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c. y′ = (y2 + y)/t, 1 ≤ t ≤ 3, y(1) = −2, with h = 0.2

d. y′ = −ty+ 4t/y, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.1

7. Repeat Exercise 5 using Taylor’s method of order four.

8. Repeat Exercise 6 using Taylor’s method of order four.

9. Given the initial-value problem

y′ = 2

t
y+ t2et , 1 ≤ t ≤ 2, y(1) = 0,

with exact solution y(t) = t2(et − e):

a. Use Taylor’s method of order two with h = 0.1 to approximate the solution, and compare it with
the actual values of y.

b. Use the answers generated in part (a) and linear interpolation to approximate y at the following
values, and compare them to the actual values of y.
i. y(1.04) ii. y(1.55) iii. y(1.97)

c. Use Taylor’s method of order four with h = 0.1 to approximate the solution, and compare it
with the actual values of y.

d. Use the answers generated in part (c) and piecewise cubic Hermite interpolation to approximate
y at the following values, and compare them to the actual values of y.
i. y(1.04) ii. y(1.55) iii. y(1.97)

10. Given the initial-value problem

y′ = 1

t2
− y

t
− y2, 1 ≤ t ≤ 2, y(1) = −1,

with exact solution y(t) = −1/t:

a. Use Taylor’s method of order two with h = 0.05 to approximate the solution, and compare it
with the actual values of y.

b. Use the answers generated in part (a) and linear interpolation to approximate the following values
of y, and compare them to the actual values.
i. y(1.052) ii. y(1.555) iii. y(1.978)

c. Use Taylor’s method of order four with h = 0.05 to approximate the solution, and compare it
with the actual values of y.

d. Use the answers generated in part (c) and piecewise cubic Hermite interpolation to approximate
the following values of y, and compare them to the actual values.
i. y(1.052) ii. y(1.555) iii. y(1.978)

11. A projectile of mass m = 0.11 kg shot vertically upward with initial velocity v(0) = 8 m/s is slowed
due to the force of gravity, Fg = −mg, and due to air resistance, Fr = −kv|v|, where g = 9.8 m/s2

and k = 0.002 kg/m. The differential equation for the velocity v is given by

mv′ = −mg− kv|v|.
a. Find the velocity after 0.1, 0.2, . . . , 1.0 s.

b. To the nearest tenth of a second, determine when the projectile reaches its maximum height and
begins falling.

12. Use the Taylor method of order two with h = 0.1 to approximate the solution to

y′ = 1+ t sin(ty), 0 ≤ t ≤ 2, y(0) = 0.

5.4 Runge-Kutta Methods

The Taylor methods outlined in the previous section have the desirable property of high-
order local truncation error, but the disadvantage of requiring the computation and evaluation
of the derivatives of f (t, y). This is a complicated and time-consuming procedure for most
problems, so the Taylor methods are seldom used in practice.
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5.4 Runge-Kutta Methods 283

Runge-Kutta methods have the high-order local truncation error of the Taylor methods
but eliminate the need to compute and evaluate the derivatives of f (t, y). Before presenting
the ideas behind their derivation, we need to consider Taylor’s Theorem in two variables.
The proof of this result can be found in any standard book on advanced calculus (see, for
example, [Fu], p. 331).

In the later 1800s, Carl Runge
(1856–1927) used methods
similar to those in this section to
derive numerous formulas for
approximating the solution to
initial-value problems.

In 1901, Martin Wilhelm Kutta
(1867–1944) generalized the
methods that Runge developed in
1895 to incorporate systems of
first-order differential equations.
These techniques differ slightly
from those we currently call
Runge-Kutta methods.

Theorem 5.13 Suppose that f (t, y) and all its partial derivatives of order less than or equal to n + 1 are
continuous on D = {(t, y) | a ≤ t ≤ b, c ≤ y ≤ d}, and let (t0, y0) ∈ D. For every
(t, y) ∈ D, there exists ξ between t and t0 and μ between y and y0 with

f (t, y) = Pn(t, y)+ Rn(t, y),

where

Pn(t, y) = f (t0, y0)+
[
(t − t0)

∂f

∂t
(t0, y0)+ (y− y0)

∂f

∂y
(t0, y0)

]

+
[
(t − t0)2

2

∂2f

∂t2
(t0, y0)+ (t − t0)(y− y0)

∂2f

∂t∂y
(t0, y0)

+ (y− y0)
2

2

∂2f

∂y2
(t0, y0)

]
+ · · ·

+
⎡
⎣ 1

n!
n∑

j=0

(
n

j

)
(t − t0)

n−j(y− y0)
j ∂nf

∂tn−j∂y j
(t0, y0)

⎤
⎦

and

Rn(t, y) = 1

(n+ 1)!
n+1∑
j=0

(
n+ 1

j

)
(t − t0)

n+1−j(y− y0)
j ∂n+1f

∂tn+1−j∂y j
(ξ ,μ).

The function Pn(t, y) is called the nth Taylor polynomial in two variables for the
function f about (t0, y0), and Rn(t, y) is the remainder term associated with Pn(t, y).

Example 1 Use Maple to determine P2(t, y), the second Taylor polynomial about (2, 3) for the function

f (t, y) = exp

[
− (t − 2)2

4
− (y− 3)2

4

]
cos(2t + y− 7)

Solution To determine P2(t, y) we need the values of f and its first and second partial
derivatives at (2, 3). The evaluation of the function is easy

f (2, 3) = e
(
−02/4−02/4

)
cos(4+ 3− 7) = 1,

but the computations involved with the partial derivatives are quite tedious. However, higher
dimensional Taylor polynomials are available in the MultivariateCalculus subpackage of
the Student package, which is accessed with the command

with(Student[MultivariateCalculus])
The first option of the TaylorApproximation command is the function, the second specifies
the point (t0, y0) where the polynomial is centered, and the third specifies the degree of the
polynomial. So we issue the command
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TaylorApproximation

(
e−

(t−2)2
4 − (y−3)2

4 cos(2t + y− 7), [t, y] = [2, 3], 2

)
The response from this Maple command is the polynomial

1− 9

4
(t − 2)2 − 2(t − 2)(y− 3)− 3

4
(y− 3)2

A plot option is also available by adding a fourth option to the TaylorApproximation
command in the form output = plot. The plot in the default form is quite crude, however,
because not many points are plotted for the function and the polynomial. A better illustration
is seen in Figure 5.5.

Figure 5.5

y

f (t, y)
t

f(t, y) � exp {�(t � 2)2/4 � (y � 3)2/4} cos (2t � y � 7)

P2(t, y) � 1�     (t � 2)2 � 2(t � 2)(y � 3) �     (y � 3)29
4

3
4

The final parameter in this command indicates that we want the second multivariate
Taylor polynomial, that is, the quadratic polynomial. If this parameter is 2, we get the
quadratic polynomial, and if it is 0 or 1, we get the constant polynomial 1, because there are
no linear terms. When this parameter is omitted, it defaults to 6 and gives the sixth Taylor
polynomial.

Runge-Kutta Methods of OrderTwo

The first step in deriving a Runge-Kutta method is to determine values for a1,α1, and β1

with the property that a1f (t + α1, y+ β1) approximates

T (2)(t, y) = f (t, y)+ h

2
f ′(t, y),

with error no greater than O(h2), which is same as the order of the local truncation error for
the Taylor method of order two. Since

f ′(t, y) = df

dt
(t, y) = ∂f

∂t
(t, y)+ ∂f

∂y
(t, y) · y′(t) and y′(t) = f (t, y),
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we have

T (2)(t, y) = f (t, y)+ h

2

∂f

∂t
(t, y)+ h

2

∂f

∂y
(t, y) · f (t, y). (5.18)

Expanding f (t + α1, y+ β1) in its Taylor polynomial of degree one about (t, y) gives

a1f (t + α1, y+ β1) = a1f (t, y)+ a1α1
∂f

∂t
(t, y)

+ a1β1
∂f

∂y
(t, y)+ a1 · R1(t + α1, y+ β1), (5.19)

where

R1(t + α1, y+ β1) = α2
1

2

∂2f

∂t2
(ξ ,μ)+ α1β1

∂2f

∂t∂y
(ξ ,μ)+ β

2
1

2

∂2f

∂y2
(ξ ,μ), (5.20)

for some ξ between t and t + α1 and μ between y and y+ β1.
Matching the coefficients of f and its derivatives in Eqs. (5.18) and (5.19) gives the

three equations

f (t, y) : a1 = 1;
∂f

∂t
(t, y) : a1α1 = h

2
; and

∂f

∂y
(t, y) : a1β1 = h

2
f (t, y).

The parameters a1, α1, and β1 are therefore

a1 = 1, α1 = h

2
, and β1 = h

2
f (t, y),

so

T (2)(t, y) = f
(

t + h

2
, y+ h

2
f (t, y)

)
− R1

(
t + h

2
, y+ h

2
f (t, y)

)
,

and from Eq. (5.20),

R1

(
t + h

2
, y+ h

2
f (t, y)

)
= h2

8

∂2f

∂t2
(ξ ,μ)+ h2

4
f (t, y)

∂2f

∂t∂y
(ξ ,μ)

+ h2

8
(f (t, y))2

∂2f

∂y2
(ξ ,μ).

If all the second-order partial derivatives of f are bounded, then

R1

(
t + h

2
, y+ h

2
f (t, y)

)

is O(h2). As a consequence:

• The order of error for this new method is the same as that of the Taylor method of order
two.

The difference-equation method resulting from replacing T (2)(t, y) in Taylor’s method
of order two by f (t + (h/2), y+ (h/2)f (t, y)) is a specific Runge-Kutta method known as
the Midpoint method.
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Midpoint Method

w0 = α,

wi+1 = wi + hf

(
ti + h

2
,wi + h

2
f (ti,wi)

)
, for i = 0, 1, . . . , N − 1.

Only three parameters are present in a1f (t + α1, y + β1) and all are needed in the
match of T (2). So a more complicated form is required to satisfy the conditions for any of
the higher-order Taylor methods.

The most appropriate four-parameter form for approximating

T (3)(t, y) = f (t, y)+ h

2
f ′(t, y)+ h2

6
f ′′(t, y)

is

a1f (t, y)+ a2f (t + α2, y+ δ2f (t, y)); (5.21)

and even with this, there is insufficient flexibility to match the term

h2

6

[
∂f

∂y
(t, y)

]2

f (t, y),

resulting from the expansion of (h2/6)f ′′(t, y). Consequently, the best that can be obtained
from using (5.21) are methods with O(h2) local truncation error.

The fact that (5.21) has four parameters, however, gives a flexibility in their choice,
so a number of O(h2) methods can be derived. One of the most important is the Modified
Euler method, which corresponds to choosing a1 = a2 = 1

2 and α2 = δ2 = h. It has the
following difference-equation form.

Modified Euler Method

w0 = α,

wi+1 = wi + h

2
[f (ti,wi)+ f (ti+1,wi + hf (ti,wi))], for i = 0, 1, . . . , N − 1.

Example 2 Use the Midpoint method and the Modified Euler method with N = 10, h = 0.2, ti = 0.2i,
and w0 = 0.5 to approximate the solution to our usual example,

y′ = y− t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Solution The difference equations produced from the various formulas are

Midpoint method: wi+1 = 1.22wi − 0.0088i2 − 0.008i + 0.218;

Modified Euler method: wi+1 = 1.22wi − 0.0088i2 − 0.008i + 0.216,

for each i = 0, 1, . . . , 9. The first two steps of these methods give

Midpoint method: w1 = 1.22(0.5)− 0.0088(0)2 − 0.008(0)+ 0.218 = 0.828;

Modified Euler method: w1 = 1.22(0.5)− 0.0088(0)2 − 0.008(0)+ 0.216 = 0.826,
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and

Midpoint method: w2 = 1.22(0.828)− 0.0088(0.2)2 − 0.008(0.2)+ 0.218

= 1.21136;

Modified Euler method: w2 = 1.22(0.826)− 0.0088(0.2)2 − 0.008(0.2)+ 0.216

= 1.20692,

Table 5.6 lists all the results of the calculations. For this problem, the Midpoint method
is superior to the Modified Euler method.

Table 5.6 Midpoint Modified Euler
ti y(ti) Method Error Method Error

0.0 0.5000000 0.5000000 0 0.5000000 0
0.2 0.8292986 0.8280000 0.0012986 0.8260000 0.0032986
0.4 1.2140877 1.2113600 0.0027277 1.2069200 0.0071677
0.6 1.6489406 1.6446592 0.0042814 1.6372424 0.0116982
0.8 2.1272295 2.1212842 0.0059453 2.1102357 0.0169938
1.0 2.6408591 2.6331668 0.0076923 2.6176876 0.0231715
1.2 3.1799415 3.1704634 0.0094781 3.1495789 0.0303627
1.4 3.7324000 3.7211654 0.0112346 3.6936862 0.0387138
1.6 4.2834838 4.2706218 0.0128620 4.2350972 0.0483866
1.8 4.8151763 4.8009586 0.0142177 4.7556185 0.0595577
2.0 5.3054720 5.2903695 0.0151025 5.2330546 0.0724173

Runge-Kutta methods are also options within the Maple command InitialValueProblem.
The form and output for Runge-Kutta methods are the same as available under the Euler’s
and Taylor’s methods, as discussed in Sections 5.1 and 5.2.

Higher-Order Runge-Kutta Methods

The term T (3)(t, y) can be approximated with error O(h3) by an expression of the form

f (t + α1, y+ δ1f (t + α2, y+ δ2f (t, y))),

involving four parameters, the algebra involved in the determination of α1, δ1,α2, and δ2 is
quite involved. The most common O(h3) is Heun’s method, given by

w0 = α
wi+1 = wi + h

4

(
f (ti,wi)+ 3f

(
ti + 2h

3 ,wi + 2h
3 f

(
ti + h

3 ,wi + h
3f (ti,wi)

)))
,

for i = 0, 1, . . . , N − 1.

Karl Heun (1859–1929) was a
professor at the Technical
University of Karlsruhe. He
introduced this technique in a
paper published in 1900. [Heu]

Illustration Applying Heun’s method with N = 10, h = 0.2, ti = 0.2i, and w0 = 0.5 to approximate
the solution to our usual example,

y′ = y− t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.
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gives the values in Table 5.7. Note the decreased error throughout the range over the Midpoint
and Modified Euler approximations. �

Table 5.7 Heun’s
ti y(ti) Method Error

0.0 0.5000000 0.5000000 0
0.2 0.8292986 0.8292444 0.0000542
0.4 1.2140877 1.2139750 0.0001127
0.6 1.6489406 1.6487659 0.0001747
0.8 2.1272295 2.1269905 0.0002390
1.0 2.6408591 2.6405555 0.0003035
1.2 3.1799415 3.1795763 0.0003653
1.4 3.7324000 3.7319803 0.0004197
1.6 4.2834838 4.2830230 0.0004608
1.8 4.8151763 4.8146966 0.0004797
2.0 5.3054720 5.3050072 0.0004648

Runge-Kutta methods of order three are not generally used. The most common Runge-
Kutta method in use is of order four in difference-equation form, is given by the following.

Runge-Kutta Order Four
w0 = α,

k1 = hf (ti,wi),

k2 = hf

(
ti + h

2
,wi + 1

2
k1

)
,

k3 = hf

(
ti + h

2
,wi + 1

2
k2

)
,

k4 = hf (ti+1,wi + k3),

wi+1 = wi + 1

6
(k1 + 2k2 + 2k3 + k4),

for each i = 0, 1, . . . , N − 1. This method has local truncation error O(h4), provided the
solution y(t) has five continuous derivatives. We introduce the notation k1, k2, k3, k4 into
the method is to eliminate the need for successive nesting in the second variable of f (t, y).
Exercise 32 shows how complicated this nesting becomes.

Algorithm 5.2 implements the Runge-Kutta method of order four.

ALGORITHM

5.2
Runge-Kutta (Order Four)

To approximate the solution of the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

at (N + 1) equally spaced numbers in the interval [a, b]:

INPUT endpoints a, b; integer N ; initial condition α.

OUTPUT approximation w to y at the (N + 1) values of t.
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