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Chapter five

Torsion

By
Laith Batarseh

\ Torsion \ fﬁ\

orsional deformation of circular sha \‘sv_m; »,4"':]
UAssume the circular shaft shown in the figure(a) with the circular grid
shown. If a torque is applied to the member as shown in figure (b) and
the deformation is assumed to be small then
The circles in the grid will remain circles and
the longitudinal lines will deform in helical
(spiral) line.
UFrom that , we can assume that the radius P
and the length of the shaft will remain \ . Longitudinal

lines becoms
twisted

constant.
\I-Gd_-m] lines
remain straight

After deformation

{t

Fig. 5-1
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\ Torsion \

I 5.1. Torsional deformation of circular shaft _ % m 7

Uin torsion, the strain is represented by twist angle (¢(x)).

UAs we move in the x-axis, a small difference in the twist angle (Ad) will

occur. This difference causes the member

to has a shear strain (y):

Deformed -
plane

T
-Z_p
4 2

~— Undeformed
plane

The angle of twist ¢(x) increases as x increases.

Fig. 5-2

\ Torsion \ ﬁ
I TORSION FORMULA _ o m 7
N

Assumptions:
* Linear and elastic deformation
* Plane section remains plane and undistorted
If we assume that the torsion stress vary linearly from the inside to the
outside then =~

- Tmux

c

Torsion — shear relationship:
T =Jplea=[ [ 2
A A ¢

T:T’"j‘”‘_[psz

Tc <S5
T =—
max
J 3
Tp i ;
. . . _ Shear stress varies linearly al
Similarily, 7= N e i b e s et

Fig. 5-5
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Polar moment of inertia

For solid shaft:

C C
1
J= £p2dA = '([pz(27rpdp) = 272.([ pdp=2r " o'

0

Jzzc4
2

For tubular shaft: J = %(04 ~c!)

3
2

dp /
g ‘ .Tm“

&

& )

L

I T Shear stress varies linearly along

Fig. 5-6 each radial line of the cross section.
(@) (b)

EXAMPLE |5.1

The solid shatt of radius c¢ is subjected to a torque T, Fig. 5-10a.
Determine the fraction of T that is resisted by the material contained
within the outer region of the shaft, which has an inner radius of ¢/2
and outer radius c.

SOLUTION

The stress in the shaft varies linearly, such that 7 = (p/¢)7pax, Eq. 5-3.
Therefore, the torque dT' on the ring (area) located within the
lighter-shaded region, Fig. 5-10b. is

dT' = p(1 dA) = p(p/c)Tmax(27p dp)

For the entire lighter-shaded area the torque is

c
T = ZTTTmaXf p3 0
¢ o2

27T max

1
T e 4

-

c
4
o

So that

157
1= 3Tmaxc3 1)

Fig. 5-10
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EXAMPLE [5.1CONTINUED

This torque T’ can be expressed in terms of the applied torque T
by first using the torsion formula to determine the maximum stress in
the shaft. We have

el e
G S S
or
_2r
Tmax = ;

Substituting this into Eq. 1 yields

T = %T Ans.
NOTE: Here, approximately 94% of the torque is resisted by the
lighter-shaded region, and the remaining 6% (or %) of T is resisted
by the inner “core” of the shaft, p = 0 to p = ¢/2. As a result, the
material located at the outer region of the shaft is highly effective in
resisting torque, which justifies the use of tubular shafts as an efficient
means for transmitting torque, and thereby saving material.
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42.5 kip-in. The shaft shown in Fig. 5-11a is supported by two bearings and is
subjected to three torques. Determine the shear stress developed at

-
%ﬂ;{g/ ) points A and B, located at section a—a of the shaft, Fig. 5-11c.
- £ 30 kip-in.
/ K? . 125 kip-in. 42‘5 Kip-in.
(P Q )

D
‘/& 3031111“.
(a) @é}\T

X

o 4

(&)
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EXAMPLE | 5.2 CONTINUED

A
@18.9 ksi
SOLUTION

\12'5 kip-in. Internal Torque. The bearing reactions on the shaft are

zero, provided the shaft’s weight is neglected. Furthermore,

B the applied torques satisfy moment equilibrium about the
shaft’s axis.

The internal torque at section a—a will be determined from

the free-body diagram of the left segment, Fig. 5-11b. We have

3.77 ksi
0.75in. 0.15 in. x
(c)

SM, =0; 425kip-in.—30kip+in.—T =0 T = 12.5kip-in.
Fig. 5-11

Section Property. The polar moment of inertia for the shaft is

7= %(0.75 in)* = 0.497 in
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EXAMPLE | 5.2 CONTINUED

Shear Stress. Since point Aisatp = ¢ = 0.751n.,

Te (125kip-in.)(0.75 in.
g e = % - 180ksi  Ans.
df (0.497 in*)

Likewise for point B, at p = 0.15 in., we have

_ Tp  (125kip-in.)(0.15in.)

=377ksi  Ans
e (0497 in) . W

NOTE: The directions of these stresses on each element at A and B,
Fig. 5-11c, are established from the direction of the resultant internal
torque T, shown in Fig. 5-11b. Note carefully how the shear stress acts
on the planes of each of these elements.
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EXAMPLE |5.3

The pipe shown in Fig. 5-124 has an inner diameter of 80 mm and an
outer diameter of 100 mm. If its end is tightened against the support at
A using a torque wrench at B, determine the shear stress developed in
the material at the inner and outer walls along the central portion of
the pipe when the 80-N forces are applied to the wrench.

SOLUTION

Internal Torque. A section is taken at an intermediate location C
along the pipe’s axis, Fig. 5-12b. The only unknown at the section is
the internal torque T. We require

M, =0; 80N (03m)+80N(02m)-T =0
T =40N-m

Section Property. The polar moment of inertia for the pipe’s
cross-sectional area is

j= g[(o.os m)* — (0.04m)*] = 5.796(10°6) m*
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EXAMPLE [5.3 CONTINUED

Shear Stress. For any point lying on the outside surface of the pipe,
p = ¢, = 0.05 m, we have

Tc, 40N-m(0.05m)
To = =—F————~— =0345MPa Ans.
J 5.796(107°) m

And for any point located on the inside surface, p = ¢; = 0.04 m, so
that

T¢, 40N-m (0.04 m)

f 5.796(107%) m*

= 0.276 MPa Ans.

Ti

NOTE: To show how these stresses act at representative points D
and E on the cross-section, we will first view the cross section from the
front of segment CA of the pipe, Fig. 5-12a. On this section, Fig. 5-12c,
the resultant internal torque is equal but opposite to that shown in
Fig. 5-12b. The shear stresses at D and E contribute to this torque and
therefore act on the shaded faces of the elements in the directions
shown. As a consequence, notice how the shear-stress components act
on the other three faces. Furthermore, since the top face of D and the
inner face of E are in stress-free regions taken from the pipe’s outer
and inner walls, no shear stress can exist on these faces or on the other
corresponding faces of the elements.

80N

(©)
Fig. 5-12
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Torsion

The power (P) transmit by the torque (T) for a shaft
that has an angular velocity (o) is given by

P=T.w

* P is the power in Watt
*Tis the torque in N.m
*w angular velocity in rad/s

If the frequency of the machine (f) is given in Hz, the
power become

P=T2xf)

Torsion

Shaft design: if the power transmitted and the
machine frequency are known, the torque can be

found as

o 2
The value of (T) mustn't exceed the allowable torsion
stress (7,0, )- The torsion stress formula is substituted
in the power equation above, we will have a design
criteria for solid shaft that has radius equal (c)
J T

c Tallow
What you need to find is the minimum c that bear the

applied stress. Remember that J contains the term ¢

F_P_P
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EXAMPLE |5.4

A solid steel shaft AB shown in Fig. 5-13 is to be used to transmit
5 hp from the motor M to which it is attached. If the shaft rotates
at @ = 175 rpm and the steel has an allowable shear stress of
Tallow = 14.5 ksi, determine the required diameter of the shaft to the
nearest % in.

Fig. 5-13
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EXAMPLE |5.4 CONTINUED

SOLUTION
The torque on the shaft is determined from Eq. 5-10, that is, P = Tw.
Expressing P in foot-pounds per second and w in radians/second,

we have
P=5h (SSOft'lb/S) 2750 ft- b
=5hp Thp = t-1b/s
175 rev (27 rad /1 min
“~ “min ( 1rev )( 60s ) = 1853 s
Thus,
P = Tux 2750 ft+ Ib/s = T(18.33 rad/s)

T =150.1ft-1b
Applying Eq. 5-12 yields

2. e Tallow
or \5 (201501 ft- b)(12 in./ft) |13
(vmw) :( (14 500 Ib/in?) )
¢ = 0.429 in.

Jd_md T
c

Since 2¢ = 0.858 in., select a shaft having a diameter of

d= % in. = 0.875in. Ans.
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| Torsion | ﬁ

dx .
dp=y— N\
P / |
T(x) s —"
do= dx D G
e V/
R
For constant torque and cross-sectional area:
TL
=76
For multiple torques:
TL
¢_ZJG
\ Torsion \

Sign convention for both torque and angle of twist
- positive if (right hand) thumb directs outward from the shaft

S/
AR
+o(x) 4
\HT@)
S 4
F ",’:-:3
— ~ T(x)
— ';f‘f \fj‘% .(\
Y/

Positive sign convention
for T and ¢.

Fig. 5-17
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The gears attached to the fixed-end steel shaft are subjected to the
torques shown in Fig. 5-19a. If the shear modulus of elasticity is 80 GPa
and the shaft has a diameter of 14 mm, determine the displacement of
the tooth P on gear A. The shaft turns freely within the bearing at B.

280 N'm

150 N-m B/L%\
lOOmm
\@4‘ 0.4m
SOLUTION

Internal Torque. By inspection, the torques in segments AC, Ch,
and DE are different yet constant throughout each segment.
Free-body diagrams of appropriate segments of the shaft along with
the calculated internal torques are shown in Fig. 5-19b. Using the
right-hand rule and the established sign convention that positive

torque is directed away from the sectioned end of the shaft, we have
Tac=+150N-m Tep = —130N-m Tpg=—170N-m

These results are also shown on the torque diagram, Fig. 5-19c.

EXAMPLE |5.5

Bﬂ

g““/&
f‘\ 0.5 m
O3m

(@)
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EXAMPLE |5.5 CONTINUED

SOLUTION

Internal Torque. By inspection, the torques in segments AC, CD,
and DE are different yet constant throughout each segment.
Free-body diagrams of appropriate segments of the shaft along with
the calculated internal torques are shown in Fig. 5-19b. Using the
right-hand rule and the established sign convention that positive
torque is directed away from the sectioned end of the shaft, we have
Tac=+150N-m Tep = —130N-m Tpg = —170N-m
These results are also shown on the torque diagram, Fig. 5-19c¢.

Angle of Twist. The polar moment of inertia for the shaft is
J:%mQmezawumﬁpﬁ

Applying Eq. 5-16 to each segment and adding the results
algebraically, we have

i (1SN N emW N4 m)
Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

Ty =150 Nem
150N'm

o

Tep= 130N-m

5 x'\
150 N- /}ﬁ\
280 N'm

Tpp= 170 N-m
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EXAMPLE |5.5 CONTINUED

Angle of Twist. The polar moment of inertia for the shaft is
7= 3(0.007 m)* = 3.771(107%) m*

Applying Eq. 5-16 to cach segment and adding the results
algebraically, we have

T (N'm)
_ ETL B (+150 N -m)(0.4 m)
$a= 276 = 3.771(107%) m* [80(10°) N/m?] 150
" (~130N+-m)(0.3 m) 0 0.4 07 12 ¢ (m)
3.771(107°) m* [80(10%) N/m?)] ~130 Y |
(=170 N -m)(0.5m)
= —0.2121 rad ©

3.771(107°) m* [80(10%) N/m?)]

Since the answer is negative, by the right-hand rule the thumb is
directed toward the end E of the shaft, and therefore gear A will
rotate as shown in Fig. 5-19d.

The displacement of tooth P on gear A is

sp = ¢ar = (0.2121 rad)(100 mm) = 21.2 mm Ans.

NOTE: Remember that this analysis is valid only if the shear stress
does not exceed the proportional limit of the material.
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EXAMPLE (5.6

The two solid steel shafts shown in Fig. 5-20a are coupled together
using the meshed gears. Determine the angle of twist of end A of shaft
AB when the torque T = 45 N - m is applied. Take G = 80 GPa. Shaft
AB is free to rotate within bearings E and F, whereas shaft DC is fixed
at D. Each shaft has a diameter of 20 mm.
$p = 00134 rad
T=4snm = 300Ny
. %OJSOm

m\[ EA% 1 « ? g il

E F, $

y E, ¥y F, R

(®)
(Mp),
Q?; ), Fig. 5-20
(Tok=225N-m AP: OF =
N ) SRIC
g
—U (K
T 0.075m
F=300N €
©
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EXAMPLE | 5.6 CONTINUED

SOLUTION

Internal Torque. Free-body diagrams for each shaft are shown
in Fig. 5-20b and 5-20c. Summing moments along the x axis of
shaft AB yields the tangential reaction between the gears of F =
45N -m/0.15 m = 300 N. Summing moments about the x axis of shaft
DC, this force then creates a torque of (Tp), = 300N (0.075m) =
22.5 N -m on shaft DC.

Angle of Twist. To solve the problem, we will first calculate the
rotation of gear C due to the torque of 22.5N-m in shaft DC,
Fig. 5-20c. This angle of twist is

TLpe (+225N-m)(1.5m)

% =776 T (w/2)(0010 m)[0(10°) Nym?] 0209 rad

Since the gears at the end of the shaft are in mesh, the rotation ¢¢
of gear C causes gear B to rotate ¢p, Fig. 5-20b, where

$5(0.15m) = (0.0269 rad)(0.075 m)
b5 = 0.0134 rad

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

EXAMPLE |5.6 CONTINUED

‘We will now determine the angle of twist of end A with respect to
end B of shaft AB caused by the 45 N - m torque, Fig. 5-20b. We have

_ TapLap (+45N-m)(2m) B
bap="j = (/2)(0.010 m)*[80(10°) N/m?] Ao

The rotation of end A is therefore determined by adding ¢p and
¢ 4/p- since both angles are in the same direction, Fig. 5-20b. We have

¢pa=dp+ Ppap=00134rad + 00716 rad = +0.0850rad ~ Ans.

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall
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Torsion \

Procedure for analysis:
use both equilibrium and compatibility equations

Equilibrium

Draw a free-body diagram of the shaft in order to identify all the torques
that act on it. Then write the equations of moment equilibrium about
the axis of the shaft.

Compatibility

To write the compatibility equation, investigate the way the shaft will twist
when subjected to the external loads, and give consideration as to how
the supports constrain the shaft when it is twisted.

Torsion

Express the compatibility condition in terms of the rotational displacements
caused by the reactive torques, and then use a torque-displacement
relation, such as ® = TL/JG, to relate the unknown torques to the
unknown displacements.

Solve the equilibrium and compatibility equations for the unknown reactive
torques. If any of the magnitudes have a negative numerical value, it
indicates that this torque acts in the opposite sense of direction to that
indicated on the free-body diagram.

4/29/2014
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EXAMPLE (5.8

The solid steel shaft shown in Fig. 5-23a has a diameter of 20 mm. If it
is subjected to the two torques, determine the reactions at the fixed
supports A and B.

A

500 N-m,

(b)

SOLUTION

Equilibrium. By inspection of the free-body diagram, Fig. 5-23b, it
is seen that the problem is statically indeterminate since there is
only one available equation of equilibrium and there are two
unknowns. We require

ZM, =0 ~Tp+80N-m — 500N-m - T, =0 (1)

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

EXAMPLE |5.8 CONTINUED

Compatibility. Since the ends of the shaft are fixed, the angle of
twist of one end of the shaft with respect to the other must be zero.
Hence, the compatibility equation becomes

dap=0

This condition can be expressed in terms of the unknown torques by
using the load-displacement relationship, ¢ = TL/JG. Here there
are three regions of the shaft where the internal torque is constant.
On the free-body diagrams in Fig. 5-23¢ we have shown the internal
torques acting on the left segments of the shaft which are sectioned in
each of these regions. This way the internal torque is only a function of
T. Using the sign convention established in Sec. 5.4, we have

~T5(02m) (800 — T)(1.5m) (300 — T5)(0.3m)
G iG - iG

so that
Tg =645 N'm Ans.
Using Eq. 1,

T4= —-345N-m Ans.

The negative sign indicates that T4 acts in the opposite direction of
that shown in Fig. 5-23b.

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall
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EXAMPLE |5.9

The shaft shown in Fig. 5-24a is made from a steel tube, which is
bonded to a brass core. If a torque of T = 2501b-ft is applied at
its end, plot the shear-stress distribution along a radial line of its
cross-sectional area. Take Gy = 11.4(10%) ksi, Gy, = 5.20(10%) ksi.

SOLUTION
Equilibrium. A free-body diagram of the shaft is shown in Fig. 5-24b.
The reaction at the wall has been represented by the unknown amount
of torque resisted by the steel, T'y, and by the brass, T},. Working in
units of pounds and inches, equilibrium requires

~Ty — Tp + (250 1b-)(12in/ft) =0 (1)

T =250 Ib-ft (a)
Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

EXAMPLE |5.9 CONTINUED

Compatibility. We require the angle of twist of end A to be
the same for both the steel and brass since they are bonded

together. Thus,
& = g = iy T
Applying the load—displacement relationship, ¢ = TL/JG, ! £
T.L _
(7/2)[(1in.)* — (0.5 in.)*]11.4(10*) kip/in® B
Ty L
(/2)(0.5 in.)*5.20(10%) kip/in?
T = 32.88T, (@)

Solving Egs.1 and 2, we get
Ty =2911.51b+in. = 2426 Ib-ft x
Ty, = 88.51b-in. = 7.38 b - ft 250 1b-it ®
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4/29/2014

15



EXAMPLE |5.9 CONTINUED
1977 psi

989 psi

The shear stress in the brass core varies from zero at its center to a
maximum at the interface where it contacts the steel tube. Using the
torsion formula,

_ (851-in)(05in)
(Tor)max = (m/2)(0.5 in.)" = pst

For the steel, the minimum and maximum shear stresses are

(2911.51b+in.)(0.5 in.) 5
= = — g = 989 psi
(m/2)[(11in.)* — (0.5in.)%]

_ (2911.51b-in.)(Lin.)
(rstdmax = < [(Tin )t — (05 )]
The results are plotted in Fig. 5-24¢. Note the discontinuity of shear
stress at the brass and steel interface. This is to be expected, since the
materials have different moduli of rigidity; i.e.. steel is stiffer than
brass (Gy > Gy,) and thus it carries more shear stress at the interface.
Although the shear stress is discontinuous here, the shear strain is not.
Rather, the shear strain is the same for both the brass and the steel.

(Tst)min

= 1977 psi

Shear-stress distribution

(c)
Fig.5-24
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