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Suppose C = 0.3 farads, R = 1.4 ohms, L = 1.7 henries, and the voltage is given by

E(t) = e−0.06π t sin(2t − π).
If i(0) = 0, find the current i for the values t = 0.1 j, where j = 0, 1, . . . , 100.

17. In a book entitled Looking at History Through Mathematics, Rashevsky [Ra], pp. 103–110, considers
a model for a problem involving the production of nonconformists in society. Suppose that a society
has a population of x(t) individuals at time t, in years, and that all nonconformists who mate with
other nonconformists have offspring who are also nonconformists, while a fixed proportion r of all
other offspring are also nonconformist. If the birth and death rates for all individuals are assumed to
be the constants b and d, respectively, and if conformists and nonconformists mate at random, the
problem can be expressed by the differential equations

dx(t)

dt
= (b− d)x(t) and

dxn(t)

dt
= (b− d)xn(t)+ rb(x(t)− xn(t)),

where xn(t) denotes the number of nonconformists in the population at time t.

a. Suppose the variable p(t) = xn(t)/x(t) is introduced to represent the proportion of noncon-
formists in the society at time t. Show that these equations can be combined and simplified to
the single differential equation

dp(t)

dt
= rb(1− p(t)).

b. Assuming that p(0) = 0.01, b = 0.02, d = 0.015, and r = 0.1, approximate the solution p(t)
from t = 0 to t = 50 when the step size is h = 1 year.

c. Solve the differential equation for p(t) exactly, and compare your result in part (b) when t = 50
with the exact value at that time.

5.3 Higher-Order Taylor Methods

Since the object of a numerical techniques is to determine accurate approximations with
minimal effort, we need a means for comparing the efficiency of various approximation
methods. The first device we consider is called the local truncation error of the method.

The local truncation error at a specified step measures the amount by which the exact
solution to the differential equation fails to satisfy the difference equation being used for
the approximation at that step. This might seem like an unlikely way to compare the error
of various methods. We really want to know how well the approximations generated by the
methods satisfy the differential equation, not the other way around. However, we don’t know
the exact solution so we cannot generally determine this, and the local truncation will serve
quite well to determine not only the local error of a method but the actual approximation
error.

Consider the initial value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α.

Definition 5.11 The difference method

w0 = α
wi+1 = wi + hφ(ti,wi), for each i = 0, 1, . . . , N − 1,

has local truncation error

τi+1(h) = yi+1 − (yi + hφ(ti, yi))

h
= yi+1 − yi

h
− φ(ti, yi),
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5.3 Higher-Order Taylor Methods 277

for each i = 0, 1, . . . , N − 1, where yi and yi+1 denote the solution at ti and ti+1,
respectively.

For example, Euler’s method has local truncation error at the ith step

τi+1(h) = yi+1 − yi

h
− f (ti, yi), for each i = 0, 1, . . . , N − 1.

This error is a local error because it measures the accuracy of the method at a specific
step, assuming that the method was exact at the previous step. As such, it depends on the
differential equation, the step size, and the particular step in the approximation.

By considering Eq. (5.7) in the previous section, we see that Euler’s method has

τi+1(h) = h

2
y′′(ξi), for some ξi in (ti, ti+1).

When y′′(t) is known to be bounded by a constant M on [a, b], this implies

|τi+1(h)| ≤ h

2
M,

so the local truncation error in Euler’s method is O(h).
One way to select difference-equation methods for solving ordinary differential equa-

tions is in such a manner that their local truncation errors are O(hp) for as large a value
of p as possible, while keeping the number and complexity of calculations of the methods
within a reasonable bound.

Since Euler’s method was derived by using Taylor’s Theorem with n = 1 to approximate
the solution of the differential equation, our first attempt to find methods for improving the
convergence properties of difference methods is to extend this technique of derivation to
larger values of n.

The methods in this section use
Taylor polynomials and the
knowledge of the derivative at a
node to approximate the value of
the function at a new node.

Suppose the solution y(t) to the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

has (n+1) continuous derivatives. If we expand the solution, y(t), in terms of its nth Taylor
polynomial about ti and evaluate at ti+1, we obtain

y(ti+1) = y(ti)+ hy′(ti)+ h2

2
y′′(ti)+ · · · + hn

n! y
(n)(ti)+ hn+1

(n+ 1)!y
(n+1)(ξi), (5.15)

for some ξi in (ti, ti+1).
Successive differentiation of the solution, y(t), gives

y′(t) = f (t, y(t)), y′′(t) = f ′(t, y(t)), and, generally, y(k)(t) = f (k−1)(t, y(t)).

Substituting these results into Eq. (5.15) gives

y(ti+1) = y(ti)+ hf (ti, y(ti))+ h2

2
f ′(ti, y(ti))+ · · · (5.16)

+ hn

n! f
(n−1)(ti, y(ti))+ hn+1

(n+ 1)!f
(n)(ξi, y(ξi)).

The difference-equation method corresponding to Eq. (5.16) is obtained by deleting
the remainder term involving ξi.
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278 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

Taylor method of order n

w0 = α,

wi+1 = wi + hT (n)(ti,wi), for each i = 0, 1, . . . , N − 1, (5.17)

where

T (n)(ti,wi) = f (ti,wi)+ h

2
f ′(ti,wi)+ · · · + hn−1

n! f
(n−1)(ti,wi).

Euler’s method is Taylor’s method of order one.

Example 1 Apply Taylor’s method of orders (a) two and (b) four with N = 10 to the initial-value
problem

y′ = y− t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Solution (a) For the method of order two we need the first derivative of f (t, y(t)) =
y(t)− t2 + 1 with respect to the variable t. Because y′ = y− t2 + 1 we have

f ′(t, y(t)) = d

dt
(y− t2 + 1) = y′ − 2t = y− t2 + 1− 2t,

so

T (2)(ti,wi) = f (ti,wi)+ h

2
f ′(ti,wi) = wi − t2

i + 1+ h

2
(wi − t2

i + 1− 2ti)

=
(

1+ h

2

)
(wi − t2

i + 1)− hti

Because N = 10 we have h = 0.2, and ti = 0.2i for each i = 1, 2, . . . , 10. Thus the
second-order method becomes

w0 = 0.5,

wi+1 = wi + h

[(
1+ h

2

) (
wi − t2

i + 1
)− hti

]

= wi + 0.2

[(
1+ 0.2

2

)
(wi − 0.04i2 + 1)− 0.04i

]

= 1.22wi − 0.0088i2 − 0.008i + 0.22.

The first two steps give the approximations

y(0.2) ≈ w1 = 1.22(0.5)− 0.0088(0)2 − 0.008(0)+ 0.22 = 0.83;

y(0.4) ≈ w2 = 1.22(0.83)− 0.0088(0.2)2 − 0.008(0.2)+ 0.22 = 1.2158

All the approximations and their errors are shown in Table 5.3

Table 5.3

Taylor
Order 2 Error

ti wi |y(ti)− wi|
0.0 0.500000 0
0.2 0.830000 0.000701
0.4 1.215800 0.001712
0.6 1.652076 0.003135
0.8 2.132333 0.005103
1.0 2.648646 0.007787
1.2 3.191348 0.011407
1.4 3.748645 0.016245
1.6 4.306146 0.022663
1.8 4.846299 0.031122
2.0 5.347684 0.042212

(b) For Taylor’s method of order four we need the first three derivatives of f (t, y(t))
with respect to t. Again using y′ = y− t2 + 1 we have

f ′(t, y(t)) = y− t2 + 1− 2t,

f ′′(t, y(t)) = d

dt
(y− t2 + 1− 2t) = y′ − 2t − 2

= y− t2 + 1− 2t − 2 = y− t2 − 2t − 1,
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5.3 Higher-Order Taylor Methods 279

and

f ′′′(t, y(t)) = d

dt
(y− t2 − 2t − 1) = y′ − 2t − 2 = y− t2 − 2t − 1,

so

T (4)(ti,wi) = f (ti,wi)+ h

2
f ′(ti,wi)+ h2

6
f ′′(ti,wi)+ h3

24
f ′′′(ti,wi)

= wi − t2
i + 1+ h

2
(wi − t2

i + 1− 2ti)+ h2

6
(wi − t2

i − 2ti − 1)

+ h3

24
(wi − t2

i − 2ti − 1)

=
(

1+ h

2
+ h2

6
+ h3

24

)
(wi − t2

i )−
(

1+ h

3
+ h2

12

)
(hti)

+ 1+ h

2
− h2

6
− h3

24
.

Hence Taylor’s method of order four is

w0 = 0.5,

wi+1 = wi + h

[(
1+ h

2
+ h2

6
+ h3

24

)
(wi − t2

i )−
(

1+ h

3
+ h2

12

)
hti

+ 1+ h

2
− h2

6
− h3

24

]
,

for i = 0, 1, . . . , N − 1.
Because N = 10 and h = 0.2 the method becomes

wi+1 = wi + 0.2

[(
1+ 0.2

2
+ 0.04

6
+ 0.008

24

)
(wi − 0.04i2)

−
(

1+ 0.2

3
+ 0.04

12

)
(0.04i)+ 1+ 0.2

2
− 0.04

6
− 0.008

24

]

= 1.2214wi − 0.008856i2 − 0.00856i + 0.2186,

for each i = 0, 1, . . . , 9. The first two steps give the approximations

y(0.2) ≈ w1 = 1.2214(0.5)− 0.008856(0)2 − 0.00856(0)+ 0.2186 = 0.8293;

y(0.4) ≈ w2 = 1.2214(0.8293)− 0.008856(0.2)2 − 0.00856(0.2)+ 0.2186 = 1.214091

All the approximations and their errors are shown in Table 5.4.

Table 5.4

Taylor
Order 4 Error

ti wi |y(ti)− wi|
0.0 0.500000 0
0.2 0.829300 0.000001
0.4 1.214091 0.000003
0.6 1.648947 0.000006
0.8 2.127240 0.000010
1.0 2.640874 0.000015
1.2 3.179964 0.000023
1.4 3.732432 0.000032
1.6 4.283529 0.000045
1.8 4.815238 0.000062
2.0 5.305555 0.000083

Compare these results with those of Taylor’s method of order 2 in Table 5.4 and you
will see that the fourth-order results are vastly superior.

The results from Table 5.4 indicate the Taylor’s method of order 4 results are quite
accurate at the nodes 0.2, 0.4, etc. But suppose we need to determine an approximation to
an intermediate point in the table, for example, at t = 1.25. If we use linear interpolation
on the Taylor method of order four approximations at t = 1.2 and t = 1.4, we have

y(1.25) ≈
(

1.25− 1.4

1.2− 1.4

)
3.1799640+

(
1.25− 1.2

1.4− 1.2

)
3.7324321 = 3.3180810.
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280 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

The true value is y(1.25) = 3.3173285, so this approximation has an error of 0.0007525,
which is nearly 30 times the average of the approximation errors at 1.2 and 1.4.

We can significantly improve the approximation by using cubic Hermite interpolation.
To determine this approximation for y(1.25) requires approximations to y′(1.2) and y′(1.4)
as well as approximations to y(1.2) and y(1.4). However, the approximations for y(1.2) and
y(1.4) are in the table, and the derivative approximations are available from the differential
equation, because y′(t) = f (t, y(t)). In our example y′(t) = y(t)− t2 + 1, so

y′(1.2) = y(1.2)− (1.2)2 + 1 ≈ 3.1799640− 1.44+ 1 = 2.7399640

and

y′(1.4) = y(1.4)− (1.4)2 + 1 ≈ 3.7324327− 1.96+ 1 = 2.7724321.

Hermite interpolation requires
both the value of the function and
its derivative at each node. This
makes it a natural interpolation
method for approximating
differential equations since these
data are all available.

The divided-difference procedure in Section 3.4 gives the information in Table 5.5.
The underlined entries come from the data, and the other entries use the divided-difference
formulas.

Table 5.5 1.2 3.1799640
2.7399640

1.2 3.1799640 0.1118825
2.7623405 −0.3071225

1.4 3.7324321 0.0504580
2.7724321

1.4 3.7324321

The cubic Hermite polynomial is

y(t) ≈ 3.1799640+ (t − 1.2)2.7399640+ (t − 1.2)20.1118825

+ (t − 1.2)2(t − 1.4)(−0.3071225),

so

y(1.25) ≈ 3.1799640+ 0.1369982+ 0.0002797+ 0.0001152 = 3.3173571,

a result that is accurate to within 0.0000286. This is about the average of the errors at 1.2
and at 1.4, and only 4% of the error obtained using linear interpolation. This improvement
in accuracy certainly justifies the added computation required for the Hermite method.

Theorem 5.12 If Taylor’s method of order n is used to approximate the solution to

y′(t) = f (t, y(t)), a ≤ t ≤ b, y(a) = α,

with step size h and if y ∈ Cn+1[a, b], then the local truncation error is O(hn).

Proof Note that Eq. (5.16) on page 277 can be rewritten

yi+1 − yi − hf (ti, yi)− h2

2
f ′(ti, yi)− · · · − hn

n! f
(n−1)(ti, yi) = hn+1

(n+ 1)!f
(n)(ξi, y(ξi)),

for some ξi in (ti, ti+1). So the local truncation error is

τi+1(h) = yi+1 − yi

h
− T (n)(ti, yi) = hn

(n+ 1)!f
(n)(ξi, y(ξi)),

for each i = 0, 1, . . . , N−1. Since y ∈ Cn+1[a, b], we have y(n+1)(t) = f (n)(t, y(t)) bounded
on [a, b] and τi(h) = O(hn), for each i = 1, 2, . . . , N .
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5.3 Higher-Order Taylor Methods 281

Taylor’s methods are options within the Maple command InitialValueProblem. The
form and output for Taylor’s methods are the same as available under Euler’s method, as
discussed in Section 5.1. To obtain Taylor’s method of order 2 for the problem in Example 1,
first load the package and the differential equation.

with(Student[NumericalAnalysis]) : deq := diff(y(t), t) = y(t)− t2 + 1

Then issue

C := InitialValueProblem(deq, y(0) = 0.5, t = 2, method = taylor, order = 2,
numsteps = 10, output = information, digits = 8)

Maple responds with an array of data similar to that produced with Euler’s method. Double
clicking on the output will bring up a table that gives the values of ti, actual solution values
y(ti), the Taylor approximations wi, and the absolute errors | y(ti)− wi|. These agree with
the values in Table 5.3.

To print the table issue the commands

for k from 1 to 12 do
print(C[k, 1], C[k, 2], C[k, 3], C[k, 4])
end do

E X E R C I S E S E T 5.3

1. Use Taylor’s method of order two to approximate the solutions for each of the following initial-value
problems.

a. y′ = te3t − 2y, 0 ≤ t ≤ 1, y(0) = 0, with h = 0.5

b. y′ = 1+ (t − y)2, 2 ≤ t ≤ 3, y(2) = 1, with h = 0.5

c. y′ = 1+ y/t, 1 ≤ t ≤ 2, y(1) = 2, with h = 0.25

d. y′ = cos 2t + sin 3t, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.25

2. Use Taylor’s method of order two to approximate the solutions for each of the following initial-value
problems.

a. y′ = et−y, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.5

b. y′ = 1+ t

1+ y
, 1 ≤ t ≤ 2, y(1) = 2, with h = 0.5

c. y′ = −y + ty1/2, 2 ≤ t ≤ 3, y(2) = 2, with h = 0.25

d. y′ = t−2(sin 2t − 2ty), 1 ≤ t ≤ 2, y(1) = 2, with h = 0.25

3. Repeat Exercise 1 using Taylor’s method of order four.

4. Repeat Exercise 2 using Taylor’s method of order four.

5. Use Taylor’s method of order two to approximate the solution for each of the following initial-value
problems.

a. y′ = y/t − (y/t)2, 1 ≤ t ≤ 1.2, y(1) = 1, with h = 0.1

b. y′ = sin t + e−t , 0 ≤ t ≤ 1, y(0) = 0, with h = 0.5

c. y′ = (y2 + y)/t, 1 ≤ t ≤ 3, y(1) = −2, with h = 0.5

d. y′ = −ty+ 4ty−1, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.25

6. Use Taylor’s method of order two to approximate the solution for each of the following initial-value
problems.

a. y′ = 2− 2ty

t2 + 1
, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.1

b. y′ = y2

1+ t
, 1 ≤ t ≤ 2, y(1) = −(ln 2)−1, with h = 0.1
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282 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

c. y′ = (y2 + y)/t, 1 ≤ t ≤ 3, y(1) = −2, with h = 0.2

d. y′ = −ty+ 4t/y, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.1

7. Repeat Exercise 5 using Taylor’s method of order four.

8. Repeat Exercise 6 using Taylor’s method of order four.

9. Given the initial-value problem

y′ = 2

t
y+ t2et , 1 ≤ t ≤ 2, y(1) = 0,

with exact solution y(t) = t2(et − e):

a. Use Taylor’s method of order two with h = 0.1 to approximate the solution, and compare it with
the actual values of y.

b. Use the answers generated in part (a) and linear interpolation to approximate y at the following
values, and compare them to the actual values of y.
i. y(1.04) ii. y(1.55) iii. y(1.97)

c. Use Taylor’s method of order four with h = 0.1 to approximate the solution, and compare it
with the actual values of y.

d. Use the answers generated in part (c) and piecewise cubic Hermite interpolation to approximate
y at the following values, and compare them to the actual values of y.
i. y(1.04) ii. y(1.55) iii. y(1.97)

10. Given the initial-value problem

y′ = 1

t2
− y

t
− y2, 1 ≤ t ≤ 2, y(1) = −1,

with exact solution y(t) = −1/t:

a. Use Taylor’s method of order two with h = 0.05 to approximate the solution, and compare it
with the actual values of y.

b. Use the answers generated in part (a) and linear interpolation to approximate the following values
of y, and compare them to the actual values.
i. y(1.052) ii. y(1.555) iii. y(1.978)

c. Use Taylor’s method of order four with h = 0.05 to approximate the solution, and compare it
with the actual values of y.

d. Use the answers generated in part (c) and piecewise cubic Hermite interpolation to approximate
the following values of y, and compare them to the actual values.
i. y(1.052) ii. y(1.555) iii. y(1.978)

11. A projectile of mass m = 0.11 kg shot vertically upward with initial velocity v(0) = 8 m/s is slowed
due to the force of gravity, Fg = −mg, and due to air resistance, Fr = −kv|v|, where g = 9.8 m/s2

and k = 0.002 kg/m. The differential equation for the velocity v is given by

mv′ = −mg− kv|v|.
a. Find the velocity after 0.1, 0.2, . . . , 1.0 s.

b. To the nearest tenth of a second, determine when the projectile reaches its maximum height and
begins falling.

12. Use the Taylor method of order two with h = 0.1 to approximate the solution to

y′ = 1+ t sin(ty), 0 ≤ t ≤ 2, y(0) = 0.

5.4 Runge-Kutta Methods

The Taylor methods outlined in the previous section have the desirable property of high-
order local truncation error, but the disadvantage of requiring the computation and evaluation
of the derivatives of f (t, y). This is a complicated and time-consuming procedure for most
problems, so the Taylor methods are seldom used in practice.
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