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d. Let Q = (D− L)−1A. Show that Tg = I − Q and P = Qt[AQ−1 − A+ (Qt)−1A]Q.

e. Show that P = QtDQ and P is positive definite.

f. Let λ be an eigenvalue of Tg with eigenvector x 	= 0. Use part (b) to show that xtPx > 0 implies
that |λ| < 1.

g. Show that Tg is convergent and prove that the Gauss-Seidel method converges.

18. The forces on the bridge truss described in the opening to this chapter satisfy the equations in the
following table:

Joint Horizontal Component Vertical Component

① −F1 +
√

2
2 f1 + f2 = 0

√
2

2 f1 − F2 = 0

② −
√

2
2 f1 +

√
3

2 f4 = 0 −
√

2
2 f1 − f3 − 1

2f4 = 0

③ −f2 + f5 = 0 f3 − 10,000 = 0

④ −
√

3
2 f4 − f5 = 0 1

2f4 − F3 = 0

This linear system can be placed in the matrix form⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0
√

2
2 1 0 0 0

0 −1 0
√

2
2 0 0 0 0

0 0 −1 0 0 0 1
2 0

0 0 0 −
√

2
2 0 −1 − 1

2 0

0 0 0 0 −1 0 0 1

0 0 0 0 0 1 0 0

0 0 0 −
√

2
2 0 0

√
3

2 0

0 0 0 0 0 0 −
√

3
2 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1

F2

F3

f1

f2

f3

f4

f5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0

10,000
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

a. Explain why the system of equations was reordered.

b. Approximate the solution of the resulting linear system to within 10−2 in the l∞ norm using
as initial approximation the vector all of whose entries are 1s with (i) the Jacobi method and
(ii) the Gauss-Seidel method.

7.4 Relaxation Techniques for Solving Linear Systems

We saw in Section 7.3 that the rate of convergence of an iterative technique depends on the
spectral radius of the matrix associated with the method. One way to select a procedure to
accelerate convergence is to choose a method whose associated matrix has minimal spectral
radius. Before describing a procedure for selecting such a method, we need to introduce a
new means of measuring the amount by which an approximation to the solution to a linear
system differs from the true solution to the system. The method makes use of the vector
described in the following definition.

Definition 7.23 Suppose x̃ ∈ R
n is an approximation to the solution of the linear system defined by Ax = b.

The residual vector for x̃ with respect to this system is r = b− Ax̃.

The word residual means what is
left over, which is an appropriate
name for this vector.

In procedures such as the Jacobi or Gauss-Seidel methods, a residual vector is associated
with each calculation of an approximate component to the solution vector. The true objective
is to generate a sequence of approximations that will cause the residual vectors to converge
rapidly to zero. Suppose we let

r(k)i = (r(k)1i , r(k)2i , . . . , r(k)ni )
t
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7.4 Relaxation Techniques for Solving Linear Systems 463

denote the residual vector for the Gauss-Seidel method corresponding to the approximate
solution vector x(k)i defined by

x(k)i = (x(k)1 , x(k)2 , . . . , x(k)i−1, x(k−1)
i , . . . , x(k−1)

n )t .

The mth component of r(k)i is

r(k)mi = bm −
i−1∑
j=1

amjx
(k)
j −

n∑
j=i

amjx
(k−1)
j , (7.13)

or, equivalently,

r(k)mi = bm −
i−1∑
j=1

amjx
(k)
j −

n∑
j=i+1

amjx
(k−1)
j − amix

(k−1)
i ,

for each m = 1, 2, . . . , n.
In particular, the ith component of r(k)i is

r(k)ii = bi −
i−1∑
j=1

ai jx
(k)
j −

n∑
j=i+1

ai jx
(k−1)
j − aiix

(k−1)
i ,

so

aiix
(k−1)
i + r(k)ii = bi −

i−1∑
j=1

ai jx
(k)
j −

n∑
j=i+1

ai jx
(k−1)
j . (7.14)

Recall, however, that in the Gauss-Seidel method, x(k)i is chosen to be

x(k)i =
1

aii

⎡
⎣bi −

i−1∑
j=1

ai jx
(k)
j −

n∑
j=i+1

ai jx
(k−1)
j

⎤
⎦ , (7.15)

so Eq. (7.14) can be rewritten as

aiix
(k−1)
i + r(k)ii = aiix

(k)
i .

Consequently, the Gauss-Seidel method can be characterized as choosing x(k)i to satisfy

x(k)i = x(k−1)
i + r(k)ii

aii
. (7.16)

We can derive another connection between the residual vectors and the Gauss-
Seidel technique. Consider the residual vector r(k)i+1, associated with the vector x(k)i+1 =
(x(k)1 , . . . , x(k)i , x(k−1)

i+1 , . . . , x(k−1)
n )t . By Eq. (7.13) the ith component of r(k)i+1 is

r(k)i,i+1 = bi −
i∑

j=1

ai jx
(k)
j −

n∑
j=i+1

ai jx
(k−1)
j

= bi −
i−1∑
j=1

ai jx
(k)
j −

n∑
j=i+1

ai jx
(k−1)
j − aiix

(k)
i .
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464 C H A P T E R 7 Iterative Techniques in Matrix Algebra

By the manner in which x(k)i is defined in Eq. (7.15) we see that r(k)i,i+1 = 0. In a sense, then,
the Gauss-Seidel technique is characterized by choosing each x(k)i+1 in such a way
that the ith component of r(k)i+1 is zero.

Choosing x(k)i+1 so that one coordinate of the residual vector is zero, however, is not
necessarily the most efficient way to reduce the norm of the vector r(k)i+1. If we modify the
Gauss-Seidel procedure, as given by Eq. (7.16), to

x(k)i = x(k−1)
i + ω r(k)ii

aii
, (7.17)

then for certain choices of positive ω we can reduce the norm of the residual vector and
obtain significantly faster convergence.

Methods involving Eq. (7.17) are called relaxation methods. For choices of ω with
0 < ω < 1, the procedures are called under-relaxation methods. We will be interested
in choices of ω with 1 < ω, and these are called over-relaxation methods. They are
used to accelerate the convergence for systems that are convergent by the Gauss-Seidel
technique. The methods are abbreviated SOR, for Successive Over-Relaxation, and are
particularly useful for solving the linear systems that occur in the numerical solution of
certain partial-differential equations.

Before illustrating the advantages of the SOR method, we note that by using Eq. (7.14),
we can reformulate Eq. (7.17) for calculation purposes as

x(k)i = (1− ω)x(k−1)
i + ω

aii

⎡
⎣bi −

i−1∑
j=1

ai jx
(k)
j −

n∑
j=i+1

ai jx
(k−1)
j

⎤
⎦ .

To determine the matrix form of the SOR method, we rewrite this as

aiix
(k)
i + ω

i−1∑
j=1

ai jx
(k)
j = (1− ω)aiix

(k−1)
i − ω

n∑
j=i+1

ai jx
(k−1)
j + ωbi,

so that in vector form, we have

(D− ωL)x(k) = [(1− ω)D+ ωU]x(k−1) + ωb.

That is,

x(k) = (D− ωL)−1[(1− ω)D+ ωU]x(k−1) + ω(D− ωL)−1b. (7.18)

Letting Tω = (D − ωL)−1[(1 − ω)D + ωU] and cω = ω(D − ωL)−1b, gives the SOR
technique the form

x(k) = Tωx(k−1) + cω. (7.19)

Example 1 The linear system Ax = b given by

4x1 + 3x2 = 24,

3x1 + 4x2 − x3 = 30,

− x2 + 4x3 = −24,

has the solution (3, 4,−5)t . Compare the iterations from the Gauss-Seidel method and the
SOR method with ω = 1.25 using x(0) = (1, 1, 1)t for both methods.
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Solution For each k = 1, 2, . . . , the equations for the Gauss-Seidel method are

x(k)1 = −0.75x(k−1)
2 + 6,

x(k)2 = −0.75x(k)1 + 0.25x(k−1)
3 + 7.5,

x(k)3 = 0.25x(k)2 − 6,

and the equations for the SOR method with ω = 1.25 are

x(k)1 = −0.25x(k−1)
1 − 0.9375x(k−1)

2 + 7.5,

x(k)2 = −0.9375x(k)1 − 0.25x(k−1)
2 + 0.3125x(k−1)

3 + 9.375,

x(k)3 = 0.3125x(k)2 − 0.25x(k−1)
3 − 7.5.

The first seven iterates for each method are listed in Tables 7.3 and 7.4. For the iterates
to be accurate to seven decimal places, the Gauss-Seidel method requires 34 iterations, as
opposed to 14 iterations for the SOR method with ω = 1.25.

Table 7.3

k 0 1 2 3 4 5 6 7

x(k)1 1 5.250000 3.1406250 3.0878906 3.0549316 3.0343323 3.0214577 3.0134110
x(k)2 1 3.812500 3.8828125 3.9267578 3.9542236 3.9713898 3.9821186 3.9888241
x(k)3 1 −5.046875 −5.0292969 −5.0183105 −5.0114441 −5.0071526 −5.0044703 −5.0027940

Table 7.4

k 0 1 2 3 4 5 6 7

x(k)1 1 6.312500 2.6223145 3.1333027 2.9570512 3.0037211 2.9963276 3.0000498
x(k)2 1 3.5195313 3.9585266 4.0102646 4.0074838 4.0029250 4.0009262 4.0002586
x(k)3 1 −6.6501465 −4.6004238 −5.0966863 −4.9734897 −5.0057135 −4.9982822 −5.0003486

An obvious question to ask is how the appropriate value of ω is chosen when the SOR
method is used. Although no complete answer to this question is known for the general
n× n linear system, the following results can be used in certain important situations.

Theorem 7.24 (Kahan)
If aii 	= 0, for each i = 1, 2, . . . , n, then ρ(Tω) ≥ |ω−1|. This implies that the SOR method
can converge only if 0 < ω < 2.

The proof of this theorem is considered in Exercise 9. The proof of the next two results
can be found in [Or2], pp. 123–133. These results will be used in Chapter 12.

Theorem 7.25 ( Ostrowski-Reich)
If A is a positive definite matrix and 0 < ω < 2, then the SOR method converges for any
choice of initial approximate vector x(0).
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466 C H A P T E R 7 Iterative Techniques in Matrix Algebra

Theorem 7.26 If A is positive definite and tridiagonal, then ρ(Tg) = [ρ(Tj)]2 < 1, and the optimal choice
of ω for the SOR method is

ω = 2

1+√
1− [ρ(Tj)]2

.

With this choice of ω, we have ρ(Tω) = ω − 1.

Example 2 Find the optimal choice of ω for the SOR method for the matrix

A =
⎡
⎣ 4 3 0

3 4 −1
0 −1 4

⎤
⎦ .

Solution This matrix is clearly tridiagonal, so we can apply the result in Theorem 7.26 if we
can also who that it is positive definite. Because the matrix is symmetric, Theorem 6.24 on
page 416 states that it is positive definite if and only if all its leading principle submatrices
has a positive determinant. This is easily seen to be the case because

det(A) = 24, det

([
4 3
3 4

])
= 7, and det ([4]) = 4.

Because

Tj = D−1(L + U) =
⎡
⎢⎣

1
4 0 0

0 1
4 0

0 0 1
4

⎤
⎥⎦
⎡
⎣ 0 −3 0
−3 0 1

0 1 0

⎤
⎦ =

⎡
⎣ 0 −0.75 0
−0.75 0 0.25

0 0.25 0

⎤
⎦ ,

we have

Tj − λI =
⎡
⎣ −λ −0.75 0
−0.75 −λ 0.25

0 0.25 −λ

⎤
⎦ ,

so

det(Tj − λI) = −λ(λ2 − 0.625).

Thus

ρ(Tj) =
√

0.625

and

ω = 2

1+√
1− [ρ(Tj)]2

= 2

1+√1− 0.625
≈ 1.24.

This explains the rapid convergence obtained in Example 1 when using ω = 1.25.

We close this section with Algorithm 7.3 for the SOR method.
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ALGORITHM

7.3
SOR

To solve Ax = b given the parameter ω and an initial approximation x(0):

INPUT the number of equations and unknowns n; the entries ai j, 1 ≤ i, j ≤ n, of the
matrix A; the entries bi, 1 ≤ i ≤ n, of b; the entries XOi, 1 ≤ i ≤ n, of XO = x(0); the
parameter ω; tolerance TOL; maximum number of iterations N .

OUTPUT the approximate solution x1, . . . , xn or a message that the number of iterations
was exceeded.

Step 1 Set k = 1.

Step 2 While (k ≤ N) do Steps 3–6.

Step 3 For i = 1, . . . , n

set xi = (1− ω)XOi + 1

aii

[
ω
(
−∑i−1

j=1 ai jxj −∑n
j=i+1 ai jXOj + bi

)]
.

Step 4 If ||x − XO|| < TOL then OUTPUT (x1, . . . , xn);
(The procedure was successful.)
STOP.

Step 5 Set k = k + 1.

Step 6 For i = 1, . . . , n set XOi = xi.

Step 7 OUTPUT (‘Maximum number of iterations exceeded’);
(The procedure was successful.)
STOP.

The NumericalAnalysis subpackage of the Maple Student package implements the SOR
method in a manner similar to that of the Jacobi and Gauss-Seidel methods. The SOR results
in Table 7.4 are obtained by loading both NumericalAnalysis and LinearAlgebra, the matrix
A, the vector b = [24, 30,−24]t , and then using the command

IterativeApproximate(A, b, initialapprox = Vector([1., 1., 1., 1.]), tolerance = 10−3,
maxiterations = 20, stoppingcriterion = relative(infinity), method = SOR(1.25),
output = approximates)

The input method = SOR(1.25) indicates that the SOR method should use the value ω =
1.25.

E X E R C I S E S E T 7.4

1. Find the first two iterations of the SOR method with ω = 1.1 for the following linear systems, using
x(0) = 0:

a. 3x1 − x2 + x3 = 1,

3x1 + 6x2 + 2x3 = 0,

3x1 + 3x2 + 7x3 = 4.

b. 10x1 − x2 = 9,

−x1 + 10x2 − 2x3 = 7,

− 2x2 + 10x3 = 6.

c. 10x1 + 5x2 = 6,

5x1 + 10x2 − 4x3 = 25,

− 4x2 + 8x3 − x4 = −11,

− x3 + 5x4 = −11.

d. 4x1 + x2 + x3 + x5 = 6,

−x1 − 3x2 + x3 + x4 = 6,

2x1 + x2 + 5x3 − x4 − x5 = 6,

−x1 − x2 − x3 + 4x4 = 6,

2x2 − x3 + x4 + 4x5 = 6.
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2. Find the first two iterations of the SOR method with ω = 1.1 for the following linear systems, using
x(0) = 0:

a. 4x1 + x2 − x3 = 5,

−x1 + 3x2 + x3 = −4,

2x1 + 2x2 + 5x3 = 1.

b. −2x1+ x2 + 1
2 x3 = 4,

x1−2x2 − 1
2 x3 = −4,

x2 + 2x3 = 0.

c. 4x1 + x2 − x3 + x4 = −2,

x1 + 4x2 − x3 − x4 = −1,

−x1 − x2 + 5x3 + x4 = 0,

x1 − x2 + x3 + 3x4 = 1.

d. 4x1 − x2 = 0,

−x1 + 4x2 − x3 = 5,

− x2 + 4x3 = 0,

+ 4x4 − x5 = 6,

− x4 + 4x5 − x6 = −2,

− x5 + 4x6 = 6.

3. Repeat Exercise 1 using ω = 1.3.

4. Repeat Exercise 2 using ω = 1.3.

5. Use the SOR method with ω = 1.2 to solve the linear systems in Exercise 1 with a tolerance
TOL = 10−3 in the l∞ norm.

6. Use the SOR method with ω = 1.2 to solve the linear systems in Exercise 2 with a tolerance
TOL = 10−3 in the l∞ norm.

7. Determine which matrices in Exercise 1 are tridiagonal and positive definite. Repeat Exercise 1 for
these matrices using the optimal choice of ω.

8. Determine which matrices in Exercise 2 are tridiagonal and positive definite. Repeat Exercise 2 for
these matrices using the optimal choice of ω.

9. Prove Kahan’s Theorem 7.24. [Hint: If λ1, . . . , λn are eigenvalues of Tω, then det Tω = ∏n
i=1 λi.

Since det D−1 = det(D − ωL)−1 and the determinant of a product of matrices is the product of the
determinants of the factors, the result follows from Eq. (7.18).]

10. The forces on the bridge truss described in the opening to this chapter satisfy the equations in the
following table:

Joint Horizontal Component Vertical Component

① −F1 +
√

2
2 f1 + f2 = 0

√
2

2 f1 − F2 = 0

② −
√

2
2 f1 +

√
3

2 f4 = 0 −
√

2
2 f1 − f3 − 1

2f4 = 0

③ −f2 + f5 = 0 f3 − 10,000 = 0

④ −
√

3
2 f4 − f5 = 0 1

2f4 − F3 = 0

This linear system can be placed in the matrix form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0
√

2
2 1 0 0 0

0 −1 0
√

2
2 0 0 0 0

0 0 −1 0 0 0 1
2 0

0 0 0 −
√

2
2 0 −1 − 1

2 0

0 0 0 0 −1 0 0 1

0 0 0 0 0 1 0 0

0 0 0 −
√

2
2 0 0

√
3

2 0

0 0 0 0 0 0 −
√

3
2 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1

F2

F3

f1

f2

f3

f4

f5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0

10,000
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

a. Explain why the system of equations was reordered.

b. Approximate the solution of the resulting linear system to within 10−2 in the l∞ norm using as
initial approximation the vector all of whose entries are 1s and the SOR method with ω = 1.25.
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