

CHAPTER OBJECTIVES

 Define concept of normal strain

- **Define** concept of shear
- Determine normal and shear strain in engineering applications

- 1. Deformation
- 2. Strain

2.1 DEFORMATION

Deformation

- Occurs when a force is applied to a body
- Can be highly visible or practically unnoticeable
- Can also occur when temperature of a body is changed
- Is not uniform throughout a body's volume, thus

Beaughing garmatry of any line segment within

2.1 DEFORMATION

- When a force is applied to a body, it will change the body's shape and size.
- These changes are *deformation*.

Note the positions of 3 line segments before and after where the material is subjected to tension.

Normal strain

- Defined as the elongation or contraction of a line segment per unit of length
- Consider line *AB* in figure below
- After deformation, Δs changes to $\Delta s'$

2.2 STRAIN

Normal strain

• Average normal strain is defined as \mathcal{E}_{avg} (epsilon)

$$\boldsymbol{\varepsilon}avg = \frac{\Delta s' - \Delta s}{\Delta s}$$

• As: $\Delta s \rightarrow 0, \Delta s' \rightarrow 0$

$$\boldsymbol{\varepsilon} = \lim_{B \to A \text{ along } n} \frac{\Delta s' - \Delta s}{\Delta s}$$

2.2 STRAIN

Normal strain

 If normal strain *E* is known, use the equation to obtain approx. final length of a *short* line segment in direction of *n* after deformation.

$$\Delta s' \approx (1 + \varepsilon) \Delta s$$

ɛ is Positif (+) → line elongates *ɛ* is Negatif (-) → line contracts

2. Strain

Units mal strain is a *dimensionless quantity*, as it's a ratio of two lengths

- But common practice to state it in terms of meters/meter (m/m)
- E is small for most engineering applications, so is normally expressed as micrometers per meter (μ m/m) where 1 μ m = 10⁻⁶
- Also expressed as a percentage, e.g., 0.001 m/m = 0.1 %

2.2 STRAIN

Shear strain

 Defined as the *change in angle* that occurs between two line segments that were

originally *perpendicular* to one another

 This angle is denoted by (gamma) and measured in radians (rad).

2. Strain

Shear strain

 Hence, shear strain at point A associated with n and t axes is

$$\gamma_{nt} = \frac{\pi}{2} - \lim_{B \to A \text{ along } n \atop C \to A \text{ along } t}$$

 $\Theta < 90 \rightarrow$ positive (+) shear strain $\Theta > 90 \rightarrow$ negative (-) shear strair

2. Strain

Cartesian strain components

 Using above definitions of normal and shear strain, we show how they describe the deformation of the body

2. Strain

Cartesian strain components

 Since element is very small, deformed shape of element is a parallelepiped

 $(1 + \varepsilon_x) \Delta x$

• Approx. lengths of sides of parallelepiped are

$$(1 + \varepsilon_y) \Delta y$$

$$(1 + \varepsilon_z) \Delta z$$

2.2 STRAIN

Cartesian strain components

• Approx. angles between the sides are

- Normal strains cause a change in its *volume*
- Shear strains cause a change in its *shape*
- To summarize, state of strain at a point requires specifying: 3 normal strains : \mathcal{E}_x , \mathcal{E}_y , \mathcal{E}_z

and

3 shear strains of : γ^{XY} , γ^{YZ} , γ^{XZ}

2.2 STRAIN

Small strain analysis

- Most engineering design involves applications for which only *small deformations* are allowed
- We'll assume that deformations that take place within a body are almost infinitesimal, so *normal strains* occurring within material are *very small* compared to 1, i.e., ε << 1.

EXAMPLE 2.3

Plate is deformed as shown in figure. In this deformed shape,

horizontal lines on the on plate remain horizontal and do not change their length.

EXAMPLE 2.3 (SOLN)

(a) Line *AB*, coincident with *y* axis, becomes line *AB* after deformation. Length of line *AB* is

 $AB' = \sqrt{(250-2)^2 + (3)^2} = 248.018 \text{ mm}$

EXAMPLE 2.3 (SOLN)

(a) Therefore, average normal strain for AB is,

$$(\varepsilon_{AB})_{avg} = \frac{AB' - AB}{AB} = \frac{248.018 \text{ mm} - 250 \text{ mm}}{250 \text{ mm}}$$

 $= -7.93(10^{-3}) \text{ mm/mm}$

Negative sign means

strain causes a contraction of AB.

EXAMPLE 2.3 (SOLN)

(b) Due to displacement of B to B, angle BAC referenced from x, y axes changes to θ' .

Since
$$\gamma^{xy} = \pi/2 - \theta'$$
,

$$\gamma_{xy} = tan^{-1} \left(\frac{3mm}{250mm - 2mm} \right)$$

$$\gamma_{xy} = 0.0121 \, rad$$

CHAPTER REVIEW

- Loads cause bodies to deform, thus points in the body will undergo *displacements or changes in position*
- *Normal strain* is a measure of elongation or contraction of small line segment in the body
- *Shear strain* is a measure of the change in

seglethet mause between the spendicular to each other

CHAPTER REVIEW

- State of strain at a point is described by six strain components:
 - a) Three normal strains: \mathcal{E}_{χ} , \mathcal{E}_{γ} , \mathcal{E}_{z}
 - b) Three shear strains: γ_{XY} , γ_{XZ} , γ_{YZ}
 - c) These components depend upon the orientation of the line segments and their location in the body
 - Strain in an an antical as antity of the strain of the str

CHAPTER REVIEW

Most engineering materials undergo small deformations, so normal strain $\varepsilon << 1$. This

assumption of "small strain analysis" allows us to simplify calculations for normal strain, since firstorder approximations can be made about their

size