
2 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

Clearly, the ideal gas law is suspect, but before concluding that the law is invalid in
this situation, we should examine the data to see whether the error could be attributed to
the experimental results. If so, we might be able to determine how much more accurate
our experimental results would need to be to ensure that an error of this magnitude did not
occur.

Analysis of the error involved in calculations is an important topic in numerical analysis
and is introduced in Section 1.2. This particular application is considered in Exercise 28 of
that section.

This chapter contains a short review of those topics from single-variable calculus that
will be needed in later chapters. A solid knowledge of calculus is essential for an understand-
ing of the analysis of numerical techniques, and more thorough review might be needed if
you have been away from this subject for a while. In addition there is an introduction to
convergence, error analysis, the machine representation of numbers, and some techniques
for categorizing and minimizing computational error.

1.1 Review of Calculus

Limits and Continuity

The concepts of limit and continuity of a function are fundamental to the study of calculus,
and form the basis for the analysis of numerical techniques.

Definition 1.1 A function f defined on a set X of real numbers has the limit L at x0, written

lim
x→x0

f (x) = L,

if, given any real number ε > 0, there exists a real number δ > 0 such that

|f (x)− L| < ε, whenever x ∈ X and 0 < |x − x0| < δ.

(See Figure 1.1.)

Figure 1.1
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1.1 Review of Calculus 3

Definition 1.2 Let f be a function defined on a set X of real numbers and x0 ∈ X. Then f is continuous
at x0 if

lim
x→x0

f (x) = f (x0).

The function f is continuous on the set X if it is continuous at each number in X.

The set of all functions that are continuous on the set X is denoted C(X). When X is
an interval of the real line, the parentheses in this notation are omitted. For example, the
set of all functions continuous on the closed interval [a, b] is denoted C[a, b]. The symbol
R denotes the set of all real numbers, which also has the interval notation (−∞,∞). So
the set of all functions that are continuous at every real number is denoted by C(R) or by
C(−∞,∞).

The basic concepts of calculus
and its applications were
developed in the late 17th and
early 18th centuries, but the
mathematically precise concepts
of limits and continuity were not
described until the time of
Augustin Louis Cauchy
(1789–1857), Heinrich Eduard
Heine (1821–1881), and Karl
Weierstrass (1815 –1897) in the
latter portion of the 19th century.

The limit of a sequence of real or complex numbers is defined in a similar manner.

Definition 1.3 Let {xn}∞n=1 be an infinite sequence of real numbers. This sequence has the limit x (converges
to x) if, for any ε > 0 there exists a positive integer N(ε) such that |xn − x| < ε, whenever
n > N(ε). The notation

lim
n→∞ xn = x, or xn → x as n→∞,

means that the sequence {xn}∞n=1 converges to x.

Theorem 1.4 If f is a function defined on a set X of real numbers and x0 ∈ X, then the following
statements are equivalent:

a. f is continuous at x0;

b. If {xn}∞n=1 is any sequence in X converging to x0, then limn→∞ f (xn) = f (x0).

The functions we will consider when discussing numerical methods will be assumed
to be continuous because this is a minimal requirement for predictable behavior. Functions
that are not continuous can skip over points of interest, which can cause difficulties when
attempting to approximate a solution to a problem.

Differentiability

More sophisticated assumptions about a function generally lead to better approximation
results. For example, a function with a smooth graph will normally behave more predictably
than one with numerous jagged features. The smoothness condition relies on the concept
of the derivative.

Definition 1.5 Letf be a function defined in an open interval containing x0. The functionf is differentiable
at x0 if

f ′(x0) = lim
x→x0

f (x)− f (x0)

x − x0

exists. The number f ′(x0) is called the derivative of f at x0. A function that has a derivative
at each number in a set X is differentiable on X.

The derivative of f at x0 is the slope of the tangent line to the graph of f at (x0, f (x0)),
as shown in Figure 1.2.
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4 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

Figure 1.2
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The tangent line has slope f �(x0)

Theorem 1.6 If the function f is differentiable at x0, then f is continuous at x0.

The next theorems are of fundamental importance in deriving methods for error esti-
mation. The proofs of these theorems and the other unreferenced results in this section can
be found in any standard calculus text.

The theorem attributed to Michel
Rolle (1652–1719) appeared in
1691 in a little-known treatise
entitled Méthode pour résoundre
les égalites. Rolle originally
criticized the calculus that was
developed by Isaac Newton and
Gottfried Leibniz, but later
became one of its proponents.

The set of all functions that have n continuous derivatives on X is denoted Cn(X), and
the set of functions that have derivatives of all orders on X is denoted C∞(X). Polynomial,
rational, trigonometric, exponential, and logarithmic functions are in C∞(X), where X
consists of all numbers for which the functions are defined. When X is an interval of the
real line, we will again omit the parentheses in this notation.

Theorem 1.7 (Rolle’s Theorem)
Suppose f ∈ C[a, b] and f is differentiable on (a, b). If f (a) = f (b), then a number c in
(a, b) exists with f ′(c) = 0. (See Figure 1.3.)

Figure 1.3
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 f (a) � f (b)
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Theorem 1.8 (Mean Value Theorem)
If f ∈ C[a, b] and f is differentiable on (a, b), then a number c in (a, b) exists with (See
Figure 1.4.)

f ′(c) = f (b)− f (a)
b− a

.
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Figure 1.4
y
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f (b) � f (a)

y � f (x)

Theorem 1.9 (Extreme Value Theorem)
If f ∈ C[a, b], then c1, c2 ∈ [a, b] exist with f (c1) ≤ f (x) ≤ f (c2), for all x ∈ [a, b].
In addition, if f is differentiable on (a, b), then the numbers c1 and c2 occur either at the
endpoints of [a, b] or where f ′ is zero. (See Figure 1.5.)

Figure 1.5
y

xa c2 c1 b

y � f (x)

Research work on the design of
algorithms and systems for
performing symbolic
mathematics began in the 1960s.
The first system to be operational,
in the 1970s, was a LISP-based
system called MACSYMA.

As mentioned in the preface, we will use the computer algebra system Maple whenever
appropriate. Computer algebra systems are particularly useful for symbolic differentiation
and plotting graphs. Both techniques are illustrated in Example 1.

Example 1 Use Maple to find the absolute minimum and absolute maximum values of

f (x) = 5 cos 2x − 2x sin 2xf (x)

on the intervals (a) [1, 2], and (b) [0.5, 1]
Solution There is a choice of Text input or Math input under the Maple C 2D Math option.
The Text input is used to document worksheets by adding standard text information in
the document. The Math input option is used to execute Maple commands. Maple input
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6 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

can either be typed or selected from the pallets at the left of the Maple screen. We will
show the input as typed because it is easier to accurately describe the commands. For pallet
input instructions you should consult the Maple tutorials. In our presentation, Maple input
commands appear in italic type, and Maple responses appear in cyan type.

To ensure that the variables we use have not been previously assigned, we first issue
the command.

The Maple development project
began at the University of
Waterloo in late 1980. Its goal
was to be accessible to
researchers in mathematics,
engineering, and science, but
additionally to students for
educational purposes. To be
effective it needed to be portable,
as well as space and time
efficient. Demonstrations of the
system were presented in 1982,
and the major paper setting out
the design criteria for the
MAPLE system was presented in
1983 [CGGG].

restart

to clear the Maple memory. We first illustrate the graphing capabilities of Maple. To access
the graphing package, enter the command

with(plots)

to load the plots subpackage. Maple responds with a list of available commands in the
package. This list can be suppressed by placing a colon after the with(plots) command.

The following command defines f (x) = 5 cos 2x − 2x sin 2x as a function of x.

f := x→ 5 cos(2x)− 2x · sin(2x)

and Maple responds with

x→ 5 cos(2x)− 2x sin(2x)

We can plot the graph of f on the interval [0.5, 2] with the command

plot(f , 0.5 . . 2)

Figure 1.6 shows the screen that results from this command after doing a mouse click on
the graph. This click tells Maple to enter its graph mode, which presents options for various
views of the graph. We can determine the coordinates of a point of the graph by moving the
mouse cursor to the point. The coordinates appear in the box above the left of the plot(f ,
0.5 . . 2) command. This feature is useful for estimating the axis intercepts and extrema of
functions.

The absolute maximum and minimum values of f (x) on the interval [a, b] can occur
only at the endpoints, or at a critical point.

(a) When the interval is [1, 2] we have

f (1)= 5 cos 2− 2 sin 2= −3.899329036 and f (2)= 5 cos 4− 4 sin 4= −0.241008123.

A critical point occurs when f ′(x) = 0. To use Maple to find this point, we first define a
function fp to represent f ′ with the command

fp := x→ diff(f (x), x)

and Maple responds with

x→ d

dx
f (x)

To find the explicit representation of f ′(x) we enter the command

fp(x)

and Maple gives the derivative as

−12 sin(2x)− 4x cos(2x)

To determine the critical point we use the command

fsolve( fp(x), x, 1 . . 2)
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1.1 Review of Calculus 7

Figure 1.6

and Maple tells us that f ′(x) = fp(x) = 0 for x in [1, 2] when x is

1.358229874

We evaluate f (x) at this point with the command

f (%)

The % is interpreted as the last Maple response. The value of f at the critical point is

−5.675301338

As a consequence, the absolute maximum value of f (x) in [1, 2] is f (2) = −0.241008123
and the absolute minimum value is f (1.358229874) = −5.675301338, accurate at least to
the places listed.

(b) When the interval is [0.5, 1] we have the values at the endpoints given by

f (0.5)= 5 cos 1− 1 sin 1= 1.860040545 and f (1)= 5 cos 2− 2 sin 2= − 3.899329036.

However, when we attempt to determine the critical point in the interval [0.5, 1] with the
command

fsolve( fp(x), x, 0.5 . . 1)
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8 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

Maple gives the response

f solve(−12 sin(2x)− 4x cos(2x), x, .5 . . 1)

This indicates that Maple is unable to determine the solution. The reason is obvious once
the graph in Figure 1.6 is considered. The function f is always decreasing on this interval,
so no solution exists. Be suspicious when Maple returns the same response it is given; it is
as if it was questioning your request.

In summary, on [0.5, 1] the absolute maximum value is f (0.5) = 1.86004545 and
the absolute minimum value is f (1) = −3.899329036, accurate at least to the places
listed.

The following theorem is not generally presented in a basic calculus course, but is
derived by applying Rolle’s Theorem successively to f , f ′, . . . , and, finally, to f (n−1).
This result is considered in Exercise 23.

Theorem 1.10 (Generalized Rolle’s Theorem)
Suppose f ∈ C[a, b] is n times differentiable on (a, b). If f (x) = 0 at the n + 1 distinct
numbers a ≤ x0 < x1 < . . . < xn ≤ b, then a number c in (x0, xn), and hence in (a, b),
exists with f (n)(c) = 0.

We will also make frequent use of the Intermediate Value Theorem. Although its state-
ment seems reasonable, its proof is beyond the scope of the usual calculus course. It can,
however, be found in most analysis texts.

Theorem 1.11 (Intermediate Value Theorem)
If f ∈ C[a, b] and K is any number between f (a) and f (b), then there exists a number c
in (a, b) for which f (c) = K .

Figure 1.7 shows one choice for the number that is guaranteed by the Intermediate
Value Theorem. In this example there are two other possibilities.

Figure 1.7

x

y

f (a)

f (b)

y � f (x)

K

(a,  f (a))

(b,  f (b))

a bc

Example 2 Show that x5 − 2x3 + 3x2 − 1 = 0 has a solution in the interval [0, 1].
Solution Consider the function defined by f (x) = x5 − 2x3 + 3x2 − 1. The function f is
continuous on [0, 1]. In addition,
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1.1 Review of Calculus 9

f (0) = −1 < 0 and 0 < 1 = f (1).
The Intermediate Value Theorem implies that a number x exists, with 0 < x < 1, for which
x5 − 2x3 + 3x2 − 1 = 0.

As seen in Example 2, the Intermediate Value Theorem is used to determine when
solutions to certain problems exist. It does not, however, give an efficient means for finding
these solutions. This topic is considered in Chapter 2.

Integration

The other basic concept of calculus that will be used extensively is the Riemann integral.

George Fredrich Berhard
Riemann (1826–1866) made
many of the important
discoveries classifying the
functions that have integrals. He
also did fundamental work in
geometry and complex function
theory, and is regarded as one of
the profound mathematicians of
the nineteenth century.

Definition 1.12 The Riemann integral of the function f on the interval [a, b] is the following limit,
provided it exists:

∫ b

a
f (x) dx = lim

max�xi→0

n∑
i=1

f (zi) �xi,

where the numbers x0, x1, . . . , xn satisfy a = x0 ≤ x1 ≤ · · · ≤ xn = b, where�xi = xi−xi−1,
for each i = 1, 2, . . . , n, and zi is arbitrarily chosen in the interval [xi−1, xi].

A function f that is continuous on an interval [a, b] is also Riemann integrable on
[a, b]. This permits us to choose, for computational convenience, the points xi to be equally
spaced in [a, b], and for each i = 1, 2, . . . , n, to choose zi = xi. In this case,

∫ b

a
f (x) dx = lim

n→∞
b− a

n

n∑
i=1

f (xi),

where the numbers shown in Figure 1.8 as xi are xi = a+ i(b− a)/n.

Figure 1.8
y

x

y � f (x)

a � x0 x1 x2 xi�1 xi xn�1 b � xn. . . . . .

Two other results will be needed in our study of numerical analysis. The first is a
generalization of the usual Mean Value Theorem for Integrals.
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10 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

Theorem 1.13 (Weighted Mean Value Theorem for Integrals)
Suppose f ∈ C[a, b], the Riemann integral of g exists on [a, b], and g(x) does not change
sign on [a, b]. Then there exists a number c in (a, b) with

∫ b

a
f (x)g(x) dx = f (c)

∫ b

a
g(x) dx.

When g(x) ≡ 1, Theorem 1.13 is the usual Mean Value Theorem for Integrals. It gives
the average value of the function f over the interval [a, b] as (See Figure 1.9.)

f (c) = 1

b− a

∫ b

a
f (x) dx.

Figure 1.9

x

y

 f (c)

y � f (x)

a bc

The proof of Theorem 1.13 is not generally given in a basic calculus course but can be
found in most analysis texts (see, for example, [Fu], p. 162).

Taylor Polynomials and Series

The final theorem in this review from calculus describes the Taylor polynomials. These
polynomials are used extensively in numerical analysis.

Theorem 1.14 (Taylor’s Theorem)

Suppose f ∈ Cn[a, b], that f (n+1) exists on [a, b], and x0 ∈ [a, b]. For every x ∈ [a, b],
there exists a number ξ(x) between x0 and x with

Brook Taylor (1685–1731)
described this series in 1715 in
the paper Methodus
incrementorum directa et inversa.
Special cases of the result, and
likely the result itself, had been
previously known to Isaac
Newton, James Gregory, and
others.

f (x) = Pn(x)+ Rn(x),

where

Pn(x) = f (x0)+ f ′(x0)(x − x0)+ f
′′(x0)

2! (x − x0)
2 + · · · + f

(n)(x0)

n! (x − x0)
n

=
n∑

k=0

f (k)(x0)

k! (x − x0)
k
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1.1 Review of Calculus 11

and

Rn(x) = f
(n+1)(ξ(x))

(n+ 1)! (x − x0)
n+1.

Here Pn(x) is called the nth Taylor polynomial for f about x0, and Rn(x) is called
the remainder term (or truncation error) associated with Pn(x). Since the number ξ(x)
in the truncation error Rn(x) depends on the value of x at which the polynomial Pn(x) is
being evaluated, it is a function of the variable x. However, we should not expect to be
able to explicitly determine the function ξ(x). Taylor’s Theorem simply ensures that such a
function exists, and that its value lies between x and x0. In fact, one of the common problems
in numerical methods is to try to determine a realistic bound for the value of f (n+1)(ξ(x))
when x is in some specified interval.

Colin Maclaurin (1698–1746) is
best known as the defender of the
calculus of Newton when it came
under bitter attack by the Irish
philosopher, the Bishop George
Berkeley.

The infinite series obtained by taking the limit of Pn(x) as n→∞ is called the Taylor
series for f about x0. In the case x0 = 0, the Taylor polynomial is often called a Maclaurin
polynomial, and the Taylor series is often called a Maclaurin series.

Maclaurin did not discover the
series that bears his name; it was
known to 17th century
mathematicians before he was
born. However, he did devise a
method for solving a system of
linear equations that is known as
Cramer’s rule, which Cramer did
not publish until 1750.

The term truncation error in the Taylor polynomial refers to the error involved in
using a truncated, or finite, summation to approximate the sum of an infinite series.

Example 3 Let f (x) = cos x and x0 = 0. Determine

(a) the second Taylor polynomial for f about x0; and

(b) the third Taylor polynomial for f about x0.

Solution Since f ∈ C∞(R), Taylor’s Theorem can be applied for any n ≥ 0. Also,

f ′(x) = − sin x, f ′′(x) = − cos x, f ′′′(x) = sin x, and f (4)(x) = cos x,

so

f (0) = 1, f ′(0) = 0, f ′′(0) = −1, and f ′′′(0) = 0.

(a) For n = 2 and x0 = 0, we have

cos x = f (0)+ f ′(0)x + f
′′(0)
2! x2 + f

′′′(ξ(x))
3! x3

= 1− 1

2
x2 + 1

6
x3 sin ξ(x),

where ξ(x) is some (generally unknown) number between 0 and x. (See Figure 1.10.)

Figure 1.10
y

x

y � cos x

y � P2(x) � 1 �    x2
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12 C H A P T E R 1 Mathematical Preliminaries and Error Analysis

When x = 0.01, this becomes

cos 0.01 = 1− 1

2
(0.01)2 + 1

6
(0.01)3 sin ξ(0.01) = 0.99995+ 10−6

6
sin ξ(0.01).

The approximation to cos 0.01 given by the Taylor polynomial is therefore 0.99995. The
truncation error, or remainder term, associated with this approximation is

10−6

6
sin ξ(0.01) = 0.16× 10−6 sin ξ(0.01),

where the bar over the 6 in 0.16 is used to indicate that this digit repeats indefinitely.
Although we have no way of determining sin ξ(0.01), we know that all values of the sine
lie in the interval [−1, 1], so the error occurring if we use the approximation 0.99995 for
the value of cos 0.01 is bounded by

| cos(0.01)− 0.99995| = 0.16× 10−6| sin ξ(0.01)| ≤ 0.16× 10−6.

Hence the approximation 0.99995 matches at least the first five digits of cos 0.01, and

0.9999483 < 0.99995− 1.6× 10−6 ≤ cos 0.01

≤ 0.99995+ 1.6× 10−6 < 0.9999517.

The error bound is much larger than the actual error. This is due in part to the poor
bound we used for | sin ξ(x)|. It is shown in Exercise 24 that for all values of x, we have
| sin x| ≤ |x|. Since 0 ≤ ξ < 0.01, we could have used the fact that | sin ξ(x)| ≤ 0.01 in the
error formula, producing the bound 0.16× 10−8.

(b) Since f ′′′(0) = 0, the third Taylor polynomial with remainder term about x0 = 0
is

cos x = 1− 1

2
x2 + 1

24
x4 cos ξ̃ (x),

where 0 < ξ̃(x) < 0.01. The approximating polynomial remains the same, and the ap-
proximation is still 0.99995, but we now have much better accuracy assurance. Since
| cos ξ̃ (x)| ≤ 1 for all x, we have∣∣∣∣ 1

24
x4 cos ξ̃ (x)

∣∣∣∣ ≤ 1

24
(0.01)4(1) ≈ 4.2× 10−10.

So

| cos 0.01− 0.99995| ≤ 4.2× 10−10,

and

0.99994999958 = 0.99995− 4.2× 10−10

≤ cos 0.01 ≤ 0.99995+ 4.2× 10−10 = 0.99995000042.

Example 3 illustrates the two objectives of numerical analysis:

(i) Find an approximation to the solution of a given problem.

(ii) Determine a bound for the accuracy of the approximation.

The Taylor polynomials in both parts provide the same answer to (i), but the third Taylor
polynomial gave a much better answer to (ii) than the second Taylor polynomial.

We can also use the Taylor polynomials to give us approximations to integrals.
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1.1 Review of Calculus 13

Illustration We can use the third Taylor polynomial and its remainder term found in Example 3 to
approximate

∫ 0.1
0 cos x dx. We have∫ 0.1

0
cos x dx =

∫ 0.1

0

(
1− 1

2
x2

)
dx + 1

24

∫ 0.1

0
x4 cos ξ̃ (x) dx

=
[

x − 1

6
x3

]0.1

0

+ 1

24

∫ 0.1

0
x4 cos ξ̃ (x) dx

= 0.1− 1

6
(0.1)3 + 1

24

∫ 0.1

0
x4 cos ξ̃ (x) dx.

Therefore ∫ 0.1

0
cos x dx ≈ 0.1− 1

6
(0.1)3 = 0.09983.

A bound for the error in this approximation is determined from the integral of the Taylor
remainder term and the fact that | cos ξ̃ (x)| ≤ 1 for all x:

1

24

∣∣∣∣
∫ 0.1

0
x4 cos ξ̃ (x) dx

∣∣∣∣ ≤ 1

24

∫ 0.1

0
x4| cos ξ̃ (x)| dx

≤ 1

24

∫ 0.1

0
x4 dx = (0.1)5

120
= 8.3× 10−8.

The true value of this integral is∫ 0.1

0
cos x dx = sin x

]0.1

0

= sin 0.1 ≈ 0.099833416647,

so the actual error for this approximation is 8.3314 × 10−8, which is within the error
bound. �

We can also use Maple to obtain these results. Define f by

f := cos(x)

Maple allows us to place multiple statements on a line separated by either a semicolon or
a colon. A semicolon will produce all the output, and a colon suppresses all but the final
Maple response. For example, the third Taylor polynomial is given by

s3 := taylor(f , x = 0, 4) : p3 := convert(s3, polynom)

1− 1

2
x2

The first statement s3 := taylor(f , x = 0, 4) determines the Taylor polynomial about
x0 = 0 with four terms (degree 3) and an indication of its remainder. The second p3 :=
convert(s3, polynom) converts the series s3 to the polynomial p3 by dropping the remainder
term.

Maple normally displays 10 decimal digits for approximations. To instead obtain the
11 digits we want for this illustration, enter

Digits := 11

and evaluate f (0.01) and P3(0.01) with

y1 := evalf(subs(x = 0.01, f )); y2 := evalf(subs(x = 0.01, p3)
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This produces

0.99995000042

0.99995000000

To show both the function (in black) and the polynomial (in cyan) near x0 = 0, we enter

plot ((f , p3), x = −2 . . 2)

and obtain the Maple plot shown in Figure 1.11.

Figure 1.11

–2 −1 1
x

2

1

0.5

0

–0.5

–1

The integrals of f and the polynomial are given by

q1 := int(f , x = 0 . . 0.1); q2 := int(p3, x = 0 . . 0.1)

0.099833416647

0.099833333333

We assigned the names q1 and q2 to these values so that we could easily determine the error
with the command

err := |q1− q2|

8.3314 10−8

There is an alternate method for generating the Taylor polynomials within the Numer-
icalAnalysis subpackage of Maple’s Student package. This subpackage will be discussed
in Chapter 2.

E X E R C I S E S E T 1.1

1. Show that the following equations have at least one solution in the given intervals.

a. x cos x − 2x2 + 3x − 1 = 0, [0.2, 0.3] and [1.2, 1.3]
b. (x − 2)2 − ln x = 0, [1, 2] and [e, 4]
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