Microcontrollers

Serial Communication
with PIC16F877A

Dr. Jafar Jallad

Palestine Technical University — Kadoorie
Second semester
2019-2020

Objective

3 Explain serial communication protocol
7 Describe data transfer rate and bps rate

1 Interface the PIC16 with an RS232
connector

1 Describe the main registers used by serial
communication of the PIC16

3 Program the PIC16 serial port in Assembly

WHY DO WE NEED FAST INTERFACES?

Microcontrollers need fast ways of communication to the outside

world for:

1- Communicating with other microcontrollers, DSPs or even FPGAs.

(ex. SRIO, PClIe, 12C)
2- Capturing input from user and displaying outputs.

3- Communicating with other microcontrollers on different boards for

applications with network of microcontrollers. (ex. CAN and LIN)

Basics of Serial Communication

0 The byte of data must be converted to
serial bits using a parallel-in-serial-out
shift register

Serial Transfer ! Farallel Transfer

Do

Sender »| Focever i ~Sender Recelver

Yrrreyyy

DF

PARALLEL COMMUNICATION

o The process of sending several bits as a
whole, on a link with several parallel
channels.

o It requires a separate channel for each bit to
be transmitted

o A parallel link use simpler hardware as
there is no need for a serializer/deserializer.

o Usually used for very short distances.

Sender

r ,
Receiver

Basics of Serial Communication

(cont'd)

1 The receiving end must be a serial-in-
parallel-out shift register and pack them
intfo a byte.

7 Two methods of serial data communication:
and

7 Transfers a

Transfers a single block of data at
byte at a time a time

1. Simplex:

Communication is possible in one direction only. Ex.TV

Half-and Full-Duplex - maifduples

Communication is possible in both directions,

Tr.a ns m | SS 10 n but only one TX and one RX at a time. Ex. Police radiq

3. Full duplex:

Communication is possible in both directions,

both sides can transmit and receive in the same time.

Simplex TranSMitor fr—— Receiver

Half Duplex Transmitter ™~ , o 7 Receiver

Recejyer / il \ Transmitter

Full Duplex Transmitter I—. Receer

Recelver -...—‘ Transmitter

BASICS OF SERIAL COMMUNICATION

Bit rate:
- Number of bits sent every second (BPS)

Baud rate:

- Number of symbols sent every second, where every symbol
can represent more than one bit.

Ex. high-speed modems which use phase shifts to make every
data transition period represent more than one bit.

- For the PIC 161877A’s USART, with every clock tick one bit is
sent, each symbol represents one bit.

So, we can consider bit rate and baud rate the same thing.

BASICS OF SERIAL COMMUNICATION

- The sender and receiver must agree on a set of rules
(Protocol) on:

1. When data transmission begins and ends.
>. The used bit rate and data packaging format.

- If there is no reference for the receiver to know when
transmission begins or the used bit rate,

- it'll sample the wrong values and data will be lost.

SYNCHRONOUS VS ASYNCHRONOUS

1. Synchronous transmission:

M_’H

In synchronous transmission, a separate link is dedicated for the
clock from one terminal (Master) to another (Slave).

chronous transmission:
Tx) | RX
Ry s Tx

In asynchronous transmission, no link for the clock.
hronization is done - using a fix nd usin

and stop bits.

HOW SYNCHRONIZATION IS DONE?

+ For synchronous transmission:

hronization 1 n in] hin

- A clock line from one terminal (master) to the other terminal (slave)
makes the synchronization.

- Another line is used for data transmission between master and
slave(s).

- If the master communicates with many peripheral ICs using the
same data and clock lines, a (slave select) line is used to determine
which slave to communicate with.

HOW SYNCHRONIZATION IS DONE?

+ For asynchronous transmission:
Synchronization is done every word
—> A start bit with the value 0 indicate the beginning of each word, then eight

data bits are sent bit by bit, and finally a stop bit with the value 1 to indicate
the end of the word.

Both the transmitter and receiver use the same baud rate.

When the transmitter pauses because it does not have data to transmit (idle
state), it keeps a sequence of stop bits (logic high) in its output.

EE 8 F F F 3 AN
_‘n ,{}Ihﬂmmhmlﬂflrﬂfllﬂflr[}fl |0fl|ﬂf1|ﬂf1|mhﬂf1|[}fl|ﬂflrﬂfl L 1 'was 3] ‘
| |

1 | | | | | | |

5, 6, 7 or 8-bit data 5, 6, 7 or 8-bit data Pause. No data to
t J t transmit.
Start pulse Stop pulse Start pulse

Universal Synchronous
Asynchronous Receiver
Transmitter

(USART)

Idle State STOP bit

8- or 9-bit data *

¢ -t AA
— LOCOOOOOAD XX

‘ START bit

USART
- The USART module is a full duplex, serial I/O communication peripheral.

- It contains all shift registers, clock generators and data buffers needed for
serial communication.

- It can work in synchronous mode, or in asynchronous mode.

- The USART uses two I/O pins to transmit and receive serial data. Both
transmission and reception can occur at the same time 1.e. ‘full duplex’
operation.

USART

- To send a byte, the application writes the byte to the transmit buffer.

- The UART then sends the data, bit by bit in the requested
format, adding Stop, Start, and parity bits as needed.

- In a similar way, the UART stores received bytes in a buffer.

- Then the UART can generate an interrupt to notify the application or
software can poll the port to find out if data has arrived.

USART

+ Asynchronous Mode:

Data transfer happens in the following way:

1.

2.

3

2

In idle state, data line has logic high (1).

Data transfer starts with a start bit, which is always a zero.

Data word is transferred (8 or 9 bit), LSB is sent first.

Each word ends with a stop bit, which is always high (1).
Another byte can be sent directly after, and will start also with a

start bit befor data.
Idle State STOP bit
* START bi 8- o bt data ‘

000000000

. i@@(

Start and Stop Bits

3 In the asynchronous method, each

character is placed between start and stop
bits ()

MSB —= = |LSB
s I E {0 i0:i0 10 0 i1 |stn] o
SPACE hciltp 0 1 i 0 $ 0 : 0 - 0 : biit marl-:i,
. . . . : ' |L . :
goes out last d7Y dd goes out first

Framing ASCII ‘A’ (41H)

Data Transfer Rate

O Rate of data transfer: bps (bits per
second)

3 Another widely used terminology for bps is
baud rate

O For Asynchronous serial data
communication, the baud rate is generally

limited to 100,000bps

RS232 Standard

1 Standard for serial comm (COM port)
1: -3V to -2HV,;
0: +3V 1o +25V
O Reason: for long distance wired line
3 Input-output voltage are not TTL

compatible

7 So, we need MAX232/233 for voltage
converter. Commonly known as line drivers

RS232 Pins

Connectors:
Minimally, 3 wires: RxD, TxD, GND

Could have 9-pin or 25-pin

288
o ..l:.i...i.i.l.!...l.i.l O O Rt O
6 9
14 26
DB-25 DB-9

25-Pin Connector 9-Pin Connector

Universal Synchronous Asynchronous Receiver Transmitter
(USART)

PIC microcontrollers, obviously, can do more than just light up LEDs or reading
button states.

Microcontrollers can also communicate with another microcontroller or with
other devices like sensors, memory cards, etc.

Often the communication is done serially, where data bits are sent one at a time.

In this presentation, we will look at how to implement serial communication with
PICs in assembly language

While you can implement serial communications through “bit-banging”, i.e.,
setting a pin high or low in specific time intervals (also known as software serial),
using the hardware USART module is a much more reliable and easier approach.

Software serial offers the advantage of assigning transmit and receive pins it to any
output pin. This is useful when you ran out of pins and need to communicate to
multiple devices.

In contrast, hardware USART exclusively uses the pins RC6 (TX) and RC7 (RX).

To configure the PIC’s hardware USART, we need three registers: TXSTA, RCSTA and
SPBRG.
The SPBRG is used to calculate the baud rate of the transmissions.

The TXSTA and RCSTA registers are shown Next Slides:

TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)

R/W-0 RW-0 RW-0 RW-0 u-0 RW-0 R-1 RW-0
CSRC TX9 TXEN SYNC — BRGH | TRMT | TX9D
bit 7 bit 0
bit 7 CSRC: Clock Source Select bit
Asynchronous mode:
Don't care.
Synchronous mode:

|t = Master mode (clock generated internally from BRG)
0 = Slave mode (clock from extemal source)

bit 6 TX9: 9-bit Transmit Enable bit
1 = Selects 9-bit transmission
0 = Selects 8-bit ransmission
bit 5 TXEN: Transmit Enable bit
1 = Transmit enabled
0 = Transmit disabled

Note: SREN/CREN overrides TXEN in Sync mode.

bit 4 SYNC: USART Mode Select bit
1 = Synchronous mode
0 = Asynchronous mode
bit 3 Unimplemented: Read as o’
bit 2 BRGH: High Baud Rate Select bit
Asynchronous mode:
1 = High speed
0 = Low speed
Synchronous mode:
Unused in this mode.
bit 1 TRMT:. Transmit Shift Register Status bit
1 = TSR empty
0=TSRull
bit 0 TX9D: 9th bit of Transmit Data, can be Parity bit

bit7

bit 6

bits

bit4

bit 3

bit2

bit 1

bito

RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

RWO RWO RW0 RWO RWO RO R-0 R-x
| sPEN | Rx9 | SREN | CREN | ADDEN | FERR | OERR | RX9D
bit 7 bit 0

SPEN: Serial Port Enable bit

1 = Serial port enabled (configures RC7/RX/DT and RC6/TX/CK pins as serial port pins)
o = Serial port disabled

RX9: 9-bit Receive Enable bit

1 = Selects 9-bit reception

o = Selects 8-bit reception

SREN: Single Receive Enable bit

Don't care.

Synchronous mode — Master:

1 = Enables single receive

o = Disables single receive

This bit is cleared after reception is complete.
Synchronous mode — Slave:

Don't care.

CREN: Continuous Receive Enable bit

Asynchronous mode:
1 = Enables continuous receive

o = Disables continuous receive

Synchronous mode:

1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)

o = Disables continuous receive

ADDEN: Address Detect Enable bit
chronous mode 9-bit 9=1)

1 = Enables address detection, enables interrupt and load of the receive buffer when RSR<8>
is set

0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit

FERR: Framing Ermor bit

1 = Framing emor (can be updated by reading RCREG register and receive next valid byte)

0 = No framing error

OERR: Overmun Ermor bit

1 = Overrun error (can be cleared by clearing bit CREN)

o = No overrun efror

RX9D: 9th bit of Received Data (can be parity bit but must be calculated by user firmware)

That’s a lot of bits

Four our purpose, we will only look at four bits from TXSTA and 1 bit on RCSTA.

TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)
R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R-1 R/W-0
CSRC TX9 TXEN SYNC — BRGH TRMT TX9D
bit 7

bit 0

TXEN (bit 5) on TXSTA enables or disables transmission,
SYNC (bit 4) sets asynchronous or synchronous mode
BRGH (bit 2) sets high speed or low speed mode.

TRMT (bit 1) is a flag that sets if the data has been sent.

The formula used to compute for the baud rate is different in high speed or
low speed mode:

SYNC BRGH = 0 (Low Speed) BRGH = 1 (High Speed)
0 (Asynchronous) Baud Rate = Fosc/(64 (X + 1)) Baud Rate = Fosc/(16 (X + 1))
1 (Synchronous) Baud Rate = Fosc/(4 (X + 1)) N/A

Here, X is the contents of the register SPBRG. So, for example,
a baud rate of 9600 using a 4 MHz oscillator at high speed and
asynchronous mode will have SPBRG = 25 as shown:

4.000. 000
A = — - — 1
9600 % 16

X =29

BAUD RATE GENERATOR

- From the last two equations, we can determine the value of
the SPBRG register and the BRGH bit according to the
required baud rate, and the used oscillator.

- Another form:
Fosc
—->1f BRGH=0 (low speed): SPERG= 64 x Baudrate :
SPBRG=—~95¢ |
16 x Baudrate

=>1f BRGH=1 (high speed):

RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

RW-0 RW-0 RWO RWO RWO R-0 R-0 R-X
| sPEN | Rx9 SREN | CREN | ADDEN [FERR | OERR | RX9D
bit 7 bit 0

SPEN (bit 7) of the RCSTA register enables RC6 and RC7 as serial port pins.
This is the bit you need to set to enable serial communication.

The data to be transmitted must be placed inside the TXREG register while the
data received is placed inside the RCREG register.

We can simulate the serial communication using Proteus ISIS.

U1
ﬁ— OSC 1.C LN REOANT —E— —_—
B osc2cuour RE1 2%
RE2 (2 ™D
2| RADMND REIPGH -
—‘L RALEN1 RE4 —% —Jare
4| RA2BN2AREF-CVREF RES -
S| RAMANWREF+ REEPGC |—i —Jlere
£_| pRavocKc1ouT RETAGD L
I RASENLESC20UT
RCOTIOSOTICK p—to
2 renensfl. RCUTIOSICCP2 |—=
2| REVBNGUIR RC2CCP1 -1
B_| pe2mnics RCISCKECL =
' RCLSDISDA —ﬂ‘-
| WCTRAMpTHY RCSS00 |—2%
RCETXCK 2
RCTRXOT -2
ROOPSPO —%
ROIPSPY 2.
RD2PSP2 |2l
RDAPSPI |2
ROWPSPL |2
ROSPSPS |f—o-
RDEPSPE |2
ROTPSPT |

PICIGFSITA,

o C2

o B '
2- ’6\ r—ﬂa = W o Cle
=O| |O=1=
“ 10 = 124 Tiout TUN =
8] 13 ‘
PC ﬂ_—o o - == 1 RUN RI1OUT .
EEpEE o ~=d T20UT T2N o
D : Ol | O—1— —— RN R20UT p~
| 2 4
=10 e =3 3
wm O 06_'_ 1 Vs
—_— - - VS-
@/ \\J
CONN-D@M CONN-DOF 5 ca. Aaa !
—— = =
u
" . C3 4
4 F
2 1 2
1] RCOTI08OT13CK) RAGANO/C 1IN- |—=
—;— RCVT10SKCCP28 RATAN1/C2IN- =
cTs p— o] RCUCCP1 RAANZIC2INHVREFCVREF |
.] RE¥SCIsCL RAJANICINHVREF+ [
"TS p— ~as] RCASONSDA RAATOCLKNCIOUT =
2 =ty RC&'SDO RAS/ANG/SSMHLVDINC20UT e
™D =) RX ™ O ~—1 RCHTX/CK RAS/OSC2/CLKO f——=
2 0—‘— RCTRXDT RA7/OSC1/CLK) ==
RXD p————0 7x RX
REOGAN12ANTOFLTO ==
RE1ANTOANTY -:j
RE2ANBANT2 p—==
RB3ANW/CCP2A [—== +
RBAANTIXBIO T‘:’
RESKBI/PGM [—— 11
: REMKBIZPGC 5=
= REIMCLRVPP RB7XBIAPGD p—==
PIC18F 2820

Transmit (Tx)

THIOHHHHT
PIC16F887

HEHITTHHHITHE

[g g) —y —

WU;

H

jm

—

Communication

Cable

Serial

) MAX232
m.mﬁ._w“

g

RS232 Cable

Laptop/PC
09 08 O7 O6

@6 @7 08 @°

Microcontroller PC COM Port

(male Sub-D connector) (femal Sub-D connector)

GND

microcontroller
interface

USB Cable

RX
>

PTR RXI TX0 VCC CTS GND

Assembly Code for Transmitting Data
Here’s a PIC ASM code that sends a character ‘A’ out of the serial port of the PIC16F877A at a baud rate of 9600.

ORG 0x00
goto init
main movf char0, W
init movwf TXREG ;place the A character to TXREG
bsf STATUS, RPO ;bank 1 Call Test

;---CONFIGURE SPBRG FOR DESIRED BAUD RATE goto main
movlw D'25" ;baud rate = 9600bps
movwf SPBRG ;at 4MHZ Test
-—_CONFIGURE TXSTA btfss TXSTA, TRMT ;check if TRMT is empty
moviw B'00100100' goto Test ;if not, check again
movwf TXSTA bcf STATUS, RPO ;bank O, if TRMT is empty then the
;Configures TXSTA as 8 bit transmission, transmit enabled, ;character r;as been sent

return

;async mode, high speed baud rate
bcf STATUS, RPO ;bank O

movlw B'10000000' end
movwf RCSTA ;enable serial port receive

movlw 0x41
movwf charO ;put A (ascii code 0x41) character to charO
;register

You should see a single ‘A’ on the serial monitor.

The first part of the code above configures the serial port by making SPBRG = 25
(as per the calculations on our example calculation) and enabling transmit (at
high speed, async) and receive ports via TXTSA and RCSTA.

The character to be sent is inside charO and then moved to TXREG. Then we

looped the program using btfss (on TRMT bit) to check if the character has been
sent out.

Receiving Data using Assembly

As mentioned, the received data through the serial port is stored in RCREG. When
RCREG is read and emptied, a flag, RCIF is set.

RCIF is an interrupt flag that can be disabled using the RCIE bit in PIR1.

However, we don’t need to set interrupts for the RCIF to trigger!

Here’s an assembly code that sets PORTB according to the value received from
the serial port:

org 0x00
goto start

start bsf STATUS, RPO
moviw .25
movwf SPBRG
movlw 0x24
movwf TXSTA
clrf TRISB
bcf STATUS, RPO
movlw 0x90
movwf RCSTA

main btfss PIR1, RCIF
goto main
movf RCREG, W
movwf PORTB
goto main

