}

Letat = p; and dt = %dp, a>0

o0

1 Jjop
Fix()] = - / (e dp

—0Q



6.6 Properties of Fourier Transform

By definition of FT, we get

Flx(an)] = éx (,%)

Fora < 0,

Flx(at)] = %IX <j9>

a

Hence

Flx(an)] = ﬁx (13)

For time reversal,

[FIx(=0)] = X(—jo) |

6.6.8 Frequency Shifting

If
Flx(] = X(jo)
then
Fx(t)e™'] = X[j(w — wp)]
Proof
Flx(t)e'] = / N x(£)el™ e~ gt

o0
= / x(p)e @m0t gy

o0

By definition of FT, we get

| FLx(é™'] = X[j(@ — )]

561

(6.18)

(6.19)

(6.20)
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6.6.9 Duality

If
Flx(1)] = X(jow)
then
FIX(D] = 2nx(jow)

Proof From Eq. (6.8), we write

x(1) = 1 /OO X(jw)e™ dw

2 J_»

o
x(—t):—/ X(jw)e " dw

2 J_

2x(—1) = / ” X(jw)e 7™ dw

[e¢]

By definition of FT, we get
2nx(—t) = FIX(jw)]

Changing ¢ to jw, we get

\znx(jw) — FIX(1)] \

6.6.10 The Convolution

Let

y(1) = x(1) * h(1)
Fly®] =Y (o) = X(jo)H (jw)

Proof
y(t) = /00 x(D)h(t — 1)dT

Flyn] = Y (jo) = / ) [ f " x(ohte - t)dr] e I dt

—00 o0

6.21)
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Interchanging the order of integration, we get

Y(jw) = /Oo x(7) [/oo h(r — 7)e 7 dt:| dt

By time shifting property, the term inside the bracket becomes e 7" H (jw).

Y (jw) = / ” x(1)e 7" H(jw) dt

]

= H(jw) /OO x(1)e T dt

By definition of FT, we get

\ Y(jw) = H(jw)X (jw) \

6.6.11 Parseval’s Theorem (Relation)

563

(6.22)

According to Parseval’s theorem, the total energy in a signal is obtained by

integrating the energy per unit frequency

Proof

IX(jo)?
2r

E = /oo |x(2)|? dt

o0

= / ” x(t)x* (1) dt

= / ~ x(1) [i / ” X*(jw)e 7 da)] dt
oo 27 J_o

E= L[ X*(jow) [ / ” x(t)e dt] dw

2n —00 0o

= 1 /00 X*(jw)X (jo) dw
27 J_o

1 o . 2
E=— IX(jw)|” dw
27 J_o

o0 5 1 o0 . 5
/ lx(@®)|dt = —/ X(jw)|"dw
oo 27 J_o
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Table 6.1 Fourier transform properties

Property Time signal x(¢) Fourier transform X (jw)
1. Linearity x(t) =Ax1(t) + Bxa(t) X(jw) =
AX)(jo) +BX>(jw)
2. Time shifting x(t — to) eI X (jw)
3. Conjugation x*(t) X*(—jw)
. e d" x(1) . .
4. Differentiation in time i (w)"X (jo)
d
5. Differentiation in frequency tx (1) j d_X (jw)
1)
f
1
6. Time integration / x(t)dt —X(jw) + 7X(0)5(w)
_ Jjw
. . > 1 W
7. Time scaling x(at) —X (]—)
lal N a
8. Time reversal x(—1) X(—jw)
9. Frequency shifting x(t)elo? X[j(w — wp)]
10. Duality X() 2rx(jw)
11. Time convolution x(t) * h(t) X(jw)H (jw)
o0 1 oo
12. Parseval’s theorem E= f Ix(0)|% dt E=— / X (jow)|? do
o 27 J_ oo
Table 6.2 Basic Fourier transform pairs
Signal Fourier transform
1.58(2) 1
I
2. u(r) — +7né(w)
Jjw
3.8(t — o) e—Joh
I
4. te_‘"u(t) —
(a+jw) I
5. u(—t) w8 (w) — —
Jjw
1
6. e u(—t) -
(a ij)
_ a
7. eall ey
8. cos wyt 7 [8(w — wp) + 8(w + wp)]
9. sin wot —jr[8(w — wp) — §(w + wp)]
1
10, —— —alel
@+7) .
11. sgn(?) —
Jjw
12.1; for all ¢ 27 8(w)
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The above equation is called Parseval’s relation. The Fourier transform properties

are summarized and given in Table 6.1. The basic Fourier transform pairs are given
in Table 6.2.

6.7 Fourier Transform of Periodic Signal

B Example 6.5

Find the Fourier transform of the following periodic signals:

(a) x(1) = &/
(b) x(t) = e !

(c) x(t) = cos wpt
(d) x(t) = sin wpt

Solution:

(@) x(t) = e/ = 1e/*
Let y(t) = 1. From Example 6.1c

Y(jo) = 278(w)

By using the frequency shifting property, we get

\X(jw) — 278(w — wp)

(b) x(t) = eI

x(f) = e 7!

=]

Since 1 <% 278 (w), by using the frequency shifting property we get

| X(j) = 278(e + ) |
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A X(jo)

Fig. 6.16 FT of cos(wpt)

(c) x(t) = cos(wyt)

x(1) = cos(wot)

— % [eiwol 4 e—.iwof]

Using the results obtained in 6.5(a) and 6.5(b) above, we get

[X(jw) = 7[8(@ + @0) + 8w — w0)] |

The frequency spectrum is shown in Fig. 6.16.
(d) x(t) = sin wyt

x(t) = sin wpt

— 2l [efwol _ e—jwol]
J

[X(o) = —jm[8(@ — @) — §(w + wo)]|

The Fourier spectra of sin wyt are shown in Fig. 6.17.

6.7.1 Fourier Transform Using Differentiation and
Integration Properties

Using differentiation and integration properties, most of the problems encountered in
CT system can be easily and quickly solved while determining the Fourier transform.
Let x(¢) be a signal with Fourier transform X (jw). The FT of dx(z)/dt is obtained
using Eq. (6.15). Here, X (jw) is simply multiplied by jw. Thus, we get



6.7 Fourier Transform of Periodic Signal
(a) 4 X(jw) (b) AX(jw)
T ————| 72
-0 —Wy i ®
~0  —o 0 w, w2

Fig. 6.17 Fourier spectra of sin wyt

x() <5 X(jw)

dx(t
);(t) L X (jw)

567

Similarly, the FT of | ioo x(t)dr is obtained by dividing by jow which is given in Eq.

6.17).

—00

/ x(D)dt <% jin(jw) + 7X(0)8(w)

where X(0) = X(w)|p=0. 7X(0)8(w) accounts for the total area of x(z). If this area
is zero then X(0) = 0. The use of differentiation and integration properties saves
time while solving mathematical equation. The following step-by-step procedure is

followed:

1. The signal x(7) is sketched.
2. x(1) is differentiated and dx(¢)/dt is sketched.

3. The differentiation procedure is repeated until the FT could be easily obtained
just by observation. Usually, the differentiation process is continued until the
signal appears in the form of impulse and time shifted impulses. The FT of these

impulses can be easily obtained.

4. Obtain G(0) which is nothing but X(0) when w is substituted in the FT of the
last derivative of x (). Thus, the DC average value 7 X (0)5(w) that results from
integration is added. To this value, G(jw)/(jw)" is added to get FT of x(¢). In

other words,

G(jw)

XU = Gy

where

+ 7X(0)8 ()

G(jw) = FT of nth derivative of x(7)

X(0) = G(jo)lw=0
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The use of differentiation and integration properties is illustrated in a few
examples.

B Example 6.6
Find the CTFT for the following signal x():

2t+4 —2<t<?2
x(t) =18 2<t< o
0 otherwise

Solution: x(t), dx(t)/dt and d 2x(t) / dr? are represented in Fig. 6.18ato c, respectively.
From Fig.6.18c, we get the following CTFT for d?x(t) /dt> = g»(t).

Gr(jw) = [2°° — 2e77%9]
[ej2w _ e*j2w]2j

=2 :
2j
= j4sin2w
G2(0) =0

G| (jw) is obtained by dividing G (jw) by jw and adding the DC term.

(@) (b) _dx(1)
4 gl(t)f dr
2
P ST 0 2 g
) d>x(p)
(© b &M= a2

Fig. 6.18 Signal x(¢) of Example 6.6
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Gi(j) = 292 4 15()G1(0)
jw
_Jj4sin2o
= ]T
_3 <sin 2w>
2w
G1(0) =38
G (i) — 8 sin 2w sin 2w _1
1) = 20 20 |,_o
XG) = 292 4 2561 0)
jw
. 4sin2w
X(jo) = ——— +8nd(w)
jow

B Example 6.7
Find the FT of the step function u(f) using the integration property of FT.

Solution:
The step function is shown in Fig. 6.19. The step function u(¢) and impulse function
8(t) are related as

5() = db;(tt)

du(t) = §(t)dt

Substituting x(t) = u(¢) and §(t) = g(¢), the above equation is written after integrat-
ing both sides as

x(t):/ g(tydr

oo

Fig. 6.19 Signal x(¢) of 4 x(H)=u(r)
Example 6.7

A
i 4
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Taking FT on both sides, we get
. r .
X(jo) = —G(jo) + 1G(0)é(w)
jow

But

g() = 8(1) <5 G(jw) = 1
G(0) = 1

Substituting the above in X (jw), we get

X(jw) = i + 76 (w)
Jjw

The same result is obtained in Example 6.1(d).

B Example 6.8

For the following signals, determine the FT using FT properties.
x(t) = 55sin 10¢

@ y(@) =x(—3)
() y(1) = x(4(r —3))
(©) y() = x(41 —3)
(d) y() =x(—3t+4)

Solution:

(a) x(t) = 5sin 10t

From Example 6.5(d), the FT of x(¢) is obtained as

X(jo) = j57[8(w + 10) — 8(w — 10)]
(@) = x( —3)

FT of y() is obtained using the time shifting property (right shift) as

Y(jw) = X(jw)e 7>
= j5n[8(w + 10) — §(w — 10)]e
= j57[8(w + 10)e ™ — §(w — 10)e ]
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Using the property
X(jw)d(w — wo) = X(jwo)d(w — wo)

we get

Y(jw) = j57[8(w + 10)e** — §(w — 10)e™7]

(b)

(1) = x(4(t = 3))
= x(4t — 12)

x(1) <5 j5n[8(w + 10) — 8(w — 10)]
Using the time shifting property (right shift), we get
FT . —j120
x(t — 12) «— j5n[§(w + 10) — §(w — 10)]e™

Using the time scaling property,

x4t — 12) <5 jgn [3 (% + 10) ) (% _ 10)] 7%
FT_ .5 w +40 0 =40\ _s,
i (5) o (550) )

Using the property
1
S(aw) = -8 (w)
a
we get

5 A .
x4t —12) LN jé_ln [43 (@ + 40) e — 48 (w — 40) e—]Sw]

Y (jw) = j57 [8 (w + 40) 120 _ 5 (w — 40) e—leO] ‘

571
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() y(t) = x(4r —3)

() <5 j5r[8(w + 10) — 8(ew — 10)]
x(t —3) <5 jsn[s( + 10) — 8(w — 10)]e™

x4 —3) <5 jST” E (% +10) -5 (% —10)] e

Y (jo) = j57 [§ (w +40) € — § (0 — 40) e 7]

(d) y() =x(=3t+4)
Using the time reversal property,

x(—1) <5 X (—jw)

x(—1) <5 j5[8(—w + 10) — 8(—w — 10)]

Using the time shifting property (right shifted), we get

x(—t 4+ 4) <5 j5[8(—w + 10) — 8(—w — 10)]e 4

Using the time scaling property, we get

_ Frjom | o( @ _s(Z® _ —j@/3
x(=3t+4) «— 3 [8( 3—I—IO) 8<3 10>:|e

Y(jw) = j5m [5 (—w + 30) e 74P _ 5 (—o — 30) e—j(4/3)w]

Y(jo) = j57 [8 (—w +30) e 7* — § (w + 30) ]

. 8(—w —30) = 6(w + 30)

Y (jo) = j5m [§ (@ — 30) e 7% — § (0 + 30) &)

B Example 6.9
Consider the following CT signal.

x(t) = 4cos 3t
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Determine the FT of the following signals:
@ y@®) =x2—-1t)+x(-2—-1)

) y() = xg3t +5)
©) y(1) = Lx(t —2)

Solution:
(a) x(t) =4cos3t
From Example 6.5, the FT of x(¢) is obtained as

X(jw) = 47 [8(w + 3) + 8(w — 3)]
Y1) =x(2—1) +x(=2—1)

x2—1) PLUN X (—jw)e ™2
(=2 — 1) <5 X (—jw)e
X2 — 1) Fx(—1 —2) <5 X(—jw)[e® + 2]
= X(—jw)2cos2w
X(—jw) = 4n[6(—w+3)+(—w —3)]
Y(jw) = X(—jw)2cos2w

| Y (jo) = 87 cos 20 [8 ( + 3) + 8 (@ — 3)]

(b)

y(t) = x(3t + 5)

x(t+5) <5 4n[8(w + 3) + 8(w — 3)]5

Using the time scaling property of FT, we get

XG4 5) <5 gn [5 (% + 3) 15 (? _ 3)] o5/3)0
= 4n[8(@+9) +8(w—9)]P?

= 4 [8 (w+9)e P +5(cu—9)eﬂs]

Y(jw) =4n [ (0+ 9 e + 8 (0 —9) "]
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(©) ¥() = $x(t = 2)
x(t —2) <5 4n[8(w + 3) + 8(w — 3)]e 7
= 4n[8(w+3)¢° + 8(w — 3)e ]
Using differentiation property

d2
;f I ()X (o)

we get

Y(jw) = 4(jw)’7[8(w + 3)® + 8(w — 3)e ]
= 4n[—8(w + 3)9¢® — §(w — 3)9¢ 0]

Y(jw) = =367 [§ (0 +3) €° + 8 (0 — 3) e ]

B Example 6.10
A signal has the following FT:

. w? + j4o +2
X(jw) = L2 T2
—w* +j4dw + 3
Find the FT of x(—2¢ + 1).
(Anna University, 2011)
Solution:
2 .
) o+ jdo +2
X(jw) = P
—o* + j4w + 3

By using the time reversal property, the FT of x(—f) = X(—jw) is obtained as

T oo —jdo+2
—w? —jdw + 3

x(—1)

By using the time shifting (right shift) property, we get

2 _idw+2\
x(—t+1) PRILIN (%) eI

—w? —jdw + 3
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By using the time scaling property, we get

[%2 —j2a)+2]

1 .
x(=2t+1) L e
2 ? .

B Example 6.11

By using differentiation and integration property of FT, determine the FT of x(r) =
sgn(t).

Solution: x(t) = sgn(t) is shown in Fig. 6.20a, and its derivative dx(t) /dt = 25(¢) is
shown in Fig. 6.20.

dx(t
YO sy LT o
dt
Using the integration property, we get
. 1 dx(t)
X(jw) = —FT | —= | + 78(w)G(0)
Jjw dt
2
= e

Since the area under the impulse is zero, the initial condition G(0) = 0.

) 2
X(jw) = —
jo
(a) 4 x(0) (b) df{# =g(1)
1 >
A 20(1)
ey o7
— 1 a 0 e

Fig. 6.20 Signals representing sgn(¢) and its derivatives



576 6 Fourier Transform Analysis of Continuous Time Signals

B Example 6.12

Consider the signal described by the following signal:
x(t) =142]f |t <2
(a) Sketch x(¢) and its derivatives.

(b) Using FT integration property, determine X (jw).
(c) Determine the odd and even components of X (jw).

Solution:
(2)
x(t) =142/t |t <2
142t 0<t<?2
x)=31—-2t —2<t<0

0 otherwise

x(t) is sketched as shown in Fig. 6.21a. From Fig. 6.21a, the following equations
are written:

dx(t) 56(+2)—-2 —-2<tr=<0
d |58t —-2)+2 0<1<2

dx(t)/dt is sketched as the sum of g; () and g, (¢) in Fig. 6.21b and c, respectively.
Thus

dx(t)
dt

=g1() + g (@)

The derivatives of g, (¢) is sketched as g3(¢) in Fig.6.21d.
(b) From Fig.6.21d, the FT of g3(¢) is obtained as

Gi(jo) = —2[* + ¢ 7*] +4
G;(0)=-2(1+1)+4
=0
Gi(jw) = —4cos2w + 4
=4[1 — cos2w]

= 8sin’w
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(a)

577

(b)
42,0
T
3 % P 2 o |2 (
-5
© 1820 @ § oo
2 4 83(0= dt

|
A
<
(e}
NS}
~V
~
«—]
<

Fig. 6.21 Representation of x(¢) = 1 + 2|¢, || < 2 and its derivatives

From Fig.6.21b

G (jw) = 5(e/* — ¢7/2?)
= j10sin 2w
G1(0)=0

Using the integration property, we obtain X (jw) as

_ Gijo) | Gi(jw)

X(jw) = o) + o) + 7[G1(0)é (@) + G3(0)5(w)]
X0 _,1Osin2a) 8sin2a)
Vo) =075, 8 Gy

X (jw) = 20sinc2w — 8sinc’w

X(—jw) = 20sinc2w — 8sinc’w
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(@ +x(1) (b) +x(1)

t

~V

0 2 -1 0 1

Fig. 6.22 a Rectangular time shifted pulse and b Rectangular or gate pulse

1
X(jo)ow = 5 [X(jw) + X (—jo)]

1
= 5[2OSiHC 2w — 8sinc’w + 20sinc 2w — 8sinc’w]

| X(jw)e = —8sinc’w + 20sine 20

X(jw)oda

1 .
3 [X(jw) + X (—jo)]

1
5[20sinc 2w — 8sinc’w — 20sinc 2w + 8sinc’w]

Bl Example 6.13

Consider the signal x(7) shown in Fig. 6.22a. The rectangular pulse x(¢) is shown in
Fig.6.22b. From X (jw), determine X (jw) using shift property.

Solution: In Example 6.2, the FT of x(7) has been derived as
X (jw) = 2sinc w
From Fig.6.22,

x(t) =Xx(t—1)
X(jw) = X(jw)e 7

Using shift property, the FT of x(¢) is obtained as

X(jw) = 2¢“sinc w
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Fig. 6.23 x(¢) signal of Ax(9)
Example 6.14

A
~Y

B Example 6.14

Find the Fourier transform of the signal shown in Fig.6.23 and plot its magnitude
spectrum.

(Anna University, April, 2005)
Solution: Method 1:

1 —1<t=<0
x(t) =
-1 0<tr<1

Using definition of FT, we get

0 1
X(ow) = / e dr — / e dt
-1 0

—1 —iw 0 Ziw 1
=l = [}
L S R

jo

X(jw) = i[cosw —1]
jo

Method 2:

Differentiating the signal in Fig. 6.23, % is obtained and is represented in Fig. 6.24.

Using the time shifting property, FT of Fig. 6.24 is written as follows:
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Fig. 6.24 Derivative of the
signal represented in Fig.
6.23

G(jw) =F

6 Fourier Transform Analysis of Continuous Time Signals

“M_

dl _g(t)
1 1
-1 0 1 't
—2vw

dx (1)
[ dt

i| = [ejw - 2+eij’”] =2[cosw — 1]

G0)=2[1-1]=0

Using the time integration property, we get

G(jw)

Flx(®)] =X(jo) = —— + 71G(0)s(w) = i[cosa) — 1]+ 7 G(0)é(w)
jo jo

X(jw) = i[cosa) —1]
Jw

To Plot the Magnitude Spectrum

X(w)| = E[cosa) — 1]

X(Gw)| = )a) sinc? ;)

The amplitude spectrum of X (jw) is shown in Fig. 6.25.
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AlX(]w)l

v

—0—8m —6m —4m 2w 0 2 dar 6w 8w

Fig. 6.25 Amplitude spectrum of w sinc?(w/2)

B Example 6.15

Using Fourier transform properties, find the Fourier transform of the signal shown
in Fig. 6.26a: (a) Time shifting and (b) Differentiation and integration.

(Anna University, December, 2007)

(a) 4x(8)
2A ______
A
I I
I I
I I
. I I .
-t 0 T T 3T T t
i 2 4
(b) 42x,(0 (c) 4x5()
A A
“t -T 0 T 1 B 0 T %
) 2 i i

Fig. 6.26 a, b and ¢ Decomposition of signal of Example 6.15. d Differentiated signal of x()
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Fig. 6.26 (continued) 0)

(d) 4 g8(D= W

Solution:
Method 1: Time Shifting Property

The given signal x(¢) represented in Fig. 6.26a can be decomposed as x; (¢) and x,(¢)
and represented in Fig. 6.26b and c, respectively. x(¢) can be represented as

x(t) = A [xl (,— g) o (t_ gﬂ

Thus, the FT of x(#) can be obtained using linearity and time shifting. From Exam-
ple 6.2,

. . T
X1 (jw) = ATsch
X, (jew) = ~ATsine L
w) = — sinc—
2 2 4

X(jo) = [X; (jo) + Xa(jo)]e ™™

X(jw) = AT | si wT n 1. oT _jer
= SINC—— —SInc—— S2
@ 2 T

Method 2: Using Differentiation and Integration Properties

Using differentiation and integration properties of FT, the results obtained using the
conventional method can be obtained in a few steps. Differentiating x(¢) shown in
Fig.6.26a, g(t) = dx/dt can be obtained which are time shifted impulses shown in
Fig.6.26b. From Fig. 6.26d, the following equation is written as

(t)_dx
8=

T 3T
= AS(1) + AS (t— Z) —AS (;- T) —AS(t—T)
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Taking FT on both sides, we get

G(](,()) = A[l + €7jw(T/4) — eijw(ST/“) _ e*jOUT]
GO)=A[l+1-1-1]
=0 Note: Ifx(¢) is finite for 1 — 00, G(0) =0
G(jw) = Ae‘jw(T/Z)[(eiw(T/Z) _ e—jw(T/2)) + (ejw(TM) _ e_jw(T/4))]

T oT :
— 247 | sin — in — | p—ie(T/2)
][Sln > + sin 4i|e
The FT of x(¢) is obtained by integrating G(jw). Thus

X(j) = —G(jo) + 7GO)5(@)
ja)

2A T T )
sin el + sin il e 1oT2 4 o
w 2 4

T

sin %~ 1 sin 2L .
=AT | —— + - —— }em(m)
[ () 2(%)

T 1 T )
= AT sincw— + _Sinc“’_ e~ 1o(T/2)
2 2 4

B Example 6.16

1. Find the Fourier transform X (jw) of the signal x(#) represented in Fig.6.27a
using the differentiation property of FT. Verify the same using Fourier integral.
2. Sketch the signal
x() =2l i =2

Sketch dx(t)/dt and using the time integration property, find X (jw).

Solution:

1. (a) FT Using Differentiation Property

x(r) =2t —l1=<r=<1
dx(1)
o =2-28(t—1)—=28(t+1) —l1=<tr=<1

x(¢) is represented in Fig. 6.27a and % is shown in Fig. 6.27b. In Fig. 6.27b,
x1(t) represents the gate function and x;(¢) represents impulse functions.
From Fig.6.27c, the FT of dx, /dt is obtained as

@ _ jo __ —jw
F|:dt:|_2[e’ e 7]
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(a) 4x(1) (b) 4x(1)
sz(t)
ol 2
-1 dx(t) -1 1
< > =< >+
—t 0 1 t dr =t —1 0 1 t —t
L——q4 =2
-2 -2
(C) “dxl
dt
2

@ ®) ®

> A A
(& (h) %50 O 4g®
2 — 2 %
S0 2 7 810=, 2 »t "4
v—4
Vs gan="522
24
0 2 >
l t
-2

Fig. 6.27 a Representation of x(¢) and d%

. b Representation of x(t) = 2|t| [t| <2
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By using integration properties of FT, we get

. 4 [e” — e
Xi(jo) = —————
jo 2

sin w
=4

w
= 4sincw

The FT of x,(¢) is obtained as

Xo(jw) = =2 (¥ + )

I |
2
= —4cosw
dx(1) . )
FT I =X|(jo) + X2 (jw)
:4s1na) —4cosw
w
X1(0)+X,000=4—4
=0

By using integration properties of FT, we get

1
X(jw) = jz[Xl (o) + X2 (jo)] + 7[X,(0) + X2(0)]8 (w)

4
= — [sincw — cosw] + 0
0]

4
X(w) = —[sincw — cos w]
Jw

The above result can be obtained using the Fourier integral as explained
below.
(b) FT Using Fourier Integral

x(t) =2t

1
X(jw) = / 21e77" dt

1

Letu =2t;du =2dranddv = [ e/ dr;v = JT—wle’j"”
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X(jw) = uv — / vdu

-2 1" 2 b
|:.—€jwtj| + -— eiJwt dt
Jw 1 JoJ

1
[ﬁejwt + %ejwt:|
Jw w 1

[—e /@ 1 : 1 . 1 .
2 ? + —e ¥ — —? — —¢”
jo ? jw ?

1 . . 1 . .
_ _ 0} —joY _ w0 _ —jo
_2_ j—w(e’ +e ) e (e’ e ):|
o1 lsinwi|
=4|—-——cosw+ —
L J® Jw

4
X (jw) = —[sincw — cos w]
Jjw

2. Sketch the signal x(¢) = 2|¢| |#] < 2.

Using differentiation, integration and time reversal properties, find the FT

of X(jw)
2t |l =2
2t 0<tr=<?2
x(t) =
=2t =2<t<0
0 otherwise

x(#) is shown in Fig.6.27d. From Fig.6.27, the following equations are

written:
x(#) = x1 (1) + x2(0)
Let
d
q1(t) = xc‘h(t)

81(t) = g2() + g3(0)

d
g4() = Egz(l‘)

FT of x;(¢) is obtained as explained below using the integration property of
FT
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Ga(jw) <5 2[1 — e72]

Ga(jw) = 2e 79[/ — 7]
= j4e 7 sinw
G4(0) =0

Using the time integration properties of FT, we get

GGy = ZU?) 4 26, 0)5()

Jw
J4 i .
= —¢/sinw
jo

- sinw
=47 ——
w

G;(jw) = —4e™*
Gi(jw) = G2(jo) + G3(jw)

= 477 _sina) — 4%
w
Gi1(0)=4—-4
sin w
G1(0)=0 |:Lt = 1:|
w=0
a’xl(t)
1) =
81(9) 7

Using the time integration property of FT, we get

1
Xi(jw) = —Gi(jo) + G1(0)7§(w)
jo
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Using the time reversal property of FT, we get [x;(—1) = x»(?)]
Xo(jo) = X1 (—jw)

4l 4o
= —5 sin(—w) + —
Jw Jw

Using the linearity property of FT, we get (Fig. 6.27a)

X(jo) = X, (jo) + X (jo)

4e7io 4720 4d®ginw 462
= — sSinw — —; - ; + —
jo? Jjo Jjw? Jjo
4 sinw o _; . 4 ¢ 5 s
— ST e ] 4 [ ]
jo o Jjw
. sin w sin 2w
= —8sincw
w w

X (jw) = —8sinc’w + 16sinc2w

B Example 6.17

Find the Fourier transform of the impulse train shown in Fig. 6.28.

Solution: For Fig.6.28a,

o0

x(f) = Z 8(t —nT)

n=—00

where T is the periodicity. The Fourier series coefficients are determined as

1 (72 _
D, = — / S(nye " dt
T ) _rp

1 (72
=— / (e dr
T ) _rp

1 T/2
= / 5(t)dt

T/2

Nl= N
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(@) ()

P »

—w—6T —=5T —4T =37 2T —T ¢ T 2T 3T 4T 5T 6T
(b)

X(jw)

153 4

<5
g

Fig. 6.28 a Impulse train and b FT of Impulse train

For a periodic signal

x(t) = Z Dneju)gm‘

n=—0oo

where
2

wy = —
0T T

and

X(jow) =21 Y Dyd(w — nawy)

n=—00

. T — 2nn

n=—00

The above expression is represented in Fig. 6.28b.

B Example 6.18

For the triangular wave shown in Fig. 6.29a, find the Fourier transform using differ-
entiation and integration properties.
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(a) 4x(1) (b) 4dx(1)
@ =&
2
4
d 2 -
-t -2 't
jt -2 0 2 =t
-2
(C) A 2xt
dtz( =g,(1)
2 2

| &

~v

v—4

Fig. 6.29 a Triangular wave; b First derivative and ¢ Second derivative of Example 6.18

Solution: The triangular signal x(z) is represented in Fig. 6.29a. It is mathematically

expressed as

dx ()
dr 1t=0

()
e

{2t+4 2<t<0
x(t) =

4 -2t 0<t<?2

)y 2 —2<i<0
d

-2 0<t<?2

varies from +2 to —2. % is represented in Fig. 6.29b.

28(t+2) t=-2
—4 t=0
26(t—2) t=2
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di;;;” = g»(#) isshownin Fig. 6.29c. From Fig. 6.29c¢, using linearity and time shifting

properties of FT, we get

F [dzgﬂ} = Gr(jw) = 2¢/*° — 4 4272
= 4[cos 2w — 1]
G>(jw) = —8sin’w
G»(0) =0

X (jow) is obtained by dividing G, (jw) by (jw)? and adding initial condition

Ga(jw)
(jo)?

(]'_fz sin’ @
W

. 2
S w
w

‘X(ja)) = 8sinc® w ‘

X(jw) = + 7G2(0)8(w)

The same result is obtained in Example 6.4 which is obtained directly using Fourier
integral.

B Example 6.19

Consider the signal described below.

t+2) —2<t<2
x() =14 t>2
0 t< -2

Sketch the signal x(¢). Determine X (jw) using differentiation and integration prop-
erties. Also determine even and odd components of X (jw).

Solution:

t+2) —2<t<?2
x() =14 r>2
0 t< -2
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(@) (b) _ dx(@®)
A gl = d[
1
D ST 2 0 2 g
y d?x()
(© b &M= a2

|
<
|
[\
]
| \S]
_
~v

Fig. 6.30 Representation of x(¢) and its derivatives of Example 6.19

The signal x(#) corresponding to the above equation is shown in Fig. 6.30a. The signal

corresponding to dx(t)/dt is shown in Fig. 6.30b and d’x(t) /dt* in Fig. 6.30c.
From Fig.6.30a,

d*x(1)
&) = o
=8(t+2)—656(1—-2)
d*x . )
FlZ=Z] = 20 _ ,—j2w
|:dﬂi| e e

[ej2a) _ e—ij]

G (jw) =2j %
J
= 2jsin2w
G,(0) =0

Using the integration property of FT, G| (jw) is obtained as

1
Gi(jw) = —Gr(jw) + 1G2(0)8(w)
jw

-
Gi(jo) = 2 sin 2w + 7G2(0)8 ()
Jw

sin 2w
2w

G1(0) =4
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Again using the integration property of FT, X (jw) is obtained as

X(w) = S92 4 2 6,08)
X )_4sin2a)+4 5(0)
Vo) = = ) T 4@
. 2sin 2w
X(jo) = ——— +4nd()
J(,()

The real part of X (jw) corresponds to the even component while the imaginary part
corresponds to the odd component. Thus

Xev(jw) = 4md(w)

) 2 sin 2w
Xow(j©) = ——
Jjw
Also, we may obtain this as follows:
. sin 2w
X(—jw) = —2— 5 + 478 (w)
Jjw
L. .
Xev(iw) = E[X(]a)) + X(_]w)]
1 [2sin2w 2sin2w
=5 |—5 t4né(w) - ——5— +47é(0) | = 47 8(w)
21 jo Jjw
. 1[2sin2w 2sin2w
Xoad(jw) = = | — +4né(w) + — —4nd(w)
2| jw? jo?
_ 2sin2w
=

B Example 6.20

Consider the following signal:

t —2<t<?2
xt)=4{2 r>2
-2 t<-=2

Sketch the signal. Determine X (jw).
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b
(a) A X(I) ( ) A X(l) xl(t)

~
47

A
-~V

Fig. 6.31 Representation of x(¢) of Example 6.20

Solution:
t —2<t<?2
xt)=4{2 t>2
-2 t<-=2

The signal is sketched as shown in Fig.6.31a. x(¢) of Fig.6.31a can be split up as
x1(#) and x,(¢) as shown in Fig.6.31b.

x(1) = x1 (1) + x2 (1)
X(jw) = X1 (jo) + Xz(jw)

X (jw) is nothing but the FT of the signal shown in Fig. 6.30a which is written as
2sin 2w
jo?

x() = -2
X(jw) = =2 x 2né(w)
= —4n(w)

Xi(jo) =

+ 478 (w)

Therefore

2sin2w
Jjw?

X(jw) = + 478 (w) — 478 (w)

_ 2sin2w

jo?

It can be easily verified that x(¢#) shown in Fig.6.31a is the odd component of x(¢)
shown in Fig. 6.30a. —x;(¢) is the even component of x(¢) of Fig. 6.30a.
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595

B Example 6.21

Find the Fourier transform of )
a

a’ 41

x(t) =

using the duality property of FT.

Solution:
Method 1
From Example 6.1(f), the FT of x(¢) = e~ is obtained as

2a

_ FT
x(f) = e M <
a? + w?

By the application of inverse Fourier transform, we get

ol — 1 /Oo 2_“efwt do

21 J_o A% + w?
e = R ¢ dw
) @+ @2

Replacing ¢ by —¢ in the above equation, we get

2a

_ o0 .

2re ™l = ) € 19 dew
—o0 & w

Interchanging ¢ and w in the above equation, we get

o0
el =/ 2—ae_j“”dt
oo (@ +12)

The right-hand side of the above equation is nothing but the FT of -4

2re ol = F _2a
(a® +12)

a*+1% "
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Method 2: The duality property of X(¢) = 2w x(—w). From Example 6.1(f), the FT
of 7" is obtained as

_ FT 2a
a1,

2+ o?
X(t) = _2a
a* + 1
xX(—w) = el

X(1) <5 27mx(—w)

2a FT
a+r

e—alwl

B Example 6.22

For the Fourier transforms shown in Fig. 6.32a, b and c, find the energy of the signals
using Parseval’s theorem

(a) A X(jo) (b) 4 X(jo)
2 2
o -2 2 ©
| |
- i i ; -2
- -2 -1 0 1 2 ®
(© 4[X(w)
2
| |
| |
| |
| |
. | | X
-0 -2 —1 0 1 2 o

Fig. 6.32 Fourier transformed signal of Example 6.22
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Solution:

(@)

1 o . 2

E = —/ X(w)|” dw
27 J_so
1 1 1 2

E:—{/ 12da)+/ 22dw+/ 12da)}
27 |J» -1 1
1 -1 1 2

= s [l + 4ol + [0

1
=—{-1+2+44+44+2-1}
21

(b)

(©)

X(w)l =12 -l<w=<l1

4-2w 1<w<?2
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-1 1 2
/ (&o+4fdw4:/ Qde%:/(4—2wﬁdw}
2 -1 1

—1 1 2
/ (4w2+16a)+16) dw —1—4/ dw—i—/ (4a)2 — 16w + 16) da)}
2 -1 1

4
|:§a)3 + 8a? + 160)]

-1
-2
4

32 4
——32+32—§+8—16

+4fo]
—+8—lﬁ+§—82+ﬂ

-
NE

! 4 5 2 ?
+ ga) — 8w” + 16w
- 1

+ 4+ 4]

I

B Example 6.23

Find the Fourier transform of the following continuous time functions by applying
Fourier transform properties or otherwise.

10.
11.

12.
13.

14.

1
2
3
4.
5.
6
7
8
9

x(t) =68 —2)

xO)=6—-1)—6+1)
x(t) =8t +2)+8(—2)
x(t) =u(t+2) —u(t—2)

x(t) = [u(—t —3) +u(t — 3)]

x(t) = e u(t — 1)
x(t) = te”u(t)

x(1) = e Dyt — 2)
x(r) = e~ 2l

x(1) = cos(wot + @)
x(t) = sin(wpt + @)

x(t) = sin (Znt + %)

x(t) = cos <3m‘ + %) +1

x(t) = cos (67” — %)
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15. x(t) = x(4t = 8)
2

16. x(t) = %x(t —-2)

17. x) =x2—1t)+x(—2—-1

18. x(t) = rect <¥)
19 t) = tri <ﬁ>
. x(t) = tri 0

d t
20. x(t) = — |:5 rect—]
dt 8

21. x() =8 +2)+55@+1)+6@—1)+55(t—2)

Ol |t <
2. x(t) = =
0 elsewhere
0 [t| > 1
23. x) =3 (t+1
Q) «+bH i<l
2
t 0<t<l
2%, x(1) = ==
0 elsewhere
t 0<t<l1
25. xt) =31 1<r<?2
0 elsewhere
1 [t <1
26. x()=492—1tf] 1<t <2
0 elsewhere

Solution:
1. x(t) =68t —2)
The impulse is time shifted by #p = 2.

F[8(t —2)] = e 7" F[8(1)]
— e*j2w

F[8(t—2)] = e/
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2.x@) =06t —-1)—-38(t+1)

F[8¢t—1]=e7®
F[8(t+ 1] =€
FI8G—1) 48+ 1] =e7® -

= —2jsinw

FI8(t—1)—8(+1)] = —2jsinw

3.x(@) =8 +2)+5(t—-2)

F[5(t+2)] =€
F[8(t—2)] =%
FI8(t+2)+8(—2)] =% +e72
= 2cos2w

‘X(ja)) = 2cos2w

4 x@®)=ut+2)—ut-2)
Flu(t+2)] = ,id‘z‘“ + 78 (w)e®
Ja)
Flu(t —2)] = ,ie—ﬂ“ + 78 (w)e
Jjw

Flu(t+2) —u(t —2)] = — [* — 7] + 78(0) — 78(w)

1
jo

= —sin2w
w

‘ X(jw) = 4sinc 2w ‘

5. x(t) =[u(—t —3)+u(t —3)]. What is X(jw)?

x(t) and d); (tt )

are shown in Fig.6.33a and b, respectively.
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() 4 x(1) (b) 4 dx(1)
dt
u(—1—3) u(t—3)
— -t ! ———r———— !
-t =3 0 3 t
Ry -3 0 3 g >

Fig. 6.33 Signal x(¢) of Example 6.21.5

From Fig.6.31b,

F dx(t) — e*j3w _ e+j3w
dt

3w _ ,—j3w
_ o [e/ .e ]
2j

F |:dx(t)] = —2jsin3w

dt
Let
dx(t
S0 I G

Using the integration property of FT, we get
. [
X(jw) = —G(jw) + 1G(0)s(w)
jo

where

G(jw) = —2jsin 3w
GO0)=0

1
X(jw) = —(—1)2jsin 3w
JC()

— 6 (sin 30))
3w

‘X(ja)) = —6sinc 3w ‘
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6. x(t) =eui -1

Method 1
F [e_3tu(t)] = !
G +jw)
Using the time shifting property, we get
e/
F [673071)”(1‘ _ 1)] =—
B +jw)
3,3 e
EF [eut—1)] = ——
B +jo)
e—(jcu+3)
Fle7'u@t— 1] = :
G +jw)

Method 2
Using FT definition, from Fig. 6.34, we get

Flx()] = / e eI dr
1

o0 .
— f 67(3470))[ dt
1

_ — —(BHo)r]>®
Flx(0] = o) [ ]
—(B+jw)
Flx(®)] = ‘o1 3
7. x(t) =te ™ u(t)
F —at -
[e“u(] @tjo)

Using the FT property of differentiation in frequency, we get



6.7 Fourier Transform of Periodic Signal 603
Fig. 6.34 Representation of x(©)
x() = e u@ — 1)
||
a3
0 1 g
d 1
Flie ()] =j-— | ——
do | (a +jw)
_ D
(a+jw)?
X(jow) = ————
ve) (a+jo)?
8. x(t) = e Dyt —2)
Method 1
(1) <5 X(jw)
x(t — 1) LN X (jw)e /@
F efa(t72)u t—2)] = —j2w
[ ( )] (a+jw)
Method 2

Using the definition of FT, we get

o0 .
X(jw) = / eI g7t gy
2

o0 .
— eZa/ e—(a+ja))t dt
2

_ eZa

T a+tjo)

2
_ Tt wrion
(a+jw)

[e—(a+jw)t]°°
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e—/Zw

X(0) = e

9. x(t) = e~alt-2l

e )<t <00
x(t) = -

D) o<t <0
Let|tr—2| =<
x(t) = el
From Example 6.1(e),
2a
Fle @t =
[6 ] a2 +C()2
Using the time shifting property,
2a .
—alt=2|7 _ —j2w
F [6 ] - a2 + wZe /
10. x(t) = cos(wot + @)
1

cos(wot + ¢) = 5 [ j(@ortd) e—j(wot+¢)]

1

= _ [/®f®0t —j$ ,—joot
By frequency shifting property,

F ™) =2n8(w — wo)
F [e_j“"”] =278(w + wp)

Flx(n] = X(jo) = 27” [¢78(0 — wo) + e 7?8(w + wo)]

X(jw)=m [ei¢8(a) —wg) + e_j¢8(w + a)o)]
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11. x(¢) = sin(wot + ¢)

1 . .
sin(wot + ¢) = 2_] [€+j(wot+¢) _ g*j(wntﬂb)]

1

= — [e*e — ¢iteion]
2j

Flx(H)] = X(jw) = 22_” [¢8(w — wp) — 78 (w + wp)]
j

X(jw) = —jm [?8(w — wp) — e 7*8(w + wp)]

12. x(t) = sin (Znt + %) (Anna University, December, 2006)

Let wy =21 andqb:%

Flx(n] = —jr [¢?8(w — w) — e 7*8(w + wo)]

From Example 6.23.11, we write

X(jw) = —jn [e”%a(w —271) — e T 8w+ 2n)]

13, x(0) = cos (3nt + %) +1
Flcos(wt+ @) =m [ej"’(?(w —wp) + e 78 (w + a)o)]

Let wyp =37 and ¢ = % From Example 6.23.10, we write

F [cos 3wt + %] = [e’%S(w —37) +e 75 8(w+ 31)]
F[1] =2n6(w)

[cos (3m + %) + 1] PRI [e’%(S(w —37)+e758(w+37) + 28(a))]

14. x(t) = cos (67tt — %)

Letwy = 67 and ¢ = -
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Flcoswot + ¢l =m [e’¢5(w —wy) + e 8 (w + a)o)]

F [cos (67” - %)] =7 [e7¥8(w —61) + €58(w + 67)]

15. x(t) =x(4t —8)
x() <5 X(jw)
Using the time shifting property of FT, we write
x(t — 8) <5 e X (juw)
Using the time scaling property, we write

T 1 . w
4r—8) <L - *ﬂwx<'—>
x( ) 7€ /7

Flx(4t — 8)] = j—‘x <JZ“’) e

d2
16. x(¢t) = Fx(t -2)

Using differentiation property, we write

F |:d2x(t)
dr?

:| = —w’X (o)
For the time delay 7o,
Flx(t — 1p)] = e 7" X (jw)

Here 1y = 2.

F @ 2) | = e X(j
Ex(t— )| = —w’e (o)

17. x@) =xQ2—=t) + x(=2—1)

x(1) = x1 (1) + x2(2)



6.7 Fourier Transform of Periodic Signal 607

where

x1(t) =x2—1)
x(t) =x(=2—1)
Flx(=)] = X(—jw)

Using the time shifting property of FT, we get

Xi(jo) = Flx2 — ] = e 7> X(—jw)
Xa(jw) = Flx(=2 — )] = &> X(—jw)
X (jo) = X1 (jo) + X2 (jo)

= X(—jo) [e 7> + &**]

| X (jo) = 2X (—jo) cos 2 o |

t+2
18. x(f) = rect (%)

t
x(t) = rect (4_1 + 0.5)

From Example 6.2, the following equation is written (Fig. 6.35):

w

t\ Fr 2 .
rect 7 «— —sin2w
Using the time shifting property, we get

t 2 .
rect (— + 0.5) PN sin 2w e 0
4 w

2 .
X(jw) = - sin 2 /03¢

19, x(t) = tri (=2
x()_ FI(T)

(t—4 . 1t
tri =tri| — —04
() =vi(55-04)
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(@) trect(}) (b) 4rect(£+0.5)
1 1
-t -2 0 2 1 —1—25 0 15 1
Fig. 6.35 x(1) = rect (%)
(@) A tri(r) = g, (1) (b) R % _g,(1)
t
1
1
b E— 0 T
R 0 T 1
dg, (1)
(c) R g3(t):7df‘
1
I F
= ~1 0 1 g
v_2

Fig. 6.36 tri(¢) and its derivatives

The signal tri(z) is plotted as g;(¢) and is shown in Fig. 6.36a. Its first derivative
is plotted as g>(¢) and the second derivative as dg,(¢)/dt which are shown in
Fig.6.36b and c, respectively. From Fig. 6.36c, the FT is obtained as

dg;t(t ) (oo 4 oo — )
Gi(jw) = 2[cosw — 1]

= —4sin’ @
G300 = 0

G, (w) is obtained by using the integrating property
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Gojo) = ——- sin® g + 71G3(0)8(w)

jw
4
- 2%
jo 2
w2 W
—w [sin sin 2
G2(0)=—.w( wz) (J =1>
J 2 2 w=0
=0

G1(w) is obtained using the integrating property

. —4 .y w
G[(](,()) = WSIH E +7TG2(0)8((1))
_ A n®
= o2 s )
= sinc? (%)

Using the time shifting property of FT, we get

tri(r — 0.4) <5 G, (jw)e 704

. (O] i
= sinc? <E> g /04w

Using the time scaling property of FT, we get

t .
tri <m — O.4> L 10sine?5me 4

| X(jw) = 10sinc*50e 7 |

d t
20. x(¢t) = o [5 rect (§>:| What is the FT of y(@) = fx(t)dt?

Figure 6.37a represents 5 rect(t). The time expanded 5 rect (%) is shown in
Fig.6.37b and its derivative is shown in Fig.6.37c. From Fig. 6.37c,

X(jw) = 5¢* — 5774

\X(jw) = jl0sin4w

X0)=5-5=0
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(a) 4 Srect(r) (b) 4 Srect({)
5 5
L [ A — q
! 0 5 t 4 0 4
© 1 ddt |Srect(¢)]

Fig. 6.37 Representation of rectangular wave and its derivatives

Using the integration property, we get

Y(jw) = ,iX(/w) + 7X(0)5(w)
jo

= ]— sin 4w
Jjw

\ Y (jw) = 40sinc 4o \

21 x(#) =8(t+2)+55(t+1)+6(t—1)+58(t —2)

The given x(¢) is represented in Fig. 6.38. By applying the time shifting property
to each impulse, we get

’X(ja)) = &% £ 5 4 ¢ 4 5072

e/t <m

0 elsewhere

22. x(t) = {

The above signal is represented as a product of a rectangular pulse of width 2
and a complex sinusoid /%,
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A X(l)
5 5
1 1
—t -2 ~1 0 1 2 1

Fig. 6.38 Discrete time signal

Fig. 6.39 Representation of y(£)
rectangular pulse

1
— ; —

1 |t <m
x(1) = .
0 otherwise
For —m <t < m, the rectangular pulse y(¢) is shown in Fig. 6.39.

The FT of the rectangular pulse shown in Fig. 6.35 in Example 6.23.18 is

2
Y(jow) = > sin wr

Using the frequency shifting property

y(1)e® <= Y (j(w — 6))
X(jw) = F [y(t)e™]

2sin((w — 6)1)

X(o) =—0"%
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0 |t] > 1
23. x(¢t) = t+1
¢+1 -1<tx<1

2 =
Figure 6.40a gives x(¢) and Fig. 6.40b gives d%. From Fig. 6.40b, signals g»(¢)

and g3(¢) are separated and are shown in Fig. 6.40c and d, respectively.

81(1) = g2(1) + g3(r)

dg> (1)
1) =
84(1) 0
Gi(jw) = 0.5/ — e7/?)
(@Y —eTI?)
=2j0.5—m =
) %
=jsinw
G4(0) =0

Using the integration property, we get

1
Gy (jw) = jZG4(iw) + 1G4(0)8 (w)

jsinw  sinw

jo w
From Fig. 6.40d, we get
Gs(jw) = —€ 7
Gi(jo) = Gr(jw) + G3(jw)
sin w .
= — e Jo
w

Gi0)=1-1=0

By using the integration property, we get

X(jw) = .iGl(iw) +7G1(0)8(w)
jo




6.7 Fourier Transform of Periodic Signal 613

(a) Ax(1) (b) 4 dx()

A
g1n= at

A

~V

~v
|
~
I
—
S
—

(©) 4

—~
o
=
»
>
—~
a
~
»

. . dg,(1)
£,(1) 23() 05 fen="2

-t 0 1 t—t —1 0 i

-0.5

T

-t —1 0 1

Fig. 6.40 Derivatives of the signal x(¢) of Example 6.23.23

t 0<t<l1
0 otherwise

24. x(t) = {

x(t) =1; 0 <t <1 is shown in Fig.6.41a; % is shown in Fig. 6.41b. The
Fourier transform of the time shifted rectangle is 2322 ¢=/%/2 (see Example
6.2) and that of the negative impulse is —e .

dx(t)
dt ]

Gl(jw)=F|:

. 2 W A
G (jw) = [ZMe_z — e‘"‘“] (see Example 6.2)
1)
G0=1-1=0
Using the integration property of FT,

dx(1)
dt

Flx(n)] = iF[ } +7G1(0)8(w)
jo

X(jw) = ~ [_2 Sn@/2) -k e"m}
jw 1)
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(a) 4 x(0) by $ED_ )

~V

BN 4

0 1

Fig. 6.41 Signal representation of Example 6.23.24 and its derivatives

@  Ax(0) (b) 4 g,(n="L0
1

1 ,,,,,,
|
l .
! 0 1 2 1
} I,

0 1 2 1 ~1

Fig. 6.42 Signal representation of Example 6.23.25 and its derivatives

t 0<t<l1
25. xt) =131 1<t=<2
0 elsewhere

The signal x(¢) shown in Fig. 6.42a when differentiated takes the shape as shown
in Fig. 6.42b. For the time shifted square pulse, the FT is (see example 6.2)

2sing o
e 2

Xi(jo) =
For the negative impulse, the FT is
X, (jw) = —e 72

Gi(jo) = X1(jo) + X2 (jo)

2 . Jjo .
=|Zsin—e 2 —e /%
w 2

Gi(0)=1-1=0
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The Fourier transform of the given signal is obtained using the integration prop-

erty.
. 1 .
X(jw) = jTDGl (o) + 7G1(0)(w)
. 1 2 . w _w _
X(jw)=—|—sin—e 2 —e /™
jo Lo 2
1 t] <1
26 x(t)=32—-1t] 1<|t] <2
0 elsewhere

The given signal x(¢) is represented in Fig. 6.43a. The first and second deriva-
tives are shown in Fig. 6.43b and c, respectively. From Fig. 6.43c, the FT of the
impulses are obtained using the time shifting property.

. d’x(1)

— [eij _ (e]a) + e*jw) + e*ij]
= 2[cos2w — cos w]

GO)=1-1-14+1=0

Using the integration property of FT, we get

Flx()]=

2 F [a’zx(t)

Gt | ar } +7G(0)8(w)

2
X(jw) = P [cos w — cos2w]

B Example 6.24
Find the magnitude spectrum of FT and plot it where

(1 42e7)

BT

(Anna University, April, 2004)
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(a) 4x(1) (b) dx(1)

1(1)—7

A
~v
~v

(© 4 (t)—

| a
-
|
[\
|
—_
(e}
«—

—
[\9)
~V

Fig. 6.43 Signal representation of Example 6.23.26 and its derivatives

Solution:
1 4 2e77®
Ho) = L1727
(1 + 5e77°)
(1 + 2 cosw) j2sina)
(1 + —cosa)) -1 5 sinw
, Ja +2cosa))2+4sin2w
|H(jw)| =

\/(1 + Jcosw)? + § sin*w

_ V1 +4cos?w+ dcosw + 4sin’ w

\/1 + 1 cos?w + cosw + § sin’
VS5 +4cosw _

,/f¢+cosw

|H (jw)| is independent of frequency and is shown in Fig. 6.42.
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B Example 6.25

Using the properties of continuous time Fourier transform, determine the time domain
signal x(7).
If the frequency domain signal is described as given below.

o d [ e

(Anna University, December, 2007)

Solution: From the inspection of X (jw), the given problem can be solved using
differentiation in frequency, time shifting and scaling in the proper order.
First, the time scaling property is applied. Let

X] (]a)) =

14+jw
x1(t) = e u()
F [x1[32]] = 3¢ ¥ u(3r)

_ v
[1+%‘“]
Pl —<1 1,» ) — 3¢ u() [ ult) = u(30)]
i

According to the time shifting property,

F[3¢u@3n] =

Y (jw) = y(t + 2)

~1 el ~3(142)
F — | =3¢ u(t +2)

(1+%)
According to differentiating property,
.d .
J7—X(jw) = tx(1)
dw

Applying the above property, we have
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d e/’2w

F
d o
o (1+12)

= 31e 3Dy (r 4 2)

. Jjd e
X(jo) =~ (1 " %w>

x(1) = 31t +2) |

Bl Example 6.26

Find the inverse Fourier transform of the following functions:

1. X(jw) = §(w — wy)

2. X(ow) = L
(2 +jw)?
3. X(o) = (1) l:clos|ev<vhire
4 XU)_<2Z%
SR TR .
6. me=[mwf;%2+a]

Solution:

1. X(jo) = 8(w — @)

The IFT of §(w) = % 3 (w) is frequency-shifted by wy.

oot 1
—1 . _ wol
F' [X(o)] =€ o

1 .
F' 80— wp)] = =&
2
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Fig. 6.44 Magnitude 4|H(jw)|
spectrum of H (jw)

A

\

€

o
cv

The above result can also be got from the first principle of inverse Fourier trans-
form

1 o .
F! [6(w — wo)] = E/‘ 8w — Cl)o)elwtda)

Using the sampling property of the impulse function which exists only at w = wy,
we get (Fig.6.44)

1 .
F7' [8(0 — wp)] = =&
2

. jo
2. X(jw) = ————
U= 51 ja
1
Fle??]=——
2 +jo)
By applying
—21 d 1
Fle?]= 2 1
do 2+ jw)
(Applying frequency differentiation)
Fle?]= -
2 +jw)?

F—l ; — te—2t
2 +jo)?

By applying time differentiation, namely

dx(1)
dt

= joX (jw)
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f‘(lg ?.45 Representation of AX(jo)
w
1
—fu -w 0 w &
Fl L _ i (tefzt)
2 +jw?) dt

1 w
3. X(jw) = |- el =V

0 otherwise

(Anna University, December, 2013)

The frequency spectrum of the above function is shown in Fig. 6.45.

Using the definition of inverse FT, we get

1 v .
x(t) = E[ X(w)d”dw
—-W

_ 1 jwt W
- 2mjit (1]
_ 1 jWr ___—jwt
=gl e
[
= —sin Wt
wt

w .
x(t) = —sincWt
b4

4. X(jo) = Gy

—6
(o +3)(jo — 3)
A A
Cjo+3  jo-3
—6=A;(w —3) +A2(jow +3)

X(jw) =
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Let jo = -3
A =1
Letjow =3
Ay =—1
. 1
X(jow) = - - -
jo+3 jo-—-3
x(t) = F ' [X(jo)] = e ut) + e 'u(—1)
‘x(t) = e u(r) + &u(—t)
. _ (jo+2)
> X(je) = [(jw)12+4jw+3]
i 2
X(w) = —I2T2D
(o + Do+ 3)
Ay A
= = + =
(jo+1)  (o+3)
(o+2)=A1(w+3)+AG(w+1)
Let jo = —1,
1 =24,
1
A1 = E

Letjow = -3, Ay =3

1 1 1
X(jw) = =
Uer=3 [jw+1 +jw+3}

[eft + €73t] u(t)

N | =

x(t) =

2 = (Jo+1)
6. X(J®) = 5o Gerd
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A A A
’ 1 4 2 . 3
(jo+2)?  (o+2) (o+3)
(jo + 1) = Ai(jo + 3) + As(jo + 2)(jo + 3) + As(jo + 2)°

X(jw) =

Letjow = —2;
—1=A
Let jo = —3;
-2 =A;

(o +1) = Ao +3) + Az [(j0)* + Sjw + 6] + A3 [(jw)* + 4jw + 4]
Compare the coefficients of jw on both sides,

1 =A| 4+ 5A; +4A;3
=—1+54,-38
Ay =2
X(jw) = - L2 2
(jo+2?  (o+2) (o+3)
x(t) = F ' [x(jw)]

x() = [—te_z’ 4272 — 2e_3’] u(t)

B Example 6.27

Consider a causal LTI system with frequency response,

1
H(jw) = ——
() jo+3

For a particular input x(¢), this system is to produce the output
y(t) = e u(t) — e Mu(r)

Determine x(¢).

(Anna University, April, 2008)
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Solution:

y(t) = e u(t) — e Mu(r)
1 1
(Go+3) (o+4)
1
T (o +3)(o+4)
_ Y(jo)
~ X(jw)
Y (jw)
H(jw)
_ (joo + 3)
(o +3)(o+4)
1
C (o+4)
x(t) = F'X(jw) = e *u(r)

Y(jow) =

H(jw)

X(jw) =

x(1) = e M u(r)

B Example 6.28

Find the Fourier transform of the following signals using convolution theorem.

1. x(1) = e 2u(t) * e u(r)
2. x(f) = % [e72u(t) * e >'u(r)]
3. x(t) = [e X u®) x e 'u(t — 5)]

Determine x(#) in all the above cases.

Solution:
1. x(t) = e ?u(t) * e >u(t)
X(jw) = F [e *u®)] F [e”>u(®)]
—2t _
Fle?u@)] = Goi2)

1

F [efstu(t)] = Go 1 3)
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X(jw) =

(o +2)(jo +5)

R 1
XUw)_?[jw+2_ (ja)+5):|

x(t) = F'[X(jw)] = l[e%m — e u(t)]
o 3

x(t) = [(372’ — 675’] u(t)

WO | —

2. x(t) = L e u(t) * e >u(r)]

Let

x1(t) = e 2 u(t) x e >u(r)
1

X100 = G e+ 9)

Using the time differentiation property of FT, we get

.X(l) — %

X(jow) = joX;(jo)

X(jo) J
W)= —"F"———
(o +2)(jo +5)
Putting into partial fraction, we get
A Ar

X(w) =
Vo) = 2 jo+s
Jo=A1(jo+5)+A(jo +2)

Let jo = —2;

Ay
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Let jo = -5;

Ay =

W] = W] W

X(jow) = 2 n 5
@)= jo+2  jo+5

x() =F' [X(jw)] = % [—2¢7% + 5> u()

x(t) = = [-2¢7 + 5¢7 | u()

W | =

3. x(t) = e u(t) = e Stu(t — 5)

x(1) = x1 (1) * x2(2)

X(jw) = X1 (jw)Xs(jw)

1
(o +2)
X () = e u(t —5)

= e Pyt — 5)

1

(o +5)

X1 (jo) =

Xs(jw) = e

X(jw) = e [;]
(o +2)(jw +5)

. I s 1 1
X(o)=ze 7 | —F5 — =
3 jo+2 jo+5

o2
x(t) = =5 [6_2’ — 6_5’] u(t)

B Example 6.29
Consider the following signals x; (¢) and x;(¢). Find

y(#) = x1(2) * x2(1)
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1.
x1(0) = e 2u()
(1) = eu(—r1)
2.
x1() = e¥u(—r1)
x ) = e'u(—r1)
Solution:

1. x1(8) = e #u(t) and x,(t) = e>u(—t)

1
Xi(jw) Go12)
o 1
X(o) =-50"3)
x1(1) * x2(1) = X1 (jw) X5 (jw)
1 (=)
Y00) = o) Go = 3)
Y(jow) = Al A

Go+2) o3

1 1 1
5 jw+2  jo-—3

y(t) = F'[Y (jo)] = é [e7u(t) + ¥ u(—1)]

y(t) = é [e7u(®) + &'u(—1)]

2. x1(8) = e2'u(—t) and x3(¢) = e*u(—1)
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L —1
X (jw) = Go—2)
o -1
X (jw) = m
x1(1) * x2(1) = X, (jw) X2 (jow)
o 1
Yio) = o =5 o = a)
Ay Ar

“o-2 o2

1 [ -1, 1 ]
"2 Go—-2) " (o-—4)
y(0) = F'[Y (jo)] = % [ — " u(-0)

y(t) = % [ — " u(—1)

B Example 6.30

Find the Fourier transform of the following functions:

1. x(1) = & u(t)
2. x(t) = cos wopt u(t)

3. x(t) = sin wot u(t)

4. x(t) = e “coswotu(t); a>0
5. x(t) = e “sinwptu(t); a>0

6. x(t) = [u(t +2) — ut — 2] cos 3t
7. x(t) = e 2 cos 5¢

8.  x(t)=e"sin2s

Solution:

1. x(¢) = e/ u(t)
1
Flu®]=—+ndé(w)
jo

By using the frequency shifting property, the FT of x(¢) is obtained.
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F[e'u@)] = o + 78 (w — wp)
2. x(t) = coswytu(t)
cos wot = % [ej‘”“’ + e’j“’o’]
cos wotu(t) = % [¢"u(t) + e/ u(t)]

By using the frequency shifting property, F[x(#)] is obtained.
X(jw) = F[cos wotu(t)]
1 1
=s|l77— = trdlw—w) + —— +ﬂ5(w+wo)}
2 [J(w — wo) J(@+ wo)

. 1 2w
X(jw) = - | ——= + 7wé(w — wp) + 7w (w + wyp)
2 [J(w—wé) ]

. jo 1 1
X(jw) = m + Ené(a} —wy) + 577.'8((1) + wp)

3. x(t) = sinwytu(t)

1, . .
sinwot = — [ — 7]
2j
1, . .
sin wotu(t) = — [e""“’u(t) — eﬁ"’”tu(t)]
2j

By using the frequency shifting property, F[x(#)] is obtained.

1 1 1
F[.X(f)] = Z [m +7‘[8(a) — a)()) - m — 7[8(a)+ wO):|

. wo T T
X(jw) = [m + 2—].5(60 —wg) — 2—}.5(60 +wo)i|

4. x(t) = e cos wotu(t)
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1 jwot —jwot
cosa)otzi[e’ o eI

o0
X(jow) = / e~ cos wote ™" dt
0

I . . 1 [ : .
— 5 / ol pfoot =it gy 4 E f oAl pmiwot p=jt gy
0 0

o o 1 [ o
— _/ e—<u—1wo+./w)f dr + _f e—(a-wwo-klw)l dt
0 2 Jo

2
—(a+jwo+jw 0
Ty
2 [(a@—jwo+jw) (a@+jwo +jow) |,

1 1 1

== - — + - -
2 [(a +jw) —joy (a4 jw) +on}
_ la+jo+joy+a+ jo — jo]

2 (a+jo)? + o}
X(jw) = — 4TI
(a+jw)? + v

Note: The property used to solve this problem is called the “Modulation”
property which states that

x(¢) cos wyt JLL %[X(w —wy) + X(® + wp)]

where x (¢) is the modulating signal and cos @y is the carrier signal.
5. x(t) = e “sinwytu(t)

sin wot = 2—1] [¢" — e/™]

1 o0 . ) 1 00 . A
X(]a)) = — / e—atelwole—]a)l dt - — €_ar€_jw0te_‘/wt dt

e . . 1 o0 . .
: / e*(afjw()“rjw) drf — _/ e*(a+jw0+jw)t dt
0 2j Jo

_ef(afjwn+jw)t e*(a“rja)[)“rjw)[ :|°°
0

- - — + - -
| (@ —jwo +jw)  (a+jwo + jow)

1
2
1
2
17 1 1
T Latjo) —jon  (a+jo) +jw0}
1 [a+jo+jwg—a—jo+jwy
2_] (a+jo)? + o} ]
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wo

X(jw) = ———0
V) = oy + o]

6. x(t) =[u+2)—u(—2)]cos3t

In Fig. 6.46, [u(t + 2) — u(t — 2)] is represented as

xxO)=u@+2)—u@t—-2)=1; |t|<?2
2 .
X (jo) =/ e dt
-2
o2
= _j; [ ! t]—z
1 —2w 2w
=i [ — ]
2 [e/'Za) e—ij]
w 2j

2
X (jw) = gsinZw

@3t 4 I3
cos 3t = —

1
Flx(t) cos wpt] = E[X(a) — wp) + X(w + wy)]
Using the above frequency shifting FT property, we get

_ [sin2(w —3)] | [sin2(w + 3)]
F[{u(t +2) —u(t —2)}cos3t] = @ —3) @13

X(jo) = |:sin 2(w—3) sin2(w+ 3)]
(w —3) (w+3)

7. x(t) = e 2 cos 5¢

[see Example 6.1(f)]

Fle=2i] =
e] 13

F[x(t) cos wyt] = %[X(a) — wp) + X(w + wy)]
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Fig. 6.46 x(1) = Ax(1)
[ut +2) —u(t —2)]
1
) 2
In the given problem, wy =5
X (o) 242
w) =
[(w—5?%+4] [(@+5)?*+4]

8. x(t) = e~3 sin 2¢

From the result obtained in Example 6.1(f), we write

. 6
F[e 3\|]= G

As per the modulation property,

x(1) sin wot <E> %j[X(w —wy) — X(w + wy)]

F [@73‘“ sin 27] PLUN i [ 6 — ! i|
2 L0+ (@—=2)% [9+ (0+2)]

—j24

) = o 00+ @+ 27

B Example 6.31

Consider the following differential equation. Determine the frequency response.

d*y(t) | dy(D) _dx(1)
i + 57 +06y(t) = I + 4x(1)
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Solution:

Taking FT on both sides of the above differential equation, we get the following
algebraic equation. In the above equation, (jw)? = %; (jw) = % are substituted in
the Fourier integral.

(j©)?Y (jw) + 5(w)Y (jw) + 6Y (jw) = [(jo) + 41X (jo)

Y09) — oy = ——90ED
X (o) (G + S+ 6]
(o +2) (o +3)
24+ 16
H(jo)| = Y@ 10

V(@ + D (@* +9)
H(jw) = tan~! e tan~! @ tan ™! d
4 2 3

H(jw) is the ratio of the Fourier transform of the output variable to the Fourier
transform of the input variable. It is called “Sinusoidal Transfer Function”.

To draw the frequency response plot (magnitude and phase plot), for —oo <
w < 00, different values for w are substituted in H (jw) and |H (jw) and the following
table is prepared.

w 0 1 42 44 6 too
|H(Gw)| 0667 058 0439 029 003 0
ZH(jw) 0° F31° F52° FT2° FT9°  F90°

From the above table, the frequency response magnitude plot is sketched as shown
in Fig. 6.47a and the phase plot as in Fig. 6.47b.

B Example 6.32

A certain continuous linear time invariant system is described by the following dif-
ferential equation:

? + 5y() = x(1)

Determine y(¢), using FT for the following input signals:

(@) x(t) = e 2u(r)
(b) x(t) = 10u(?)
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(@) O )

|H(jw)| =Magnitude plot

0.667
So—6 -4 42 0 2 4 6 ®
(b) Hei

4|H(j®) =Phase plot
S -4
1_(1) -6 —4 -2 2 4 6 (5
____________________965 _____________________

Fig. 6.47 Frequency response plot of Example 6.31. a Magnitude plot and b Phase plot

() x(r) =8(1)

633

Solution:
(@) x(@®) = e u(t)
Taking FT on both sides, we get
(jo +5)Y(w) = X(jw)
Fle *'u(t)] = ot

1

R PR )

=5l )
3 ljw+2  jo+5
Y0 = F oyl = 5[0 — e ¥ u)
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y(t) = % [e7 — e[ u()

(b) x(t) = 10u(t)

X(jw) = F[10u(r)] = [10713(60) n E}
Jjow

. X (jw)
Yio) = =05
5 1 10
= [” (‘””,-w} o+ 5
_ 10m8(w) 10
(o4 5) +ja)(ja)+5)
_ 107é(w) 2 2

T (w+5)  jo (o+5)
Applying the property X (jw)d(w) = X(0)é(w) in the above equation, we get
Y(jw) = 10 §(w) + 22
Vo) = Fmd@ + = Gots)
= 2[ S(w) + : } _ 2
=APOT L] Gors)
y(t) = F 'Y (jo) =2 [u(t) — e 'u(®)]

y@) =2[1—e] u®)

Note: 1
F! |:7t8(w) + ,—] = u(t).
jw

The above response is called ‘““Step Response” because the input u(¢) is a
step signal.

(c) x(2) =4(t)

X(jw) = 1

Y(w) =

jo+5
y(t) = F'[Y(jo)] = e u(t)

y(t) = e u(r)
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The above response is called “Impulse Response of the System” because the
input §(¢) is an impulse.

B Example 6.33

Consider an LTI system with the differential equation.

d’y(@t)  dy(t) _dx(1)
7 +47 +3y(@) = I + 2x(1)

Find the frequency response and impulse response.

(Anna University, December, 2006)
Solution:
Taking FT on both sides of the above equation, we get

[(w)* + 4jw + 31Y (jw) = (jo + 2)X (jw)

_ Y(o) (jo +2)
C X(o) ()2 +4jo+3]
(w42

T (jo+ Do +3)

H(jw)

V(w2 +4)

(w? 4+ 1) (0?4 9)

|H(jw)| =

) )
H(jw) = tan~! 5~ tan~! w — tan_lg

The above expressions give the magnitude and phase of the frequency response.

To draw the magnitude and phase of the frequency response plot, different values
for w are substituted in H (jw) and ZH (jw) and the following table is prepared.

w 0 +2 +4 +6 +o0
|H(jw)| 0.667 0.35 0.216 0.155 0
/ZH(jw) 0° F15.3° F65.7° F724° F90°

From the above table, the frequency response magnitude plot is sketched as shown
in Fig. 6.48a and the phase plot as in Fig. 6.48b.
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(@) R .
|H(jw)| =Magnitude plot
0.667
o6 -4 =2 0 2 4 6w
(b) Hei
4|H(j®) =Phase plot
_____________________ +90°
to 6 4 2 2 4 6 o
_900 _____________________

Fig. 6.48 Frequency response plot of Example 6.33. a Magnitude plot and b Phase plot

To find the impulse response,

x(t) =6(@1)
Flx(®)] = F[5(1)]
=1
Y(w) = —J2TD
(o + 1)(w + 3)
Ay As

ot D  Got3)
(o+2) =A1(w+3) +A(o+1)

Letjow = —1;

R —

1 =2A1 or A1



6.7 Fourier Transform of Periodic Signal 637

Let jo = —3;

—1=—2A2 or A2=—

1 1
Y(o) = [(}a)+l) (ja)+3)]

Taking inverse FT, we get

1
y(t)=F I[Y(lw)]—z[ + e u(r)

[e 673t] u(t)

l\)l'—‘

y(1) =

B Example 6.34

An LTI continuous time system is described by the following differential equation:

2
ddytgt) +2dzﬁ +29(0) = x(0)

Determine the impulse response of the system using FT and inverse FT.

Solution:
Taking FT on both sides, we get the following equation:

[(0)* + 2jw + 2] Y (jw) = X (jw)

For an impulse input x(¢) = §(¢),

X(jw) =
V() = (jw)? + 2jw + 2
1
" o+ 1+)jo+ 1))
Aq A2

= + = ;
Jo+14+)) (o+1-—))
=A(jo+1—)) +A(o+1+))
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Let jo = —(1 +))

l=A(-1-j—-1-=))
~1 .1
A=—- A =AT=;
2 2

1 —1 1
Y(jw) = —
oy =5 [jw+<1 ) et —JJ

Taking inverse FT, we get

Y(t) = zl [—e= (4 4 =0
J
et — eIt
= eit I e—
[ 2 }

Bl Example 6.35

Find the unit step response of the circuit shown in Fig. 6.49. Use the Fourier transform
method.

(Anna University, December, 2007)
Solution: For the circuit shown in Fig. 6.49, the following equation is written:

OIS
74’ i(t) = x(t)

diy | oo
57 + 10i(r) = x(¥)

Fig. 6.49 Time response of y(1)
R-L circuit .
M ,
I R=10Q g

x(1)
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Taking FT on both sides, we get

[5jw + 10] jw) = X (jw)
0.2X (jw)

1G0) =403

For a step input,
. 1
X(jo) = 78(w) + —
jo

0.278(w) 0.2

160) = T iaGo +2)

Applying the property X (jw)é(w) = X(0) (w), the above equation is written as

1 1
() = 0.178(w) + 0.1 | — —
Ge) o+ [ja) jw+2]
0 [ 4 0.1
=0.1|m — |-
DT ] T jet2

i(t) = 0.1 [u(®) — e >u®]
y(@) =i(OR

y@ =[1—e ] u@)

Summary

1. Periodic signals are represented by Fourier series as a sum of complex
sinusoids or exponentials. However, ES is not applicable to aperiodic sig-
nals. Fourier transform gives spectral representation to aperiodic signal.
Thus, FT is applicable to periodic and non-periodic signals as well as to
transform time domain signal x(#) to frequency domain signal X (jw). Here
the frequency domain representation is continuous.

2. Itis possible to transform time domain specifications to frequency domain
specifications and vice versa. The former is called Fourier transform and
the latter is called inverse Fourier transform which are denoted as F[x(t)]
and F~![X(jw)], respectively, and they are called Fourier transform pair.
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3. Fourier transform does not exist for some useful signals. For example, for
x(t) = e™u(t) FT does not converge.

4. Fourier and Laplace were contemporaries and great mathematicians who
were encouraged by the French ruler Napoleon Bonaparte. Laplace, by
introducing an exponential decay in the everlasting exponential, made
many functions converge while FT failed in these cases. Further, the
Laplace transform is more powerful especially in getting the solution of
differential equations compared to FT.

5. FT is a special case of LT which is obtained in many cases by replacing s
by jo. But this is not always true. For example, in the case of a step signal,
this is not applicable.

6. Fourier transform has many useful properties. By applying these prop-
erties, one can easily get the FT pair of even complex signals. They are
powerful tools for manipulating signals in time and frequency domains.

Exercises
I. Short Answer Type Questions

1. What do you understand by Fourier transform pair? What is called
analysis equation and what is called synthesis equation?
When the time function x(¢) is transformed to frequency function X (jw),
the function x(¢) is said to be Fourier transformed. When the frequency
function X (jw) is transformed to x(¢), then the function X (jw) is said to
be inverse Fourier transformed. These transformations are, respectively,
defined as follows:

X(jw) = / - x(t)e ' dt

o0

o
x(t) = —/ X(jw)e” dw
2w J_

o0

The above two equations are called FT pair. The first equation is called
the analysis equation while the second equation is called the synthesis
equation.

2. How is the Fourier transform different from Fourier series?
Fourier series is applicable to periodic signals. Fourier transform is appli-
cable to periodic and aperiodic signals as well.

3. How is FT developed from Fourier series?
When the aperiodic signal is considered as a periodic signal with its fun-
damental period tending to infinity, the fundamental frequency decreases
and the higher harmonics become closer. The frequency components form



6.7 Fourier Transform of Periodic Signal 641

a continuum, and the Fourier series sum becomes a Fourier integral which
is defined as the Fourier transform.

4. How is Parseval’s Energy theorem defined for the frequency domain
signal?
According to Parseval’s theorem (French mathematician of the late eigh-
teenth and early nineteenth centuries), the energy of the frequency domain
is defined as

1 [ .
E=— X (jw)|” dw
27 J_o

5. Whatis the connection between the Fourier transform and the Laplace
transform?
The connection between the Fourier transform and the Laplace transform
is that the Fourier transform is the Laplace transform with s = jo. The
Laplace transform of x () = e~ u(z) is X (s) = @ and its Fourier trans-
formis X (jw) = m However, this is not generally true of signals which
are not absolutely integrable. The Laplace transform of a step signal is
X(s) = % The Fourier transform of the step signal is X (jw) = 7é(w) + jiw
and not simply iw

6. What do you understand by frequency response?
If y(#) is the output, x(¢) the input and A(¢) is the impulse response, then
they are related as

y(#) = x(1) * h(7)
By using tne convolution property, we get

Y(jw) = X(jw)H (jw)

Y

U9 _ o)

X(jo)

The function H (jw) is called the frequency response.

7. What is the condition required for the convergence of the Fourier
transform?
If the signal x(¢) has finite energy or if it is square integrable such that

/oo Ix(#)|* dr < oo

oo

then the Fourier transform X (jw) converges.
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The energy content of the CT signal x(#) can be determined either by inte-
grating |x(¢)|? over all time ¢ or by integrating | X (jw)|? over all frequencies
)

17. What are Dirichlet’s conditions for the CTFT?
Dirichlet’s conditions for the existence of CTFT are as follows:

(a) The signal x(¢) should be absolutely integrable, that is,

/OO |x(®)|dt < o0

o0

(b) x(¢) should have finite number of maxima and minima over a finite
interval of time.

(c) x(¢) should have finite number of discontinuities in the finite time
interval.

18. What is the CTFT of x(¢) = e“u(—1)?

—1

at, .~ FT
e“u( t)<—>—(jw—a)

where a or real part of a > 0.
19. Isx(¢) = u(t) absolutely integrable using analysis equation of CTFT?

©2 .
X(jw) = / le /' dt
0

1 .
_ e /et
j_a)[ lo

The integral becomes indeterminate when the upper limit is applied.

20. If ot t)
L (o
XGo) =503

find x (¢).
x(0) = 8(t) — 2¢ > u(r)

21. ¥ X (jw) = 8(w — 2), find x(2).
x(1) = L g
2w
22. If X(jow) = n8(® + 2m), find x(¢).

1 _.
x(t) — Ee—]ZTEl‘
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II. Long Answer Type Questions

1. Consider the following continuous time signal.
x(t) = eV

Find the FT. Hence determine the FT of rx(¢).

, 10
X0 = o5 1)
—j20w
Flie—5 = 1
[te ] (25+w2)2

2. For the signal X (j®) shown in Fig. 6.50,determine x (¢).

sin 5¢

x(t) =5 g
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A X(]'w)

-t -5 0 5 o
Fig. 6.50 Frequency spectrum of x(¢) of question 2

Fig. 6.51 Representation of Ax(d)
the signal x(#) for question 3

EN 4

3. Consider the signal shown in Fig. 6.51. Find X (jw). What is the FT for
x(t—-1)?

. 2sinw
X(jw) = ——— + 2718(w)
Jw
Flx(t — 1] = X(jw)e
2si A
= 02 4 ons(w)

jo

4. Using Parseval’s theorem, evaluate energy in the frequency domain.

x(f) = e
1
P=3
5.
x(t) = e *u@®)
and

h(t) = e *u(t)
y(&) = x(t) * h(t)
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Using the time convolution property, find Y (j®) and y(¢).

7R T

y(t) = % [e7* — e *]u)

x(t) =e 2 u@)
ht) = e 2u(t)
y(@) =x(t) % h(@)

Find Y (j®) and hence y(¢).

1
(jo +2)?
y(1) = te > u(1)

Y(jw) =

7. A certain LTIC system is described by the following differential equation
(Fig.6.52):

DO ) = x()

dt

Determine the Frequency response and the Impulse response.

Hi®) = Go )

h(t) = e > u(r)

b .
(a) (o ) X
3
2
o 0 ST A N
I

Fig. 6.52 Frequency spectra of Eq. 11
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Fig. 6.53 Square wave of 4 x(0)
amplitude A

A

~V

8. Consider the following differential equation (Fig.6.53):

2
ddytgt) +8—dfl(t) + 15y (t)_—( ) 4 4x(0)

(a) Find the frequency response.
(b) Find the impulse response.
(c) Find the response y(¢) due to the input x () = e tu(r).

(o +4)
(jo + 3)(jo + 5)

(b) h(t) = % [e7 + e u()

(a) H(jw) =

© Y= % [2te™ + e — e | u(t)

9. Determine the impulse response /(¢) of the system given by the differential
equation
d’y(t) | dy(®)

3——
m2+ dt

+ 2y(1) = x(1)

Assume all initial conditions to be zero.
(Anna University, 2013)

YO = (e — e *u)
10. The system produces output y(r) = e ‘u(f) for the input x(t) = e > u(r).
Determine

(i) Frequency response.
(ii) Magnitude and phase of the response.
(iii) The impulse response.

(Anna University, 2013)
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»  H(o)=——+

H(jw) = tan™! % —tan"'w

(iii) h(t) = 8(t) + e "u(r)
11. Obtain the frequency response of a CT-LTI system defined by

dy(1) .
i + 2y(t) = 3x(t)

and hence draw the magnitude and phase spectra.
(Anna University, 2009)

3
H(jw) = ——
Vo) jo+2
|H (jo)] = ———
U @*+4

N
H(jw) = —tan >

|:y(t+1)+y<t+%>+y<t—%>+y(t—1):|

(Anna University, 2011)

12. Find the CTFT of

x(t) =

N =

X(jw) = [cosa) + cos %)] Y(jw)
13. Find the CTFT of a square wave of amplitude “A”.
) 2A . A
X(jw) = —sin —w
0] 2

14. The input signal x(r) = e 2'u(¢) is applied to a relaxed LTI system. The
response of the system is
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2
y(0) = Fle™ + e — e Mu(r)
Find the system function using CTFT.

2 (- 4 j6w +T)

HG0) = 3 o T Do+ 3)



Chapter 7 )
Fourier Transform Analysis of Discrete Giese
Time Signals and Systems—DTFT, DFT

and FFT

Learning Objectives

¢ To represent aperiodic discrete time signal by Fourier integral.

¢ To define Fourier transform for discrete time signal.

4 To derive the conditions for the existence of Discrete Time Fourier Transform
(DTFT).

¢ To find DTFT for typical discrete time signals.

¢ To establish the properties of the DTFT.

¢ To solve the difference equations using DTFT.

¢ To define DFT and IDFT.

¢ To determine the properties of DFT.

¢ To find the circular convolution using circle method.

¢ To establish the fundamental principle of FFT algorithm.

7.1 Introduction

In Chap. 4, we represented continuous time periodic signals as a sum of everlasting
exponentials by Fourier series. Similarly, in Chap. 5, the discrete time periodic signals
was represented by discrete time Fourier series using a parallel development of
continuous time system. The Fourier series representations of CT and DT signals in
these chapters are however applicable only if the signal is periodic. If the signal is non-
periodic, then applying a limiting process the aperiodic continuous time signal was
expressed as a continuous sum of everlasting exponential or sinusoids and this method
was termed as Fourier transform of continuous time signal which was discussed in
Chap. 6. On similar line, the discrete time periodic signal represented as a sum of
everlasting exponential by Fourier series in Chap. 5, by applying limiting process to
aperiodic signal x[n], it can be expressed as a sum of everlasting exponentials. The
spectrum X [€2] so obtained is called Discrete Time Fourier Transform (DTFT). If the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 651
S. Palani, Signals and Systems,
https://doi.org/10.1007/978-3-030-75742-7_7
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spectrum obtained by DTFT is sampled for one period of the Fourier transform at a
finite number of frequency points, such a transformation is called Discrete Fourier
Transform (DFT) which is a very powerful computational tool for the evaluation of
FT. Some special algorithms are developed for the easy implementation of DFT which
result in saving of considerable computation time. Such algorithms are called Fast
Fourier Transform (FFT). The detailed study of DTFT, DFT and FFT are discussed
in this chapter with sufficient illustrated examples.

7.2 Representation of Discrete Time Aperiodic Signals

Consider the aperiodic signal x[n] shown in Fig.7.1a. The periodic signal xy,[n] is
constructed by repeating the signal x[n] every Ny units as shown in Fig.7.1b. The
period Ny is chosen large enough to avoid overlapping. If we put Ny —> oo, the
signal repeats after an infinite interval and therefore

Lt xy,[n] = x[n]
No— o0

From Eq. (5.4), for a discrete signal, the FS can be written as

x[n] = Z Dy e/kon

(a) x[n]
‘ N I Ts R
-N 0 N n
) sy, 1]
{ NhII Il OMTITV H Nhhz

Fig. 7.1 Extension of aperiodic signal to periodic signal
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xNO[n] — Z Dke]kﬂ[)n

k=[No]
where Q¢ = f\,—z and
D, = L i x[n]e7Kshon
o No n=-—00

With € as continuous function let us define

o]

X(@Q) = Y x[nle?™

n=—00

Substituting Eq. (7.3) in Eq. (7.2), we get

1
Dy = —X(kQ
£ N (kS20)
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(7.1)

(7.2)

(7.3)

(7.4)

Equation (7.4) shows that the Fourier coefficients D; are 1%0 times the samples of
X (R2). As Ny — oo, the fundamental frequency €29 — 0 and D;, — 0 and the spec-

trum becomes continuous. Now consider Eq. (7.3)

[ee]

X(Q) = Z x[n]e7Kson

n=—0o0

Equation (7.1) can be expressed using Eq.(7.2) as

xw, [n] = % > X(kQo)e

0 k=[No]

= Z X (k) <&>
27

k=[No]
As Ny — 00, Q¢ — 0and xy,[n] — x[n]

xlnl= Lt > [X(kszo)f—ﬂ AL

0

Since 2 is small, it can be replaced by 2. Thus,

(7.5)

(7.6)

(7.7)
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2
AQ =T (7.8)
No
_ 1 ikAQn
xnl = Lt o D X(kAQ) A AQ (7.9)
k:NU
k = Np implies NgAQ2 = 2. Hence, Eq.(7.9) becomes the integral
1 inQ2
x[n] = — | X(Q)"dQ (7.10)
2 2
The spectrum X (£2) is given by
oo
X(Q) = Z x[n]e (7.11)
n=—oo

Equation (7.10) is called the Fourier integral and X (€2) is called the Discrete Time
Fourier Transform (DTFT). They are called DFTF pair. Symbolically, they are rep-
resented as

x[n] = IDTFT{X(Q)}

X(RQ) = DTFT{x[n]} (7.12)
Or
xin] 22 x(@)

The Fourier transform X (2) is nothing but the description of x[n] in the
frequency domain. From Eq.(7.11), it is proved that the spectrum of a discrete
time signal is periodic with fundamental period Np.

As in the case of continuous time signal, the sufficient condition for the conver-
gence of X (€2) is that x[n] is either absolutely summable. That is

o0

> Ixlnll < oo

n=—00

or the sequence has finite energy, that is

> lnll? < oo (7.13)

n=—0oo
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7.3 Connection Between the Fourier Transform and the
z-Transform

From Eq.(7.11)

oo
X(@Q) = Y xlnle?™
n=—00
The z-transform of x[n] is given by
o0
X[zl = Z x[n)z™"
n=—00

655

(7.14)

(7.15)

From Egs. (7.14) and (7.15), we see that if the ROC of X[z] contains unit circle, then

X (€2) equals X[z] evaluated on the unit circle. That is

X(2) = X[z]

7=el®

(7.16)

Note: Using Eq.(7.16), one can obtain Fourier transform by substituting z = ¢/
provided x[n] is summable. If x[n] is not summable, as in the case of u[n], one

cannot obtain X (£2) form X|[z].

When Fourier transform and z-transform are connected, X () is denoted by X (¢/ 2y

or X(e/®).

B Example 7.1
Find the FT of the following DT signals:

1 x[n] = é[n]
2 x[n] = d"u[n]
3 x[n] = —d"u[—n — 1]
4 x[n] = u[n]
5 x[n] = @™ jal <1
Solution
1. x[n] = d8[n]

F(8[n]} =) _ 8[nle ™"

1 n=0

=10 020
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F{s[n]} =1
2. x[n] = a"uln]
X[Q] = Z a"u[n]e /S

1 n>0 since x[n] is causal
uln] =
0 n<O

X[Ql =) d'ue’™
n=0

= i[ae’jg]”
n=0

By using the summation formula we get

1

3. x[n] = —a"u[—n — 1]

—1

Z —d"u[—n — 1]e7*"
n=—0o0

-1

— § _aneijn

n=—00

X[]

oo

— E _a—ne/Qn

n=1

— _Z(aflejﬂ)n
n=1
_{aflejQ + (a7189)2 + (ailejQ)S + .. }
=—a'd* 1+ (@ ')+ @'dhH +- -]
a'e®
(1 —a1e)
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1
4. x[n] = u[n]
Let x[n] = u[n] «— X(Q)
X(Q) = Z ulnle 7%
n=0

X(@) =) (7%
n=0

1
7 (1 —e79)

which is obtained using summation formula because |¢/**| = 1 and X(£2) is not
summable. The following procedure is followed to evaluate the FT of a causal
step sequence.

S8[n] = uln] —uln — 1]
1 =[1-—e2IX(Q)

For Q =0, (1 —e7*) = 0. Therefore, X(£2) must be written in the following
form:

X(Q)=Co(Q) + ——+
(@) =D+ = s
where C is any constant. The step sequence u[n] can be expressed in terms of odd
and even components as

] =~ + Lsin]
xen—z zn

xo[n] = x[n] — x.[n]

_ .1
= xln] — 5 — 58ln]

Flxo[n]] = C5(2) + — 78(RQ) — 1

1
(1 —e /%) 2

From the property of FT, the FT of an odd sequence must be imaginary. To satisfy
the condition, C = 7
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1 1
Flxo[n]] = d—c5®) 2

1
Flxe[n]] = m8[€2] + 3

Flx[n]] = Flx.[n]] + Flxo[nl]
1 1 1
=ﬂ5(9)+§+m—§
uln] «<— () + m
5. x[n]l= @™ la] <1
X@= ) @"e7®
o .
— Z a—ne—an + Zane—jﬂn
n=-—00 n=0
= X1(£2) + X2(€2)
1
X2(2) = m a<l1

Xi(Q) = ) (ad®)"
n=1

= acd® + (ad®)* + (ad®)* + - -
= ae**[1 4+ ae® + (ae*H* + - - -]
ae?

= m a < 1
x@ =2y ]
T (1—ad?) (1 —ae?)
_ (1—a
X() = (1 = 2acos Q + a?)
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7.4 Properties of Discrete Time Fourier Transform

The properties of DTFT are very similar to those of CTFT and these properties are
very useful to determine the Fourier transform and inverse Fourier transforms very
quickly. They are discussed below with proofs.

7.4.1 Linearity

If

il 22 X,(Q) and x[n] L5 X (Q)
then

Axi[n] + Braln] 255 AX,(Q) + BX,(R)
Proof

X((@) = ) xilnle
o0
XQ) = Y xlnle™
n=—00

(Ax;[n] + Bua[n]) 255 > Axilnle ¥ + 3 Bry[nle
n=—00 n=—0oo

= AX|(Q) + BX,(Q)

{Ax;[n] + Bra[n]} 255 AX,(Q) + BX»(Q)

7.4.2 Time Shifting Property

If

xin] 22 x (@)
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then
x[n — np] 253 X (Q)e
Proof
x[n] &5 x(Q)
[e ]
X(Q = ) xinle™
n=—00
x[n — ngp] o x[n — ngle /¥
n=—00
Let(n—ny) =m
oo
x[n —nol = Z x[m]e 7@ 0m+mo)
m=—00
= Z S0 x[m)e /S
= e MX(Q)

x[n — ng] 53 7m0 x (@)

7.4.3 Frequency Shifting

If
x[n] 225 x(Q)
then
Iy n] 25 X(Q — Qo)
Proof

]

X(Q) = Y xlnle /™

n=—00
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o0
X(Q—Q) = )Y xlnle /@

n=—0o0
oo

= ¢/Sn Z x[n]e /<"

n=—0o0

The right-hand side of the above equation is the DTFT of x[n]e/%". Therefore,

] 25 X(Q — Q)

7.4.4 Time Reversal

If
x[n] 22 x(Q)
then
x[—n] 22 x(—9)
Proof
o0
X(Q) = Z x[n]e 7"
n=—0o0o
For the time reversal signal x[—n]
o0
X(Q) = Y x[-nle
n=—0oQ
Let —n=m
o0
X(Q) = Z x[m]e~Sm
m=—0oQ
=X(—9Q)

x[—n] 25 x(-9)

Folding in the time domain corresponds to folding in the frequency domain.
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7.4.5 Time Scaling

If
xin] 22 x(@)
then
DTFT Q
Proof x[an] <— X (E)
o0
X(Q) = > x[an]e 7™
n=—o00
Letan =p
ad Q
X(Q) = Z x[ple P
p=—00

7.4.6 Multiplication by n

If
xn] 22 x(@)
then
prFT . dX(L2)
Proof nx[n] <—>]d—Q
o0
X(Q) = ) xnle?"

Differentiating both sides with respect to 2
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7.4.7

If

then

Proof

—d};(éz) = n;oo —jnx[n]e 7"
j% = n;w{nx[n]}e*f“"
{nx[n]} <1)T—Fr>j—d}2g2)
Conjugation
xin] 22 x (@)
DTFT

x*[n] <— X*(—Q)

X(Q) = i x[nle
X*(Q) = [ i x[n]e_jQ”:|*
C 3 e
= i x*[n]e /"
=x=7(0—0§z)

x[n] 28 x*(—Q)

663
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7.4.8 Time Convolution

If
DTFT
x1[n] <— X1(2)
DTFT
x[n] <— X5 (2)
then

DTFT
xi[n] * xz[n] <— X1 (€2)X2(£2)
Proof When the two signals x;[n] and x,[n] are convolved,

yln] = xi[n] s xz[n]

Y(Q2) = i xi[m] i xo[n — mle
Letp=n—m
Y(Q) = i x1[m] i Xolple IR E+m
p— Pt
= i xi[m]e " i x2[ple ¥
_neone

x1[n] % xa[n] € X (Q)X,(R2)

7.4.9 Parseval’s Theorem

o0

1
SO P S5 = | X@Rde
n=—00 27 Jon

The above relation states that the average power in a DT periodical signal is equal
to the squared magnitude of X (£2).
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Proof

XHQ) = Y x[n]e™

Now

o0 o]

Y nllP = ) x*[nlxin]

n=—0oo n=—0o0
o]

Z x*[n] [% / X(sz)eiﬁ"dsz}
2

n=—00

1 = * Qn
el AR [ Z x*[n]e/® :|d§2

2 N——00

1
— | x@©@x*Q)d
21 2

1
— [ 1X@©@Pd
27'[ 2

7.4.10 Modulation Property

x[n] cos(Qen + 0) < %{X(Q — Qe + X(Q+ Qe )
Proof From frequency shifting property, the following equation is written
x[n]e/%" PAL X(Q2— )
Multiplying both sides by ¢/, we get
x[n]e @m0 25 x (@ — Q.)el

The above equations is generalized as

prFT 1

x[n] cos(Qen + 0) <— 5{X(sz — Qe + X(Q + Qe )

The properties of DTFT are given in Table7.1.
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Table 7.1 Properties of DTFT
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Operation x[n] X(2)
1. Linearity Ax1[n] + Bxz[n] AX1(Q) + BX>(Q)
2. Time shifting x[n — ng] X(Q)e 0
3. Frequency shifting e/ x[n) X(2 — Q)
4. Time reversal x[—n] X(—)
5. Time scaling x[an] X (%)
N dX(Q2)
6. Multiplication by n nx[n] Jj 19
7. Conjugation x*[n] X*(Q2)
8. Time convolution x1[n] * x2[n] X1(2)X2(€2)
9. Parseval’s theorem > o IxInl? é Jon 1X(Q)2dS2
10. Modulation x[n] cos(Ren + 0) %{X(Q — Qe +X(Q+

Qc)e %)

B Example 7.2

Find the discrete time Fourier transform of the following sequences:

1
2.
3.
4

10.

11.

12.

x[n] = %"

x[n] =1 all n

x[n] = cos Qon Q| <7

x[n] = u[n] — uln — NJ]

In| =N

|
Anl = {0 n| > N

x[n] = a "u[—n]

x[n] =10 (é>_ u[—n]

x[n] =10 (é) uln]
— 1 "
x[n] =n (5) uln]

x[n] = {2, -1, 2, =2}

x[n]:{l 0<n<S5

lal > 1

0 otherwise

= (3) e (5)
yln] = 2 uln] * 3 [n]



7.4 Properties of Discrete Time Fourier Transform 667

13. x[n] = (n + Dd"uln]
14. x[n] =uln — 1] — u[n — 4]

1 n—1
15. x[n] = (§> uln — 1]

1 [n—1]
16. x[n] = (Z) uln — 1]

17. x[n] = 8[n — 2] 4 8[n + 2]
18. x[n] = 8[n + 2] — §[n — 2]

19.  x[n] = sin (%n i Z)

3
20. x[n] = (i) ul—n — 1]
21. x[n] = 10 + cos (%n— %)

22. x[n] = x[2 — n] +x[—2 — n]
23. y[nl = (n — 1)%x[n]

24. x[n] = (%) uln + 1]

Solution
1. x[n] = e/ %"
Consider the following DTFT
X(2) =278(82— Q) |2, Q] =7

The inverse DTFT is obtained from

x[n] = 1 / X(Q)ed
27 J_»

b

1 .
=— [ 278(Q2— Q)edQ
2

-7

Using the property ffooo D(2)5(2 — 20)d2 = (), we get

x[n] = %[2;14'90"]

— engn

o M ons @ — Q) 191, 1Q0] <7
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2. x[n]l=1 alln

¢ 200509 — Q)

Substitute 29 = 0 and x[n] = 1

1 2% 2759

3. x[n] = cos Qyn || <m

1 . .
cos Qon = E[e’QO"+e’/Q"”]

2 2L 5059 — Q)

e 2L 50 8(2 + Q0)

cos Qon 225 7[8(2 — Qo) + 82+ Q)] [, [R] <7

4. x[n] = u[n] — u[n — N]

N-—1
X(Q) =) xlnle ™"

n=0
Using the summation formula
N-1 C(—dY)
I
= (1—a)
we get
1 — e /9N
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1 In| < N
0 |n|>N

5. x[n] = {
N

X(Q) =) e’
—-N

-1 N
— § 6’7an + § e*an
—-N 0

_ e/Q [(1 _ e;QN):| N |:(1 _ ejQ(N+1)):|

(1 —¢%) (1 —e79)

9 QWD 1 — QW+D
X(Q2) = . -

) |: (1 —e7%) :| |: (1 —e7%) ]

[¢% — 1 — @2+ | GO | | _ o /RWN+D _ fi 4 =N
- 1 — (9 4 e/ 41

2cos QN —2cosQ(N + 1)

2(1 — cos?)
B sin(N+ %) Qsin%
- sin? £
in(N+1)Q
X(Q) = w
sin (3)

6. x[n] = a "u[—n] la] <1
0
X@Q= Y a’"ed™”

= (@
n=0

Using summation formula, we get

1

X@ = o
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7. x[n] =10 (}) ™" u[-n]

0 —n
X(Q) = Z 10 (é) eI

n=—0o0

00 1 . n
=10 (_e]Qn>
2 (5

10

8. x[n] =10 ()™ uln]

X(Q) = Z 10 (ée’ﬂ)_

n=0
=310 (677"
n=0

RHS of the equation is not summable and x[n] does not have DTFT.
9. x[n] = n ()" uln] (Using multiplication property by n)

(&) ¥ e
2) TR

6‘19

(&% —0.5)

RN
"\2) " Taq | @2 —05)

J(@® —0.5)e%(j) — el (j)
(&2 — 0.5)2
0.5¢/%
(@2 — 0.5)2

" ] prrr 0.5¢/%
nl=) un <— ————
2 (@2 —0.5)?
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10. x[n] = {2, —1, 2, —2)

Q) = 2 — 77 42692 — 27

1 0<n<5 . . .
11. x[n] = R (Anna University, April, 2005).
0 otherwise
sinQ (N + 1
xan=———Lﬁ—ﬁ
sin 3
where N =5
in5.5Q
X(Q) = —
sin 0.5Q2

12. y[n]l = (%)” uln] = (%)" uln]

1
XO) =Ty

1
HE&) =T

Y(Q) = X(QH(Q)

1
(1= 1e7) (1- 1o 77)

Y(Q) =

To find y[n], put Y (£2) in partial fraction and take IDTFT.
13. x[n] = (n + 1)a"u[n]

x[n] = nd"uln] + a"uln]
S s L
na'uln @ a2

n DTFT e
a‘uln] «— ———
(@ —a)
TFT ad® n &%
(@ —a)? (9 —a)
&% a+ % —a)
(@@ —a)?

x[n] 2
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22
(¢ — a)?
1
(1 — ae /)2

" DTFT 1

14. x[n] = uln — 1] — u[n — 4]

X(Q) = 7% 72 4 70

15. x[nl= (3)" " uln - 11

Using right shift time shifting property, we get

G R L -
3 (1=3e7%) (e —3)

3

1" DTFT 1
3

16. x[nl = (1)" " uln - 11

From Example 7.1.5,

@ T A=)

Hnl = (1 —2acos Q2+ a?)

Substitute |a| = %

1\" prer (15/16)
<Z> (17/16) — 0.5 cos 2
15
17 — 8cos Q2
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Using right shift time shifting property, we get

1\ ! DTFT 15772
4 17 — 8cos 2

17. x[n] = é[n — 2] + §[n + 2]

Sln — 2] + 8[n + 2] o8 722 4 29

S[n — 2] + 8[n + 2] 25 2cos2Q

18. x[n] = é[n + 2] + é[n — 2]

S[n+2] — 8[n — 2] 455 29 _ 22
= j2sin2Q

Sin+ 2] — 8in — 21 22 25in 29

19. x[n] =sin (Zn + %)

. T T d(%”*%) — e*j(%’H%)
sin (—n + —) = ;
4" "3 2j

= L et i i
2j

From Example 7.2.1, it is derived that
& 2L o059 — Qo)
i 28 o5 (2 - 7)

e 2 ons (Q + %)

2 .
sin (1;1 n f) AL il [e/?(s (Q _ %) D) (sz +

47" 3 2

473

J

sin (zn n 3) I T [ef%a (sz _ E) _ i (sz n

673
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20. x[n] = (3)" ul-n - 1]

[]—1 AN [—n—1]

Using the reversal and left time shift, we get

1 —n—1 e/Q
<—) ul—n —1] <ILFT>

4 1— e®
_ 1
D

DTFT l 1

1\

21. x[n] =10 + cos (Zn — %)

1 _ .z o xx
cos (%n—%) = E[e‘-’?e’i”—i-e’?e_f?”]

Jin L ons (Q - %)

e7in 25 ons (Q + %)

10 222 2075 ()

10+ cos (%—%) DT 20m8 (Q) +7 [e*f%a (Q—%) +e3s (Q+%)]

22. x[n] =x[2 — n]+ x[-2 — n]

2 —nl 22 X(Q)e 2 (Right shift)

x[=2 —n] 28 x ()€ (Left shift)

(x[2 = n] + x[=2 — n]) 25 X(Q)[e 72 + 29

= 2X(2)cos2Q

(2 = 1] + x[=2 — n]} 255 2X(RQ) cos 29
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23. y[n] = (n — 1)2x[n] (Anna University, April, 2008)

yinl = (0* =2n+ Daxln]
= nzx[n] — 2nx[n] 4+ x[n]
d’X(Q)
dQ?

nx[n] H AX(€)
e

n*x[n] o ()2

dX(Q)  _.dX(Q)
BT —2j +X()

Yy = aQ

24. x[n] = ()" uln + 11

Making left shift of (%)” we get

(3) w2
2 (=)

26/

The above result can be obtained from first principle as follows (Figs.7.2
and 7.3):

X(Q) = Z (%) e/

n=—1

1 —1 o 00 1 n )
I - —jQn
() <+20)

00 1 n
— 7,
=27+ Z (261‘9)
n=0
1

=20+ ————
T
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Fig. 7.2 DT sequence of 4 x[n]

Example 7.2.4
1 2 3

0 (N—1) n
Fig. 7.3 Rectangular pulse 4 x[n]
x[n] for Example 7.2.5
1
e o e o
—-N 0 N n

C2e%—1+41
i1
26/
XQ)=——7F——
R O T

7.5 Inverse Discrete Time Fourier Transform (IDTFT)

If x[n] is given, the discrete time Fourier transform is obtained using Eq. (7.11) which
is given below.

[ee]

X(Q) = Z x[n]e 7% (7.17)

n=—0oo

If X(2) is given, then the sequence x[n] is obtained from Eq.(7.10) which is given
as
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Table 7.2 DTFT pair

No. x[n] X(2)

1. 8[n] 1

3. a'uln] T i® la] <1

4. —a"u[—n — 1] m lal > 1

5 ! _ U-d)

) (1 —2acosQ +a?)
1 21 8(2)

7. cos Qon m[8(2 — Qp) + (2 +
Q0)] [2],1Q] <7

8. sin Qon Jr8(2+ Qp) — (2 —
Q0)] [L2],[0] <7

9. uln] — uln — NJ eijQ(NTil) W

sin(£2/2)

sin <<N + %) SZ)

10. rect pulse T&?/Z)

1 jQn
x[n] = — X(Q)*dQ (7.18)
2 27

x[n] is also obtained by putting X (€2) by partial fraction and making use of DTFT
pair in Table7.2. The process of getting x[n] from X(£2) is called IDTFT. This is
illustrated in the following examples.

B Example 7.3
Find x[n] for the X(£2) given below.

L. X(Q)=87T5(Q)+10n8(s2—%)_{_10775 (Q_{_%)

i 0<Q<
2. x@={ “TH*=T
—j 7 <Q<0

2 0<|Q<Z
0 I<iQ<n

3. X(Q) = {

4
and ZX(Q2) = —§Q
4. X(Q) = 6+ 47 4 70772
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5. x[n] = (%) uln]
h _ 1 n
[n] = <§> u[n]

yln] = x[n] * h[n]
6. X(Q) =jQ

Solution

L. X(R) =875(R) + 1078 (2 — %) + 1078 (2 + %)

278(Q) 255 1

T
716(9—2)—}—718(&24—%) <DT—FT>cos%n

x[n] =4+ 10cos %n

. Q <
2 x@=1/ 0<®%=7
—-j <=0
1 0 . LA
x[n] = — / —je*"dQ + / je’Q”dQ}
2z - 0
. 0 b
&[T [
2 jn _n jn 0
j 1 1 . 1 . 1
=L ——t+ e+ = — .—}
2 jn  jn jn jn
1 . .
— -2 Pl —jmn
—27_[”{ + +e }
1
= — {—1+cosmn}
Tn
2 5 NTT
x[n] = —— sin® —
nmw 2
2 0<|Q z
3. X(R) = =19 <3
0 Z<|Q=<x

and /X(2) = -3
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4
ZX(Q2) = —59
= eij%ﬂ
2 0 —jtq jon 3 —jtq ja
x[n]l = — e 73 dQ + e /3 eMdQ
2 _% 0
L0 s :
== / dUI(Q 4+ [ dIQ
b -z 0
_ L 14 [ei(n—i)ﬂ] +[ef<n——>n]3
TR L
1 I: 4\
— 1 e_](n_§)§ —1 +e](n 3)
jz (n=3)

0] = ———si ( 3z
P E

4. X(R) =6+4e 7% 4 7¢7722

x[n] = {6, 4, 7}
5. x[n] = (1)" uln]
hin] = (3)" uln]
y[n]l = x[n] * hin]
1
T e
D)
1
T e -1
A As

|

679
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Substitute e/ = 2; we get A| = 3 and substitute e 7/ = 3; we get Ay = —2

v — 3 B 2
T (1=%e7®) (1 fe®)

Taking inverse Fourier transform, we get

Y[n]=3 (%) uln] —2 (%) uln]

6. X(Q) = jQ

1 ) ,
— Jjmn —jmn
_27m [ne + e ]
1
= —Ccosmn
—1)"
x[n] = =D n#0
n

7.6 LTI System Characterized by Difference Equation

LTIDT systems are described by linear constant coefficients differential equations
of the form

N M
> ayin—kl = bxin — k] (7.19)
k=0 k=0

where M < N. Taking Fourier transform of both sides of Eq.(7.19) and using the
time shifting property, we get

N M

D @Y (Q) =Y be X (Q) (7.20)
k=0 k=0

Y(Q2) Yl bre
X YV ae e

H(Q) = (7.21)
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In Eq.(7.21) H(2) is called the system transfer function and for any input X(£2),
the output y[n] can be obtained by taking IDTFT. Further, H (€2) gives the frequency
responds of DT system which is periodic and is expressed as

H(Q) = H(Q + 27) (7.22)

Unlike continuous time system, for a DT system the frequency response is observed
for the frequency range 0 < Q <27 or —w < Q < 7.

B Example 7.4

Consider the system consisting of the cascade of two LTI systems with frequency
responses

2 — @

e

and
1

(1= 3o+ o)

Hy () =

Find the difference equation describing the overall system.

(Anna University, April, 2008)

Solution Note: As stated earlier, symbols used here are different from the symbols
used in this text book. Their equivalence are

QL=w
H(Q) = H(”)
H(”) = Hi(¢*)Hy ()

Q2—e)
(19 (1= ke + 1)
Y(e®)  2—e
X(e@) (1 + Le=i)

<1 + %eﬂ“’) Y(€?) = (2 — e7)X(?)

yln] + éy[n — 3] =2x[n] —x[n - 1]




682 7 Fourier Transform Analysis of Discrete Time Signals ...

B Example 7.5

Find the impulse response of the discrete time system described by the difference
equation

yln —2] =3yln — 1]+ 2y[n] = x(n — 1)

(Anna University, April, 2005)

Solution Taking Fourier transform for the both sides of given difference equation,
we get

[e—j2Q _ 3e_jQ + 2]Y(Q) = e_jQX(Q)
e 12X (Q)

Y(Q) = - -
) [e/2% — 3= + 2]

For an impulse X(2) = 1

[e?? — 372 £ 21Y(Q) = (e 7% — 1)(e 7% = 2)
e IR
(e72 —1)(e/ —2)
Ay Ay
GG
e =A% —2) + Ay(e® - 1)

Y(Q) =

Put e 79 = |
1=A1(1—2), A1=—1
Pute 7% =2

2=A2(2—1); Ay =2

—1 n 2
(e —1)  (e72-2)
1 n 1
(1—e7?) (1 - 1e79)

Y(Q) =

Taking inverse discrete Fourier transform, we get
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yln] = [1 - G) }u[n]

B Example 7.6
Find the DTFT of

and plot the spectrum.

(Anna University, April, 2005)

Solution
X(Q) = !
(=)
. 1
(1= LcosQ+ Ljsin Q)
1/—tan"'sinQ/(1 — %cos Q)
\/(1 - %cosQ)2 + 1sin’ Q
1/—tan™"'sin /(1 — 1 cos Q)
(3 —cosQ)
Q -7 -5 0 z T

2
X()] 0.667 0.894 2 0.894 0.667
ZX(2) 0 26.6° 0 —26.6° 0

The frequency spectrum is shown in Fig.7.4.

B Example 7.7

Use Fourier transform to find the output of the system whose impulse response
hn] = (%)” u[n] and the input to the system is x[n] = (%)" uln].

(Anna University, May, 2007)

Solution

1T
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(a) A XQ)

-Q —r —”rr/2 0 ’rr/z ™ 6

(b)

A X(Q)

Fig. 7.4 Frequency spectra for Example 7.5. a Amplitude spectrum and b Phase spectrum

XE =T
Y ()

HQ) = ——
X(Q)

Y(Q) = HQ)X(Q)

1

Ay

= e - e
Ay

- (1 - le—J‘Q)

3

(= 1e7)

1 . 1 .
1 :Al (l — EEJQ> +A2 <1 — 3819>

Pute /¢ =3

Put e 7% =2




7.6 LTI System Characterized by Difference Equation

[ ()]

685

B Example 7.8
Given

x[n] ={1, 2, 0, 2} — Input

T
hln] = {5,{1, 3} — Impulse response
yln] = x[n] * h[n]
={5, 12,7, 16, 4, 6} —> Output
T

Find the value of A.
Solution (Anna University, May, 2007)

x[n] = {1, 2, 0, 2)
T

X(Q) = [¢22 4+ 2% + 0+ 279
hin] = {5, A, 3}
0
H(Q) =[5 + A+ 379
ylnl = x[n] * h[n]
Y(Q) = X(QH()
= [¢”9 42 + 0 + 2795/ + A + 3¢
= 5¢% 4 (10 + A) & + (3 + 24)/
+10 4 24779 4 67729

Given
ylnl =15, 12, 7, 16T, 4, 6}
Y(Q) = 567 + 1262 + 762 4 16 + 4¢ 72 + 667729
Equate Eqgs. (7.23) and (7.24). Equating the coefficients of ¢/>?, we get
10+A=12;, A=2

Equating the coefficients of ¢/, we get

(7.23)

(7.24)
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System-I

hy[n1=($)m[n]

A 4

+

h 4

x[n] : hn]
2

A

+

System-1I

Y

h,[n]

Fig. 7.5 Block diagram representation for Example 7.9

3+42A=7, A=2

Equating the coefficients of e/, we get
2A=4; A=2

The value is A is

B Example 7.9

Two systems connected in parallel are shown in Fig.7.5. The impulse response of

system I is
h _ (1 '
iln] = <§> uln].

The impulse response function of the combined system

(—18 + 5e7%)

H() = 6 — 5079 + %)

Find the transfer function of system II.
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Solution
(=18 + 5¢77%)
HEO) =6 5c7m oo
(i)
(1= 57 + o)
_ (-3+3e9)
T2 (1= 1)
1 n
hi[n] = <§> uln]
H(Q) = ;
e
From Fig.7.5, H,(£2) can be written as
Hy(Q) = H(Q) — Hi(%)
(34200 I
Tt (1) (1= 1)
L (At
T (- 1)
L 41— L)
T e (L)
—4
Tl

h[n] = —4 (%) uln]

7.7 Discrete Fourier Transform (DFT)

The Fourier transform described above transforms the sequence x[n] to X (£2) which
is continuous and periodic. The DTFT is defined for sequences with infinite and
finite length. A slightly modified transform technique is known as Discrete Fourier
Transform (DFT) for finite duration discrete signals. This is a very powerful tool
for the analysis and synthesis of discrete signals and systems. The method is ideally
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suited for use in digital computer or specially designed digital hardware. The DFT
is obtained by sampling one period of DTFT only at a finite number of frequency
points. It has the following features:

1. The original finite duration signal can be easily recovered from its DFT since
there exists one to one correspondence between x[n] and the Fourier transformed
discrete signal.

2. For the calculation of the DFT of finite duration sequences, a very efficient and
fast techniques known as First Fourier Transform (FFT) has been developed.

3. As far as realization in digital computer is concerned, DFT is the appropriate
representation since it is discrete and of finite length in both the time and frequency
domains.

4. DFT is closely related to discrete Fourier series, the Fourier transform, convolu-
tion, correlation and filtering.

7.7.1 The Discrete Fourier Transform Pairs

Consider the sequence x[n] of length N. The Fourier transform of x[#n] is given by

[ee]

X(Q) = Z x[n]e /%" (7.25)

n=—0o0

In Eq.(7.25), X(L2) is the continuous function of 2. The range of €2 is fromm —x
to r or 0 to 2. Hence calculating X (€2) on digital computer or DSP is impossible.
It is, therefore, necessary to compute X (€2) at discrete values of 2. When Fourier
transform X (€2) is calculated at only discrete points k it is called Discrete Fourier
Transform (DFT). The DFT is denoted by X (k). For finite discrete points N, Eq. (7.25)
is written as

N—1
X(k) = Zx[n]e*ﬂ”k”ﬂv (7.26)
n=0

wherek =0,1,2,...,(N — 1). X(k)iscomputedatk = 0,1,2,..., (N — 1) discrete
points. X (k) is the sequence of N samples. The sequence x[#] is obtained back fromm

N-1

X[n] = le ZX(k)eﬂ”k"/N (7.27)
k=0

Let us define Wy = e 7>"/N, where Wy is called Twiddle factor. Equations (7.26)
and (7.27) are called DFT and IDFT or simply discrete Fourier transform pair. They
can be represented in terms of twiddle factor as given below
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N—1
X (k) = Zx[n]Wllf,”
n=0

N—-1

1
xnl = > X(kywyt
k=0

Let the sequence x[n] be resentenced as a vector xy of N samples as
n=20 x(0)

n=1 x(1)
AN = . .

n=N—-1|x(N—-1) Nl

and X (k) be represented as a vector Xy of N samples as

k=0 X(0)
k=1 X(1)
Xy = , .

k=N—-1]XWN-1 ],

689

(7.28)

(7.29)

(7.30)

(7.31)

The twiddle factor W§" is represented as a matrix with k rows and 7 column as

k=0 [Wx Wy Wy - Wy o]
W WL WR e
2N=1)
Wy = Wy Wi Wy Wy
k=N-1 —1 y2(N=1) (N—D(N—1)
_W}& W11\>, WN WN

Thus, Egs. (7.28) and (7.29) can be written with matrix form as

Xy = [Wylxy

l *
XN = N[WN]XN
where Wi = Wy

Wy =e /v

From Eq. (7.35), the magnitude of the twiddle factor is 1 and the phase angle is — 2%,

— NxN

(7.32)

(7.33)
(7.34)

(7.35)

N

It lies on the unit circle in the complex plane from O to 2w angle and it gets repeated

for every cycle.
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7.7.2 Four Point, Six Point and Eight Point Twiddle Factors

AsinEq. (7.35), the magnitude of the twiddle factor is 1 and the angle —2 is equally
divided in the interval N. The most commonly used intervals are N = 4 and N = 8.
For N = 4, the angle between any N = 0 and N = 1is 7.

7.7.2.1 Four Point Twiddle Factor
ForN =4

n=0 1 2 3
k=0[wW?w)w)w)
1| W)W wiw;
2 | WY Wi wy ws
30w wp wiwy

Wy (7.36)
Note: W) = WY; WP = W? and W, = W/. From Eq.(7.35)
W, =1/-7/2

For N =4, the unit circle is divided into four equal segments in the clockwise
sequence and labeled as W), W,, W} and W;. From Fig.7.6, the twiddle factor
are obtained as

Wi=1, Wj=—j Wi=-1; Wj=j
Equation (7.36) is written as

11 1 1

IR
wy=1,17 2 (7.37)
Lj -1

Equation (7.37) represents the twiddle factor to express DFT of any sequence x[n].
Twiddle factors for 6-points DFT and 8-points DFT are derived below.

7.7.2.2 Six Point Twiddle Factor

For N = 6, the unit circle is divided into six equal segments and in the clockwise
sequence labeled as W2, W}, W2, W2, W¢ and W noting that W& = W2, W] = W}
and so on. This is shown in Fig.7.7. Each segment is shifted by —60° on the unit
circle. For N = 6, W is obtained by multiplying the rows and columns of W and is
given below.
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4Im Wy,
3
w
/”’4—( 1‘\‘\
/// \\\
// \\
/ *=Z_ Unit Circle
// \\
/ \
II \\
_ IC\'J 101 R
27 IWO Re W
W4 \ ] 4 N
\\ /I
\ /
\ /
\ /
\ /
N\ /
N //
9=
wy |/
Fig. 7.6 Representation of W, nk
4Im Wy
4
We Lo wg
—0.5+j0.86§g’ ~a. 0.5+50.866
/// \\\
/ *=Z_ Unit Circle
// \\
/ \
l’ \‘
1! 11
o O -
3
W6 |\ [IW6 Re WN
\\ //
\ /
\ /
\ /
\ /
N\ /
N //
—0.5—j0.866 O._ _o0.5-j0.866
2 T~—__ -7 1
We We

Fig. 7.7 Representation of W, nk
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o0 0 0 0 0 .
W6 W6 W6 W6 W6 W6
W2 Wl wE wi owg wp
Wo W Wg we Wi wg°

M=o wa we wo w2 ws (7.38)
w2 Wi wE w2 wie w0
| W0 W Wl Wl w2 wE
We=We=wl2=wl=w=1
W =W, =W =W =W =1e75 =05 —0.866
W2=Wi=WH*=w2 =W =177 =—0.5—j0.866
W =W, =W5 =wH =wZ =—1
We=Wo =Wl =w2=w2»=1J5 = —0.5+,0.866
W =Wl =w) =wP =w¥ =15 = 0.5 +0.866
Substituting the values of the elements of the matrix Wy, we get
1 1 1 1 1 1 il
1 0.5—;0.866 —0.5 —;0.866 —1 —0.5 4 j0.866 0.5 + j0.866
1 —0.5 —j0.866 —0.5 +j0.866 1 —0.5 — j0.866 —0.5 + j0.866
We =
1 —1 1 —1 1 —1
1 —0.5 4j0.866 —0.5 — j0.866 1 —0.5 +0.866 —0.5 — j0.866
[ 1 0.5+,0.866 —0.5+0.866 —1 —0.5 —j0.866 0.5 — j0.866 |
(7.39)

7.7.2.3 Eight Point Twiddle Factor

W W WY WY W W WP W
W wi w2 wg wg wg wg wy
W W2 Wy W w§ wio wi? wit
wd wg we wg wir wl wit w2t
Ws = WO W4 W8 W2 wi6 w20 w24 w28 (7.40)
8 8 8 8 8 8 8 8
W WE W Wy W We> Wit Wi
Wg W Wy We® Wt Wit Wi wig?
Wy W Wt Wt Wt Wt Wi Wi |
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4Im Wy
6
JWg
5 TP
Wg -~ RN 7
1 .1 e N
R W
/ 1,1
/// ////(Q/\\\EJ’_‘]\/T
/ 7 \
! < \
I Xk T \
_lé - 4 101 i R
W; \ Wy Re Wy
\\\ //
Wi \O\ //‘1 Unit Circle
I P IR AL L
N AR //T PPN
\‘E—O—j" 1
Wy |7/ Ws
Fig. 7.8 Representation of Wy ko
Wy =
1 1 1 1 1 1 1 1 ]
I S RS S B S BRI 1oyt
NN B A BN LR AR
1 —J -1 J 1 —J -1 J
1 1.1 . ] 1 . . ]
V=i wia TN BTG T atg
1 —1 1 —1 1 —1 1 —1
1 1 1 ;] 1 1 1 .1
AL B B S B R S R
1 J -1 - 1 J -1 —J
SR RIS RS DRVIIS B TS B2 SR B
N B N LN 2 In T AT
(7.41)
B Example 7.10
Compute the DFT of the sequence x[n] = {1, j, —1, —j} for N =4 (Fig.7.8).

(Anna University, November, 2006)
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Solution Method 1

11 1 1 1
l—j—-17 J
Wy = ; X4 =
Tl 1 -1 M .
1 j —1-j —Jj
From Eq.(7.33)
X4=W4X4

(11 1 1 1
I —j =17 J
1-1 1 —1]]|-1
I At S B I

Xy =

[1+—-1—j 0
o t+14r41| |4
[ I ey e 0
[ 1—1+1-1 0
X(0) =0
X(1) =4
X2)=0
X3 =0
Method 2
3
- 2wkn
X(k) =Y x[nle?*: k=0,1,23,...
n=0
Fork=0

3
X(©0) =Y xln]
n=0

= x[0] + x[1] + x[2] + x[3]
=1+4+j—-1-j=0

Fork =1
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3
X(1) = Zx[n]e*j?
n=0
= x[0] + x{1]e % + x[2]e ™™ + x[3]e 7>
=14+j=)+EDED +EHE)
=1+1+1+1=4

Fork =2
3
X(2) = Zx[n]e‘j””
n=0
= x[0] + x[1]e ™™ + x[2]e 7" + x[3]e
=1+j(=D+ DA+ (=) (=1
=1—-j-1+4j=0
Fork =3

3
X(3) =) alnle™
n=0

= x[o] +x[1]€_37n +x[2]e_j3” + x[3]e—j97”
=14j() + (=D(=1) + (=) (=)

X(0) =0
X(1) =4
X(2) =0
X(3) =0

Method 1 is simpler and quicker.

B Example 7.11
Find 8-point DFT of x[n] = {1, —1, 1, —1, 1, —1, 1, —1}.

(Anna University, April, 2004)
Solution

Xy = Wixy
= W (7.42)
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Wg is given in Eq.(7.41)

Xg =

X (0) is obtained by multiplying xgwith the first row of Wg. Thus,

X0)=1-14+41-141-14+1-1=0
X (1) = 2nd row of Wgto multiplyxg

1 1 1 1
TR RTAT
X(2) = 3rd row of Wgto multiplyxg
I+j—-1—-j+14+j-1—-j=0

=1 —-j+ 1+ +j=0

11
NN

1 1 1 1 1 1 1 1
X(3)=1+E+J5+J—E+Jﬁ—1—E—JE—J+E—JE=0
X (4) = 5throw of Wgto multiplyxg

=1+1+1+14+14+1+14+1=38
X(5) = 6th row of Wgto multiplyxg
:1+L—ji—j—i—ji—l—i-{—ji-‘rj-f-i—{—_]izo
NIING) V2 V2 NZING) 2 2
X6 =1—-j—-1+j+1-j-14/=0
X(7)=l—L—ji—kj-l—i—ji—l—i—i—i—ji—j—i-i—ji=
V2 V2 V2 2 V2 V2 V2 V2
01
Xg =

O O O v O O O
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7.7.3 Zero Padding

In evaluating the DFT, we assumed that the length of the DFT which is N is equal
to the length L of the sequence x[n]. If N < L, time domain aliasing occurs due to
under sampling and in the process we could miss out some important details and get
misleading information. To avoid this N, the number of samples of x[#n] is increased
by adding some dummy samples of O value. This addition of dummy samples is
known as zero padding. The zero padding not only increases the number of samples
but also helps in getting a better idea of the frequency spectrum of X (£2).

B Example 7.12
Compute the 4-point DFT of the sequence

x[n] =1 0<n<?2

Solution For the given sequence L = 3 and N = 4. By adding a dummy samples of
0 values (zero padding), the given sequence becomes

x[n] = {1, 1, 1, 0}

S = = =

Wy is given in Eq. (7.37).

X4=W4X4
11 1 1 1
1 —j -1 1
1-11 —1]|1
1j —-1—j|lo
X0 =[1+1+1401=3
X(H=[1—-j—14+0]=—j
X2 =[1-1+1+0]=1
XB)=[1+j—-14+0]=j

3

—J

1

J

X4
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B Example 7.13
Compute the 4-points DFT of the following sequences:

1 =xA1=1{1,1,1,1})
2) x[nl={1,1,0,0}
(3) x[n] =cosmn

. nmw
4) x[n] =sin -

Solution (Anna University, April, 2004; November, 2007)

1) x[»]={1,1, 1, 1}

X4 =

—_ =

X4=W4X4

11 1 1

1 —j -1 j
1-11 -1
1) —1
XO0)=1+1+1+1=4
X()=1-j—1+j=0
X2 =1-1+1-1=0
X3) =1+j—-1-j=0

—

4
0
X4 = 0
0
(2) x[n]={1’ 1’0’0}
X4=W4X4
11 1 1 1
1 —j—1j | |1
L= 200 21l o
1j —1-|]o

X0)=1+14+0+0=2
XH)=1—j4+0+0=(1—))
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X2)=1—-14+0+0=0
XB)=1+j+0+0=(1+))

14
(3) x[n] = cosmtn; wheren =0,1,2,3,...

x[n] ={1, -1, 1, —1}
X4:W4X4

11 1 1 1

1—j—1j |]|=1

1-11 -1 1

1j —1—|]-1
X0)=1-141-1=0
X()=1+4+j—1-j=0
XQ)=1+14+1+1=4
X3 =1-j—1+j=0

0

Xy =

S B~ O

(4) x[n] =sin 7} ; wheren =0,1,2,3,...

x[n] =10, 1, 0, —1}
X4 = Wyxy
11 1 1 0
1 —j—1j 1
1—-11 —1 0
1 j —1—j -1
X0)=0+140-1=0
X()=0—j+0—j=—j2
X2)=0-1404+1=0
X3)=0+j+0+j=,2

699
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0
—j2
0
j2

Xy =

B Example 7.14
Find the N-point DFT of the following sequences for0 <n <N — 1.

1) x[n] = [n]

2) x[nl=d"
Solution
(1) x[n] = é[n]
Nl - 2kn
X(k) = Z x[nle N
n=0
1 n=0
=00 00

2) x[n]l =a"

2mkn

N—1 )
X(k) = Z a'e N
n=0

N-1 N
= Z (ae_j N )
n=0
Using the summation formula
N,
2 B aN] _ llN2+1
I
(I-a

n=N

we get

0 N
(ae’j%k) — (ae’jzﬁnlfk)
(1 — ae’j%k>

X(k) =
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X (k) =

(1—a")

(1 — ae’jzlsz>

[esznk — 1]

701

B Example 7.15

Find the IDFT of the following functions with N = 4.

ey
@

X(k) =1{1,0,1, 0}
X(k) = {6, (=2+j2), =2, (=2 —j2)}

Solution

(1 X(k) = {17 Oa 15 0}

From Eq.(7.34)

ForN =4

XN

Xn

XN =

x[0] =

x[2] =

x[3] =

B

%W%KN

(1

0

1

0

(11 1 1

1 j —1—j
1-11 -1
Rl
11 1 171
1j —1-j|]o0
1-11 -1|]1
1—j—1j |]o

1
Z“+0+1+m:05
1
Z“+O_1+m:0
1
Z[1+0+1+0]=0.5

1
ZUH0—1401=0
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\x[n] = {0.5, 0, 0.5, 0} \

(2) x[n] = {6, (=2+ j2), =2, (=2 —j2)}

1111 6
111 =1 || =242
TG -1 1 -1 -2
L —j—1j ||=2=p2

1
x[O]:Z[6—2—|—j2—2—2—j2]=0

1
x[l]=Z[6—j2—2+2+j2—2]:1

1
x[2]=Z[6+2—j2—2+2+j2]=2

1
xB3l=[6+/2+2+2-)2+2] =3

[x[n] =10, 1,2, 3}

7.8 Properties of DFT
7.8.1 Periodicity

If x[n] is the input sequence and X (k) is the N-point DFT of x[n], then the periodicity
of x[n] and X (k) are defined as

x[n + N] = x[n] (7.43)
X(k +N) = X(k) (7.44)

7.8.2 Linearity

Let x;[n] and x;[n] be two N-point sequences whose DFTs are X; (k) and X; (k).
Then

ayxi[n] + axaln] <> a1X, (k) + ax X, (k)

N—poims
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7.8.3 Complex Conjugate Symmetry

It
x[n] &5 X (k)

then

Proof ) 25 XV = k) (7.45)

N—-1
DFT —;
x*[n]<—> — E x*[n]e j2mwkn/N
n=0

N—1 *

n=0

N—1 *

n=0

25 = XN — k)

7.8.4 Circular Time Shifting

If
x[n] &5 X (k)
then
X[ — m)]y 25 e X (k) (7.46)

7.8.5 Circular Frequency Shifting

If

xn] 25 x (k)

then

X[ 25 Xk — 1y (7.47)
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7.8.6 Circular Correlation

It
x[n] &5 X (k)
and
¥l <5 Y (k)
then
ry €5 Ry (k) = X (k) Y* (k)
where
N—1
ey = x[nly*(n — Dy (7.48)
n=0

7.8.7 Multiplication of Two DFTs

The multiplication of two DFTs is equal to circular convolution of two sequences
in time domain. Let x;[n] and x,[n] be finite duration sequences of length N
with their DFTs as X, (k) and X, (k), respectively. The sequence x;[n] when cir-
cularly convolves with x,[n] sequence, the circular convolution is represented as
x1[n]® x;[n]. The DFT of circular convolution is

x1[n] @xaln] < X, (k) X, (k) (7.49)

7.8.8 Parseval’s Theorem

If
xn] 25 X (k)
and

yinl &5 ¥ (k)

then
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N-1 N—1

1
>y’ ln = & Y- XY (k) (7.50)

n=0 k=0

7.9 Circular Convolution

To determine the circular convolution of any two sequences, x; [n] and x;[n] of length
N, the following methods are discussed:

1. Circle Method.
2. Matrix multiplication method.
3. DFT-IDFT Method.

7.9.1 Circular Convolution—Circle Method

The circular convolution of two sequences is symbolically represented as
yln] = x1[n] ®x2[n] (7.51)

The following steps are followed to find y[n]:

1. Draw two concentric circles of two different diameters. The data points of x;[n]
are placed on the outer circle in the counter-clockwise direction at equidistance.

2. The data points of x;[n] are placed on the inner circle in the clockwise direction

at equidistance.

The first data value of both the sequences should be in alignment.

4. Multiply the corresponding values in both the circles and add them. This corre-
sponds to first data value of the circular convolution.

5. Rotate the inner circle in the counter-clockwise direction by one sample and repeat
step 4. This corresponds to the second data value of the circular convolution.

6. Repeat step 5 until one revolution is complete. Each time repeat step 4 to get the
data value of the circular convolution.

et

B Example 7.16

Consider the following two sequences:

xiln] =1{2, 1, 4, =3}
x[n] ={-1, 2, 3, =2}

Find the circular convolution
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ylnl = xi[n] ®x;[n]

Use circle method.

Solution

1. x;[n] is marked in the outer circle in the anticlockwise direction and x,[n] is
marked in the inner circle in the clockwise direction as shown in Fig.7.9a.

Y[0] = x1[0]x2[0] 4 x1 [1Tx2[3] + x2[2]x2[2] + x1[3]x2[1]
=2(=D)+1(=2) +4(3) + (-3)2 =2

2. The outer circle is kept fixed and the inner circle is rotated in the anticlockwise
direction by one sample. This is shown in Fig.7.9b.

YT = X [01x2 (1] + 21 [11x2[0] 4 x1 [21x2[3] + x1 [3]x2[2]
=2x24+1(-1)+4(-2)+(-3)3=-14

3. Keeping the outer circle of Fig.7.9b fixed, the inner circle is rotated in the anti-
clockwise direction by one sample. This is shown in Fig.7.9c.

V21 =2x34+1x24+4(-1)+(=3)(-2) =10
4. The outer circle of Fig.7.9c is kept fixed and the inner circle is rotated by one
sample in the anticlockwise direction by one sample. This is shown in Fig.7.9d

(Fig.7.10).

YB31=2(=2)+1x 344 x2+ (=3)(=1) =10

y[n] = [2, —14, 10, 10]

7.9.2 Circular Convolution-Matrix Multiplication Method

In this method, the circular convolution of two sequences x; [#] and x,[n] are obtained
by representing these sequences in matrix form as given below.



7.9 Circular Convolution

Fig. 7.9 a-d Circular
convolution-circle method

(b)

[ x[0] XN —1]---x[2]  x[1]
x[1] [0l - x[3] x[2]
x[2] 0[] - xl4]  x[3]

0[N = 2] [N = 3] --- x[0] x2[N — 1]
L[N — 1T 0[N = 2] -+ x[1] - x[0]

707

y[0] 7
y[1]
y[2]

yIN —2]
[N — 11
(7.52)
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Fig. 7.9 (continued) (©)

(d)

B Example 7.17

Consider the following two sequences:
xin] =12, 1,4, =3} and x[n] ={-1, 2, 3, -2}
Find the circular convolution
yInl = xi[n] ®xz[n]

Use matrix multiplication method.

Solution The following matrices are formed using x| [r] and x; [n]
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(@) ; (b) 5

%

Fig. 7.10 Circular convolution by circle method for Example 7.19

2 34 17[=1 2-6+12-2=2 2
1 2 3412 14+4-9-8=—14 —14
4 1 2 33| | 4+2+6+6=10 | | 10
34 1 2 |]|=2 34843-4=10 10

y[n] = {2, —14, 10, 10}

7.9.3 Circular Convolution-DFT-IDFT Method
According to the DFT property given in Eq. (7.49), the circular convolution is,

x1[n] @xaln] < X, ()X, (k)
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For the given x;[n] and x;[n], X; (k) and X, (k) are found and for this product IDFT
is found to get y(k). Use of twiddle factor is to be preferred.

B Example 7.18

Consider the following two sequences:
xl[n] = {27 17 43 _3} and -xz[n] = {_19 29 39 _2}
Find the circular convolution

ylnl = xi[n] ®x2(n]

Use DFT-IDFT method.
Solution
X4 = Wyxy where N = 4
11 1 1
I —j -1
Wy =
4 1—1 1 —1
1 j —1-j
11 1 17727 [ 4 7
1j -1 1 —2—j4
X, (k) = =
1(6) 1—1 1 —1|] 4 8
I —j—1j ||-3] | —2 +j4 ]
11 1 17=17 [ 2 7
1j —1-1]2 —4—j4
X (k) = —
2(6) 1—=11 =1 3 2
1 =1 j || -2 |[—4+/4]

Y (k) = X (k)X (k)
—[4 —2—j4 8 —2+j4[2 —4—j4 2 —4+j4]
= {8 (=8+j24) 16 (—8—j24)}

y[n]:iwm
111 1 8
11 -1 || -8+j24
T4l1-11 -1 16

1—j—1j ||-8—j24



7.9 Circular Convolution 711

\y[n] = {2, —14, 10, 10}\

B Example 7.19

Consider the following two sequences:

xin] =142, 3,1, 4}
x[n] =1{5, 2, 1}

Find the circular convolution
ylnl = x1[n] ®x2(n]

by the following methods. (1) Circle method; (2) Matrix multiplication method and
(3) DFT-IDFT method.

Solution

1. Circle Method

xi[n] =1{2, 3, 1, 4}
x[n] = {5, 2, 1}

The length of x,[n] should be equal to the length of x;[n] sequence. This is done
by zero padding. Thus,

x[n] =1{5,2, 1, 0}

The outer circle which is fixed represents x; [#] in a 4-point DFT. The inner circle
which is rotated by one sample at a time represents x;[n] sequence as shown in
Fig.7.9.

yV0]=5%x24+3x0+1x14+4x2=19 (From Fig.7.9a)
V11=2%x243x54+1x0+4x1=23 (From Fig.7.9b)
V2] =2x243x2+1x54+4x0=13  (From Fig.7.9c)
y31=2x04+3x14+1x24+4x5=25 (From Fig.7.9d)

\y[n]={19 23 13 25}\

2. Matrix Method: The following matrices are formed with x;[n] and x;[n]



712 7 Fourier Transform Analysis of Discrete Time Signals ...

241375 10+8+1 19
324112 15+4+4 23
M=ol 1] T s+6+2 |~ |13
41320 204243 25

\y[n]={19 23 13 25}\

3. DFT-IDFT Method
For a 4-point DFT

o1 1 17
1 —j—1
Wy =
A (S T T |
L1 —1 ]
XN=W4Xn
11 17727 [10
1j -1 |3 1+
Xy (k) = =
111 =11 —4
1 -1 4] |1+
Xo = Wyxy
11 17757 [ 8
1 -1 ||2 4-2
X (k) = =
2=1 0 i 4
1 -1 —j|lo] |4+j2

Y (k) = X1 (k)X (k)
=[0 d+j) —4 A-HIB “4—-j2) 4 (4+4,2)]
=1{80 (6+j2) —16 (6—j2)}

1 *
ylnl = -WiYy

4
11 1 1
Lj -1+
Wi =
N 1-11 =1
L —j-1
11 1 1 80 19
{1 —1—j|]|6+j2 23
ylnl =+ =
401-11 =1|] =16 13
1—j—1j|l6=j2 25

[yn) = (19, 23, 13, 25) |
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7.10 Fast Fourier Transform

For spectral analysis of DT signals, DFT approach is very straight forward. For larger
values of N which is greater than 128 points, DFT becomes tedious because of the
huge number of mathematical operations required to perform. Several algorithms
have been developed to ease the implementation of DFT. The algorithm developed
by Cooley and Turkey in 1965 is the most efficient one and its application is discussed
here.

Consider Egs. (7.26) and (7.27) which are given below

N—1
X(k) — Zx[n]e—j27'l'kl‘l/N
n=0
=
xln] = > Xy
k=0

In direct evaluation of spectral components, the number of complex multiplication
and addition required are N> and N(N — 1) respectively. Such a huge number of
mathematical operations limit the bandwidth of digital signal processors. Classical
DFT approach does not use the two important properties of twiddle factor, namely
symmetry and periodicity properties which are given as

Wyt = —wk (7.53)
wy™N = wy (7.54)

Radix-2 FFT algorithm exploits these two properties thereby removing redundant
mathematical operations. This results in the required number of complex multipli-
cation for an N-point FFT approximately as % log, N. However, the results obtained
using FFT is exactly the same as that of DFT. The efficiency of the FFT algorithm
increases as the number N is increased. For example, if N = 512, DFT requires
nearly 110 times more multiplications than FFT algorithm.

The basic principle of FFT algorithm is to decompose DFT into successively
smaller DFTs. The number of points N must be equal to 2¢ where & is some positive
integer. The FFT algorithms have been developed in (1) Decimation in time and (2)
Decimation in frequency.

7.10.1 FFT Algorithm-Decimation in Time

In Radix-2 FFT each DFT is divided into two smaller DFTs and in Radix-4, each
DFT is divided into four smaller DFTs. The N-point DFT is given by the following
equation:
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N—-1
X(k) — Zx[n]eijNkn/N
n=0

N—-1

= Z x[n] WII\‘,"

n=0

(7.55)

The input sequence x[n] is divided into groups of even and odd indexed elements.
Hence, Eq. (7.55) can be split up into two parts and represented as given below

N-1 N-1

X(k) =Y xlnlWy' + Y x[n]Wy'
n=0 n=0
(n=-even) (n=o0dd)

Let us introduce the new variable

Now

N
L

N-1
X() = Y x[2mIWy™ 4y x[2m + 1wy

m=0 m=0

In the second summation, taking out the factor W we get

51 N-1
X(k) = x[2mIWR™" + Wh Y " xp[2m + 1IWR™
m=0 m=0

But
W,%, — o 22N _ i2m/(5)

= Wnp

Equation (7.59) can therefore be written as

N_q ¥_q
2 2

X(k) =" xe[mIWil, + Wi > x, [mIWyT,
m=0 m=0

= X, (k) £ WX, (k)

(7.56)

(7.57)

(7.58)

(7.59)

(7.60)

(7.61)
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0
x[0]————» %l0] > ——— X(0)
N point x,[1]
x2—— 2 — — X(1)
: DFT :
X[N—2] ———» > L s X(2)
W] :
el? .
COMBINER | .
x,[0] .
x[1]—— > .
N point x,[1] .
A3 2 . .
: DFT : .
xN—1]———» > .
%, [g] - X(N-1)

Fig. 7.11 N-point DFT realization using two % point DFTs

0
Wy
x[0] ————» ) » X(0)
o X point \ /Wf/ )
: DFT : NI2 71
x[N—Z]—.P . /WN > X(N )
N/2
N
A \ > x(5)
M3 ——— 2 . » x(X+1)
: DFT : \W’\H 2
AN-1]——» » x(N-1)

Fig. 7.12 Data flow graph for N-point FFT using % points DFTs

Equation (7.61) is represented as shown in Fig. 7.11. Figure 7.12 shows the data flow
graph.

In Eq.(7.61) for the first %’ point, transforms are obtained by summing up the
weighted outputs of X, (k) and X, (k). In View of the symmetry property of twiddle
factor Wk+(N/ D = — WY, the remaining 5 ¥ transforms are obtained by differencing
the Welghted outputs

The ¥ > point DFT is further divided into two groups so that we get ——p01nt DFTs
and so on until only two points DFTs are used to realize the N-point FFT. This is
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Xee €
1{0]——»] - oo > X(0)
2 point
DFT | x
A4
% ee0e—Pp X(l)
Z .
/; .
% .
Xe() @) cee—p .
x[2]—> > .
2 point .
DFT | x,, .
x[g—i_z] ; ...4’ :
. .
. a4 .
. . Sa) °
. . E
. L ° /M d
) . E .
. O .
U L]
X X .
x[%_?’];’ oe o 2 see—Pp .
2 point .
DFT X, .
X[N=3] — | > *
% coe—Pp .
Z .
om
3
[y -1]—s oy ST xv2
2 2 point =2
DFT
Xao
XIN—1] — > RN -1

Fig. 7.13 Decimation in time Radix-2 FFT algorithm

the reason to put the constraint that the number of points in FFT are chosen as the
power of 2. This is called Radix-2 FFT (Fig.7.13).

The upper % point FFT can be further subdivided into two % point DFTs with
their odd and even components as

N N N
L L] L

Xe(m) = > " x[20]Wylh = xe[AnIWRTR Y " xeoldn + 2]W 05" (7.62)

n=0 n=0 n=0

Substituting WI%,’}’; = Wy}, Eq.(7.62) is written as
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X,(0) X(0)=X,(0) + WX, (0)

w0
X,(0) X(4)=X,(0)— WX, (0)

Fig. 7.14 Flow graph for X (0) and X (4) in Eq. (7.65)

N_ 1 N_q
4 4

Xe(m) =" Xee[AnIWty + Wity > xeo[dn + 21W3,
n=0 n=0
i 4o

Xo(m) = Y Xoeldn + 1IWyTy + Y xoel4n + 3IWy,
n=0 n=0

where x,.[4n] is the DFT form =4n,n =0,1, ..., %’ —1.

717

(7.63)

(7.64)

To illustrate the decimation in time, consider an 8-point FFT. Equation (7.61)

becomes

X, (k) + WEX, (k) for0 <k <3

X(k) = :
X, (k) — WEX, (k) ford <k <7

For different values of k, we get

X(0) = X.(0) + WgX,(0); X(1) = X.(1) + WgX,(1)
X(2) = X.(2) + WX, (2); X(3) = X.(3) + Wi X,(3)
X(4) = X.(0) + WX, (0); X(5) = X.(1) + Wy X,(1)
X(6) = X.(2) + WgX,(2); X(7) = X.(8) + W3 X,(3)

(7.65)

From Eq.(7.65), it is obvious that X(0) and X(4) have the same inputs. This is

represented in Fig.7.14.

Using the above representation, it can be extended to 8-point FFT. The 8-point

FFT flow graph using 4-point DFTs is shown in Fig.7.15.

Now the 4-point DFT can be further decomposed into two 2-point DFTs with the
odd and even inputs of the respective 4-points DFTs X, (k) and X, (k) are obtained

using Eqgs. (7.63) and (7.64), respectively. Thus,
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x(0) ———>
x(2) —»
x(4) ——»f
x(6) ———»

x(1) ——»
x(3) —»
x(5) ——»
xX(7) ——»

X,(0)
4 point XD
01N’
]gFT X2
X,(3)
2K
Wg ’
| 8
0 A
4 point X
01N’
]gFT Xo(2)
X,(3)

Fig. 7.15 Flow graph for 8-point FFT using 4-point DFTs

X.(0) = X.o(0) — W{X,,(0)
X (1) = Xeo(1) — WgXeo(1)
X.(2) = Xee(0) — WX, (0)
X.(3) = Xee(1) — WgXeo(1)

X(0)
X(1)

X(2)

X(3)

(7.66)

where X, is the two points DFT of the even index of x,[n]. Xo. is the 2-point DFT
of the odd index of x.[n]. Equation (7.66) is represented by the flow chart as shown

in Fig.7.16.

The final 2-point DFT (first stage) involves only addition and subtraction since
the twiddle factor present here are WY and Wy respectively. Therefore

Xee(0) = x(0) + Wyx(4) = x(0) + x(4)
Xeo(1) = x(0) + Wix(4) = x(0) — x(4)

and so on. The signal flow graph for the 8-point FFT is shown in Fig.7.17.
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x(0) —»

x(4) —»

2 point
FFT

x(2) —

x(6) —»

2 point
FFT

x(1) —»

x(5) —»

2 point
FFT

x(3) —»

x(7) —»

2 point
FFT

Fig. 7.16 Signal flow graph for 8-point FFT using four 2-point FFTs

X,(0)

x(0)

X(0)
x(4)
X2) X(1)

X@2)
X(3)
X4
X(5)
X(6)

X(7)

Fig. 7.17 Signal flow chart for 8-point FFT
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Bl Example 7.20
Compute the 8-point DFT using FFT algorithm for the following sequence

x[n] =1{0.5, 0.5, 0.5, 0.5, 0, 0, 0, 0}

(Anna University, December, 2007)

Solution Pass-1

1
X(0)=0.5 > 0.5+0=0.5
>€1
X(4)=0 > 0.5—0=0.5

Wy=—1
1
X(2)=0.5 > 0.5+0=0.5
wi=1
X(6)=0 > 0.5-0=0.5
Wor=-—1
1
x(1)=0.5 > 05+0=0.5
wi=1
X(5)=0 > 05-0=05
Wh=—1
1
x(3)=0.5 > 05+0=0.5
wi=1
X(7)=0 > 0.5-0=0.5
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Pass-2
0.5 1 / 0.5+0.5=1
0.5 1: >< 0.5—j0.5
0.5 > > 0.5-0.5=0
Wa=1 \
0.5 > > 0.5+ 0.5
1 .
Wa=—j
0.5 > 0.5+0.5=1
1 /
0.5 > >< 0.5+ 0.5
0.5 ; 0.5-0.5=0
et \
0.5 > 0.5+j0.5
Wa=—j
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Pass-3
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0.5—j12

| 0
05- 5 \ > 0.54j0.2
0—> 0
Wg/ \ -
0.5+ 5—> > 05412

w3

\X(k) ={2, (0.5 —1.2), 0, (0.5 —j0.2), 0, (0.5 +j0.2), 0, (0.5 + j1.2)} \

7.10.2 FFT Algorithm-Decimation in Frequency

In the decimation in time (DIT) FFT algorithm, the input sequence is divided into
even and odd indexed elements. In the decimation in frequency (DIF) FFT algorithm,
the input sequence is divided into groups as first half of the sequence and second half
of the sequence. The subsequent steps lead to grouping the spectral components into
even indexed and odd indexed elements.

The DFT of the sequence x[n] is expressed as

N—1
X (k) = Zx[n]w,’;" (7.67)
n=0

Now divide the input sequence into two groups as

-1 N—1

X (k) = Z x[mWE + Zx[n]wj’;”
n=0 n:%
¥y .|

2 2

= x[nWy' + ) x [n + IX} W,S'”%)k (7.68)
n=0

n=0 2
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oz

-1

oIz

-1

¥ N
AW+ we Y x |:n + ﬂ whn (7.69)
n=0 n=0

N
. Yk .. .
since Wy~ = (=1, the above equation is written as

N N
L L

X = 3 almlWl + (—DF Y x |:n ¥ ﬁ] W

n=0 n=0 2
5-1 N

- Z |:x[n] + (=Dfx [n + 3} W};"} (7.70)
n=0

Now dividing X (k) into even and odd indexed elements we get, for even indexed
elements

N
L

N N
xen =Y |:x[n]+x<n+5>]Wf,"” k:O,l,m,(E_ 1)

n=0
Since W = W and (—1)* = 1, the above equation written as
2

N
L

N N
X(2k)=2[x[n]+x<n+5>:|W,’§," k=0,1,...,(5—1> (7.71)

n=0

Similarly, the odd indexed elements of X (k) are expressed as

oz
L

X+ = 3 s (o 3 ) [ Wi

=
[=)

—_

N k
= Z |:x[n] —x (n + E) W[\}} W%" (7.72)

n=0

iz

The signal flow graph for DIF-FFT algorithm is shown in Fig.7.18.
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