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The first part of this chapter is concerned with approximating the solution y(t) to a
problem of the form

dy

dt
= f (t, y), for a ≤ t ≤ b,

subject to an initial condition y(a) = α. Later in the chapter we deal with the extension of
these methods to a system of first-order differential equations in the form

dy1

dt
= f1(t, y1, y2, . . . , yn),

dy2

dt
= f2(t, y1, y2, . . . , yn),

...

dyn

dt
= fn(t, y1, y2, . . . , yn),

for a ≤ t ≤ b, subject to the initial conditions

y1(a) = α1, y2(a) = α2, . . . , yn(a) = αn.

We also examine the relationship of a system of this type to the general nth-order initial-
value problem of the form

y(n) = f (t, y, y′, y′′, . . . , y(n−1)),

for a ≤ t ≤ b, subject to the initial conditions

y(a) = α1, y′(a) = α2, . . . , yn−1(a) = αn.

5.1 The Elementary Theory of Initial-Value Problems

Differential equations are used to model problems in science and engineering that involve
the change of some variable with respect to another. Most of these problems require the
solution of an initial-value problem, that is, the solution to a differential equation that
satisfies a given initial condition.

In common real-life situations, the differential equation that models the problem is too
complicated to solve exactly, and one of two approaches is taken to approximate the solution.
The first approach is to modify the problem by simplifying the differential equation to one
that can be solved exactly and then use the solution of the simplified equation to approximate
the solution to the original problem. The other approach, which we will examine in this
chapter, uses methods for approximating the solution of the original problem. This is the
approach that is most commonly taken because the approximation methods give more
accurate results and realistic error information.

The methods that we consider in this chapter do not produce a continuous approxima-
tion to the solution of the initial-value problem. Rather, approximations are found at certain
specified, and often equally spaced, points. Some method of interpolation, commonly Her-
mite, is used if intermediate values are needed.

We need some definitions and results from the theory of ordinary differential equations
before considering methods for approximating the solutions to initial-value problems.
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5.1 The Elementary Theory of Initial-Value Problems 261

Definition 5.1 A function f (t, y) is said to satisfy a Lipschitz condition in the variable y on a set D ⊂ R
2

if a constant L > 0 exists with

|f (t, y1)− f (t, y2, )| ≤ L| y1 − y2|,
whenever (t, y1) and (t, y2) are in D. The constant L is called a Lipschitz constant for f .

Example 1 Show that f (t, y) = t| y| satisfies a Lipschitz condition on the interval D = {(t, y) | 1 ≤
t ≤ 2 and − 3 ≤ y ≤ 4}.
Solution For each pair of points (t, y1) and (t, y2) in D we have

|f (t, y1)− f (t, y2)| = |t| y1| − t| y2‖ = |t|‖ y1| − | y2‖ ≤ 2| y1 − y2|.
Thus f satisfies a Lipschitz condition on D in the variable y with Lipschitz constant 2. The
smallest value possible for the Lipschitz constant for this problem is L = 2, because, for
example,

|f (2, 1)− f (2, 0)| = |2− 0| = 2|1− 0|.

Definition 5.2 A set D ⊂ R
2 is said to be convex if whenever (t1, y1) and (t2, y2) belong to D, then

((1− λ)t1 + λt2, (1− λ)y1 + λy2) also belongs to D for every λ in [0, 1].

In geometric terms, Definition 5.2 states that a set is convex provided that whenever
two points belong to the set, the entire straight-line segment between the points also belongs
to the set. (See Figure 5.1.) The sets we consider in this chapter are generally of the form
D = {(t, y) | a ≤ t ≤ b and −∞ < y <∞} for some constants a and b. It is easy to verify
(see Exercise 7) that these sets are convex.

Figure 5.1

(t1, y1)

(t1, y1)(t2, y2)

(t2, y2)

Convex Not convex

Theorem 5.3 Suppose f (t, y) is defined on a convex set D ⊂ R
2. If a constant L > 0 exists with∣∣∣∣∂f∂y

(t, y)

∣∣∣∣ ≤ L, for all (t, y) ∈ D, (5.1)

then f satisfies a Lipschitz condition on D in the variable y with Lipschitz constant L.

The proof of Theorem 5.3 is discussed in Exercise 6; it is similar to the proof of the
corresponding result for functions of one variable discussed in Exercise 27 of Section 1.1.

Rudolf Lipschitz (1832–1903)
worked in many branches of
mathematics, including number
theory, Fourier series, differential
equations, analytical mechanics,
and potential theory. He is best
known for this generalization of
the work of Augustin-Louis
Cauchy (1789–1857) and
Guiseppe Peano (1856–1932).

As the next theorem will show, it is often of significant interest to determine whether
the function involved in an initial-value problem satisfies a Lipschitz condition in its second
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262 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

variable, and condition (5.1) is generally easier to apply than the definition. We should
note, however, that Theorem 5.3 gives only sufficient conditions for a Lipschitz condition
to hold. The function in Example 1, for instance, satisfies a Lipschitz condition, but the
partial derivative with respect to y does not exist when y = 0.

The following theorem is a version of the fundamental existence and uniqueness the-
orem for first-order ordinary differential equations. Although the theorem can be proved
with the hypothesis reduced somewhat, this form of the theorem is sufficient for our pur-
poses. (The proof of the theorem, in approximately this form, can be found in [BiR],
pp. 142–155.)

Theorem 5.4 Suppose that D = {(t, y) | a ≤ t ≤ b and −∞ < y <∞} and that f (t, y) is continuous on
D. If f satisfies a Lipschitz condition on D in the variable y, then the initial-value problem

y′(t) = f (t, y), a ≤ t ≤ b, y(a) = α,

has a unique solution y(t) for a ≤ t ≤ b.

Example 2 Use Theorem 5.4 to show that there is a unique solution to the initial-value problem

y′ = 1+ t sin(ty), 0 ≤ t ≤ 2, y(0) = 0.

Solution Holding t constant and applying the Mean Value Theorem to the function

f (t, y) = 1+ t sin(ty),

we find that when y1 < y2, a number ξ in (y1, y2) exists with

f (t, y2)− f (t, y1)

y2 − y1
= ∂

∂y
f (t, ξ) = t2 cos(ξ t).

Thus

|f (t, y2)− f (t, y1)| = | y2 − y1||t2 cos(ξ t)| ≤ 4|y2 − y1|,
and f satisfies a Lipschitz condition in the variable y with Lipschitz constant L = 4.
Additionally, f (t, y) is continuous when 0 ≤ t ≤ 2 and −∞ < y < ∞, so Theorem 5.4
implies that a unique solution exists to this initial-value problem.

If you have completed a course in differential equations you might try to find the exact
solution to this problem.

Well-Posed Problems

Now that we have, to some extent, taken care of the question of when initial-value prob-
lems have unique solutions, we can move to the second important consideration when
approximating the solution to an initial-value problem. Initial-value problems obtained by
observing physical phenomena generally only approximate the true situation, so we need
to know whether small changes in the statement of the problem introduce correspondingly
small changes in the solution. This is also important because of the introduction of round-off
error when numerical methods are used. That is,

• Question: How do we determine whether a particular problem has the property that small
changes, or perturbations, in the statement of the problem introduce correspondingly
small changes in the solution?

As usual, we first need to give a workable definition to express this concept.
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Definition 5.5 The initial-value problem

dy

dt
= f (t, y), a ≤ t ≤ b, y(a) = α, (5.2)

is said to be a well-posed problem if:

• A unique solution, y(t), to the problem exists, and

• There exist constants ε0 > 0 and k > 0 such that for any ε, with ε0 > ε > 0,
whenever δ(t) is continuous with |δ(t)| < ε for all t in [a, b], and when |δ0| < ε, the
initial-value problem

dz

dt
= f (t, z)+ δ(t), a ≤ t ≤ b, z(a) = α + δ0, (5.3)

has a unique solution z(t) that satisfies

|z(t)− y(t)| < kε for all t in [a, b].

The problem specified by (5.3) is called a perturbed problem associated with the
original problem (5.2). It assumes the possibility of an error being introduced in the statement
of the differential equation, as well as an error δ0 being present in the initial condition.

Numerical methods will always be concerned with solving a perturbed problem because
any round-off error introduced in the representation perturbs the original problem. Unless
the original problem is well-posed, there is little reason to expect that the numerical solution
to a perturbed problem will accurately approximate the solution to the original problem.

The following theorem specifies conditions that ensure that an initial-value problem is
well-posed. The proof of this theorem can be found in [BiR], pp. 142–147.

Theorem 5.6 Suppose D = {(t, y) | a ≤ t ≤ b and −∞ < y < ∞}. If f is continuous and satisfies a
Lipschitz condition in the variable y on the set D, then the initial-value problem

dy

dt
= f (t, y), a ≤ t ≤ b, y(a) = α

is well-posed.

Example 3 Show that the initial-value problem

dy

dt
= y− t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5. (5.4)

is well posed on D = {(t, y) | 0 ≤ t ≤ 2 and −∞ < y <∞}.
Solution Because ∣∣∣∣∂(y− t2 + 1)

∂y

∣∣∣∣ = |1| = 1,

Theorem 5.3 implies that f (t, y) = y− t2+ 1 satisfies a Lipschitz condition in y on D with
Lipschitz constant 1. Since f is continuous on D, Theorem 5.6 implies that the problem is
well-posed.

As an illustration, consider the solution to the perturbed problem

dz

dt
= z − t2 + 1+ δ, 0 ≤ t ≤ 2, z(0) = 0.5+ δ0, (5.5)
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264 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

where δ and δ0 are constants. The solutions to Eqs. (5.4) and (5.5) are

y(t) = (t + 1)2 − 0.5et and z(t) = (t + 1)2 + (δ + δ0 − 0.5)et − δ,
respectively.

Suppose that ε is a positive number. If |δ| < ε and |δ0| < ε, then

|y(t)− z(t)| = |(δ + δ0)e
t − δ| ≤ |δ + δ0|e2 + |δ| ≤ (2e2 + 1)ε,

for all t. This implies that problem (5.4) is well-posed with k(ε) = 2e2 + 1 for all ε > 0.

Maple can be used to solve many initial-value problems. Consider the problem

dy

dt
= y− t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

To define the differential equation and initial condition, enter

deq := D(y)(t) = y(t)− t2 + 1; init := y(0) = 0.5

Maple reserves the letter D to
represent differentiation.

The names deq and init have been chosen by the user. The command to solve the initial-value
problems is

deqsol := dsolve ({deq, init}, y(t))

and Maple responds with

y(t) = 1+ t2 + 2t − 1

2
et

To use the solution to obtain a specific value, such as y(1.5), we enter

q := rhs(deqsol) : evalf(subs(t = 1.5, q))

which gives

4.009155465

The function rhs (for right hand side) is used to assign the solution of the initial-value
problem to the function q, which we then evaluate at t = 1.5.

The function dsolve can fail if an explicit solution to the initial-value problem cannot
be found. For example, for the initial-value problem given in Example 2, the command

deqsol2 := dsolve ({D(y)(t) = 1+ t · sin(t · y(t)), y(0) = 0}, y(t))

does not succeed because an explicit solution cannot be found. In this case a numerical
method must be used.

E X E R C I S E S E T 5.1

1. Use Theorem 5.4 to show that each of the following initial-value problems has a unique solution, and
find the solution.

a. y′ = y cos t, 0 ≤ t ≤ 1, y(0) = 1.

b. y′ = 2

t
y+ t2et , 1 ≤ t ≤ 2, y(1) = 0.

c. y′ = −2

t
y+ t2et , 1 ≤ t ≤ 2, y(1) = √2e.

d. y′ = 4t3y

1+ t4
, 0 ≤ t ≤ 1, y(0) = 1.
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5.1 The Elementary Theory of Initial-Value Problems 265

2. Show that each of the following initial-value problems has a unique solution and find the solution.
Can Theorem 5.4 be applied in each case?

a. y′ = et−y, 0 ≤ t ≤ 1, y(0) = 1.

b. y′ = t−2(sin 2t − 2ty), 1 ≤ t ≤ 2, y(1) = 2.

c. y′ = −y + ty1/2, 2 ≤ t ≤ 3, y(2) = 2.

d. y′ = ty + y

ty+ t
, 2 ≤ t ≤ 4, y(2) = 4.

3. For each choice of f (t, y) given in parts (a)–(d):

i. Does f satisfy a Lipschitz condition on D = {(t, y) | 0 ≤ t ≤ 1, −∞ < y <∞}?
ii. Can Theorem 5.6 be used to show that the initial-value problem

y′ = f (t, y), 0 ≤ t ≤ 1, y(0) = 1,

is well-posed?

a. f (t, y) = t2y+ 1 b. f (t, y) = ty c. f (t, y) = 1− y d. f (t, y) = −ty+ 4t

y
4. For each choice of f (t, y) given in parts (a)–(d):

i. Does f satisfy a Lipschitz condition on D = {(t, y) | 0 ≤ t ≤ 1, −∞ < y <∞}?
ii. Can Theorem 5.6 be used to show that the initial-value problem

y′ = f (t, y), 0 ≤ t ≤ 1, y(0) = 1,

is well-posed?

a. f (t, y) = et−y b. f (t, y) = 1+ y

1+ t
c. f (t, y) = cos(yt) d. f (t, y) = y2

1+ t

5. For the following initial-value problems, show that the given equation implicitly defines a solution.
Approximate y(2) using Newton’s method.

a. y′ = − y3 + y

(3y2 + 1)t
, 1 ≤ t ≤ 2, y(1) = 1; y3t + yt = 2

b. y′ = − y cos t + 2tey

sin t + t2ey + 2
, 1 ≤ t ≤ 2, y(1) = 0; y sin t + t2ey + 2y = 1

6. Prove Theorem 5.3 by applying the Mean Value Theorem 1,8 to f (t, y), holding t fixed.

7. Show that, for any constants a and b, the set D = {(t, y) | a ≤ t ≤ b, −∞ < y <∞} is convex.

8. Suppose the perturbation δ(t) is proportional to t, that is, δ(t) = δt for some constant δ. Show directly
that the following initial-value problems are well-posed.

a. y′ = 1− y, 0 ≤ t ≤ 2, y(0) = 0

b. y′ = t + y, 0 ≤ t ≤ 2, y(0) = −1

c. y′ = 2

t
y+ t2et , 1 ≤ t ≤ 2, y(1) = 0

d. y′ = −2

t
y+ t2et , 1 ≤ t ≤ 2, y(1) = √2e

9. Picard’s method for solving the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

is described as follows: Let y0(t) = α for each t in [a, b]. Define a sequence {yk(t)} of functions by

yk(t) = α +
∫ t

a
f (τ , yk−1(τ )) dτ , k = 1, 2, . . . .

a. Integrate y′ = f (t, y(t)), and use the initial condition to derive Picard’s method.

b. Generate y0(t), y1(t), y2(t), and y3(t) for the initial-value problem

y′ = −y+ t + 1, 0 ≤ t ≤ 1, y(0) = 1.

c. Compare the result in part (b) to the Maclaurin series of the actual solution y(t) = t + e−t .
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