)

' Palestine Tochmc'i] Umvorqlt\ K1doone
%:.\ - (‘:'j
~Technicsh -

Microcontrollers
CH?2

Dr. Jafar Saifeddin Jallad
Dept. of Electrical Engineering

Palestine Technical University
Tulkaram, Palestine

Chapter 2: Core SFRs

Features and Function

The special function registers can be classified into two categories:

m Core (CPU) registers - control and monitor operation and processes in the central processor. Even though there are only a few of
them, the operation of the whole microcontroller depends on their contents.
= Peripheral SFRs- control the operation of peripheral units (serial communication module, A/D converter etc.). Each of these

registers is mainly specialized for one circuit and for that reason they will be described along with the circuit they are in control
of.

The core (CPU) registers of the PIC16F887 microcontroller are described in this chapter. Since their bits control several different
circuits within the chip, it is not possible to classify them into some special group. These bits are described along with the processes
they control.

WREG register

In the CPU, registers are used to store information temporarily. That infor-
mation could be a byte of data to be processed, or an address pointing to the data
to be fetched. The vast majority of PIC registers are 8-bit registers. In the PIC there
is only one data type: 8-bit. The 8 bits of a register are shown in the diagram below.
These range from the MSB (most-significant bit) D7 to the LSB (least-significant

bit) DO. With an 8-bit data type, any data larger than 8 bits must be broken into
8-bit chunks before it is processed.

o foofesforfemforfor oo

STATUS Register

RW(0) RW(0) RW(0) R (1) R (1) RW(x) RW(x) RW(x) Features

STATUS IRP RP1 RPO TO PD Z DC C Bit name
Bit 7 Bit & Bit5 Bit 4 Bit 3 Bit2 Bit 1 Bit 0

Legend

R/W Readable/Writable bit

R Readable bit only

(o) After reset, bit is cleared
{1) After reset, bit is set

2] After reset, bit is unknown

Fig. 2-1 STATUS Repgister

The STATUS register contains: the arithmetic status of the W register, the RESET status and the bank select bits for data memory. One

should be careful when writing a value to this register because if you do it wrong, the results may be different than expected. For
example, if you try to clear all bits using the CLRF STATUS instruction, the result in the register will be 000xx1xx¢ instead of the

expected 00000000. Such errors occur because some of the bits of this register are set or cleared according to the hardware as well as
because the bits 3 and 4 are readable only. For these reasons, if it is required to change its content (for example, to change active
bank), it is recommended to use only instructions which do not affect any Status bits (C, DC and Z). Refer to “Instruction Set

summary™.

RP| RP1_| RPO | TO | PD | Zz | DC | C |

m [RP - Bit selects register bank. It is used for indirect addressing.
= 1-Banks 0 and 1 are active (memory location 00h-FFh)
» 0 - Banks 2 and 3 are active (memory location 100h-1FFh)

= RP1,RPO - Bits select register bank. They are used for direct addressing.

RP1 RPO Active Bank
0 0 Bank0
0 1 Bank1
1 0 Bank2
1 1 Bank3

RP1 RPO Bank Address Total Function

0 0 0 00 — 20 32 special function registers
20 -TF 96 General purpose registers
0 1 1 80 — 9F 32 SFRs, some repeat
Al - EF 80 GPRs
FO-FF 16 Repeat 70-7TF
1 0 2 100 — 10F 16 SFRs, some repeat
110 — 16F 96 GPRs
170 - 17F 16 Repeat 70-7TF
1 1 3 180 — 18F 16 SFRs, some repeat
190 - 1EF 96 GPRs
1F0 - 1FF 16 Repeat 70-7F
000 - 1FF 96 SFRs
368 GPRs

Table 1.5 Register bank select

Addr. Nama Addr, Name Addr. MName Addr. Hame

0ok INDF B0Oh INDF 100k INDF 180h INDF
01h TMRO 81h | OPTION REG 101h THMRD 181h |OPTION REG
0Zh PCL &2h PCL 102h PCL 182h PCL
03h STATLIS B3k STATUS 103k STATLIS 183h ETATUS
04h FSR B4h FSR 104h FSR 184h FSR
05h PORTA B5h TRISA 105h | WDTCOM 185h | SRCON |
0&h PORTE &8h TRISB 106h PORTE 1858h TRISB
O7h PORTC &7h TRISC 107h | CM1CONO 187h | BALDCTL
0Zh PORTD EBh TRISD 108h | CMZCOND 185N AMSEL
059h PORTE £59h TRISE 10%h | CM2CON1 183h ANSELH
OAh PCLATH Bih PCLATH 10ah | PCLATH 1BAh PCLATH
OBh INTCON BBh INTCOM 10Bh | INTCOM 18Bh INTCON
Ch PIE1 BCh FIE1 10Ch EEDAT 18Ch EECOMN1
0D FIRZ Bk FIEZ 100k EEADR 180 EECOMZ
OEh TMRIL BEh PCON 10Eh | EEDATH 1BEh Mot Used
OFh TMR1H aFh OSCCON 10Fh | EEADRH 18Fh Mot Used
10h T1CON alh OSCTUNE 110h 180N
11h TMRZ 21h SSPCONZ
12h T2CON azh PR2
13h SSPBUF a3h SSPADD
14h | SSPCON adh SEPSTAT
15h CCPRIL a5h WPUB
16h CCPR1H 2Eh IOCB
17h | CCP1CON aTh VRCON
18h RCSTA aBh TESTA
16h TXREG agh SPBRC
1Ah RCREG Sh SPERGH General General
1Bh CCPR2L 98h PWMICON Purpose FPurpose
1Ch CCPR2H ach ECCPAS Registers Registers
1Dh | CCP2CON aDh PETRCON
1Eh | ADRESH QEh ADRESL 96 bytes 896 byles
1Fh | ADCONOD 8Fh ADCON1
20h Alh

Gamaral Geaneral

Purpose Purposs

Riésgistars Regisiers
7en | 96 bytes FFh & bytes 17Fh 1EFh

Bank 0 Bank 1 Bank 2 Bank 3

IRP| RP1_| RPO | TO | PD | Zz | DC | C _

m TO - Time-out bit.
m 1 - After power-on or after executing CLEWDT instruction which resets watch-dog timer or SLEEP instruction which sets t
microcontroller into low-consumption mode.
m - After watch-dog timer time-out has occurred.

= PD - Power-down bit.
w 1 - After power-on or after executing CLEWDT instruction which resets watch-dog timer.
m () - After executing SLEEP instruction which sets the microcontroller into low-consumption mode.

3| IRP_| RP1_| RPO | TO | PD | Zz | DC | C |

m 7 - Zero bit
m 1 - The result of an arithmetic or logic operation is zero.
® 0 - The result of an arithmetic or logic operation is different from zero.

m DC - Digit carry/borrow bit is changed during addition and subtraction if an “overflow” or a “borrow” of the result occurs.
w 1 - A carry-out from the 4th low-order bit of the result has occurred.
= 0 - Mo carry-out from the 4th low-order bit of the result has occurred.

m C - Carry/Borrow bit is changed during addition and subtraction if an “overflow” or a “borrow” of the result occurs, i.e. if the
result is greater than 255 or less than 0.

m 1 - A carry-out from the most significant bit of the result has occurred.
m 0 - Mo carry-out from the most significant bit of the result has occurred.

PIC WREG and ALU I.Jsing"l'fitl:ral Value
MOVLW instruction

Simply stated, the MOVLW instruction moves &-bit data into the WREG
register, It has the following format:

MOVLW K

8-BIT LITERAL (FROM
INSTRUCTION WORD)

— WREG REGISTER

ALU

8-BIT WIDE

CARRY BIT

'y

STATUS
REGISTER

8-BIT WIDE

N, OV £ DC, C FLAGS

move literal waluese K into WEEG

MOVLW 12H
ADDLW 1aH
ADDLW 11H
ADDLW 43H

sload value 12H
;add 16 to WREGS
;add 11 to WREG
;add 43 to WRES

inte WREG (WREG

{WREG
[(MREG
{WREG

28H)
29H)
TCH}

1Z2H]

ADDLW instruction and the status register

Next we examine the impact of the ADDLW instruction on the flag bits C.
DC, and Z of the status register. Some examples should clarify their Mmeanings.

Show the status of the C, DC, and Z flags after the addition of 38H and 2FH in the
following instructions:

MOVLW 38H
ADDLW 2FH ;add 2FH to WREG

Solution:
38H 0011 1000
+ 2FH Qo100 1111
67TH 0110 0111 WREG = 67TH

C = 0 because there is no carry beyond the D7 bit.
DC = | because there is a carry from the D3 to the D4 bat.
Z = 0 because the WREG has a value other than 0 after the addition.

|Exﬂmple

Show the status of the C, DC, and Z flags after the addition of 38H and 2FH in the
following instructions:

MOVLW 38H
ADDLW 2FH radd 2FH to WREG

Solution:
i8H 0011 1000
+ 2FH 0010 1111
67TH 0110 0111 WREG = 67TH

C = 0 because there is no carry beyond the D7 t.
DC = 1 because there is a carry from the D3 to the D4 bat.
Z = () because the WREG has a value other than 0 after the addition.

Example 39

| Show the status of the C, DC, and Z flags after the addition of 9CH and 64H in the
| following instructions:

MOVLW 9CH
ADDLW &4H ;add &64H to WREG

Solution:
' 9CH 1001 1100

+ 64H 0110 0100
100H 0000 000G WREG =00

C = 1 because there is a carry beyond the D7 bat.

DC = 1 because there is a carry from the D3 to the D4 bit.
7 = | because the WREG has a value 0 in it after the addition.

Example 2-10

Show the status of the C, DC, and Z flags after the addition of 88H and 93H in the |
following instructions: |

MOVLW 88H
ADDLW 93H ;add 92H to WREG
Solution:
88H 1000 1000
' + 93H 1001 0011
11BH 0001 1011 WREG = 1BEH

C = 1 because there is a carry beyond the D7 bat.
DC = 0 because there is no carry from the D3 to the D4 bit.
7 = () because the WREG has a value other than 0 after the addition.

8-BIT LITERAL [FROM
INSTRUCTION WORD)

BT WIDE

-8 T WilE
REGHETER YALLUE

il WREG REGISTER

CARRY

STATUS
REGISTER

B-81T WIDE

M, O, 2 DO D

D RIT, R FRCHM
INSTRUCTION

REGISTER
FILE

SPECIAL
FUNCTION
HEGISTER

AND
GEMERAL
PLIRPOSE

RAM

FFF

Figure 2-5. WREQG, filcReg, and ALU in PICI8

Data format representation

There are four ways to represent a byte of data in the PIC assembler. The
numbers can be in hex, binary, decimal, or ASCII formats. The following are
examples of how each work.

Hex numbers

There are four ways to show hex numbers:

We can use h (or H) right after the number hike this: MOVLW 9SH

Put Ox (or 0X) in front of the number like this: MOVLW 0x93

Put nothing in front or back of the number like this: MOVLW 99

Put h in front of the number, but with single quotes around the number hke
this: MOVLW h'S9'!'

P o

Here are a few lines of code that use the hex format:

MOVTHW 25 :WRES = 25H

ADDLW 0x11 ;WERES = 28H + 11H = 316H

ADDLW 12H :WRES = 36H + 12H = 48H

ADDLW H'2A' ;WEEG = 48H + 2AH = T72H

ADDLW 2CH ;WREG = T2H + 2CH = SEH

The following are invalid:

MOVILW ESH rinvalid, it must be MOVLW OESH

ADDLW & rinvalid, it must be ADDLW 0CS

Binary numbers

There 1s only one way to represent binary numbers in a PIC assembler. [t
15 as follows:

MOVLW B'100L1001' :WREG = 10011001 ar %9 in hex

The lowercase b will also work. Note that * is the single quote key, which
15 on the same key as the double quote ". This is different from other assemblers
such as the 3031 and x86. Here are some examples of how to use it:

MOVLW B'001001017 ;WREG = 2Z5H
ADRDDLW BTOQCLO0001' ;WREG = Z5H + 11H = 35H

Decimal numbers

There are two ways to represent decimal numbers in a PIC assembler. One
way 15 as follows:

MOVLW D'12° ;WREG = 00001100 or OC in hex
MOVLE .12 (WEEG = 00001100 = OCH = 12
ASCH character

To represent ASCII data in a PIC assembler we use the letter A as follows:

MOVLW A'Z' WREG = 00110010 or 32 in hex (See Appendix F)

MOVLW A'S' WREG = 39H, which is hex number for ASCII '3°
ADDLW A'l! -WREG = 3%H 4+ 31H = 7TOH

: (31 hex is for ASCITI "17)
MOWVLW 'S (HREEG = 39H ancther way for ASCII

ROM memory map

THE PIC FILE REGISTER

Table 2-1: File Register Size for PIC Chips

File Register SFR Available space for GPR
(Bytes) = (Bytes) + {Bytes)

PIC12F508 32 7 25
PICI6FR4 80 12 68 o
PICISF1220 512 256 256]
PIC18F452 1792 256 1536
PICISF2220 768 256 512
PIC18F458 1792 - 256 1536

PICI8F8722 4096 158 3938

PIC12F308 PIC16F84 PIC18F8722

00k 00
SFR Q00h
D?h_ SFR
08h OBh
OCh
“+ o T éiﬂﬂ
RAM GP "L-r L
RAM
1Fh
F7Fh
4Fh FE0h
SFR
FFFh_

Figure 2-2. File Registers of PIC12, PIC16, and PIC18

Example 2-11

Find the ROM memory address of each of the following PIC chips:
| {a) PIC18F2220 with 4 KB

(b) PIC18F2410 with 16 KB |
| (¢} PIC18F458 with 32 KB

Solution:

(a) With 4K of on-chip ROM memory space, we have 4096 bytes (4 » 1024 = 4096).
This maps to address locations of 0000 to OFFFH. Notice that 0 is always the first
location.

| (b) With 16K of on-chip ROM memory space, we have 16,384 bytes (16 x 1024 =
16,384),which gives 0000-3FFFH.

(¢) With 32K we have 32,768 bytes (32 x 1024 = 32,768). Converting 32,768 to hex,
we get 8000H; therefore, the memory space is 0000 to 7FFFH. |

| Q00000

byte

O00FFF L

PICI18F2220

(00000 |

O03FFF

(O00C0

PICIEF241{)

0O7FFF

PIC18F458

Figure 2-10. PIC18 {fn-ﬂhip Program (code) ROM Address Range

PCL and PCLATH Registers

The size of the program memory of the PIC16F887 is 8K. Therefore, it has 8192 locations for program storing. For this reason the
program counter must be 13-bits wide (2%13 = 8192). In order that the contents of some location may be changed in software during
operation, its address must be accessible through some SFR. Since all SFRs are 8-bits wide, this register is “artificially” created by
dividing its 13 bits into two independent registers: PCLATH and PCL.

If the program execution does not affect the program counter, the value of this register is automatically and constantly incremented
+1, +1, +1, +1... In that way, the program is executed just as it is written- instruction by instruction, followed by a constant address
increment.

Bit12 Bit11 Bit10 Bit3 Bitl Bit7 Bité Bit5 Bit4 Bitd Bit2 Bit1 Bitd

Bit 4 |Bit 3| Bit 2| Bit 1|Bit 0 ||| Bit 7|[Bit 6 | Bit 5 | Bit 4 Bit 3| Bit 2| Bit 1| Bit 0.

PCLATH PCL

Fig. 2-16 PCL and PCLATH Registers

If the program counter is changed in software, then there are several things that should be kept in mind in order to avoid problems:

m Eight lower bits (the low byte) come from the PCL register which is readable and writable, whereas five upper bits coming from

the PCLATH register are writable only.
m The PCLATH register is cleared on any reset.

m In assembly language, the value of the program counter is marked with PCL, but it obviously refers to 8 lower bits only. One
should take care when using the “ADDWF PCL” instruction. This is a jump instruction which specifies the target location by
adding some number to the current address. It is often used when jumping into a look-up table or program branch table to read
them. A problem arises if the current address is such that addition causes change on some bit belonging to the higher byte of the

PCLATH register. Do you see what is going on?

Executing any instruction upon the PCL register simultaneously causes the Prog ram Counter bits to be replaced by the contents of

the PCLATH register. However, the PCL register has access to only 8 lower bits of the instruction result and the following jump will
be completely incorrect. The problem is solved by setting such instructions at addresses ending by xx00h. This enables the
program to jump up to 255 locations. If longer jumps are executed by this instruction, the PCLATH register must be incremented

by 1 for each PCL register overflow.

Program Memory

Address Instruction
0000 10010011
0001 01010001
0002 10000100
0003 00011001
0004 01011100
aa05 WHEHEM KRN
0006 WHEHEM KRN
etc etc

CPU

Address bus

Program
Counter

Data bus

AN
d

AV

Instruction Register

YYVYVYYY

Decoder Logic

YYYVYYYVYYY

Execution Logic

+ 1.2 Processor program execution

yYvyvy ¥vY
Control lines to system

= On subroutine call or jump execution (instructions CALL and GCTC), the microcontroller is able to provide only 11-bit addressing.
For this reason, similar to RAM which is divided in “banks”, ROM is divided in four “pages” in size of ZK each. Such instructions

are executed within these pages without any problems. Simply, since the processor is provided with 11-bit address from the
program, it is able to address any location within ZKE. Figure 2-17 below illustrates this situation as a jump to the subroutine PP1

address.

However, if a subroutine or jump address are not within the same page as the location from where the jump is, two “missing”-
higher bits should be provided by writing to the PCLATH register. It is illustrated in figure 2-17 below as a jump to the subroutine

PPZ address. PCLATH43: 00 01 10 1

Instructions:
RETUEN, RETLW or RETFIE

Fig. 2-17 PCLATH Registers

14 bif program 1.3 hit

instructions hex address
Instruction 1 0000h (RESET)
Instruction 2 0001h

Instruction 3 00d2h

Instruction 4 00d3h

Instruction 5 0004h (IMTERRLUFPT)
Instruction 6 0005h

L]
Pags O (2k)

L

Instruction 2048

O7FFh (EMD PAGE 0)

Instruction 2045

08000 (START PAGE 1)

L]

Pags 1 (2k)

L]

Instruction 4086

OFFFh (EMD PAGE 1)

Instruction 4097

10000 (START PAGE 2)

-
Page 2 (2k)

L]

Instruction 6144

17FFh (END PAGE 2)

Instruction 6145

180800 (START PAGE 3)

-

Page 3 (2k)
L]

Instruction 8182

1FFFh (EMD PAGE 3)

1[

Elatum address 1

Retum address 2

Retum address 3

Retum address 4

Retum address 5

Elatum address 6

Retum address 7

Retum address 8

Program Counter (13) #

On subwoudine call or interrupt store refurm
address in next available stack level register

Stack level O
Stack level 1
Stack level 2
Stack level 3
Stack level 4
Stack level 5
Stack level &
Stack level 7

P16F&77 program memory and stack

Indirect addressing

In addition to direct addressing which is logical and clear by itself (it is sufficient to specify address of some register to read its
contents), this microcontroller is able to perform indirect addressing by means of the INDF and FSR registers. It sometimes
considerably simplifies program writing. The whole procedure is enabled because the INDF register is not true one (physically does not
exist), but only specifies the register whose address is located in the F5SR register. Because of this, write or read from the INDF
register actually means write or read from the register whose address is located in the FSR register. In other words, registers’
addresses are specified in the FSR register, and their contents are stored in the INDF register. The difference between direct and
indirect addressing is illustrated in the figure 2-18 below:

As seen, the problem with the “missing addressing bits” is solved by “borrowing” from another register. This time, it is the seventh
bit called IRP from the STATUS register.

Direct addressing Indirect addressing

7 6ls 4(3|2|1)0 STATUS register STATUS register , 6|(5|(4|3|2(1(0
w
RF 7 FSRregister 0
JRORRNNNEN
LY v Al g A
Bank Address
01 11 <«
80h 180h
____________ *\
Content INDF register
i
FFh 1FFh
Bank 0 Bank 1 Bank 2 Bank 3

Fig. 2-18 Direct and Indirect addressing

Indirect File Register Addressing

File register 00 (INDF) 1s used for indirect file register addressing. The address
of the register 1s placed in the file select register (FSR). When data 1s written
to or read from INDEF, 1t 1s actually written to or read from the file register
pointed to by FSR. This 1s most useful for carrying out a read or write on a
continuous block of GPRs, for example, when saving data being read in from
a port over a period of time. Since nine bits are needed to address all file
registers (000-1FF), the [RP bit in the status register 1s used as the extra bit.

Direct and indirect addressing of the file registers are compared in the data
sheet (Figure 2-6).

Instruction Set

It has been already mentioned that microcontrollers differs from other integrated circuits. Most of them are ready for installation into
the target device just as they are, this is not the case with the microcontrollers. In order that the microcontroller may operate, it
needs precise instructions on what to do. In other words, a program that the microcontroller should execute must be written and
loaded into the microcontroller. This chapter covers the commands which the microcontroller "understands”. The instruction set for the
16FXX includes 35 instructions in total. Such a small number of instructions is specific to the RISC microcontroller because they are
well-optimized from the aspect of operating speed, simplicity in architecture and code compactness. The only disadvantage of RISC
architecture is that the programmer is expected to cope with these instructions.

Instruction Description Operation Flag CLK *

Data Transfer Instructions

MOVLW k Move constant to W ko= ow 1

MOVWEF f Move W to f W= f 1

MOVF f,d Move f to d f-=d ! 1 1, 2
CLRW Clear W 0-=W i 1

CLRF f Clear f 0-=f i 1 z

SWAPF f,d Swap nibbles in f f(7:4),(3:0) -= £{3:0),(7:4) 1 1, 2

Instruction

ADDLW k
ADDWF f,d
SUBLW k

SUBWF f,d

ANDLW k

AMDWE f,d

ANDWF f,d

[ORLW k

IORWF f,d

HORWF f,d

HORLW k

IMCF f,d
DECF f,d
RLF f,d
RRF f,d

COMF f,d

Description

Operation

Arithmetic-logic Instructions

Add W and constant

Add W and f

Subtract W from constant
Subtract W from f

Logical AMD with W with

constant
Logical AMD with W with f
Logical AMD with W with f

Logical OR with W with

constant
Logical OR with W with f

Logical exclusive OR with W
with constant

Logical exclusive OR with W
with f

Increment f by 1

Decrement f by 1

Rotate left f throusgh CARRY bit
Rotate right f through CAREY bit

Complement f

Wk = W

Waf -2 d

k- o= W

f-¥ -= d

WAND k -= W

WANDf -- d

WAND f -= d

WOR k -= W

WORf--d

WHOR k - W

W HORf -= d

f+1 -= f

f-1-= f

Flag

C,DC Z
C,DC,Z
C,DC, Z

C,DC, Z

CLK

1,2

1,2

1,2

1,2

1,2

1,2

1,2
1,2
1,2
1,2

1,2

BCF f,b

BSF f,b

ETF5C f,b

ETF55 f,b

DECF5Z f,d

IMCF5Z f,d

GOTO k
CALL k

RETURN
RETLW k

RETFIE

Bit-oriented Instructions
Clear bit b in f 0 -= fib)
Clear bit b in f 1 -= fib)
Program Control Instructions

Test bit b of f. Skip the

Skip if fib) =0
following instruction if clear p it 1(b)

Test bit b of f. Skip the

o o Skip if fib) = 1
following instruction if set.

D t f. Skip the faollowi
ecremen p the tollowing f-1-= dskipif Z =1
instructon if clear.

!ncremelnt f.. Skip the following f+1 = dskip if Z = 0
instruction if set.

Go to address k -= PC

Call subroutine PC -= TOS, k -= PC
Return from subroutine TOS -= PC
Return with constant in W k -= W, TOS -= PC

Return from interrupt TOS5 == PC, 1 -= GIE

112

112

112

11(2)

1,2

1,2

1,2, 3

1,2, 3

Other instructions

NMOP Mo operation TOS -= PC, 1 -= GIE 1
CLEWDT Clear watchdog timer 0-=WDT, 1-=T0,1-=PD 10, PD 1
SLEEP Go into sleep mode 0-=WDT,1-=T0O, 0-=PD TO, PD 1

Table 9-1 16Fxx Instruction Set

*1 When an 1/0 register is modified as a function of itself, the value used will be that value present on the pins themselves.
*2 If the instruction is executed on the TMR register and if d=1, the prescaler will be cleared.
*3 If the PC is modified or test result is logic one (1), the instruction requires two cycles.

ASSEMBLING AND LINKING A PIC PROGRAM

EDITOR
PROGRAM

miyfile.asm

ASSEMBLER
FROGRAM

myfile.err -——— myfile.o

Jib additional —— O :add[tiﬂnal
library files LINKER object files
PROGRAM Ik linker
script file

I

myfile.out myfilecod myfile.hex myfile.map myfile.lst

DOWNLOAD
TO PIC's ROM

Fivure 2-8. Steps to Create a Proeram

The program is written as a source code (a simple text file) on a PC host com-
puter. Any text editor such as Notepad™ can be used, but an editor 1s provided
with the standard PIC development system software MPLAB (downloadable
from www.microchip.com). The instructions are selected from the pre-defined
PIC instruction set (Table 13-2 in the data sheet) according to the operational

sequence required. The source code file is saved as PROGNAME.ASM. More
details of the assembler program syntax are given later.

The source code is assembled (converted into machine code) by the assembler
program MPASM, which creates the list of binary instruction codes. As this is
normally displayed as hexadecimal numbers, it 1s saved as PROGNAME.HEX.
This is then downloaded to the PIC chip from the PC by placing the MCU in a
programming unit which is attached to the serial port of PC, or by connecting the
chip to a programmer after fitting it in the application board (in-circuit pro-
gramming). The hex code is transferred in serial form via Port B into the PIC
flash program memory. A list file 1s created by the assembler, which shows the
source code and machine code 1n one text file. The list file for a simple program
which outputs a binary count at Port B 1s shown in Program 1.1.

Memory

0000
0001

0002
0003
0004

3000
0066

0186
OAB6
2803

Line
Number

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010

again

Operation Operand
Mnemonic

PROCESSOR 16F877

MOVLW 00
TRIS 06
CLRF 06
INCF 06
GOTO again

END

Notes:

The program listing includes the source code at the right, with source line
numbers, the hex machine code and the memory location where each instruction
is stored (0000—0004). Notice that some statements are assembler directives, not
instructions: PROCESSOR to specify the MCU type and END to terminate the
source code. These are not converted into machine code.

The ‘877 has 8k of program memory, that is, it can store a maximum of
1024 X 8 = 8192 14-bit instructions. By default, it 1s loaded, and starts
executing, from address zero. In real-time (control) applications, the program

runs continuously, and therefore loops back at the end. If it does not, be care-
ful — i1t will run through the blank locations and start again at the beginning!

Notes:

Let us look at a typical instruction to see how the program instructions are
executed.

Source code: MOVLW 05A

Hex code: 305A (4 hex digits)
Binary code: 0011 0000 0101 1010 (16 bits)
Instruction: 11 00xx kkkk kkkk (14 bits)

The instruction means: Move a Literal (given number, 5Ah) into the Working
register.

PIC INSTRUCTION SET

F = Any file register (specified by address or label), example is labelled GPR1
L = Literal value (follows instruction), example is labelled num1
W = Working register, W (default label)
Labels Register labels must be declared in include file or by register label equate (e.g. GPR1 EQU 0C)
Bit labels must be declared in include file or by bit label equate (e.g. bit1 EQU 3)
Address labels must be placed at the left margin of the source code file (e.g. start, delay)

Operation Example

Move
Move data from F to W MOVE GPR1, W
Move data fromW to F MOVWF GPR1
Move literal into W MOVLW numl

Test the register data MOVE GPR1, F

Register
Clear W (reset all bits and value to 0)
Clear F (reset all bits and value to 0)
Decrement F (reduce by 1)
Increment F (increase by 1)
Swap the upper and lower four bits in F
Complement F value (invert all bits)
Rotate bits Left through carry flag
Rotate bits Right through carry flag
Clear (= 0) the bit specified
Set (= 1) the bit specified

Arithmetic
Add W to F, with carry out
Add F to W, with carry out
Add L to W, with carry out
Subtract W from F, using borrow
Subtract W from F, placing result in W
Subtract W from L, placing result in W

CLRW
CLRF
DECF
INCF
SWAPF
COMF
RLF
RRF
BCF
BSF

ADDWF
ADDWF
ADDLW
SUBWE
SUBWE
SUBLW

GPR1
GPR1
GPR1
GPR1
GPR1
GPR1
GPR1
GPR1, butl
GPR1, butl

GFER1
GPR1, W
numl
GFER1
GPR1, W

numl

Logic

AND the bits of W and F, result in F

AND the bits of W and F, result in W

AMD the bits of L and W, result in W

OR the bits of W and F, resultin F

OR the bits of W and F, result in W

OR the bits of L and W, result in W

Exclusive OR the bits of W and F, result in F
Exclusive OR the bits of W and F, result in W
Exclusive OR the bits of L and W

ANDWF
ANDWF
ANDLW
TOBRWEF
TOBRWEF
TOBRLW
XOBEWF
XORWFE
XORLW

GFRE1
GPE1, W
numl
GPE1
GPR1, W
numl
GPE1
GPR1, W
numl

Test & Skip
Test a bit in F and Skip next instruction if it is Clear (= 0)
Test a bit in F and Skip next instruction if it is Set (= 1)
Decrement F and Skip next instruction if F = 0
Increment F and Skip next instruction if F = 0

Jump
Go to a labelled line in the program
Jump to the label at the start of a subroutine
Return at the end of a subroutine to the next instruction
Return at the end of a subroutine with L in W
Return From Interrupt service routine

BTFSC
BTFS5
DECFSZ
INCFSE

OTO

CALL
RETURN

REETLW
RETFIE

GPR1, butl
GPR1, butl
GPR1
GPR1

start
delay

numl

Control

No Operation - delay for 1 cycle HOF
Go into standby mode to save power SLEEFP
Clear watchdog timer to prevent automatic reset CLRWDT

Note 1: For MOVE instructions data is copied to the destination but retained in the source register.

Note 2: General Purpose Register 1, labelled ' GPR1', represents all file registers (00-4F). Literal value ‘num1’ represents all 8-bit values 00-FF. File
register bits 0—7 are represented by the label ‘but1’.

Note 3: The result of arithmetic and logic operations can generally be stored in W instead of the file register by adding, "W’ to the instruction. The full syntax
for register operations with the result remaining in the file register F is ADDWF GPR1,F etc. F is the default destination, and W the alternative, so the
instructions above are shortened to ADDWF, GPR1, etc. This will generate a message from the assembler that the default destination will be used.

