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	 S e c t i o n  4 . 4 	 Permutations and Combinations

Permutations

Example 26 in Section 4.2 discussed the problem of counting all possibilities for 
the last four digits of a telephone number with no repeated digits. In this problem, 
the number 1259 is not the same as the number 2951 because the order of the 
four digits is important. An ordered arrangement of objects is called a permuta-
tion. Each of these numbers is a permutation of 4 distinct objects chosen from 
a set of 10 distinct objects (the digits). How many such permutations are there? 
The answer, found by using the multiplication principle, is 10 # 9 # 8 # 7—there are  
10 choices for the first digit, then 9 for the next digit because repetitions are not al-
lowed, 8 for the next digit, and 7 for the fourth digit. The number of permutations 
of r distinct objects chosen from n distinct objects is denoted by P(n, r). Therefore 
the solution to the problem of the four-digit number without repeated digits can be 
expressed as P(10, 4).

A formula for P(n, r) can be written using the factorial function. For a positive 
integer n, n factorial is defined as n(n − 1)(n − 2) c1 and denoted by n!; also, 0! 
is defined to have the value 1. From the definition of n!, we see that

n! = n(n − 1)!

and that for r < n,

n!
(n − r)!

 =
n(n − 1) c (n − r + 1)(n − r)!

(n − r)!
 = n(n − 1) c (n − r + 1)

Using the factorial function,

P(10, 4) = 10 # 9 # 8 # 7

 =
10 # 9 # 8 # 7 # 6 # 5 # 4 # 3 # 2 # 1

6 # 5 # 4 # 3 # 2 # 1
=

10!
6!

=
10!

(10 − 4)!

In general, P(n, r) is given by the formula

P(n, r) =
n!

(n − r)!
 for 0 ≤ r ≤ n

	 Example 45	 The value of P(7, 3) is

7!
(7 − 3)!

=
7!
4!

=
7 # 6 # 5 # 4 # 3 # 2 # 1

4 # 3 # 2 # 1
= 7 # 6 # 5 = 210

	 Example 46	 Three somewhat special cases that can arise when computing P(n, r) are the two 
“boundary conditions”  P(n, 0) and  P(n, n), and also  P(n, 1). According to the  
formula,
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P(n, 0) =
n!

(n − 0)!
=

n!
n!

= 1

This formula can be interpreted as saying that there is only one ordered arrange-
ment of zero objects—the empty set.

P(n, 1) =
n!

(n − 1)!
= n

This formula reflects the fact that there are n ordered arrangements of 1 object. 
(Each arrangement consists of the 1 object, so this merely counts how many ways 
to get the 1 object.)

P(n, n) =
n!

(n − n)!
=

n!
0!

= n!

This formula states that there are n! ordered arrangements of n distinct objects, 
which merely reflects the multiplication principle—n choices for the first 
object, n − 1 choices for the second object, and so on, with 1 choice for the nth  
object.

	 EXAMPLE 47	 The number of permutations of 3 objects, say a, b, and c, is given by 
P(3, 3) = 3! = 3 # 2 # 1 = 6. The 6 permutations of a, b, and c are

abc, acb, bac, bca, cab, cba

Note that we could have solved Example 48 just by using the multiplication 
principle—there are 8 choices for the first letter, 7 for the second, and 6 for the 
third, so the answer is 8 # 7 # 6 = 336. P(n, r) simply gives us a new way to think 
about the problem, as well as a compact notation.

	 Example 48	 How many three-letter words (not necessarily meaningful) can be formed from the 
word “compiler” if no letters can be repeated? Here the arrangement of letters mat-
ters, and we want to know the number of permutations of 3 distinct objects taken 
from 8 objects. The answer is P(8, 3) = 8!/5! = 336.

	 Example 49	 Ten athletes compete in an Olympic event. Gold, silver, and bronze medals are 
awarded; in how many ways can the awards be made?

This problem is essentially the same as the one in Example 48. Order mat-
ters; given 3 winners A, B, and C, the arrangement A−gold, B−silver, C−bronze 
is different than the arrangement C−gold, A−silver, B−bronze. So we want the 
number of ordered arrangements of 3 objects from a pool of 10, or P(10, 3). Using 
the formula for P(n, r), P(10, 3) = 10!/7! = 10 # 9 # 8 = 720.
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Practice 30	 In how many ways can a president and vice-president be selected from a group of  
20 people?

■

Practice 31	 In how many ways can 6 people be seated in a row of 6 chairs?
■

Counting problems can have other counting problems as subtasks.

Combinations

Sometimes we want to select r objects from a set of n objects, but we don’t care 
how they are arranged. Then we are counting the number of combinations of r 
distinct objects chosen from n distinct objects, denoted by C(n, r). For each such  
combination, there are r! ways to permute the r chosen objects. By the multipli- 
cation principle, the number of permutations of r distinct objects chosen from 
n objects is the product of the number of ways to choose the objects, C(n, r),  
multiplied by the number of ways to arrange the objects chosen, r! Thus,

C(n, r) # r! = P(n, r)

or

C(n, r) =
P(n, r)

r!
=

n!
r!(n − r)!

 for 0 ≤ r ≤ n

Other notations for C(n, r) are

nCr,     C 
n
r ,     a n

r
b

	 Example 50	 A library has 4 books on operating systems, 7 on programming, and 3 on data 
structures. Let’s see how many ways these books can be arranged on a shelf, given 
that all books on the same subject must be together.

We can think of this problem as a sequence of subtasks. First we consider 
the subtask of arranging the 3 subjects. There are 3! outcomes to this subtask, 
that is, 3! different orderings of subject matter. The next subtasks are arranging 
the books on operating systems (4! outcomes), then arranging the books on 
programming (7! outcomes), and finally arranging the books on data structures  
(3! outcomes). Thus, by the multiplication principle, the final number of arrange-
ments of all the books is (3!)(4!)(7!)(3!) = 4,354,560.

	 Example 51	 The value of C(7, 3) is

7!
3!(7 − 3)!

 =
7!

3!4!
=

7 # 6 # 5 # 4 # 3 # 2 # 1
3 # 2 # 1 # 4 # 3 # 2 # 1

 =
7 # 6 # 5
3 # 2 # 1

= 7 # 5 = 35

From Example 45, the value of P(7, 3) is 210, and C(7, 3) # (3!) = 35(6) = 210 = 
P(7, 3).
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Figure 4.9

	 Example 52	 The special cases for C(n, r) are C(n, 0), C(n, 1), and C(n, n). The formula for C(n, 0),

C(n, 0) =
n!

0!(n − 0)!
= 1

reflects the fact that there is only one way to choose zero objects from n objects: 
Choose the empty set.

C(n, 1) =
n!

1!(n − 1)!
= n

Here the formula indicates that there are n ways to select 1 object from n objects.

C(n, n) =
n!

n!(n − n)!
= 1

Here we see that there is only one way to select n objects from n objects, and that 
is to choose all of the objects.

In the formula for C(n, r), suppose n is held fixed and r is increased. Then r! 
increases, which tends to make C(n, r) smaller, but (n − r)! decreases, which tends 
to make C(n, r) larger. For small values of r, the increase in r! is not as great as 
the decrease in (n − r)!, and so C(n, r) increases from 1 to n to larger values. At 
some point, however, the increase in r! overcomes the decrease in (n − r)!, and 
the values of C(n, r) decrease back down to 1 by the time r = n, as we calculated 
in Example 52. Figure 4.9a illustrates the rise and fall of the values of C(n, r) for a 
fixed n. For P(n, r), as n is held fixed and r is increased, n − r and therefore (n − r)! 
decreases, so P(n, r) increases. Values of P(n, r) for 0 ≤ r ≤ n thus increase from 
1 to n to n!, as we calculated in Example 46. See Figure 4.9b; note the difference 
in the vertical scale of Figures 4.9a and 4.9b.

	 Example 53	 How many 5-card poker hands are possible with a 52-card deck? Here order does 
not matter because we simply want to know which cards end up in the hand. We 
want the number of ways to choose 5 objects from a pool of 52, which is a combi-
nations problem. The answer is C(52, 5) = 52!/(5!47!) = 2,598,960.
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Unlike earlier problems, the answer to Example 53 cannot easily be obtained 
by applying the multiplication principle. Thus, C(n, r) gives us a way to solve new 
problems.

	 Example 54	 Ten athletes compete in an Olympic event; 3 will be declared winners. How many 
sets of winners are possible?

Here, as opposed to Example 49, there is no order to the 3 winners, so we 
are simply choosing 3 objects out of 10. This is a combinations problem, not a 
permutations problem. The result is C(10, 3) = 10!/(3!7!) = 120. Notice that 
there are fewer ways to choose 3 winners (a combinations problem) than to 
award gold, silver, and bronze medals to 3 winners (a permutations problem— 
Example 49).

Remember that the distinction between permutations and combinations lies 
in whether the objects are to be merely selected or both selected and ordered. 
If ordering is important, the problem involves permutations; if ordering is not 
important, the problem involves combinations. For example, Practice 30 is a per-
mutations problem—2 people are to be selected and ordered, the first as president, 
the second as vice-president—whereas Practice 32 is a combinations problem— 
3 people are selected but not ordered.

In solving counting problems, C(n, r) can be used in conjunction with the 
multiplication principle or the addition principle.

Practice 32	 How many committees of 3 are possible from a group of 12 people?
■

REMINDER

In a counting problem, 
first ask yourself if order 
matters. If it does, it’s a 
permutations problem. If 
not, it’s a combinations 
problem.

	 Example 55	 A committee of 8 students is to be formed from a class consisting of 19 freshmen 
and 34 sophomores.

	 a.	 How many committees of 3 freshmen and 5 sophomores are possible?
	 b.	 How many committees with exactly 1 freshman are possible?
	 c.	 How many committees with at most 1 freshman are possible?
	 d.	 How many committees with at least 1 freshman are possible?

Because the ordering of the individuals chosen is not important, these are com
binations problems.

For part (a), we have a sequence of two subtasks, selecting freshmen and  
selecting sophomores. The multiplication principle should be used. (Thinking of a 
sequence of subtasks may seem to imply ordering, but it just sets up the levels of 
the decision tree, the basis for the multiplication principle. There is no ordering of 
the students.) Because there are C(19, 3) ways to choose the freshmen and C(34, 5) 
ways to choose the sophomores, the answer is

C(19, 3) # C(34, 5) =
19!

3!16!
# 34!
5!29!

= (969)(278,256)
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For part (b), we again have a sequence of subtasks: selecting the single fresh-
man and then selecting the rest of the committee from among the sophomores. 
There are C(19, 1) ways to select the single freshman and C(34, 7) ways to select 
the remaining 7 members from the sophomores. By the multiplication principle, 
the answer is

C(19, 1) # C(34, 7) =
19!

1!(19 − 1)!
# 34!
7!(34 − 7)!

= 19(5,379,616)

For part (c), we get at most 1 freshman by having exactly 1 freshman or by 
having 0 freshmen. Because these are disjoint events, we use the addition prin-
ciple. The number of ways to select exactly 1 freshman is the answer to part (b). 
The number of ways to select 0 freshmen is the same as the number of ways to 
select the entire 8-member committee from among the 34 sophomores, C(34, 8). 
Thus the answer is

C(19, 1) # C(34, 7) + C(34, 8) = some big number

We can attack part (d) in several ways. One way is to use the addition princi-
ple, thinking of the disjoint possibilities as exactly 1 freshman, exactly 2 freshmen, 
and so on, up to exactly 8 freshmen. We could compute each of these numbers and 
then add them. However, it is easier to do the problem by counting all the ways the 
committee of 8 can be selected from the total pool of 53 people and then eliminat-
ing (subtracting) the number of committees with 0 freshmen (all sophomores). 
Thus the answer is

C(53, 8) − C(34, 8)

REMINDER

“At least” counting prob-
lems are often best solved 
by subtraction.

The factorial function grows large quickly. A number like 100! cannot be 
computed on most calculators (or on most computers unless double−precision 
arithmetic is used), but expressions like

100!
25!75!

can nevertheless be computed by first canceling common factors.

Eliminating Duplicates

We mentioned earlier that counting problems can often be solved in different ways. 
Unfortunately, it is also easy to find so-called solutions that sound eminently rea-
sonable but are incorrect. Usually they are wrong because they count something 
more than once (or sometimes they overlook counting something entirely).

	 Example 56	 Consider again part (d) of Example 55, the number of committees with at least 1 
freshman. A bogus solution to this problem goes as follows: Think of a sequence 
of two subtasks, choosing a freshman and then choosing the rest of the committee. 
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There are C(19, 1) ways to choose 1 freshman. Once a freshman has been selected, 
that guarantees that at least 1 freshman will be on the committee, so we are free to 
choose the remaining 7 members of the committee from the remaining 52 people 
without any restrictions, giving us C(52, 7) choices. By the multiplication prin-
ciple, this gives C(19, 1) # C(52, 7). However, this is a bigger number than the 
correct answer.

The problem is this: Suppose Derek and Felicia are both freshmen. In one of 
the choices we have counted, Derek is the one guaranteed freshman, and we pick 
the rest of the committee in such a way that Felicia is on it along with 6 others. But 
we have also counted the option of making Felicia the guaranteed freshman and 
having Derek and the same 6 others be the rest of the committee. This is the same 
committee as before, and we have counted it twice.

Practice 33	 A committee of 2 to be chosen from 4 math majors and 3 physics majors must include at 
least 1 math major. Compute the following 2 values.

a.	 C(7, 2) − C(3, 2) (correct solution: all committees minus those with no math majors)
b.	 C(4, 1) # C(6, 1) (bogus solution: choose 1 math major and then choose the rest of the committee)

The expression C(4, 1) # C(6, 1) − C(4, 2) also gives the correct answer because C(4, 2) is the number 
of committees with 2 math majors, and these are the committees counted twice in C(4, 1) # C(6, 1). ■

	 Example 57		  a.	� How many distinct permutations can be made from the characters in the 
word FLORIDA?

	 b.	 How many distinct permutations can be made from the characters in the 
word MISSISSIPPI?

Part (a) is a simple problem of the number of ordered arrangements of seven 
distinct objects, which is 7!. However, the answer to part (b) is not 11! because the 
11 characters in MISSISSIPPI are not all distinct. This means that 11! counts some 
of the same arrangements more than once (the same arrangement meaning that we 
cannot tell the difference between MIS1S2ISSIPPI and MIS2S1ISSIPPI.)

Consider any one arrangement of the characters. The four S’s occupy certain 
positions in the string. Rearranging the S’s within those positions would result in 
no distinguishable change, so our one arrangement has 4! look-alikes. In order to 
avoid overcounting, we must divide 11! by 4! to take care of all the ways of mov-
ing the S’s around. Similarly, we must divide by 4! to take care of the four I’s and 
by 2! to take care of the two P’s. The number of distinct permutations is thus

11!
4!4!2!

In general, suppose there are n objects of which a set of n1 are indistinguish-
able from each other, another set of n2 are indistinguishable from each other, and 
so on, down to nk objects that are indistinguishable from each other. The number 
of distinct permutations of the n objects is

n!
(n1!)(n2!) 

c
 (nk!)
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Practice 34	 How many distinct permutations are there of the characters in the word MONGOOSES?
■

Permutations and Combinations with Repetitions

Our formulas for P(n, r) and C(n, r) assume that we arrange or select r objects out 
of the n available using each object only once. Therefore r ≤ n. Suppose, however, 
that the n objects are available for reuse as many times as desired. For example, we 
construct words using the 26 letters of the alphabet; the words may be as long as 
desired with letters used repeatedly. Or we may draw cards from a deck, replacing 
a card after each draw; we may draw as many cards as we like with cards used 
repeatedly. We can still talk about permutations or combinations of r objects out 
of n, but with repetitions allowed, r might be greater than n.

Counting the number of permutations of r objects out of n distinct objects 
with repetition is easy. We have n choices for the first object and, because we can 
repeat that object, n choices for the second object, n choices for the third, and so 
on. Hence, the number of permutations of r objects out of n distinct objects with 
repetition allowed is nr.

To determine the number of combinations of r objects out of n distinct objects 
with repetition allowed, we use a rather clever idea.

	 Example 58	 A jeweler designing a pin has decided to use five stones chosen from a supply of 
diamonds, rubies, and emeralds. How many sets of stones are possible?

Because we are not interested in any ordered arrangement of the stones, this is 
a combinations problem rather than a permutations problem. We want the number 
of combinations of five objects out of three objects with repetition allowed. The 
pin might consist of 1 diamond, 3 rubies, and 1 emerald, for instance, or 5 dia-
monds. We can represent these possibilities by representing the stones chosen by 
5 asterisks and placing markers between the asterisks to represent the distribution 
among the three types of gem, diamonds, rubies, and emeralds. For example, we 
could represent the choice of 1 diamond, 3 rubies, and 1 emerald by

*0***0*
while the choice of 5 diamonds, 0 rubies, and 0 emeralds would be represented by

*****0 0
Although we wrote the asterisks and markers in a row, there is no ordering implied. 
We are just looking at seven slots holding the five gems and the two markers, and 
the different choices are represented by which of the seven slots are occupied by 
asterisks. We therefore count the number of ways to choose five items out of seven, 
which is C(7, 5) or

7!
5!2!



280	 Sets, Combinatorics, and Probability 

In general, if we use the same scheme to represent a combination of r objects out 
of n distinct objects with repetition allowed, there must be n − 1 markers to indi-
cate the number of copies of each of the n objects. This gives r + (n − 1) slots to 
fill, and we want to know the number of ways to select r of these. Therefore we 
want

C(r + n − 1, r) =
(r + n − 1)!

r!(r + n − 1 − r)!
=

(r + n − 1)!
r!(n − 1)!

This agrees with the result in Example 58, where r = 5, n = 3.

We have discussed a number of counting techniques in this chapter. Table 4.2 
summarizes the techniques you can apply in various circumstances, although there 
may be several legitimate ways to solve any one counting problem.

Practice 35	 Six children get one lollipop each from among a selection of red, yellow, and green lol-
lipops. How many sets of lollipops are possible? (We do not care which child gets which.)

■

Table 4.2

You Want to Count the Number of … Technique to Try

Subsets of an n-element set Use formula 2n.

Outcomes of successive events
Multiply the number of outcomes for 
each event.

Outcomes of disjoint events
Add the number of outcomes for each 
event.

Outcomes given specific choices at 
each step

Draw a decision tree and count the  
number of paths.

Elements in overlapping sections of 
related sets

Use principle of inclusion and exclusion 
formula.

Ordered arrangements of r out of n 
distinct objects

Use P( n, r ) formula.

Ways to select r out of n distinct  
objects

Use C( n, r ) formula.

Ways to select r out of n distinct  
objects with repetition allowed Use C( r + n − 1, r ) formula.

Generating Permutations and Combinations

In a certain county, lottery ticket numbers consist of a sequence (a permutation) 
of the 9 digits 1, 2, …, 9. The ticket printing company may or may not know that  
9! = 362,880 distinct ticket numbers are possible, but it certainly needs a way to 
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generate all possible ticket numbers. Or the county council (a group of 12 mem-
bers) wants to form a subcommittee of 4 members but wants to pick the combina-
tion of council members it feels can best work together. The council could ask 
someone to generate all C(12, 4) = 495 potential subcommittees and examine 
the membership of each one. We see that in some situations, simply counting the 
number of permutations or combinations is not enough; it is useful to be able to 
list all the permutations or combinations.

	 Example 59	 Example 47 asked for the number of permutations of the three objects a, b, and c. 
The answer is given by the formula P(3,3) = 3! = 6. However Example 47 went 
on to list the six permutations:

abc, acb, bac, bca, cab, cba

This list presents the six permutations using lexicographical ordering, that is, the 
order in which they would be found in a dictionary if they were legitimate words. 
Thus abc precedes acb because although both words begin with the same first 
character, for the second character, b precedes c. If we had three integers, say 4, 6, 
and 7, instead of three alphabetical characters, the lexicographical ordering of all 
six permutations would present values in increasing numerical order:

467, 476, 647, 674, 746, 764

Practice 36	 Arrange the following list of permutations in lexicographical order:

scary, yarsc, scyra, cysar, scrya, yarcs ■

Words that are close in lexicographical order have the maximum number of 
matching leftmost characters or, equivalently, differ in the fewest rightmost char-
acters. We use this characteristic to develop a process to generate all permutations 
of the integers {1, …, n} in lexicographical order.

	 Example 60	 Consider the set {1, 2, 3, 4, 5}. The smallest numerical value (the first permutation) 
is given by the increasing order of all the integers, namely,

12345

To generate the next number in lexicographical order, we want to retain as many 
of the leftmost digits as possible. Clearly we can’t keep the leftmost four digits be-
cause this also determines the fifth digit. To keep the leftmost three digits, 123 − −, 
we must be able to rearrange the remaining two digits to represent a larger value 
than they do now. Reading 12345 from right to left, we find in the last two digits 
that 4 < 5, which means we can reverse the 4 and the 5 to get

12354
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which is the next permutation in the list. That’s all that can be done with the last 
two digits; in particular, since 54 is a decreasing sequence, we can’t use these two 
values to generate anything larger.

For the next number, we keep 12 − − − and consider how to arrange the last 
three digits. Reading 12354 from right to left, we find in the last three digits that  
3 < 5, but we know that everything from 5 to the right is a decreasing sequence. 
The next permutation should replace 3 with the next largest value to its right. 
Reading from right to left in the number 12354, the first value larger than 3, in 
this case 4, is the least value larger than 3. Swapping 3 and 4 gives 12453, which 
puts 4 in the correct order; the digits to the right are now in descending order, so 
reversing them gives

12435

which is the next permutation.

	 Example 61	 To continue Example 60, let’s jump ahead. Suppose we have just generated 
permutation

25431

and we want the next permutation. Reading from right to left, everything increases 
until we get to 2, where we have 2 < 5. Starting again from right to left, we stop 
at the first (and smallest) value greater than 2, which is 3. Swapping 2 and 3 gives 
35421, giving the correct first digit. The digits after 3 are in descending order, so 
reversing them involves swapping 5 and 1, and also swapping 4 and 2, giving the 
next permutation

31245

	A lgorithm	 Permutation Generator

PermGenerator(integer n ≥ 2)

//generates in lexicographical order all permutations 
//of the integers in the set {1, …, n}
Local variables:
integers i, j				    //indices of permutation elements
integer k				    //for loop counter
integers d1, d2, …, dn			   //left to right elements of a permutation

From the preceding examples, we can construct an algorithm to generate all 
permutations of the integers from 1 to n in lexicographical order.
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//create and write out smallest permutation
for k = 1 to n do

dk = k
end for
write d1d2…dn

//create and write out remaining permutations
for k = 2 to n! do

//look right to left for first break in increasing sequence
i = n – 1 
j = n
while di > dj do //still increasing right to left

i = i – 1 
j = j – 1

end while
//now di < dj, need to replace di with next largest integer

//look right to left for smallest value greater than di
j = n
while di > dj do

j = j – 1
end while
//now dj is smallest value > di

swap di and dj

//reverse the digits to the right of index i
i = i + 1
j = n
while i < j do

swap di and dj
i = i + 1
j = j − 1

end while

write d1d2…dn
end for

end function PermGenerator

Practice 37	 Walk through the steps in the algorithm that generate the next permutation following 
51432.

■

Another algorithm for generating (not in lexicographical order) all permuta-
tions of the integers {1, … , n} is suggested in Exercise 7 of On the Computer at 
the end of this chapter. Both of these algorithms can also be used to generate all 
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permutations of any n distinct elements; simply assign each of the n elements a 
unique integer from 1 to n, generate the permutations of the integers, and then 
reverse the assignment.

Our second problem is to generate the C(n, r) combinations of r distinct in-
tegers chosen from {1, … , n}. Such a combination does not involve order, it is 
merely a subset of r elements. Nonetheless we will represent the subset {3, 5, 7} 
as the sequence 357, and generate the subsets in lexicographical order. Once we 
generate 357, we can’t also generate 375 or 753 or any of the other permutations of 
the elements in this set. Each legitimate representation is an increasing sequence.

	 Example 62	 Consider the lexicographical ordering of the combinations of 4 integers from  
{1, … , 7}. If the combination

2346

has just been generated, then the next combination would be

2347

obtained by incrementing the last digit of the sequence. However, in 2347, the last 
digit is already at its maximum allowable value. Moving to the left, the 4 can be 
bumped up to 5, but then the last digit has to be reduced to its minimum value, 
which is 6 (one more than 5). Therefore,

2356

is the next combination. The next two values are

2357, 2367

at which point both 7 and 6 are at their maximum values. The 3 can be bumped up, 
but the two digits to its right have to be reset to their lowest possible values. The 
next few values are

2456, 2457, 2467, 2567 …

Based on the ideas of Example 62, given a combination sequence the algo-
rithm should bump up the rightmost digit that is not at its maximum allowable 
value. The sequence of digits to the right of the newly incremented digit v should 
have the values v + 1, v + 2, and so on. The initial (smallest) combination is  
12 … r.
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	A lgorithm	 Combination Generator

CombGenerator(integer n ≥ 2, integer r ≥ 1)
//generates in lexicographical order all combinations 
//of r integers from the set {1, …, n}
Local variables:
integers i, j	 //indices of combination elements
integer k	 //for loop counter
integer max	 //maximum allowable value for a digit
integers d1, d2, …, dr	 //left to right elements of a combination

//create and write out smallest combination
for k = 1 to r do

dk = k
end for
write d1d2 … dr

//create and write out remaining combinations
for k = 2 to C(n, r) do

//look right to left for first non-max value
max = n
i = r
while di = max do //look left

i = i − 1
max = max − 1

end while
//now di < max, need to increment di

di = di + 1

//reset values right of di
for j = i + 1 to r do

dj = dj−1 + 1
end for
write d1d2…dr

end for
end function CombGenerator

Practice 38	 Using this algorithm, find the next combination of five items from {1, … , 9} after 24589.
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