

جامعة فلســـطين التقنية - خضــوري Palestine Technical University - Kadoorie

Digital Electronics and Logic Design Analysis of Clocked Sequential Circuits

Dr. Jafar Saifeddin Jallad

Dept. of Electrical Engineering

Palestine Technical University

Tulkaram, Palestine

Dr. Jafar Jallad / PTUK

Presentation Outline

- Analysis of Clocked Sequential circuits
 - ♦ State and Output Equations
 - ♦ State Table
 - ♦ State Diagram

Analysis of Clocked Sequential Circuits

Analysis is describing what a given circuit will do

The output of a clocked sequential circuit is determined by

- 1. Inputs
- 2. State of the Flip-Flops

Analysis Procedure:

- 1. Obtain the equations at the inputs of the Flip-Flops
- 2. Obtain the output equations
- 3. Fill the state table for all possible input and state values
- 4. Draw the state diagram

Analysis Example

✤ Is this a clocked sequential circuit?

YES!

- What type of Memory?
 D Flip-Flops
- How many state variables?

Two state variables: A and B

What are the Inputs?

One Input: *x*

What are the Outputs?

One Output: y

Flip-Flop Input Equations

✤ What are the equations on the *D* inputs of the flip-flops?

Next State and Output Equations

The next state equations define the next state

State Table

- State table shows the Next State and Output in a tabular form
- * Next State Equations: A(t + 1) = A x + B x and B(t + 1) = A' x
- Output Equation: y = (A + B) x'

Pre: Sta	sent ate	Input	Ne St	ext ate	Output		Anoth	er foi	m	of t	he s	tate tab	le
Α	B	x	Α	B	Y								
0	0	0	0	0	0			N	lext	Stat	e	Out	tput
0	0	1	0	1	0	Pre	esent						
0	1	0	0	0	1	St	ate	<i>x</i> =	0	X :	= 1	$\mathbf{x} = 0$	<i>x</i> = 1
0	1	1	1	1	0	Α	В	Α	B	A	B	Y	y
1	0	0	0	0	1	0	0	0	0	0	1	0	0
1	0	1	1	0	0	0	1	0	0	1	1	1	0
1	1	0	0	0	1	1	0	0	0	1	0	1	0
1	1	1	1	0	0	1	1	0	0	1	0	1	0

State Diagram

- State diagram is a graphical representation of a state table
- The circles are the states
- ♦ Two state variable \rightarrow Four states (ALL values of *A* and *B*)
- Arcs are the state transitions
 Labeled with: Input *x* / Output *y*

Present State		Next State				Output			
		x = 0		<i>x</i> = 1		$\boldsymbol{x} = \boldsymbol{0}$	<i>x</i> = 1		
Α	В	Α	B	A	B	Y	y		
0	0	0	0	0	1	0	0		
0	1	0	0	1	1	1	0		
1	0	0	0	1	0	1	0		
1	1	0	0	1	0	1	0		

Combinational versus Sequential Analysis

Analysis of Combinational Circuits

- Obtain the Boolean Equations
- Fill the Truth Table

Output is a function of input only

Analysis of Sequential Circuits

- Obtain the Next State Equations
- Obtain the Output Equations
- Fill the State Table
- Draw the State Diagram

Next state is a function of input and current state

Output is a function of input and current state

Example with Output = Current State

- Analyze the sequential circuit shown below
- **\bigstar** Two inputs: *x* and *y*
- One state variable A
- No separate output \rightarrow Output = current state *A*
- Obtain the next state equation, state table, and state diagram

Example with Output = Current State

Sequential Circuit with T Flip-Flops

Recall: Flip-Flop Characteristic Equation

• For D Flip-Flop: Q(t+1) = D

♦ For T Flip-Flop: $Q(t+1) = T \oplus Q(t)$

These equations define the Next State

♦ For JK Flip-Flop: Q(t + 1) = J Q'(t) + K' Q(t)

DI	Flip-Flop		T Flip-Flop		JK Flip-Flop
D	Q(t+1)	Τ	Q(t+1)	ј к	Q(t+1)
0	0 Reset	0	Q(t) No change	00	Q(t) No change
1	1 Set	1	Q'(t) Complement	01	Ø Reset
				10	1 Set

1 1 Q'(t) Complement

Sequential Circuit with T Flip-Flops

T Flip-Flop Input Equations:

$$T_A = B x$$

$$T_B = x$$

Next State Equations:

y

 $A(t+1) = T_A \oplus A = (B x) \oplus A$

$$B(t+1) = T_B \oplus B = x \oplus B$$

Output Equation:

y = A B

From Next State Equations to State Table

T Flip-Flop Input Equations:

 $T_A = B x$ $T_B = x$ Next State Equations: $A(t+1) = (B x) \oplus A$ $B(t+1) = x \oplus B$ Output Equation:

y = A B

Present State		Input	Ne Sta	ext ate	Output	
A	В	X	Α	В	У	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	1	0	
0	1	1	1	0	0	
1	0	0	1	0	0	
1	0	1	1	1	0	
1	1	0	1	1	1	
1	1	1	0	0	1	

Notice that the output is a function of the present state only. It does **NOT** depend on the input *x*

From State Table to State Diagram

• Four States: AB = 00, 01, 10, 11 (drawn as circles)

- Output Equation: y = A B (does not depend on input x)
- Output y is shown inside the state circle (AB/y)

Sequential Circuit with a JK Flip-Flops

One Input x and two state variables: A and B (outputs of Flip-Flops)

No separate output \rightarrow Output = Current state *A B*

JK Input and Next State Equations

JK Flip-Flop Input Equations:

A(t+1) = B A' + (Bx')'A = A'B + AB' + Ax

 $B(t + 1) = x'B' + (A \oplus x)'B = B'x' + A B x + A'B x'$

From JK Input Equations to State Table

JK Input Equations:
$$J_A = B$$
, $K_A = B x'$, $J_B = x'$ and $K_B = A \oplus x$

Present State		Input	Next State		Flip-Flop Inputs				
Α	В	x	Α	В	J _A	K _A	J _B	K _B	
0	0	0	0	1	0	0	1	0	
0	0	1	0	0	0	0	0	1	
0	1	0	1	1	1	1	1	0	
0	1	1	1	0	1	0	0	1	
1	0	0	1	1	0	0	1	1	
1	0	1	1	0	0	0	0	0	
1	1	0	0	0	1	1	1	1	
1	1	1	1	1	1	0	0	0	

From State Table to State Diagram

Four states: A B = 00, 01, 10, and 11 (drawn as circles)

Arcs show the input value x on the state transition

Summary

- ✤ To analyze a clocked sequential circuit:
- 1. Obtain the equations at the **Inputs** of the flip-flops
- 2. Obtain the **Next State** equations
 - \diamond For a D Flip-Flop, the Next State = D input equation
 - ♦ For T and JK, use the characteristic equation of the Flip-Flop
- 3. Obtain the **Output** equations
- 4. Fill the **State Table**
 - ♦ Put all the combinations of current state and input
 - ♦ Fill the next state and output columns
- 5. Draw the **State Diagram**

Thank You