# **STRESS**

- !**Stress**
- ! **Average Normal Stress in an Axially Loaded Bar**
- ! **Average Shear Stress**
- ! **Allowable Stress**
- !**Design of Simple Connections**

# Equilibrium of a Deformable Body

· Body Force





# **Table 1 Supports for Coplanar Structures**



**• Equation of Equilibrium** 

$$
\Sigma \mathbf{F} = \mathbf{0}
$$

$$
\Sigma \mathbf{M}_O = \mathbf{0}
$$

$$
\Sigma \mathbf{F}_x = \mathbf{0} \qquad \qquad \Sigma \mathbf{F}_y = \mathbf{0} \qquad \qquad \Sigma \mathbf{F}_z = \mathbf{0}
$$

$$
\Sigma \mathbf{M}_x = \mathbf{0} \qquad \qquad \Sigma \mathbf{M}_y = \mathbf{0} \qquad \qquad \Sigma \mathbf{M}_z = \mathbf{0}
$$

· Internal Resultant Loadings



Determine the resultant internal loadings acting on the cross section at *C* of the beam shown.



#### **• Support Reactions**



<sup>ï</sup> **Shear and bending moment diagram**



Determine the resultant internal loadings acting on the cross section at *C* of the machine shaft shown. The shaft is supported by bearings at *A* and *B*, which exert only vertical forces on the shaft.





• Internal Loading



## • Internal Loading



The hoist consists of the beam *AB* and attached pulleys, the cable, and the motor. Determine the resultant internal loadings acting on the cross section at *C* if the motor is lifting the 2 kN load *W* with constant velocity. Neglect the weight of the pulleys and beam.







Determine the resultant internal loadings acting on the cross section at *G* of the wooden beam shown . Assume the joints at *A*, *B*, *C*, *D*, and *E* are pin-connected.





16

<sup>ï</sup> **Internal loadings acting on the cross section at** *G*



#### **Member** *AG*

- +)  $\sum M_G$  $M_G$  -34.02 sin39.81<sup>o</sup>(0.6) + 6.5(0.6) = 0  $M_G$  = 9.17 kN·m
- $\Rightarrow \Sigma F_x = 0$ : 34.02 cos39.81<sup>o</sup> + *N<sub>G</sub>* = 0 *N<sub>G</sub>* = -26.1 kN

 $V_{\rm g} = 0$ : -6.5 + 34.02 sin39.81° -  $V_{\rm g} = 0$  *V<sub>G</sub>* = 15.3 kN

Determine the resultant internal loadings acting on the cross section at *B* of the pipe shown. The pipe has a mass of 2 kg/m and is subjected to both a vertical force of 50 N and a couple moment of 70 N $\bullet$ m at its end *A*. It is fixed to the wall at *C*.





$$
W_{BD} = 9.81 \text{ N}
$$
  
\n
$$
W_{BD} = (2 \text{ kg/m})(0.5 \text{ m})(9.81 \text{ N/kg})
$$
  
\n
$$
= 9.81 \text{ N}
$$

$$
W_{AD} = (2 \text{ kg/m})(1.25 \text{ m})(9.81 \text{ N/kg})
$$
  
= 24.52 N

<sup>ï</sup> **Equilibrium of Equilibrium**



<sup>ï</sup> **Free-Body Diagram**







21







 $\tau_{xy} = \tau_{yx}$ 







# **Average Normal Stress in an Axially Loaded Bar**

# **• Assumptions**

The material must be

- Homogeneous material
- Isotropic material





$$
+ \uparrow F_{Rz} = \Sigma F_z; \qquad \int dF = \int_A \sigma dA
$$

 $P = \sigma A$ 

$$
\sigma = \frac{P}{A}
$$

The bar shown has a constant width of 35 mm and a thickness of 10 mm. Determine the maximum average normal stress in the bar when it is subjected to the loading shown.





28



The 80 kg lamp is supported b two rods AB and BC as shown . If AB has a diameter of 10 mm and  $BC$  has a diameter of 8 mm, determine which rod is subjected to the greater average normal stress.







31

Member *AC* shown is subjected to a vertical force of 3 kN. Determine the position *x* of this force so that the average compressive stress at *C* is equal to the average tensile stress in the tie rod *AB*. The rod has a cross-sectional area of 400 mm<sup>2</sup> and the contact area at *C* is 650 mm<sup>2</sup>.





<sup>ï</sup> **Average Normal Stress**

$$
\sigma = \frac{F_{AB}}{400} = \frac{F_C}{650}
$$
  
F\_C = 1.625F<sub>AB</sub> --- (3)

Substituting (3) into (1), solving for  $F_{AB}$ , the solving for  $F_C$ , we obtain

$$
F_{AB} = 1.143 \text{ kN}
$$
  $F_C = 1.857 \text{ kN}$ 

The position of the applied load is determined from (2);  $x = 124$  mm



$$
\tau_{avg} = \frac{V}{A}
$$




# **Normal Stress: Compression and Tension Load**





**• Bearing Stress** 



**Bearing Stress** 

$$
\sigma_{\text{bearing}} = \frac{P}{dt}
$$



<sup>ï</sup> **Axial Force Diagram for Compression Load on Plate**



<sup>ï</sup> **Axial Force Diagram for Tension Load on Plate**



# · Shearing Stress on pin









## **Pure Shear**





Pure shear

 $\tau_{zy} = \tau_{yz}$ 

### **Example 9**

The bar shown a square cross section for which the depth and thickness are 40 mm. If an axial force of 800 N is applied along the centroidal axis of the bar's cross-sectional area, determine the average normal stress and average shear stress acting on the material along (*a*) section plane *a-a* and (*b*) section plane *b-b*.







## **Example 10**

The wooden strut shown is suspended form a 10 mm diameter steel rod, which is fastened to the wall. If the strut supports a vertical load of 5 kN, compute the average shear stress in the rod at the wall and along the two shaded planes of the strut, one of which is indicated as *abcd*.





<sup>ï</sup> **Average shear stress along the two shaded plane**

$$
V = 2.5 \text{ kN}
$$
\n
$$
\tau_{avg} = \frac{V}{A} = \frac{2.5 \text{ kN}}{(0.04 \text{ m})(0.02 \text{ m})} = 3.12 \text{ MPa}
$$
\n
$$
V = 2.5 \text{ kN}
$$

## **Example 11**

The inclined member show is subjected to a compressive force of 3 kN. Determine the average compressive stress along the areas of contact defined by *AB* and *BC*, and the average shear stress along the horizontal plane defined by *EDB*.







<sup>ï</sup> **The average shear stress along the horizontal plane defined by** *EDB* **:**



## **Allowable Stress**

$$
F.S = \frac{P_{fail}}{P_{allow}}
$$
\n
$$
F.S = \frac{\sigma_{fail}}{\sigma_{allow}}
$$
\n
$$
F.S = \frac{\tau_{fail}}{\tau_{allow}}
$$

# **6. Design of Simple Connections**

$$
A = \frac{P}{\sigma_{\text{allow}}}
$$
 
$$
A = \frac{V}{\tau_{\text{allow}}}
$$

## ï **Cross-Sectional Area of a Tension Member**



<sup>ï</sup> **Cross-Sectional Area of a Connector Subjected to Shear**



<sup>ï</sup> **Required Area to Resist Bearing**



<sup>ï</sup> **Required Area to Resist Shear by Axial Load**





### **Example 12a**

The control arm is subjected to the loading shown. (a) Determine the shear stress for the steel at all pin (b) Determine normal stress in rod *AB,* plate *D* and *E.* The thickness of plate *D* and *E* is 10 mm.











### **Example 12b**

The control arm is subjected to the loading shown. Determine the required diameter of the steel pin at *C* if the allowable shear stress for the steel is  $\tau_{\text{allow}} = 55 \text{ MPa}$ . Note in the figure that the pin is subjected to double shear.







*Use d* = 20 mm

### **Example 13a**

The two members are pinned together at *B* as shown below. Top views of the pin connections at *A* and *B* are also given. If the pins have an allowable shear stress of  $\tau_{\text{allow}} = 86 \text{ MPa}$ , the allowable tensile stress of rod *CB* is  $(\sigma_t)_{\text{allow}} = 112 \text{ MPa}$ and the allowable bearing stress is  $(\sigma_b)_{\text{allow}} = 150 \text{ MPa}$ , determine to the smallest diameter of pins *A* and *B* ,the diameter of rod *CB* and the thickness of *AB* necessary to support the load.



### • Internal Force



 $\binom{3}{4}$   $\sum M_4 = 0$ :  $-13(1) + F_{BC} \sin 36.87(1.6) = 0$  $F_{BC}$  = 13.54 kN  $_{+}$   $\uparrow$   $\Sigma F_v = 0$ :  $A_v - 13 + 13.54 \sin 36.87 = 0$  $A_v = 4.88 \text{ kN}$  $\Rightarrow \sum F_x = 0$ :  $-A_x + 13.54 \cos 36.87 = 0$  $A_r = 10.83$  kN

ï **Diameter of the Pins**



ï **Diameter of Rod**



ï **Thickness** 



*By comparison use t*  $_{AB}$  = 8 mm

### **Example 13b**

The two members are pinned together at *B* as shown below. Top views of the pin connections at *A* and *B* are also given. If the pins have an allowable shear stress of  $\tau_{\text{allow}} = 86 \text{ MPa}$ , the allowable tensile stress of rod *CB* is  $(\sigma_t)_{\text{allow}} = 112 \text{ MPa}$ and the allowable bearing stress is  $(\sigma_b)_{\text{allow}} = 150 \text{ MPa}$ , determine to the maximum load P that the beam can supported.



**• Internal Force** 



$$
\sum_{x} \sum_{y} M_{A} = 0: -P(1) + F_{BC} \sin 36.87(1.6) = 0
$$
  

$$
F_{BC} = 1.042P \text{ (T)}
$$
  

$$
+ \hat{\sum} F_{y} = 0; \quad A_{y} - P + 1.042P \sin 36.87 = 0
$$
  

$$
A_{y} = 0.375P
$$
  

$$
\longrightarrow \sum F_{x} = 0; \quad -A_{x} + 1.042P \cos 36.87 = 0
$$
  

$$
A_{x} = 0.834 \text{ kN}
$$





 $P = 19$  kN

*π*


*By comparison all*  $P = 14.58$  kN  $\Leftarrow$ 

## **Example 14**

The suspender rod is supported at its end by a fixed-connected circular disk as shown. If the rod passes through a 40-mm diameter hole, determine the minimum required diameter of the rod and the minimum thickness of the disk needed to support the 20 kN load. The allowable normal stress for the rod is  $\sigma_{\text{allow}} = 60$ MPa, and the allowable shear stress for the disk is  $\tau_{\text{allow}} = 35 \text{ MPa}$ .





## **Example 15**

An axial load on the shaft shown is resisted by the collar at *C*, which is attached to the shaft and located on the right side of the bearing at *B*. Determine the largest value of *P* for the two axial forces at *E* and *F* so that the stress in the collar does not exceed an allowable bearing stress at *C* of  $(\sigma_b)_{\text{allow}} = 75$  MPa and allowable shearing stress of the adhesive at *C* of  $\tau_{\text{allow}} = 100 \text{ MPa}$ , and the average normal stress in the shaft does not exceed an allowable tensile stress of  $(\sigma_t)_{\text{allow}} = 55$ MPa.





77



The largest load that can be applied to the shaft is  $P = 51.8 \text{ kN}$ .  $_{78}$ 

## **Example 16**

The rigid bar *AB* shown supported by a steel rod *AC* having a diameter of 20 mm and an aluminum block having a cross-sectional area of 1800 mm2 . The18-mmdiameter pins at *A* and *C* are subjected to single shear. If the failure stress for the steel and aluminum is  $(\sigma_{st})_{fail} = 680$  Mpa and  $(\sigma_{al})_{fail} = 70$  MPa, respectively, and the failure shear stress for each pin is  $\tau_{\text{fail}} = 900 \text{ MPa}$ , determine the largest load P that can be applied to the bar. Apply a factor of safety of  $F.S = 2.0$ .





