
Microcontrollers

Serial Communication
with PIC16F877A

Dr. Jafar Jallad

Palestine Technical University – Kadoorie

Second semester

2019-2020

1

6

PIC microcontrollers, obviously, can do more than just light up LEDs or reading
button states.

Microcontrollers can also communicate with another microcontroller or with
other devices like sensors, memory cards, etc.

Often the communication is done serially, where data bits are sent one at a time.

In this presentation, we will look at how to implement serial communication with
PICs in assembly language

Universal Synchronous Asynchronous Receiver Transmitter
(USART)

While you can implement serial communications through “bit-banging”, i.e.,
setting a pin high or low in specific time intervals (also known as software serial),
using the hardware USART module is a much more reliable and easier approach.

Software serial offers the advantage of assigning transmit and receive pins it to any
output pin. This is useful when you ran out of pins and need to communicate to
multiple devices.

In contrast, hardware USART exclusively uses the pins RC6 (TX) and RC7 (RX).

To configure the PIC’s hardware USART, we need three registers: TXSTA, RCSTA and
SPBRG.
The SPBRG is used to calculate the baud rate of the transmissions.

The TXSTA and RCSTA registers are shown Next Slides:

That’s a lot of bits

Four our purpose, we will only look at four bits from TXSTA and 1 bit on RCSTA.

TXEN (bit 5) on TXSTA enables or disables transmission,

SYNC (bit 4) sets asynchronous or synchronous mode

BRGH (bit 2) sets high speed or low speed mode.

TRMT (bit 1) is a flag that sets if the data has been sent.

The formula used to compute for the baud rate is different in high speed or
low speed mode:

SPEN (bit 7) of the RCSTA register enables RC6 and RC7 as serial port pins.
This is the bit you need to set to enable serial communication.

The data to be transmitted must be placed inside the TXREG register while the
data received is placed inside the RCREG register.

We can simulate the serial communication using Proteus ISIS.

Assembly Code for Transmitting Data
Here’s a PIC ASM code that sends a character ‘A’ out of the serial port of the PIC16F877A at a baud rate of 9600.

ORG 0x00
goto init

init
bsf STATUS, RP0 ;bank 1

;---CONFIGURE SPBRG FOR DESIRED BAUD RATE
movlw D'25' ;baud rate = 9600bps
movwf SPBRG ;at 4MHZ

;---CONFIGURE TXSTA
movlw B'00100100'
movwf TXSTA

;Configures TXSTA as 8 bit transmission, transmit enabled,
;async mode, high speed baud rate
bcf STATUS, RP0 ;bank 0
movlw B'10000000'
movwf RCSTA ;enable serial port receive

movlw 0x41
movwf char0 ;put A (ascii code 0x41) character to char0

;register

main movf char0, W
movwf TXREG ;place the A character to TXREG
Call Test
goto main

Test
btfss TXSTA, TRMT ;check if TRMT is empty
goto Test ;if not, check again
bcf STATUS, RP0 ;bank 0, if TRMT is empty then the

;character has been sent
return

end

You should see a single ‘A’ on the serial monitor.

The first part of the code above configures the serial port by making SPBRG = 25
(as per the calculations on our example calculation) and enabling transmit (at
high speed, async) and receive ports via TXTSA and RCSTA.

The character to be sent is inside char0 and then moved to TXREG. Then we
looped the program using btfss (on TRMT bit) to check if the character has been
sent out.

Receiving Data using Assembly

As mentioned, the received data through the serial port is stored in RCREG. When
RCREG is read and emptied, a flag, RCIF is set.

RCIF is an interrupt flag that can be disabled using the RCIE bit in PIR1.

However, we don’t need to set interrupts for the RCIF to trigger!

org 0x00
goto start

start bsf STATUS, RP0
movlw .25
movwf SPBRG
movlw 0x24
movwf TXSTA
clrf TRISB
bcf STATUS, RP0

movlw 0x90
movwf RCSTA

main btfss PIR1, RCIF
goto main

movf RCREG, W
movwf PORTB
goto main

Here’s an assembly code that sets PORTB according to the value received from
the serial port:

