"‘l--vv.»‘-".) \s)}_aA)'i!.hu'*h_uhLﬂmL’h
\ S.LL‘;) Palestine Technical University - Kadoorie
'X‘"“j

\ <
\\ 1
\ -

Digital Electronics and Logic Design

Boolean Algebra and
Logic Simplification
Dr. Jafar Saifeddin Jallad

Dept. of Electrical Engineering
Palestine Technical University
Tulkaram, Palestine

Dr. Jafar Jallad / PTUK

Graphic Algebraic Truth
Name symbol function table
x y| F
* . 0 0| 0
AND v D—F F=x-y 0o 11 o
1 0] 0
1 1] 1
x yv| F
OR . :] > _ 0 0| 0
v F F=x+y 0 1! 1
1 0 1
1 1| 1
x| F
Invert =x']
nverter x—Do—F F=x ol 1
L] 0
x| F
Buffer X ™~ - T
1] 1

x v| F
X
_ v 0 0] 1
F=(xy
NAND v }07 (xv) 0 1| 1
1 0] 1
1 1] 0
x v| F
y 0 1 0
1 0] 0
1 1| 0
x v| F
Exclusive-OR x — F=xy'"+x'y 0 0] 0
(XOR) y — =xBy 0 1| 1
' 1 0] 1
1 1| 0
x v| F
Exclusive-NOR F=xy+xy 0o ol 1
or _ ;
equivalence y = Dy) {i] é 3
1 1 1

Boolean Expressions for the 16 Functions of Two Variables

Operator

Boolean Functions Symbol Name Comments
F=20 Null Binary constant 0
F, = xy X-y AND xandy
F, = xy’ x/y Inhibition x, but not y
Fy=x Transfer X
F,=x"y vix Inhibition y, but not x
Fs=y Transfer y
Fs=xyv' +x'y x@Py Exclusive-OR x or y, but not both
Fr=x+y x+y OR xXory
Fy=(x +) xly NOR Not-OR
Fog=xy +x'y’ (x®y) Equivalence X equals y
Fip=v' v/ Complement Not y
Fii=x+y xCy Implication If y, then x
Fi; = x' x’ Complement Notx
Fis=x"+y xJy Implication If x, then y
Fiy = (xy)’ xTy NAND Not-AND
Fis=1 Identity Binary constant 1

Basic rules of Boolean algebra.

.LA+0=A 7. A-A=A

2 A+1 =1 8. A-A =0

3.A-0=0 9. A=A

4. A-1=A 10. A + AB=A

5. A+A=A 11. A+ AB=A + B

6. A+ A=1 12. (A + BYA + C) = A + BC

A, B, or C can represent a single variable or a combination of variables.

Rule 1: A + 0 = A A variable ORed with 0 is always equal to the variable. If the input
variable A is 1, the output variable X is 1, which is equal to A. If A is 0, the output is 0, which
is also equal to A. This rule is illustrated in Figure 48, where the lower input is fixed at 0.

X=A+0=A

Rule 2: A +1 =1 A variable ORed with 1 is always equal to 1. A 1 on an input to an
OR gate produces a 1 on the output, regardless of the value of the variable on the other
input. This rule is illustrated in Figure 4-9, where the lower input is fixed at 1.

X=A+1=1

Rule 3: A-0 =0 A variable ANDed with 0 is always equal to 0. Any time one input to
an AND gate is 0, the output is 0, regardless of the value of the variable on the other input.
This rule is illustrated in Figure 4-10, where the lower input is fixed at 0.

A=1— A=0 —
0 — n —

Rule 4: A-1 = A A variable ANDed with 1 is always equal to the variable. If A is 0, the
output of the AND gate is 0. If A is 1, the output of the AND gate is 1 because both inputs
are now 1s. This rule is shown in Figure 411, where the lower input is fixed at 1.

A=0— A=1 ——
1 — | ——

X=A-1=A

Rule 5: A + A=A A variable ORed with itself is always equal to the variable. If A is 0,
then0) + 0 = 0;andifAis 1, then 1 + 1 = 1. This is shown in Figure 4-12, where both
inputs are the same variable.

0 A=1
0 A=1

X=A+A=A
Rule 6: A + A =1 A variable ORed with its complement is always equal to 1. If A is
0,then0 + 0 =0+ 1 = 1.IfAis 1, thenl + 1 = 1 + 0 = 1. See Figure 4-13, where
one input is the complement of the other.

A
A

Rule 7: A-A = A A variable ANDed with itself is always equal to the variable. If
A =0,then0 -0 = 0;andif A = 1, then 1 -1 = 1. Figure 4-14 illustrates this rule.

A=1—
A=1—"

X=A+A=A

I
o=

I
=

Rule 8: A- A =0 A variable ANDed with its complement is always equal to 0. Either A
or A will always be 0; and when a 0 is applied to the input of an AND gate, the output will
be 0 also. Figure 4-15 illustrates this rule.

A=1— A=0—
A=0— A=1—7
B X=A+A=0
Rule 9: A = A The double complement of a variable is always equal to the variable. If
you start with the variable A and complement (invert) it once, you get A. If you then take

A and complement (invert) it, you get A, which is the original variable. This rule is shown
in Figure 4—16 using inverters.

]|

= 1

RN

ke
Il
=
I

]
= ||
]
=

Commutative Laws

The commutative law of addition for two variables is written as

A+B=B8B+ A

A B
B A

Application of commutative law of addition.

The commutative law of multiplication for two variables is

AB = BA

A —— B —
B — A —

Application of commutative law of multiplication.

Associative Laws

The associative law of addition 1s written as follows for three variables:

A+ B+0O)=A+B)+C

A

D—A+{B+C]
B
C

D

C

A+8B

D—{A+BJ+C

The associative law of multiplication is written as follows for three variables:

A(BC) = (AB)C

A
}A(HC}
H —_—
}—BC
C —_—

A — |

B_

C

)

AB

Distributive Law

The distributive law 1s written for three variables as follows:

AB + C) = AB + AC

A
L
B B
—) e _ T
C = A
O
C

X=AB+0(C) A =AB + AC

Rule 10: A + AB = A This rule can be proved by applying the distributive law, rule 2,
and rule 4 as follows:

A+AB=A-1+ AB = A(l + B) Factoring (distributive law)
=A-1 Rule2: (1 + B) = 1
= A Rule4:A -1 =A

Rule 10: A + AB = A. Open file T04-02 to verify.

A B AB A+ AB
0 0 0 0 A —

0 1 0 0 L

1 0 0 1 B —]

1 1 1 1 1

straight connection

—i=
S

equal

Rule 11: A + AB = A + B This rule can be proved as follows:

A+ AB =

= (AA + AB) + AB

(A + AB) + AB

Rule 10: A = A + AB
Rule 7: A = AA

= AA + AB + AA + AB Rule 8: adding AA = 0

= (A + A)JA + B)
=1-(A+ B)

= A+ B

Factoring
Rule6:A + A = 1
Rule 4: drop the 1

Rule 11: A + AB = A + B. Open file T04-03 to verify.

e e

A B AB A +AB A+B
0 0 0 0
0 1]]
1 0 0]
1 1 0]

Rule 12: (A + B)(A + C) = A + BC This rule can be proved as follows:

(A + B)A + C) =AA + AC + AB + BC Distributive law
=A + AC + AB + BC
= A(l + C) + AB + BC
=A-1+ AB + BC

= A(1 + B) + BC
=A-1+ BC

= A + BC

Rule 12: (A + B)(A + C) = A + BC. Open file T04-04 to verify.

Rule 7: AA = A

Factoring (distributive law)
Rule2:1 + C =1
Factoring (distributive law)
Rule2:1 + B =1
Rule4:A -1 =A

A B C A+B A+C |A+BA+C)| BC A +BC
0 0 0 0 0 0 0 0
0 0 1 0 ! 0 0 0 g_*:D—L
0 ! 0 1 0 0 0 0 :)—
0 1 1 1 1 1 1 1 C:D—r
1 0 0 1 ! ! 0 !
1 0 1 1 ! 1 0 1 l
1 ! 0 1 ! ! 0 ! E%_I_D—
1 1 1 1 1 1 1 ! c—
! f

equal

EXAMPLE

Simplify the following Boolean functions to a minimum number of literals.
L. x(x" +y) =xx"+xy =0+ xy = xy.
2. xtx'y=@x+x)Yx+y)=1lx+y)=x+y.
. xt+y)x+ty)=x+xy+txy ' +yw =x(1+y+y)=nx
4. xy +x'z +yz =xy + x'z + yz(x +x')
=xy +x'z + xyz +x'yz
=xy(1 + z) + x"z(1 + y)
= xy + x'z.

5. (x + y)(x" + 2)(y + z) = (x + y)(x" + z), by duality from function 4.

L]

DeMorgan’s Theorems

The complement of two or more ANDed variables is equivalent to the OR of the
complements of the individual variables.

The formula for expressing this theorem for two variables is

Y=X+Y

The complement of two or more ORed variables is equivalent to the AND of the
complements of the individual variables.

The formula for expressing this theorem for two variables is

X+Y=XY

Inputs Output

X Y XY X+Y

NAND MNegative-OR

:;l_l.l—ll—l-

1
1
1
0

—_— e D D
—_— D = D

Inputs Output
X Y X+Y XY

o O O =
o O O =

NOR Negative-AND 1 0
1

Apply DeMorgan’s theorems to the expressions XYZand X + ¥ + Z

Solution

XYZ=X+Y+ Z

X+Y+Z=XYZ

Apply DeMorgan’s theorems to the expressions WXYZand W + X + ¥ + Z

Solution
WXYZ=W+X+Y+7Z

W+X+Y+Z=WXYZ

Applying DeMorgan’s Theorems

The following procedure illustrates the application of DeMorgan’s theorems and Boolean
algebra to the specific expression

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

A + BC + D(E + F)

Identify the terms to which you can apply DeMorgan’s theorems, and think of
each term as a single variable. Let A + BC=Xand D(E + F) =Y.

Since X + ¥ = XY,

(A + BC) + (D(E + F)) = (A + BC)D(E + F))

Use rule 9 (E = A) to cancel the double bars over the left term (this is not part
of DeMorgan’s theorem).

(A + BC)D(E + F)) = (A + BC)(D(E + F))
Apply DeMorgan’s theorem to the second term.
(A + BC)(D(E + F)) = (A + BC)(D + (E + F))

Use rule 9 (E = A) to cancel the double bars over the E + F part of the term.

(A+BC)YD+E+ F)=(A+ BC)YD + E + F)

Apply DeMorgan’s theorems to each expression:
@@ (A+B) +C

(b) (A + B) + CD

(¢ A+ BCD+E+F

Solution
@ A+B) +C=(A+ BC=(A+ BC

() (A+ B)+ CD = (A + B)CD = (AB)(C + D) = AB(C + D)
(¢ A+ BCD+E+ F= (A + BCD)E+ F)=(AB + C + D)EF

Apply DeMorgan’s theorems to each of the following expressions:
(a (A+ B+ C)D

(b) ABC + DEF

(c) AB + CD + EF

Solution

(a) LetA + B+ C = Xand D = Y. The expression (A + B + C)D is of the form
XY = X + Y and can be rewritten as

A+B+CD=A+B+C+D

Next, apply DeMorgan’s theorem to the term A + B + C.

A+B+C+D=ABC+D

(b) Let ABC = X and DEF = Y. The expression ABC + DEF 1is of the form
X + Y = XY and can be rewritten as

ABC + DEF = (ABC)(DEF)
Next, apply DeMorgan’s theorem to each of the terms ABC and DEF.

(ABCYDEF)=(A+ B+ C)D + E+ F)

(¢c) Let AB=X.CD = i’,_@d EF = Z. The expression AB + CD + EF is of the
form X + Y + Z = XYZ and can be rewritten as

AB + CD + EF = (AB)(CD)(EF)

Next, apply DeMorgan’s theorem to each of the terms AB, CD, and EF.

(AB)(CD)(EF) = (A + B)(C + D)(E + F)

Apply DeMorgan’s theorems to each expression:
(@ A+B) +C

(b) (A + B) + CD

(¢) A+BCD+E+F

Solution
@ A+B) +C=(A+BC=(A+ BC

(b) (A + B)+ CD = (A + B)CD = (AB)(C + D) = AB(C + D)
(¢ A+BCD+E+F=((A+ BCD)E+ F)=(AB + C + D)EF

EXAMPLE |

The Boolean expression for an exclusive-OR gate is AB + AB. With this as a starting
point, use DeMorgan’s theorems and any other rules or laws that are applicable to
develop an expression for the exclusive-NOR gate.

Solution

Start by complementing the exclusive-OR expression and then applying DeMorgan’s
theorems as follows:

AB + AB = (AB)AB) = (A + B)A + B) = (A + B)A + B)
Next, apply the distributive law and rule 8 (A - A = 0).
(A+ B)YA +B)=AA + AB + AB + BB = AB + AB

The final expression for the XNOR is AB + AB. Note that this expression equals 1 any
time both variables are Os or both variables are 1s.

Boolean Analysis of Logic Circuits

C — _
CD
D
B
|)—ason
A

Constructing a Truth Table for a Logic Circuit

Truth table for the logic circuit in Figure

Inputs Qutput
A B C D A(B + CD)
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

Loqgic Simplification Using Boolean Algebra

Using Boolean algebra techniques, simplify this expression:

AB + A(B+ C) + B(B + C)
Solution

The following is not necessarily the only approach.

Step 1: Apply the distributive law to the second and third terms in the expression, as
follows:

AB + AB + AC + BB + BC
Step 2: Apply rule 7 (BB = B) to the fourth term.

AB + AB + AC + B + BC
Step 3: Apply rule 5 (AB + AB = AB) to the first two terms.

AB + AC + B + BC
Step 4: Apply rule 10 (B + BC = B) to the last two terms.
AB + AC + B
Step 5: Apply rule 10 (AB + B = B) to the first and third terms.
B + AC

At this point the expression is simplified as much as possible. Once you gain experience
in applying Boolean algebra, you can often combine many individual steps.

(a)

_)@—AH+A{H +C)+B(B +C)
A

- These two circuits are equivalent. 4T

(b)

B+AC

Simplify the following Boolean expression:
[AB(C + BD) + AB]|C

Note that brackets and parentheses mean the same thing: the term inside is multiplied
(ANDed) with the term outside.

Solution
Step 1: Apply the distributive law to the terms within the brackets.

(ABC + ABBD + AB)C
Step 2: Apply rule 8 (BB = 0) to the second term within the parentheses.
(ABC+A-0-D + AB)C
Step 3: Applyrule 3 (A - 0 - D = 0) to the second term within the parentheses.
(ABC + 0 + AB)C
Step 4: Apply rule 1 (drop the 0) within the parentheses.

(ABC + AB)C
Step 5: Apply the distributive law.

ABCC + ABC
Step 6: Apply rule 7 (CC = C) to the first term.

ABC + ABC
Step 7: Factor out BC.

BC(A + A)
Step8: Applyrule6 (A + A = 1).
BC- 1

Step 9: Apply rule 4 (drop the 1).

Simplify the following Boolean expression:

ABC + ABC + ABC + ABC + ABC

Solution
Step 1: Factor BC out of the first and last terms.

BC(A + A) + ABC + ABC + ABC

Step 2: Applyrule 6 (A + A = 1) to the term in parentheses, and factor AB from the
second and last terms.

BC-1+ AB(C + C) + ABC

Step 3: Apply rule 4 (drop the 1) to the first term and rule 6 (C + C = 1) to the term
in parentheses.

BC + AB-1 + ABC

Step 4: Apply rule 4 (drop the 1) to the second term.

BC + AB + ABC

Step 5: Factor B from the second and third terms.
BC + B(A + AC)
Step 6: Applyrule 11 (A + AC = A + C) to the term in parentheses.
BC + B(A + C)
Step 7: Use the distributive and commutative laws to get the following expression:

BC + AB + BC

Simplify the following Boolean expression:

AB + AC + ABC
Solution
Step 1: Apply DeMorgan’s theorem to the first term.

(AB)(AC) + ABC

Step 2: Apply DeMorgan’s theorem to each term in parentheses.

(A+ B)A + C)+ ABC
Step 3: Apply the distributive law to the two terms in parentheses.

AA +AC+ AB + BC + ABC
Step 4: Apply rule 7 (AA = A) to the first term, and apply rule 10
[AB + ABC = AB(1 + C) = AB] to the third and last terms.

A+ AC+ AB + BC

Step5: Applyrule 10[A + AC = A(1 + C) = A] to the first and second terms.
A+ AB + BC
Step 6: Applyrule 10 [A + AB = A(1 + B) = A] to the first and second terms.
A+ BC

Standard Forms of Boolean Expressions

The Sum-of-Products (SOP) Form

A product term was defined in Section 4-1 as a term consisting of the product (Boolean
multiplication) of literals (variables or their complements). When two or more product
terms are summed by Boolean addition, the resulting expression is a sum-of-products
(SOP). Some examples are

AB + ABC
ABC + CDE + BCD
AB + ABC + AC

Ny o= DAaR o

ED@— X =AB + BCD + AC

Implementation of the SOP expression AB + BCD + AC.

NAND/NAND Implementation of an SOP Expression

= DOr = o

—:)o@— X = AB + BCD + AC

This NAND/NAND implementation is equivalent to the AND/OR

Conversion of a General Expression to SOP Form

Any logic expression can be changed into SOP form by applying Boolean algebra tech-
niques. For example, the expression A(B + CD) can be converted to SOP form by applying
the distributive law:

AB + CD) = AB + ACD

[EXAMPLE

Convert each of the following Boolean expressions to SOP form:
(a) AB + B(CD + EF) (b) (A+ BB+ C+ D) (c) A+B)+C

Solution

(a) AB + B(CD + EF) = AB + BCD + BEF

(b) (A + B)B+ C+ D)=AB + AC + AD + BB + BC + BD
© A+B +C=@A+BC=(@A+BC=AC + BC

The Standard SOP Form

A standard SOP expression is one in which all the variables in the domain appear in
each product term in the expression. For example, ABCD + ABCD + ABCD is a stan-
dard SOP expression. Standard SOP expressions are important in constructing truth tables.

Converting Product Terms to Standard SOP

Each product term in an SOP expression that does not contain all the variables in the
domain can be expanded to standard form to include all variables in the domain and their
complements. As stated in the following steps, a nonstandard SOP expression is converted
into standard form using Boolean algebra rule 6 (A + A = 1) from Table 4—1: A variable

added to its complement equals 1.

Step 1: Multiply each nonstandard product term by a term made up of the sum of a
missing variable and its complement. This results in two product terms. As you
know, you can multiply anything by 1 without changing its value.

Step 2: Repeat Step 1 until all resulting product terms contain all variables in the
domain in either complemented or uncomplemented form. In converting a
product term to standard form, the number of product terms is doubled for each
missing variable

Binary Representation of a Standard Product Term

An SOP expression is equal to 1 only if one or more of the product terms in the
expression is equal to 1.

A standard product term is equal to 1 for only one combination of variable values. For
example, the product term ABCD isequalto l when A =1, B=0,C=1,D = 0, as
shown below, and is 0 for all other combinations of values for the variables.

ABCD=1-0-1-0=1+1-1-1=1

EXAMPLE

Convert the following Boolean expression into standard SOP form:
ABC + AB + ABCD
Solution

The domain of this SOP expression is A, B, C, D. Take one term at a time. The first term, ABC, is missing variable D or D,
so multiply the first term by D + D as follows:

ABC = ABC(D + D) = ABCD + ABCD

In this case, two standard product terms are the result.
The second term, A B, is missing variables C or C and D or D, so first multiply the second term by C + C as follows:

AB = AB(C + C) = ABC + ABC
The two resulting terms are missing variable D or D, so multiply both terms by D + D as follows:
AB = ABC + ABC = ABC(D + D) + ABC(D + D)
= ABCD + ABCD + ABCD + ABCD
In this case, four standard product terms are the result.

The third term, ABCD, is already in standard form. The complete standard SOP form of the original expression is as follows:
ABC + AB + ABCD = ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

The Product-of-Sums (POS) Form

A sum term was defined in Section 41 as a term consisting of the sum (Boolean addition)
of literals (variables or their complements). When two or more sum terms are multiplied,
the resulting expression is a product-of-sums (POS). Some examples are

(A+ B)A + B+ O)
(A+B+ C)C+D+E)B+C+ D)
(A+BYA+ B+ O)A + O

Implementation of a POS Expression
)
E[)—:D—x=m+mw+f+u;m+f}

0o DO =

Implementation of the POS expression (A + B)(B + C + D)(A + C).

The Standard POS Form

A standard POS expression 1s one in which all the variables in the domain appear in
each sum term in the expression. For example,

A+B+C+DA+B+C+DA+B+C+ D)

is a standard POS expression. Any nonstandard POS expression (referred to simply as
POS) can be converted to the standard form using Boolean algebra.

Converting a Sum Term to Standard POS

Step 1: Add to each nonstandard product term a term made up of the product of the
missing variable and its complement. This results in two sum terms. As you
know, you can add 0O to anything without changing its value.

Step 2: Apply rule 12 from Table 4-1: A + BC = (A + B)(A + C)

Step 3: Repeat Step | until all resulting sum terms contain all variables in the domain
in either complemented or uncomplemented form.

Binary Representation of a Standard Sum Term

A POS expression is equal to 0 only if one or more of the sum terms in the expres-
sion is equal to 0.

A standard sum term is equal to O for only one combination of variable values. For exam-
ple, the sumterm A + B+ C+ DisOwhen A=0,B=1,C=0,and D = 1, as
shown below, and i1s 1 for all other combinations of values for the variables.

A+B+C+D=0+14+0+1=0+0+0+0=0

Convert the following Boolean expression into standard POS form:
(A+B+C)B+C+D)JA+B+C+D)

Solution

The domain of this POS expression is A, B, C, D. Take one term at a time. The first term, A + B+ C,is missing variable
D or D, so add DD and apply rule 12 as follows:

A+B+C=A+B+C+DD=A+B+C+DA+B+C+D

The second term, B + C + D, is missing variable A or A, so add AA and apply rule 12 as follows:
B+C+D=B+C+D+AA=A+B+C+ DA+ B+ C+ D)

The third term, A + B + C + D, is already in standard form. The standard POS form of the original expression is as follows:

A+B+C)B+C+D)A+B+C+ D)=
(A+B+C+DA+B+C+DA+B+C+DA+B+C+DYA+B+C+ D)

Converting Standard SOP to Standard POS

The binary values of the product terms in a given standard SOP expression are not present
in the equivalent standard POS expression. Also, the binary values that are not represented
in the SOP expression are present in the equivalent POS expression. Therefore, to convert
from standard SOP to standard POS, the following steps are taken:

Step 1: Evaluate each product term in the SOP expression. That is, determine the
binary numbers that represent the product terms.
Step 2: Determine all of the binary numbers not included in the evaluation in Step 1.

Step 3: Write the equivalent sum term for each binary number from Step 2 and express
in POS form.

Convert the following SOP expression to an equivalent POS expression:

ABC + ABC + ABC + ABC + ABC

Solution

The evaluation is as follows:

000 + 010 + OI1 + 101 + 111

Since there are three variables in the domain of this expression, there are a total of eight
(23) possible combinations. The SOP expression contains five of these combinations, so
the POS must contain the other three which are|l001, 100, and 110} Remember, these are
the binary values that make the sum term 0. The equivalent POS expression is

A+B+CYA+B+C)A+ B+ (O

Boolean Expressions and Truth Tables
Converting SOP Expressions to Truth Table Format

SOP 2 A=1 A0

Develop a truth table for the standard SOP expression ABC + ABC + ABC.
Inputs QOutput

A B C X Product Term
0 0 0 0

0 0 1 1 ABC

0 1 0 0

0 1 1 0

1 0 0 1 ABC

1 0 1 0

1 1 0 0

1 1 1 1 ABC

Converting POS Expressions to Truth Table Format

EXAMP

A+B+C)A+B+C)A+B+C)A+B+C)A+ B+ 0O

POS=2>A~0,A'&1

Determine the truth table for the following standard POS expression:

Inputs QOutput
A B C X Sum Term
0 0 0 0 A+ B+ O
0 0 |]
0 1 0 0 (A+ B+ O
0 | | 0 A+ B+ O
1 0 0]
1 0] 0 (A + B+ O)
1 ! 0 0 (A+ B+ O
1 ! |]

From the truth table in Table , determine the standard SOP expression and the
equivalent standard POS expression.

Inputs Output
A B C X
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Solution

There are four 1s in the output column and the corresponding binary values are 011,

100, 110, and 111. Convert these binary values to product terms as follows:

Output

— Inputs
011 — ABC A B C X
100 —— AEE 0 0 0 0
. 0 0 1 0
110 — ABC g i ? ?
111 — ABC L 0 0 1
1 0 1 0
1 1 0 1
1 1 1

The resulting standard SOP expression for the output X is |

X = ABC + ABC + ABC + ABC

For the POS expression, the output is 0 for binary values 000, 001, 010, and 101.

Convert these binary values to sum terms as follows:

000 —> A + B +
001l —> A + B +
010 —> A + B +
101l —> A + B +

QG Ol 6

The resulting standard POS expression for the output X is
X=A+B+C)A+B+C)A+B+C)A+ B+)

Minterms and Maxterms for Three Binary Variables

Minterms Maxterms
x y z Term Designation Term Designation
0 0 0 x'y'z’ my x+y+z M,
0 0 1 x'y'z my x+y+ 2z M,
0 1 0 x'yz' > x+y +z M-
0 1 1 x'yz my x+y + 7z M,
1 0 0 xy'z' my x"+y+z M,
1 0 1 xyv'z ms x"+y+ 2z M;
1 1 0 xyz' mg x"+y' +z M,
1 1 1 Xvz s x"+y' '+ 2z M-

-) write the function in standard minterm
(SOP) form. To illustrate, we will use the expression

X =ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

ABCD X Minterm
0000 0

0001 1 m
0010 0

0011 1 my
0100 1 my
0101 1 ms
0110 0

0111 0

1000 0

1001 0

1010 1 nyp
1011 0

1100 1 mis
1101 1 iy
1110 0

1111 1 mis

F=A'B'C+ AB'C + AB'C + ABC'" + ABC

:m1+m4+m5+mﬁ+m;r
H

When a Boolean function 1s in its sum-of-minterms form, it 1s sometimes convenient to
express the function in the following brief notation:

F(A,B,C) = 3(1,4,5,6,7)

F=x+yv+2x+y +2)x"+y+z2)x" +y+2z2)
= MMM M5

F(x,v,z) = 11(0, 2,4, 5)

Truth Table for F = xy + x'z

X y z F
o 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 1
4 1 0 0 0
5 1 0 1 0
6 | 1 0 1
7 1 1 1 1

Flx,y,z) = 2(1,3,6,7)

F(x,y,z) = 11(0, 2,4, 5)

Minterms

Maxterms

£

—

(a) Sum of Products

Flz}-'

r + Iy + Ifyzr

-~
— DD
ﬂ::i::>_r

(a) AB + C(D + E)

=

>

(b) Product of Sums

ta 't

F=x(y'+z2)(x"+y+2z)

o0

(b)AB + CD + CE

The Karnaugh Map

A Karnaugh map provides a systematic method for simplifying Boolean expressions and,
if properly used, will produce the simplest SOP or POS expression possible, known as
the minimum expression. As you have seen, the effectiveness of algebraic simplification
depends on your familiarity with all the laws, rules, and theorems of Boolean algebra and on
your ability to apply them. ’

A Karnaugh map is similar to a truth table because it presents all of the possible values
of input variables and the resulting output for each value. Instead of being organized into
columns and rows like a truth table, the Karnaugh map is an array of cells in which each
cell represents a binary value of the input variables. The cells are arranged in a way so
that simplification of a given expression is simply a matter of properly grouping the cells.

Karnaugh maps can be used for expressions with two, three, four, and five variables, but we
will discuss only 3-variable and 4-variable situations to illustrate the principles.

The number of cells in a Karnaugh map, as well as the number of rows in a truth table,
is equal to the total number of possible input variable combinations. For three variables, the
number of cells is 2° = 8. For four variables, the number of cells is 2* = 16.

The 3-Variable Karnaugh Map

C C
AB 0 1 AB 0 1
00 00 | ABC | ABC
01 01 | ABC | ABC
11 11 | ABC | ABC
10 10 | ABC | ABC
(a) (b)

A 3-variable Karnaugh map showing Boolean product terms for each cell.

The 4-Variable Karnaugh Map

CD

AB
00

01

11

10

(a)

A 4-variable Karnaugh map.

AB

01

11

10

ABCD

ABCD

ABCD

01

ABCD

ABCD

ABCD

11

ABCD

ABCD

ABCD

ABCD

10

ABCD

ABCD

ABCD

ABCD

(b)

= A —
ABX 00\ /01 /11N /10 T
I[J{] Y Y Y Y ;"I
- e e i o il
- ' A .
I;f + + HI
01y : v . J
I al e =l wls =
—{ 4 } 4 i
lxhl l T #]' # __,-':I
Ll - - - i il
1 ¢ ! : i
ST/ . ¥ . /
tk

Adjacent cells on a Karnaugh map are those that differ by only one
variable. Arrows point between adjacent cells.

Karnaugh Map SOP Minimization

C B ~ -
AB 0 1 ABC + ABC + ABC + ABC
X 000 001 110 100
00 | | -
01
11 | -
0| 1=

Example of mapping a standard SOP expression.

| EXAMPLE

Map the following standard SOP expression on a Karnaugh map:

ABC + ABC + ABC + ABC

Solution

Evaluate the expression as shown below. Place a 1 on the 3-variable Karnaugh map in
Figure 4-29 for each standard product term in the expression.

ABC + ABC + ABC + ABC
001 010 110 111

C
AB 0] 1
00 |- ABC
01 | - = ABC

11| 1w 1=<4+—ABC

10 ~ABC

EXAMPLE

Map the following standard SOP expression on a Karnaugh map:

Solution

Evaluate the expression as shown below. Place a 1 on the 4-variable Karnaugh map in

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

Figure 4-30 for each standard product term in the expression.

0011

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD
0100 1101 1111 1100 0001

cD wc D
AR 00 mr_, 11 10
¥ .
00 |] - —— ABCD
01 1
.-"--.*r
ABCD —
11 1 | 1
e 4 A
.’lﬁflf) - I|'I IlI o o
10 | -—t+— ABCD

7 T
ABCD ABCD

1010

EXAMPLE

Map the following SOP expression on a Karnaugh map: A + AB + ABC.

Solution

The SOP expression is obviously not in standard form because each product term does not
have three variables. The first term is missing two variables, the second term is missing
one variable, and the third term is standard. First expand the terms numerically as follows:

A + AB + ABC
000 100 110
001 101

010

011

Map each of the resulting binary values by placing a | in the appropriate cell of the
3-variable Karnaugh map in Figure

AB 0 1

00 I 1

01 I 1

11 I

10 I 1

EXAMPLE |

Map the following SOP expression on a Karnaugh map:

BC + AB + ABC + ABCD + ABCD + ABCD

Solution

The SOP expression is obviously not in standard form because each product term does
not have four variables. The first and second terms are both missing two variables, the
third term is missing one variable, and the rest of the terms are standard. First expand the
terms by including all combinations of the missing variables numerically as follows:

BC + AB + ABC + ABCD + ABCD + ABCD
0000 1000 1100 1010 0001 1011
0001 1001 1101

1000 1010

1001 1011
Map each of the resulting binary values by placing a 1 in the appropriate cell of the
4-variable Karnaugh map in Figure 4-32. Notice that some of the values in the expanded

expression are redundant.

CD

AB 00 01 11 10

00 1 |

01

11 1 l

10 1 l 1 l

Karnaugh Map Simplification of SOP Expressions

Grouping the 1s

You can group 1s on the Karnaugh map according to the following rules by enclosing those
adjacent cells containing 1s. The goal is to maximize the size of the groups and to minimize
the number of groups.

1.

A group must contain either 1, 2, 4, 8, or 16 cells, which are all powers of two. In the
case of a 3-variable map, 2° = 8 cells is the maximum group.

Each cell in a group must be adjacent to one or more cells in that same group, but all
cells in the group do not have to be adjacent to each other.

Always include the largest possible number of 1s in a group in accordance with rule 1.

Each 1 on the map must be included in at least one group. The 1s already in a group can
be included in another group as long as the overlapping groups include noncommon 1s.

Determining the Minimum SOP Expression from the Map

When all the Is representing the standard product terms in an expression are properly
mapped and grouped, the process of determining the resulting minimum SOP expression
begins. The following rules are applied to find the minimum product terms and the mini-
mum SOP expression:

1. Group the cells that have 1s. Each group of cells containing s creates one product
term composed of all variables that occur in only one form (either uncomple-
mented or complemented) within the group. Variables that occur both uncomple-
mented and complemented within the group are eliminated. These are called
contradictory variables.

2. Determine the minimum product term for each group.
(a) For a 3-variable map:
(1) A 1-cell group yields a 3-variable product term
(2) A 2-cell group yields a 2-variable product term
(3) A 4-cell group yields a 1-variable term
(4) An 8-cell group yields a value of 1 for the expression
(b) For a 4-variable map:
(1) A 1-cell group yields a 4-variable product term
(2) A 2-cell group yields a 3-variable product term
(3) A 4-cell group yields a 2-variable product term
(4) An 8-cell group yields a 1-variable term
(5) A 16-cell group yields a value of 1 for the expression

3. When all the minimum product terms are derived from the Karnaugh map, they are
summed to form the minimum SOP expression.

EXAMPLE|

Group the 1s in each of the Karnaugh maps in Figure 4-33.
CcD

C
AB 0
00| 1
01
11|
10
(a)
C
AB 0 l
00 @
o1 q
@D
10

(a)

C
AB

0

00

1

01

11

10

(b)

Wrap-around adjacency

C
AR 0 1
00 l'\..l l_/;
01 1
N
5 (1)
|
10 1 1
&l .

(b)

AB 00 01 11 10
00 1 1
01 1 1 1 l
11
10 l 1
(c)
CD
AB 00 01 11 10
00 | 1 1
01 tl 1 1 1)
/
11
10 (1 1)
(c)

CcD
AB 00 01 11 10
00 | 1
01 1 1 1
11 1 I |
10 1 1 1
(d)
Wrap-around adjacency
cp |/ |
AB :L.-ﬂl'.] 01 11 '-.._I‘lﬂ
00 1 1
01 (1 1 w 1
JEIT T
I (W
i
(d)

Determine the product terms for the Karnaugh map in Figure 4-35 and write the result-

ing minimum SOP expression.

ABCD
0011

0010
0111
0110

A'C

ABCD{JG o1 11 10
" oD .
N ABCD
SRl 010 0
11 Ll | > . 0101
0111
10 \i{ 0110
N 1100
ACD 1101
1111
ABCD 1110
1101 B
1001
ACD

B + AC + ACD

EXAMPLE|

Determine the product terms for each of the Karnaugh maps in Figure and write the resulting minimum SOP expression.
B
——— C
c ABC B(AB 0 1 ¥
o/ 1 /
N w|@ 1)
o[@[
T L 1 = | ==
4 N __/ (b) B+ AC + AC
01 q (a8 AB + BC + ABC
11 ()T AC
11 1 1
L o[1®
10 I '
.
(b)
AB

(a)

AC

co 5
ag\ 00/ 01 11 10 o
\ AB
00 |(1 1 —)
00 1 1
= AB
01 b 1| 1 1)‘
e 01 (] lw 1
11
11 |1 1 1
10 (1 1) x ()
10 1 1 1
5 LN N
5 ~ X
© ABD
BC ABC
(d)

(¢ AB + AC + ABD (d) D + ABC + BC

EXAMPLE

Use a Karnaugh map to minimize the following standard SOP expression:
ABC + ABC + ABC + ABC + ABC

Solution

The binary values of the expression are

101 + 011 + 001 + 000 + 100

Map the standard SOP expression and group the cells as shown in Figure

C

AR . 0 1

o[l (@
v

o1 LT AC
N

11

o|(r] -5

The resulting minimum SOP expression is

B + AC

Use a Karnaugh map to minimize the following SOP expression:

BCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

Solution

The first term B C D must be expanded into ABCD and A B C D to get the standard
SOP expression, which is then mapped; the cells are grouped as shown in Figure 4-38.

BC

cD
AN 0001 11 10 / .

+— -)
00 | kl @

01 1 1

11 | 1

lﬂ_—lj (1 \1\

The resulting minimum SOP expression is

D + BC

Mapping Directly from a Truth Table

X=ABC + ABC + ABC + ABC
Inputs | Output

ABC X

1
0
0
0
1
0
1
1

“Don’t Care” Conditions

Sometimes a situation arises in which some input variable combinations are not allowed.
For example, recall that in the BCD code covered in Chapter 2, there are six invalid
combinations: 1010, 1011, 1100, 1101, 1110, and 1111. Since these unallowed states

will never occur in an application involving the BCD code, they can be treated as ““don’t
care” terms with respect to their effect on the output. That is, for these “don’t care™ terms
either a 1 or a 0 may be assigned to the output; it really does not matter since they will
never occur.

The “don’t care” terms can be used to advantage on the Karnaugh map. Figure 440
shows that for each “don’t care” term, an X is placed in the cell. When grouping the 1s, the
Xs can be treated as 1s to make a larger grouping or as Os if they cannot be used to advan-
tage. The larger a group, the simpler the resulting term will be.

Inputs Output
ABCD Y
0 0 0 0 0
0 0 0 1 0
0 01 0 0
0 011 0
01 0 0 0 ch
0101 0 AB 00 01 11 10
01 1 0 0
00
01 Ol ABCD
1010 X BeD
1011 X 1 (x | x ' ﬂ
1100 X Don’t cares
1 1 01 X 10 X XJ
1 1 1 0 X \
1 1 1 1 X L
ABC A
(a) Truth table (b) Without “don’t cares” ¥ = AEE + EBCD

With “don’t cares” ¥ =A + BCD

Example of the use of “don’t care” conditions to simplify an expression.

In a 7-segment display, each of the seven segments is activated for various digits. For
example, segment «a is activated for the digits 0, 2, 3, 5, 6, 7, 8, and 9, as illustrated in
Figure Since each digit can be represented by a BCD code, derive an SOP expres-

sion for segment a using the variables ABCD and then minimize the expression using a
Karnaugh map.

-

fﬂﬂgmenta UE%SE-}EQ

f' b
8
e
el l

A—
d

FIGURE 7-segment display.

Solution

The expression for segment a 1s

a=ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

Each term in the expression represents one of the digits in which segment a is used. The
Karnaugh map minimization is shown in Figure . X’s (don’t cares) are entered for
those states that do not occur in the BCD code.

cD .
ABN_00 01 1l 10 D

a N
00 | 1J L[\ 5

AU

FIGURE

From the Karnaugh map, the minimized expression for segment a is

a=A+ C+ BD + BD

Karnaugh Map POS Minimization

Mapping a Standard POS Expression

Step 1: Determine the binary value of each sum term in the standard POS expression.
This is the binary value that makes the term equal to 0.

Step 2: As each sum term is evaluated, place a 0 on the Karnaugh map in the corre-

sponding cell.
C - P B -
AR 0 1 A+B+CHA+B+C)A+B+C)A+B +C)
000 010 110 101
00 ()= :
01 ()=

11 () -

10 () =1

Map the following standard POS expression on a Karnaugh map:

A+B+C+DA+B+C+DYA+B+C+DA+B+C+D)YA+B+C+ D)
Evaluate the expression as shown below and place a 0 on the 4-variable Karnaugh map in Figure 4-44 for each standard

A+B+C+DA+B+C+DYA+B+C+DYA+B+C+D)YA+B+C+ D)
1111 0011

Solution
sum term in the expression.
1100 1011 0010
ch .-1+HI_—_|- C+D
ag_00 o1 11 /10
= _
00 0 U*+t—A+B+C+D
01
11 0 0 = A+B+C+D
10 0
h
7 T
A+B+C+D

Karnaugh Map Simplification of POS Expressions

Solution

AB
00
01
B+ C—_

11

10

Tl

Also, derive the equivalent SOP expression.

C

Use a Karnaugh map to minimize the following standard POS expression:

A+B+OA+B+CA+B+C)A+B+C)YA+B+ 0O

The combinations of binary values of the expression are
O+0+0)O0+0+DO+1+0)0+ 1+ 1)1 +1+0)

Map the standard POS expression and group the cells as shown in Figure

1

ﬂl’—- A

o)
Q"‘" AC

©

E|\ - G’ r;) ﬂ _

Notice how the 0 in the 110 cell is included into a 2-cell group by utilizing the 0 in
the 4-cell group. The sum term for each blue group is shown in the figure and the result-
ing minimum POS expression is

AB + O)

Keep in mind that this minimum POS expression is equivalent to the original standard
POS expression.

Grouping the 1s as shown by the gray areas yields an SOP expression that is equiva-
lent to grouping the Os.

AC + AB = AB + O)

EXAMPLE
Use a Karnaugh map to minimize the following POS expression:

B+C+DA+B+C+DA+B+C+DA+B+C+DJA+B+C+D)

Solution

The first term must be expanded into A + B+ C + Dand A + B + C + D to get a standard POS expression, which is
then mapped; and the cells are grouped as shown in Figure 4-46. The sum term for each group is shown and the resulting
minimum POS expression is

(C+ DYA + B+ D)A + B+ O

Keep in mind that this minimum POS expression is equivalent to the original standard POS expression.

A +.H+I)
AB 00 01 11 10

E -".If
00 [(0) (0

011 0

CD

11 0 C+D

|to] o)
[

.III
A+B+C

Converting Between POS and SOP Using the Karnaugh Map
EXAMPLE

Using a Karnaugh map, convert the following standard POS expression into a minimum POS expression, a standard SOP
expression, and a minimum SOP expression.

A+B+C+DA+B+C+DA+B+C+DA+B+C+DYA+B+C+DYA+B+C+ D)

Solution

The Os for the standard POS expression are mapped and grouped to obtain the minimum POS expression in Figure . (a).
In Figure (b), 1s are added to the cells that do not contain 0s. From each cell containing a 1, a standard product term is
obtained as indicated. These product terms form the standard SOP expression. In Figure (c), the 1s are grouped and a
minimum SOP expression is obtained.

. c ABCD ABCD
b 1 A+B+C cp ABCI 1 {BCI
g\ 00 01 11 10 AN 00 /o1 11/ 10

' ¥ ABC
00 u (o | o ; 00| 1 o |/0 | o | -AFP
/ -

¥ T L

01 m o1] o | 1 | <4— ABCD
B+C+D -

1l o 1| o | 1 | <+— ABCD

4 h
10 m w| 1 |/o 1 Y 1<}— ABCD
A 4|\

% Vi 7 7 W
ABCD ABCD ABCD ABCD

B+ (+D
(a) Minimum POS: (A + B + C)(B + C + D)(B + C + D) (b) Standard SOP: o S
ABCD + ABCD + ABCD + ABCD + ABCD + ABCD +
ABCD + ABCD + ABCD + ABCD

cD Bp
AB vy 1
00 /o | o
s N
01 1 I\ — BC
11 1)
4
10 | P F—ac

(c) Minimum SOP: AC + BC + BD + BCD

