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15. Let λ be an eigenvalue of the n× n matrix A and x 	= 0 be an associated eigenvector.

a. Show that λ is also an eigenvalue of At .

b. Show that for any integer k ≥ 1, λk is an eigenvalue of Ak with eigenvector x.

c. Show that if A−1 exists, then 1/λ is an eigenvalue of A−1 with eigenvector x.

d. Generalize parts (b) and (c) to (A−1)k for integers k ≥ 2.

e. Given the polynomial q(x) = q0 + q1x + · · · + qkxk , define q(A) to be the matrix q(A) =
q0I + q1A+ · · · + qkAk . Show that q(λ) is an eigenvalue of q(A) with eigenvector x.

f. Let α 	= λ be given. Show that if A − αI is nonsingular, then 1/(λ − α) is an eigenvalue of
(A− αI)−1 with eigenvector x.

16. Show that if A is symmetric, then ||A||2 = ρ(A).
17. In Exercise 15 of Section 6.3, we assumed that the contribution a female beetle of a certain type made

to the future years’ beetle population could be expressed in terms of the matrix

A =
⎡
⎣ 0 0 6

1
2 0 0
0 1

3 0

⎤
⎦ ,

where the entry in the ith row and jth column represents the probabilistic contribution of a beetle of
age j onto the next year’s female population of age i.

a. Does the matrix A have any real eigenvalues? If so, determine them and any associated eigen-
vectors.

b. If a sample of this species was needed for laboratory test purposes that would have a constant
proportion in each age group from year to year, what criteria could be imposed on the initial
population to ensure that this requirement would be satisfied?

18. Find matrices A and B for which ρ(A+B) > ρ(A)+ ρ(B). (This shows that ρ(A) cannot be a matrix
norm.)

19. Show that if || · || is any natural norm, then (||A−1||)−1 ≤ |λ| ≤ ||A|| for any eigenvalue λ of the
nonsingular matrix A.

7.3 The Jacobi and Gauss-Siedel Iterative Techniques

In this section we describe the Jacobi and the Gauss-Seidel iterative methods, classic
methods that date to the late eighteenth century. Iterative techniques are seldom used for
solving linear systems of small dimension since the time required for sufficient accuracy
exceeds that required for direct techniques such as Gaussian elimination. For large sys-
tems with a high percentage of 0 entries, however, these techniques are efficient in terms
of both computer storage and computation. Systems of this type arise frequently in circuit
analysis and in the numerical solution of boundary-value problems and partial-differential
equations.

An iterative technique to solve the n × n linear system Ax = b starts with an initial
approximation x(0) to the solution x and generates a sequence of vectors {x(k)}∞k=0 that
converges to x.

Jacobi’s Method

The Jacobi iterative method is obtained by solving the ith equation in Ax = b for xi to
obtain (provided aii 	= 0)

xi =
n∑

j=1
j 	=i

(
− ai jxj

aii

)
+ bi

aii
, for i = 1, 2, . . . , n.
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7.3 The Jacobi and Gauss-Siedel Iterative Techniques 451

For each k ≥ 1, generate the components x(k)i of x(k) from the components of x(k−1) by

x(k)i =
1

aii

⎡
⎢⎢⎣

n∑
j=1
j 	=i

(
−ai jx

(k−1)
j

)
+ bi

⎤
⎥⎥⎦ , for i = 1, 2, . . . , n. (7.5)

Carl Gustav Jacob Jacobi
(1804–1851) was initially
recognized for his work in the
area of number theory and elliptic
functions, but his mathematical
interests and abilities were very
broad. He had a strong
personality that was influential in
establishing a research-oriented
attitude that became the nucleus
of a revival of mathematics at
German universities in the 19th
century.

Example 1 The linear system Ax = b given by

E1 : 10x1 − x2 + 2x3 = 6,

E2 : −x1 + 11x2 − x3 + 3x4 = 25,

E3 : 2x1 − x2 + 10x3 − x4 = −11,

E4 : 3x2 − x3 + 8x4 = 15

has the unique solution x = (1, 2,−1, 1)t . Use Jacobi’s iterative technique to find approxi-
mations x(k) to x starting with x(0) = (0, 0, 0, 0)t until

‖x(k) − x(k−1)‖∞
‖x(k)‖∞ < 10−3.

Solution We first solve equation Ei for xi, for each i = 1, 2, 3, 4, to obtain

x1 = 1

10
x2 − 1

5
x3 + 3

5
,

x2 = 1

11
x1 + 1

11
x3 − 3

11
x4 + 25

11
,

x3 = −1

5
x1 + 1

10
x2 + 1

10
x4 − 11

10
,

x4 = − 3

8
x2 + 1

8
x3 + 15

8
.

From the initial approximation x(0) = (0, 0, 0, 0)t we have x(1) given by

x(1)1 =
1

10
x(0)2 −

1

5
x(0)3 + 3

5
= 0.6000,

x(1)2 =
1

11
x(0)1 + 1

11
x(0)3 −

3

11
x(0)4 +

25

11
= 2.2727,

x(1)3 = −
1

5
x(0)1 +

1

10
x(0)2 + 1

10
x(0)4 −

11

10
= −1.1000,

x(1)4 = − 3

8
x(0)2 +

1

8
x(0)3 + 15

8
= 1.8750.

Additional iterates, x(k) = (x(k)1 , x(k)2 , x(k)3 , x(k)4 )t , are generated in a similar manner and are
presented in Table 7.1.

Table 7.1

k 0 1 2 3 4 5 6 7 8 9 10

x(k)1 0.0000 0.6000 1.0473 0.9326 1.0152 0.9890 1.0032 0.9981 1.0006 0.9997 1.0001
x(k)2 0.0000 2.2727 1.7159 2.053 1.9537 2.0114 1.9922 2.0023 1.9987 2.0004 1.9998
x(k)3 0.0000 −1.1000 −0.8052 −1.0493 −0.9681 −1.0103 −0.9945 −1.0020 −0.9990 −1.0004 −0.9998
x(k)4 0.0000 1.8750 0.8852 1.1309 0.9739 1.0214 0.9944 1.0036 0.9989 1.0006 0.9998
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452 C H A P T E R 7 Iterative Techniques in Matrix Algebra

We stopped after ten iterations because

‖x(10) − x(9)‖∞
‖x(10)‖∞ = 8.0× 10−4

1.9998
< 10−3.

In fact, ‖x(10) − x‖∞ = 0.0002.

In general, iterative techniques for solving linear systems involve a process that converts
the system Ax = b into an equivalent system of the form x = Tx+ c for some fixed matrix
T and vector c. After the initial vector x(0) is selected, the sequence of approximate solution
vectors is generated by computing

x(k) = Tx(k−1) + c,

for each k = 1, 2, 3, . . .. This should be reminiscent of the fixed-point iteration studied in
Chapter 2.

The Jacobi method can be written in the form x(k) = Tx(k−1)+ c by splitting A into its
diagonal and off-diagonal parts. To see this, let D be the diagonal matrix whose diagonal
entries are those of A, −L be the strictly lower-triangular part of A, and −U be the strictly
upper-triangular part of A. With this notation,

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

⎤
⎥⎥⎥⎦

is split into

A =

⎡
⎢⎢⎢⎣

a11 0 . . . . . . . . .

. . . . . . . .0............

0 . . . . . . . . .

a22 . . . . . . . . .
0

0 . . . . . . . . .0 ann

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

0 . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .........

0

......

− a21 . . . . . . . . .−an1 . . .−an,n−1 0

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

0 . . . . . . . . . . . . . . .

.........

−a12 . . . . . . . . .

. . . . . −a1n........−an−1,n

0 . . . . . . . . . . . 0

⎤
⎥⎥⎥⎦

= D− L − U.

The equation Ax = b, or (D− L − U)x = b, is then transformed into

Dx = (L + U)x + b,

and, if D−1 exists, that is, if aii 	= 0 for each i, then

x = D−1(L + U)x + D−1b.

This results in the matrix form of the Jacobi iterative technique:

x(k) = D−1(L + U)x(k−1) + D−1b, k = 1, 2, . . . . (7.6)

Introducing the notation Tj = D−1(L + U) and cj = D−1b gives the Jacobi technique the
form

x(k) = Tjx(k−1) + cj. (7.7)

In practice, Eq. (7.5) is used in computation and Eq. (7.7) for theoretical purposes.
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7.3 The Jacobi and Gauss-Siedel Iterative Techniques 453

Example 2 Express the Jacobi iteration method for the linear system Ax = b given by

E1 : 10x1 − x2 + 2x3 = 6,

E2 : −x1 + 11x2 − x3 + 3x4 = 25,

E3 : 2x1 − x2 + 10x3 − x4 = −11,

E4 : 3x2 − x3 + 8x4 = 15

in the form x(k) = Tx(k−1) + c.

Solution We saw in Example 1 that the Jacobi method for this system has the form

x1 = 1

10
x2 − 1

5
x3 + 3

5
,

x2 = 1

11
x1 + 1

11
x3 − 3

11
x4 + 25

11
,

x3 = −1

5
x1 + 1

10
x2 + 1

10
x4 − 11

10
,

x4 = − 3

8
x2 + 1

8
x3 + 15

8
.

Hence we have

T =

⎡
⎢⎢⎢⎣

0 1
10 − 1

5 0
1
11 0 1

11 − 3
11

− 1
5

1
10 0 1

10

0 − 3
8

1
8 0

⎤
⎥⎥⎥⎦ and c =

⎡
⎢⎢⎢⎣

3
5
25
11

− 11
10

15
8

⎤
⎥⎥⎥⎦ .

Algorithm 7.1 implements the Jacobi iterative technique.

ALGORITHM

7.1
Jacobi Iterative

To solve Ax = b given an initial approximation x(0):

INPUT the number of equations and unknowns n; the entries ai j, 1 ≤ i, j ≤ n of the
matrix A; the entries bi, 1 ≤ i ≤ n of b; the entries XOi, 1 ≤ i ≤ n of XO = x(0); tolerance
TOL; maximum number of iterations N .

OUTPUT the approximate solution x1, . . . , xn or a message that the number of iterations
was exceeded.

Step 1 Set k = 1.

Step 2 While (k ≤ N) do Steps 3–6.

Step 3 For i = 1, . . . , n

set xi = 1

aii

[
−∑n

j=1
j 	=i
(ai jXOj)+ bi

]
.

Step 4 If ||x − XO|| < TOL then OUTPUT (x1, . . . , xn);
(The procedure was successful.)
STOP.

Step 5 Set k = k + 1.
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454 C H A P T E R 7 Iterative Techniques in Matrix Algebra

Step 6 For i = 1, . . . , n set XOi = xi.

Step 7 OUTPUT (‘Maximum number of iterations exceeded’);
(The procedure was successful.)
STOP.

Step 3 of the algorithm requires that aii 	= 0, for each i = 1, 2, . . . , n. If one of the aii

entries is 0 and the system is nonsingular, a reordering of the equations can be performed
so that no aii = 0. To speed convergence, the equations should be arranged so that aii is as
large as possible. This subject is discussed in more detail later in this chapter.

Another possible stopping criterion in Step 4 is to iterate until

‖x(k) − x(k−1)‖
‖x(k)‖

is smaller than some prescribed tolerance. For this purpose, any convenient norm can be
used, the usual being the l∞ norm.

The NumericalAnalysis subpackage of the Maple Student package implements the
Jacobi iterative method. To illustrate this with our example we first enter both Numerical-
Analysis and LinearAlgebra.

with(Student[NumericalAnalysis]): with(LinearAlgebra):

Colons are used at the end of the commands to suppress output for both packages. Enter
the matrix with

A := Matrix([[10,−1, 2, 0, 6], [−1, 11,−1, 3, 25], [2,−1, 10,−1,−11], [0, 3,−1, 8, 15]])
The following command gives a collection of output that is in agreement with the results in
Table 7.1.

IterativeApproximate(A, initialapprox = Vector([0., 0., 0., 0.]), tolerance = 10−3,
maxiterations = 20, stoppingcriterion = relative(infinity), method = jacobi,
output = approximates)

If the option output = approximates is omitted, then only the final approximation result is
output. Notice that the initial approximations was specified by [0., 0., 0., 0.], with decimal
points placed after the entries. This was done so that Maple will give the results as 10-digit
decimals. If the specification had simply been [0, 0, 0, 0], the output would have been given
in fractional form.

The Gauss-Seidel Method

A possible improvement in Algorithm 7.1 can be seen by reconsidering Eq. (7.5). The
components of x(k−1) are used to compute all the components x(k)i of x(k). But, for i > 1,
the components x(k)1 , . . . , x(k)i−1 of x(k) have already been computed and are expected to be

better approximations to the actual solutions x1, . . . , xi−1 than are x(k−1)
1 , . . . , x(k−1)

i−1 . It seems

reasonable, then, to compute x(k)i using these most recently calculated values. That is, to use

x(k)i =
1

aii

⎡
⎣− i−1∑

j=1

(ai jx
(k)
j )−

n∑
j=i+1

(ai jx
(k−1)
j )+ bi

⎤
⎦ , (7.8)

for each i = 1, 2, . . . , n, instead of Eq. (7.5). This modification is called the Gauss-Seidel
iterative technique and is illustrated in the following example.

Phillip Ludwig Seidel
(1821–1896) worked as an
assistant to Jacobi solving
problems on systems of linear
equations that resulted from
Gauss’s work on least squares.
These equations generally had
off-diagonal elements that were
much smaller than those on the
diagonal, so the iterative methods
were particularly effective. The
iterative techniques now known
as Jacobi and Gauss-Seidel were
both known to Gauss before
being applied in this situation, but
Gauss’s results were not often
widely communicated.
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Example 3 Use the Gauss-Seidel iterative technique to find approximate solutions to

10x1 − x2 + 2x3 = 6,

−x1 + 11x2 − x3 + 3x4 = 25,

2x1 − x2 + 10x3 − x4 = −11,

3x2 − x3 + 8x4 = 15

starting with x = (0, 0, 0, 0)t and iterating until

‖x(k) − x(k−1)‖∞
‖x(k)‖∞ < 10−3.

Solution The solution x = (1, 2,−1, 1)t was approximated by Jacobi’s method in Example
1. For the Gauss-Seidel method we write the system, for each k = 1, 2, . . . as

x(k)1 =
1

10
x(k−1)

2 − 1

5
x(k−1)

3 + 3

5
,

x(k)2 =
1

11
x(k)1 + 1

11
x(k−1)

3 − 3

11
x(k−1)

4 + 25

11
,

x(k)3 = −
1

5
x(k)1 +

1

10
x(k)2 + 1

10
x(k−1)

4 − 11

10
,

x(k)4 = − 3

8
x(k)2 + 1

8
x(k)3 + 15

8
.

When x(0) = (0, 0, 0, 0)t , we have x(1) = (0.6000, 2.3272,−0.9873, 0.8789)t . Subsequent
iterations give the values in Table 7.2.

Table 7.2 k 0 1 2 3 4 5

x(k)1 0.0000 0.6000 1.030 1.0065 1.0009 1.0001
x(k)2 0.0000 2.3272 2.037 2.0036 2.0003 2.0000
x(k)3 0.0000 −0.9873 −1.014 −1.0025 −1.0003 −1.0000
x(k)4 0.0000 0.8789 0.9844 0.9983 0.9999 1.0000

Because

‖x(5) − x(4)‖∞
‖x(5)‖∞ = 0.0008

2.000
= 4× 10−4,

x(5) is accepted as a reasonable approximation to the solution. Note that Jacobi’s method in
Example 1 required twice as many iterations for the same accuracy.

To write the Gauss-Seidel method in matrix form, multiply both sides of Eq. (7.8) by
aii and collect all kth iterate terms, to give

ai1x(k)1 + ai2x(k)2 + · · · + aiix
(k)
i = −ai,i+1x(k−1)

i+1 − · · · − ainx(k−1)
n + bi,

for each i = 1, 2, . . . , n. Writing all n equations gives

a11x(k)1 = −a12x(k−1)
2 − a13x(k−1)

3 − · · · − a1nx(k−1)
n + b1,

a21x(k)1 + a22x(k)2 = −a23x(k−1)
3 − · · · − a2nx(k−1)

n + b2,
...

an1x(k)1 + an2x(k)2 + · · · + annx(k)n = bn;
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with the definitions of D, L, and U given previously, we have the Gauss-Seidel method
represented by

(D− L)x(k) = Ux(k−1) + b

and

x(k) = (D− L)−1Ux(k−1) + (D− L)−1b, for each k = 1, 2, . . . . (7.9)

Letting Tg = (D−L)−1U and cg = (D−L)−1b, gives the Gauss-Seidel technique the form

x(k) = Tgx(k−1) + cg. (7.10)

For the lower-triangular matrix D − L to be nonsingular, it is necessary and sufficient that
aii 	= 0, for each i = 1, 2, . . . , n.

Algorithm 7.2 implements the Gauss-Seidel method.

ALGORITHM

7.2
Gauss-Seidel Iterative

To solve Ax = b given an initial approximation x(0):

INPUT the number of equations and unknowns n; the entries ai j, 1 ≤ i, j ≤ n of the
matrix A; the entries bi, 1 ≤ i ≤ n of b; the entries XOi, 1 ≤ i ≤ n of XO = x(0); tolerance
TOL; maximum number of iterations N .

OUTPUT the approximate solution x1, . . . , xn or a message that the number of iterations
was exceeded.

Step 1 Set k = 1.

Step 2 While (k ≤ N) do Steps 3–6.

Step 3 For i = 1, . . . , n

set xi = 1

aii

⎡
⎣− i−1∑

j=1

ai jxj −
n∑

j=i+1

ai jXOj + bi

⎤
⎦.

Step 4 If ||x − XO|| < TOL then OUTPUT (x1, . . . , xn);
(The procedure was successful.)
STOP.

Step 5 Set k = k + 1.

Step 6 For i = 1, . . . , n set XOi = xi.

Step 7 OUTPUT (‘Maximum number of iterations exceeded’);
(The procedure was successful.)
STOP.

The comments following Algorithm 7.1 regarding reordering and stopping criteria also
apply to the Gauss-Seidel Algorithm 7.2.

The results of Examples 1 and 2 appear to imply that the Gauss-Seidel method is
superior to the Jacobi method. This is almost always true, but there are linear systems for
which the Jacobi method converges and the Gauss-Seidel method does not (see Exercises
9 and 10).
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The NumericalAnalysis subpackage of the Maple Student package implements the
Gauss-Siedel method in a manner similar to that of the Jacobi iterative method. The results
in Table 7.2 are obtained by loading both NumericalAnalysis and LinearAlgebra, the matrix
A, and then using the command

IterativeApproximate(A, initialapprox = Vector([0., 0., 0., 0.]), tolerance = 10−3, maxiterations
= 20, stoppingcriterion = relative(infinity), method = gaussseidel, output = approximates)

If we change the final option to output = [approximates, distances], the output also
includes the l∞ distances between the approximations and the actual solution.

General Iteration Methods

To study the convergence of general iteration techniques, we need to analyze the formula

x(k) = Tx(k−1) + c, for each k = 1, 2, . . . ,

where x(0) is arbitrary. The next lemma and Theorem 7.17 on page 449 provide the key for
this study.

Lemma 7.18 If the spectral radius satisfies ρ(T) < 1, then (I − T)−1 exists, and

(I − T)−1 = I + T + T 2 + · · · =
∞∑

j=0

T j.

Proof Because Tx = λx is true precisely when (I − T)x = (1 − λ)x, we have λ as an
eigenvalue of T precisely when 1 − λ is an eigenvalue of I − T . But |λ| ≤ ρ(T) < 1, so
λ = 1 is not an eigenvalue of T , and 0 cannot be an eigenvalue of I − T . Hence, (I − T)−1

exists.
Let Sm = I + T + T 2 + · · · + T m. Then

(I − T)Sm = (1+ T + T 2 + · · · + T m)− (T + T 2 + · · · + T m+1) = I − T m+1,

and, since T is convergent, Theorem 7.17 implies that

lim
m→∞(I − T)Sm = lim

m→∞(I − T m+1) = I .

Thus, (I − T)−1 = limm→∞ Sm = I + T + T 2 + · · · =∑∞
j=0 T j.

Theorem 7.19 For any x(0) ∈ R
n, the sequence {x(k)}∞k=0 defined by

x(k) = Tx(k−1) + c, for each k ≥ 1, (7.11)

converges to the unique solution of x = Tx + c if and only if ρ(T) < 1.

Proof First assume that ρ(T) < 1. Then,

x(k) = Tx(k−1) + c

= T(Tx(k−2) + c)+ c

= T 2x(k−2) + (T + I)c

...

= T kx(0) + (T k−1 + · · · + T + I)c.
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Because ρ(T) < 1, Theorem 7.17 implies that T is convergent, and

lim
k→∞

T kx(0) = 0.

Lemma 7.18 implies that

lim
k→∞

x(k) = lim
k→∞

T kx(0) +
⎛
⎝ ∞∑

j=0

T j

⎞
⎠ c = 0+ (I − T)−1c = (I − T)−1c.

Hence, the sequence {x(k)} converges to the vector x ≡ (I − T)−1c and x = Tx + c.
To prove the converse, we will show that for any z ∈ R

n, we have limk→∞ T kz = 0.
By Theorem 7.17, this is equivalent to ρ(T) < 1.

Let z be an arbitrary vector, and x be the unique solution to x = Tx + c. Define
x(0) = x − z, and, for k ≥ 1, x(k) = Tx(k−1) + c. Then {x(k)} converges to x. Also,

x − x(k) = (Tx + c)− (
Tx(k−1) + c

) = T
(
x − x(k−1)

)
,

so

x − x(k) = T
(
x − x(k−1)

) = T 2
(
x − x(k−2)

) = · · · = T k
(
x − x(0)

) = T kz.

Hence limk→∞ T kz = limk→∞ T k
(
x − x(0)

) = limk→∞
(
x − x(k)

) = 0.
But z ∈ R

n was arbitrary, so by Theorem 7.17, T is convergent and ρ(T)< 1.

The proof of the following corollary is similar to the proofs in Corollary 2.5 on page 62.
It is considered in Exercise 13.

Corollary 7.20 If ‖T‖ < 1 for any natural matrix norm and c is a given vector, then the sequence {x(k)}∞k=0
defined by x(k) = Tx(k−1) + c converges, for any x(0) ∈ R

n, to a vector x ∈ R
n, with

x = Tx + c, and the following error bounds hold:

(i) ‖x − x(k)‖ ≤ ‖T‖k‖x(0) − x‖; (ii) ‖x − x(k)‖ ≤ ‖T‖k
1−‖T‖‖x(1) − x(0)‖.

We have seen that the Jacobi and Gauss-Seidel iterative techniques can be written

x(k) = Tjx(k−1) + cj and x(k) = Tgx(k−1) + cg,

using the matrices

Tj = D−1(L + U) and Tg = (D− L)−1U.

If ρ(Tj) or ρ(Tg) is less than 1, then the corresponding sequence {x(k)}∞k=0 will converge to
the solution x of Ax = b. For example, the Jacobi scheme has

x(k) = D−1(L + U)x(k−1) + D−1b,

and, if {x(k)}∞k=0 converges to x, then

x = D−1(L + U)x + D−1b.

This implies that

Dx = (L + U)x + b and (D− L − U)x = b.

Since D− L − U = A, the solution x satisfies Ax = b.
We can now give easily verified sufficiency conditions for convergence of the Jacobi

and Gauss-Seidel methods. (To prove convergence for the Jacobi scheme see Exercise 14,
and for the Gauss-Seidel scheme see [Or2], p. 120.)
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7.3 The Jacobi and Gauss-Siedel Iterative Techniques 459

Theorem 7.21 If A is strictly diagonally dominant, then for any choice of x(0), both the Jacobi and
Gauss-Seidel methods give sequences {x(k)}∞k=0 that converge to the unique solution of
Ax = b.

The relationship of the rapidity of convergence to the spectral radius of the iteration
matrix T can be seen from Corollary 7.20. The inequalities hold for any natural matrix
norm, so it follows from the statement after Theorem 7.15 on page 446 that

‖x(k) − x‖ ≈ ρ(T)k‖x(0) − x‖. (7.12)

Thus we would like to select the iterative technique with minimal ρ(T) < 1 for a particular
system Ax = b. No general results exist to tell which of the two techniques, Jacobi or Gauss-
Seidel, will be most successful for an arbitrary linear system. In special cases, however, the
answer is known, as is demonstrated in the following theorem. The proof of this result can
be found in [Y], pp. 120–127.

Theorem 7.22 (Stein-Rosenberg)
If ai j ≤ 0, for each i 	= j and aii > 0, for each i = 1, 2, . . . , n, then one and only one of the
following statements holds:

(i) 0 ≤ ρ(Tg) < ρ(Tj) < 1; (ii) 1 < ρ(Tj) < ρ(Tg);
(iii) ρ(Tj) = ρ(Tg) = 0; (iv) ρ(Tj) = ρ(Tg) = 1.

For the special case described in Theorem 7.22, we see from part (i) that when one
method gives convergence, then both give convergence, and the Gauss-Seidel method con-
verges faster than the Jacobi method. Part (ii) indicates that when one method diverges then
both diverge, and the divergence is more pronounced for the Gauss-Seidel method.

E X E R C I S E S E T 7.3

1. Find the first two iterations of the Jacobi method for the following linear systems, using x(0) = 0:

a. 3x1 − x2 + x3 = 1,

3x1 + 6x2 + 2x3 = 0,

3x1 + 3x2 + 7x3 = 4.

b. 10x1 − x2 = 9,

−x1 + 10x2 − 2x3 = 7,

− 2x2 + 10x3 = 6.

c. 10x1 + 5x2 = 6,

5x1 + 10x2 − 4x3 = 25,

− 4x2 + 8x3 − x4 = −11,

− x3 + 5x4 = −11.

d. 4x1 + x2 + x3 + x5 = 6,

−x1 − 3x2 + x3 + x4 = 6,

2x1 + x2 + 5x3 − x4 − x5 = 6,

−x1 − x2 − x3 + 4x4 = 6,

2x2 − x3 + x4 + 4x5 = 6.
2. Find the first two iterations of the Jacobi method for the following linear systems, using x(0) = 0:

a. 4x1 + x2 − x3 = 5,

−x1 + 3x2 + x3 = −4,

2x1 + 2x2 + 5x3 = 1.

b. −2x1+ x2 + 1
2 x3 = 4,

x1−2x2 − 1
2 x3 = −4,

x2 + 2x3 = 0.

c. 4x1 + x2 − x3 + x4 = −2,

x1 + 4x2 − x3 − x4 = −1,

−x1 − x2 + 5x3 + x4 = 0,

x1 − x2 + x3 + 3x4 = 1.

d. 4x1 − x2 − x4 = 0,
−x1 + 4x2 − x3 − x5 = 5,

− x2 + 4x3 − x6 = 0,

−x1 + 4x4 − x5 = 6,

− x2 − x4 + 4x5 − x6 = −2,

− x3 − x5 + 4x6 = 6.
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3. Repeat Exercise 1 using the Gauss-Seidel method.

4. Repeat Exercise 2 using the Gauss-Seidel method.

5. Use the Jacobi method to solve the linear systems in Exercise 1, with TOL = 10−3 in the l∞ norm.

6. Use the Jacobi method to solve the linear systems in Exercise 2, with TOL = 10−3 in the l∞ norm.

7. Use the Gauss-Seidel method to solve the linear systems in Exercise 1, with TOL = 10−3 in the l∞
norm.

8. Use the Gauss-Seidel method to solve the linear systems in Exercise 2, with TOL = 10−3 in the l∞
norm.

9. The linear system

2x1 − x2 + x3 = −1,
2x1 + 2x2 + 2x3 = 4,
−x1 − x2 + 2x3 = −5

has the solution (1, 2,−1)t .

a. Show that ρ(Tj) =
√

5
2 > 1.

b. Show that the Jacobi method with x(0) = 0 fails to give a good approximation after 25 iterations.

c. Show that ρ(Tg) = 1
2 .

d. Use the Gauss-Seidel method with x(0) = 0 to approximate the solution to the linear system to
within 10−5 in the l∞ norm.

10. The linear system

x1 + 2x2 − 2x3 = 7,
x1 + x2 + x3 = 2,

2x1 + 2x2 + x3 = 5

has the solution (1, 2,−1)t .

a. Show that ρ(Tj) = 0.

b. Use the Jacobi method with x(0) = 0 to approximate the solution to the linear system to within
10−5 in the l∞ norm.

c. Show that ρ(Tg) = 2.

d. Show that the Gauss-Seidel method applied as in part (b) fails to give a good approximation in
25 iterations.

11. The linear system

x1 − x3 = 0.2,

−1

2
x1 + x2 − 1

4
x3 = −1.425,

x1 − 1

2
x2 + x3 = 2.

has the solution (0.9,−0.8, 0.7)t .

a. Is the coefficient matrix

A =
⎡
⎢⎣

1 0 −1

− 1
2 1 − 1

4

1 − 1
2 1

⎤
⎥⎦

strictly diagonally dominant?

b. Compute the spectral radius of the Gauss-Seidel matrix Tg.

c. Use the Gauss-Seidel iterative method to approximate the solution to the linear system with a
tolerance of 10−2 and a maximum of 300 iterations.

d. What happens in part (c) when the system is changed to

x1 − 2x3 = 0.2,

−1

2
x1 + x2 − 1

4
x3 = −1.425,

x1 − 1

2
x2 + x3 = 2.
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