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gives the values in Table 5.7. Note the decreased error throughout the range over the Midpoint
and Modified Euler approximations. �

Table 5.7 Heun’s
ti y(ti) Method Error

0.0 0.5000000 0.5000000 0
0.2 0.8292986 0.8292444 0.0000542
0.4 1.2140877 1.2139750 0.0001127
0.6 1.6489406 1.6487659 0.0001747
0.8 2.1272295 2.1269905 0.0002390
1.0 2.6408591 2.6405555 0.0003035
1.2 3.1799415 3.1795763 0.0003653
1.4 3.7324000 3.7319803 0.0004197
1.6 4.2834838 4.2830230 0.0004608
1.8 4.8151763 4.8146966 0.0004797
2.0 5.3054720 5.3050072 0.0004648

Runge-Kutta methods of order three are not generally used. The most common Runge-
Kutta method in use is of order four in difference-equation form, is given by the following.

Runge-Kutta Order Four
w0 = α,

k1 = hf (ti,wi),

k2 = hf

(
ti + h

2
,wi + 1

2
k1

)
,

k3 = hf

(
ti + h

2
,wi + 1

2
k2

)
,

k4 = hf (ti+1,wi + k3),

wi+1 = wi + 1

6
(k1 + 2k2 + 2k3 + k4),

for each i = 0, 1, . . . , N − 1. This method has local truncation error O(h4), provided the
solution y(t) has five continuous derivatives. We introduce the notation k1, k2, k3, k4 into
the method is to eliminate the need for successive nesting in the second variable of f (t, y).
Exercise 32 shows how complicated this nesting becomes.

Algorithm 5.2 implements the Runge-Kutta method of order four.

ALGORITHM

5.2
Runge-Kutta (Order Four)

To approximate the solution of the initial-value problem

y′ = f (t, y), a ≤ t ≤ b, y(a) = α,

at (N + 1) equally spaced numbers in the interval [a, b]:

INPUT endpoints a, b; integer N ; initial condition α.

OUTPUT approximation w to y at the (N + 1) values of t.
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Step 1 Set h = (b− a)/N ;
t = a;
w = α;

OUTPUT (t,w).

Step 2 For i = 1, 2, . . . , N do Steps 3–5.

Step 3 Set K1 = hf (t,w);
K2 = hf (t + h/2,w + K1/2);
K3 = hf (t + h/2,w + K2/2);
K4 = hf (t + h,w + K3).

Step 4 Set w = w + (K1 + 2K2 + 2K3 + K4)/6; (Compute wi.)
t = a+ ih. (Compute ti.)

Step 5 OUTPUT (t,w).

Step 6 STOP.

Example 3 Use the Runge-Kutta method of order four with h = 0.2, N = 10, and ti = 0.2i to obtain
approximations to the solution of the initial-value problem

y′ = y− t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Solution The approximation to y(0.2) is obtained by

w0 = 0.5

k1 = 0.2f (0, 0.5) = 0.2(1.5) = 0.3

k2 = 0.2f (0.1, 0.65) = 0.328

k3 = 0.2f (0.1, 0.664) = 0.3308

k4 = 0.2f (0.2, 0.8308) = 0.35816

w1 = 0.5+ 1

6
(0.3+ 2(0.328)+ 2(0.3308)+ 0.35816) = 0.8292933.

The remaining results and their errors are listed in Table 5.8.

Table 5.8 Runge-Kutta
Exact Order Four Error

ti yi = y(ti) wi |yi − wi|
0.0 0.5000000 0.5000000 0
0.2 0.8292986 0.8292933 0.0000053
0.4 1.2140877 1.2140762 0.0000114
0.6 1.6489406 1.6489220 0.0000186
0.8 2.1272295 2.1272027 0.0000269
1.0 2.6408591 2.6408227 0.0000364
1.2 3.1799415 3.1798942 0.0000474
1.4 3.7324000 3.7323401 0.0000599
1.6 4.2834838 4.2834095 0.0000743
1.8 4.8151763 4.8150857 0.0000906
2.0 5.3054720 5.3053630 0.0001089
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290 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

To obtain Runge-Kutta order 4 method results with InitialValueProblem use the option
method = rungekutta, submethod = rk4. The results produced from the following call for
out standard example problem agree with those in Table 5.6.

C := InitialValueProblem(deq, y(0) = 0.5, t = 2, method = rungekutta, submethod =
rk4, numsteps = 10, output = information, digits = 8)

Computational Comparisons

The main computational effort in applying the Runge-Kutta methods is the evaluation of f .
In the second-order methods, the local truncation error is O(h2), and the cost is two function
evaluations per step. The Runge-Kutta method of order four requires 4 evaluations per step,
and the local truncation error is O(h4). Butcher (see [But] for a summary) has established the
relationship between the number of evaluations per step and the order of the local truncation
error shown in Table 5.9. This table indicates why the methods of order less than five with
smaller step size are used in preference to the higher-order methods using a larger step size.

Table 5.9 Evaluations per step 2 3 4 5 ≤ n ≤ 7 8 ≤ n ≤ 9 10 ≤ n

Best possible local
truncation error

O(h2) O(h3) O(h4) O(hn−1) O(hn−2) O(hn−3)

One measure of comparing the lower-order Runge-Kutta methods is described as
follows:

• The Runge-Kutta method of order four requires four evaluations per step, whereas Euler’s
method requires only one evaluation. Hence if the Runge-Kutta method of order four is
to be superior it should give more accurate answers than Euler’s method with one-fourth
the step size. Similarly, if the Runge-Kutta method of order four is to be superior to the
second-order Runge-Kutta methods, which require two evaluations per step, it should
give more accuracy with step size h than a second-order method with step size h/2.

The following illustrates the superiority of the Runge-Kutta fourth-order method by
this measure for the initial-value problem that we have been considering.

Illustration For the problem

y′ = y− t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5,

Euler’s method with h = 0.025, the Midpoint method with h = 0.05, and the Runge-
Kutta fourth-order method with h = 0.1 are compared at the common mesh points of these
methods 0.1, 0.2, 0.3, 0.4, and 0.5. Each of these techniques requires 20 function evaluations
to determine the values listed in Table 5.10 to approximate y(0.5). In this example, the
fourth-order method is clearly superior. �
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Table 5.10 Modified Runge-Kutta
Euler Euler Order Four

ti Exact h = 0.025 h = 0.05 h = 0.1

0.0 0.5000000 0.5000000 0.5000000 0.5000000
0.1 0.6574145 0.6554982 0.6573085 0.6574144
0.2 0.8292986 0.8253385 0.8290778 0.8292983
0.3 1.0150706 1.0089334 1.0147254 1.0150701
0.4 1.2140877 1.2056345 1.2136079 1.2140869
0.5 1.4256394 1.4147264 1.4250141 1.4256384

E X E R C I S E S E T 5.4

1. Use the Modified Euler method to approximate the solutions to each of the following initial-value
problems, and compare the results to the actual values.

a. y′ = te3t − 2y, 0 ≤ t ≤ 1, y(0) = 0, with h = 0.5; actual solution y(t) = 1
5 te3t − 1

25 e3t +
1
25 e−2t .

b. y′ = 1+ (t − y)2, 2 ≤ t ≤ 3, y(2) = 1, with h = 0.5; actual solution y(t) = t + 1
1−t .

c. y′ = 1+ y/t, 1 ≤ t ≤ 2, y(1) = 2, with h = 0.25; actual solution y(t) = t ln t + 2t.

d. y′ = cos 2t + sin 3t, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.25; actual solution y(t) =
1
2 sin 2t − 1

3 cos 3t + 4
3 .

2. Use the Modified Euler method to approximate the solutions to each of the following initial-value
problems, and compare the results to the actual values.

a. y′ = et−y, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.5; actual solution y(t) = ln(et + e− 1).

b. y′ = 1+ t

1+ y
, 1 ≤ t ≤ 2, y(1) = 2, with h = 0.5; actual solution y(t) = √t2 + 2t + 6− 1.

c. y′ = −y + ty1/2, 2 ≤ t ≤ 3, y(2) = 2, with h = 0.25; actual solution y(t) =(
t − 2+√2ee−t/2

)2
.

d. y′ = t−2(sin 2t − 2ty), 1 ≤ t ≤ 2, y(1) = 2, with h = 0.25; actual solution y(t) =
1
2 t−2(4+ cos 2− cos 2t).

3. Use the Modified Euler method to approximate the solutions to each of the following initial-value
problems, and compare the results to the actual values.

a. y′ = y/t − (y/t)2, 1 ≤ t ≤ 2, y(1) = 1, with h = 0.1; actual solution y(t) = t/(1+ ln t).

b. y′ = 1+ y/t+ (y/t)2, 1 ≤ t ≤ 3, y(1) = 0, with h = 0.2; actual solution y(t) = t tan(ln t).

c. y′ = −(y + 1)(y + 3), 0 ≤ t ≤ 2, y(0) = −2, with h = 0.2; actual solution y(t) =
−3+ 2(1+ e−2t)−1.

d. y′ = −5y+5t2+2t, 0 ≤ t ≤ 1, y(0) = 1
3 , with h = 0.1; actual solution y(t) = t2+ 1

3 e−5t .

4. Use the Modified Euler method to approximate the solutions to each of the following initial-value
problems, and compare the results to the actual values.

a. y′ = 2− 2ty

t2 + 1
, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.1; actual solution y(t) = 2t + 1

t2 + 1
.

b. y′ = y2

1+ t
, 1 ≤ t ≤ 2, y(1) = −(ln 2)−1, with h = 0.1; actual solution y(t) = −1

ln(t + 1)
.

c. y′ = (y2 + y)/t, 1 ≤ t ≤ 3, y(1) = −2, with h = 0.2; actual solution y(t) = 2t

1− 2t
.

d. y′ = −ty+ 4t/y, 0 ≤ t ≤ 1, y(0) = 1, with h = 0.1; actual solution y(t) =
√

4− 3e−t2 .

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



292 C H A P T E R 5 Initial-Value Problems for Ordinary Differential Equations

5. Repeat Exercise 1 using the Midpoint method.

6. Repeat Exercise 2 using the Midpoint method.

7. Repeat Exercise 3 using the Midpoint method.

8. Repeat Exercise 4 using the Midpoint method.

9. Repeat Exercise 1 using Heun’s method.

10. Repeat Exercise 2 using Heun’s method.

11. Repeat Exercise 3 using Heun’s method.

12. Repeat Exercise 4 using Heun’s method.

13. Repeat Exercise 1 using the Runge-Kutta method of order four.

14. Repeat Exercise 2 using the Runge-Kutta method of order four.

15. Repeat Exercise 3 using the Runge-Kutta method of order four.

16. Repeat Exercise 4 using the Runge-Kutta method of order four.

17. Use the results of Exercise 3 and linear interpolation to approximate values of y(t), and compare the
results to the actual values.

a. y(1.25) and y(1.93) b. y(2.1) and y(2.75)

c. y(1.3) and y(1.93) d. y(0.54) and y(0.94)
18. Use the results of Exercise 4 and linear interpolation to approximate values of y(t), and compare the

results to the actual values.

a. y(0.54) and y(0.94) b. y(1.25) and y(1.93)

c. y(1.3) and y(2.93) d. y(0.54) and y(0.94)

19. Repeat Exercise 17 using the results of Exercise 7.

20. Repeat Exercise 18 using the results of Exercise 8.

21. Repeat Exercise 17 using the results of Exercise 11.

22. Repeat Exercise 18 using the results of Exercise 12.

23. Repeat Exercise 17 using the results of Exercise 15.

24. Repeat Exercise 18 using the results of Exercise 16.

25. Use the results of Exercise 15 and Cubic Hermite interpolation to approximate values of y(t), and
compare the approximations to the actual values.
a. y(1.25) and y(1.93) b. y(2.1) and y(2.75)
c. y(1.3) and y(1.93) d. y(0.54) and y(0.94)

26. Use the results of Exercise 16 and Cubic Hermite interpolation to approximate values of y(t), and
compare the approximations to the actual values.

a. y(0.54) and y(0.94) b. y(1.25) and y(1.93)
c. y(1.3) and y(2.93) d. y(0.54) and y(0.94)

27. Show that the Midpoint method and the Modified Euler method give the same approximations to the
initial-value problem

y′ = −y+ t + 1, 0 ≤ t ≤ 1, y(0) = 1,

for any choice of h. Why is this true?

28. Water flows from an inverted conical tank with circular orifice at the rate

dx

dt
= −0.6πr2

√
2g

√
x

A(x)
,

where r is the radius of the orifice, x is the height of the liquid level from the vertex of the cone,
and A(x) is the area of the cross section of the tank x units above the orifice. Suppose r = 0.1 ft,
g = 32.1 ft/s2, and the tank has an initial water level of 8 ft and initial volume of 512(π/3) ft3. Use
the Runge-Kutta method of order four to find the following.

a. The water level after 10 min with h = 20 s

b. When the tank will be empty, to within 1 min.
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