Chapter 4Combinational Logic

Digital Circuits Design I (10636221) $\begin{pmatrix} 1 \end{pmatrix}$

4.1 Introduction

- •Logic circuits may be *combinational* or *sequential*.
- •*A combinational circuit* consists of logic gates whose outputs *at any time* are determined *from only the presentcombination of inputs*.
	- and the state of the - It performs an operation that can be specified logically by a set of Boolean functions.
- In contrast, *sequential circuits* employ *storage elements* inaddition to *logic gates*.
	- –- Their outputs are a function of the inputs and the state of storage elements.
	- –- Because the state of the storage elements is a function of previous inputs, the outputs of a sequential circuit *depend not only on present value of inputs*, but *also on past inputs*, and the circuit behavior must be specified by *a time sequence of inputsand internal states*.

2

Digital Circuits Design I (10636221)

4.2 Combinational Circuits

- A combinational circuit consists of input variables, logic gates, and output variables.
	- –*n*inputs and *m* outputs
	- and the state of the Can be specified by truth table
	- and the state of the Can be described by *m* Boolean functions

4.3 Analysis Procedure

- The first step in the analysis is to make sure that the given circuit is *combinational* and *not sequential*.
	- and the state of the The diagram of a combinational circuit has logicgates with no *feedback paths* or *memory elements*.
	- and the state of the *A feedback path is a connection from the output of one gate to the input of a second gate that formspart of the input to first gate*
- Obtain the output Boolean functions or the truth table

4

4.3 Analysis Procedure

4.3 Analysis ProcedureTruth Table

- 1. Determine the number of input variable in thecircuit.
	- –For *n* inputs form the *2n* possible input combinations.
- 2. Label the outputs of selected gates with arbitrarysymbols.
- 3. Obtain the truth table for the outputs of those gates which are a function of the input variablesonly.
- 4. Proceed to obtain the truth table for the outputs of those gates which are a function of previouslydefined values until the columns for all outputsare determined.

6

4.3 Analysis ProcedureTruth Table

• Truth table of the previous example

4.3 Analysis Procedure

 4.1 Consider the combinational circuit shown in Fig. P4.1.

FIGURE P4.1

- (a)* Derive the Boolean expressions for T_1 through T_4 . Evaluate the outputs F_1 and F_2 as a function of the four inputs.
- List the truth table with 16 binary combinations of the four input variables. Then list (b) the binary values for T_1 through T_4 and outputs F_1 and F_2 in the table.
- Plot the output Boolean functions obtained in part (b) on maps and show that the (c) simplified Boolean expressions are equivalent to the ones obtained in part (a).

8

Digital Circuits Design I (10636221)

4.3 Analysis Procedure

Obtain the simplified Boolean expressions for output F and G in terms of the input $4.2*$ variables in the circuit of Fig. P4.2.

4.4 Design Procedure

- The design of combinational circuits starts from the specification of the design objective and culminates in alogic circuit diagram or a set of Boolean function fromwhich the logic diagram can be obtained.
- The procedure involves the following steps:
- 1. Determine the required number of inputs and outputs
- 2. Derive the truth table
- 3. Obtain the simplified Boolean functions
- 4. Draw the logic diagram

- Convert binary coded decimal (BCD) to the excess-3 code for the decimal digits?
- *Solution:*
- Four bits to represent a decimal digit:
	- and the state of the Four input binary variables by the symbols *A*, *^B*, *C*, and *D*
	- and the state of the Four output variables by *W*, *X*, *Y*, and *z*
- Remember, four binary variables may have 16 bit combinations, but only 10 are listed in the truth table.
	- –The six bit combinations not listed for the input variablesare *don't-care combinations.*

Digital Circuits Design I (10636221) $\begin{pmatrix} 11 \end{pmatrix}$

4.4 Design Procedure

 4.4 Design a combinational circuit with three inputs and one output.

- (a)^{\bullet} The output is 1 when the binary value of the inputs is less than 3. The output is 0 otherwise.
- (b) The output is 1 when the binary value of the inputs is an odd number.
- 4.5 Design a combinational circuit with three inputs, x, y, and z, and three outputs, A, B, and C. When the binary input is $0, 1, 2$, or 3 , the binary output is two greater than the input. When the binary input is 4, 5, 6, or 7, the binary output is three less than the input.
- 4.9 An ABCD-to-seven-segment decoder is a combinational circuit that converts a decimal digit in BCD to an appropriate code for the selection of segments in an indicator used to display the decimal digit in a familiar form. The seven outputs of the decoder (a, b, c, d, e, f, g) select the corresponding segments in the display, as shown in Fig. P4.9(a). The numeric display chosen to represent the decimal digit is shown in Fig. P4.9(b). Using a truth table and Karnaugh maps, design the BCD-to-seven-segment decoder, using a minimum number of gates. The six invalid combinations should result in a blank display.

4.5 Binary Adder-Subtractor

- •Digital computers perform a variety of informationprocessing tasks.
	- and the state of the The most basic arithmetic operation is the *addition of twobinary digits*
- A combinational circuit that performs the addition of two bits is called a *half adder*
	- –The one that performs the addition of three bits (*twosignificant bits* and a *previous carry)* is a *full adder*
	- and the state of the Two half adders can be employed to implement a full adder
- ^A*binary adder-subtractor* is a combinational circuit that performs the arithmetic operation of *addition*and*subtraction* with *binary numbers*.

4.5 Binary Adder-SubtractorHalf Adder

- *^S* = $= x'y + xy'$
	- *S = x* ⊕*y*

• $C = xy$

Half Adder

Digital Circuits Design I (10636221) $\begin{pmatrix} 18 \end{pmatrix}$

18 Dr. Emad Natsheh

4.5 Binary Adder-SubtractorFull Adder

• $S = x'y'z + x'yz' + xy'z' + xyz$

 $S = x \bigoplus$ \bigoplus y ⊕*z*

• $C = xy + xz + yz$

Full Adder

4.5 Binary Adder-SubtractorFull Adder

4.5 Binary Adder-SubtractorFull Adder

- •Implement with *2 half adder* and *1 OR*
- From the original function:

$$
C = xy'z + x'yz + xyz + xyz'= z(xy' + x'y) + xy(z + z') = z(x \oplus y) + xy
$$

4.5 Binary Adder-SubtractorBinary Adder

- A digital circuit that produces the arithmetic sum of two binary numbers.
- It can be constructed with *full adders*connected in cascade,
	- and the state of the The output carry from each full adder connected tothe input carry of the next full adder in the chain.

4.5 Binary Adder-SubtractorBinary Adder

- •A four full-adder circuits to provide a four-bit binary ripplecarry adder.
	- **Links of the Common** - The augend's bits of A and the addend bits B are designated by subscript numbers from right to left, with subscript 0 denotingthe least significant bit.

4.5 Binary Adder-SubtractorBinary Adder

- Consider the two binary numbers $A=1011$ and *B*= 0011.
- Their sum *S*= 1110 is formed with the four-bit adder as follows:

4.5 Binary Adder-SubtractorCarry Propagation

- •The addition of two binary numbers in parallel implies that all the bits of the augend and addend are available for *computation at thesame time*.
- •*As in any combinational circuit*, the signal must propagate throughthe gates before the correct *output sum* is available in the output terminals.
- • The total *propagation time* is equal to the propagation delay of atypical gate, times the number of gate levels in the circuit.
- • The longest propagation delay time in an adder is the time it takesthe carry to propagate through the full adder.
- • Since each bit of the sum output depends on the value of the input carry, the value of S_{*i*} at any given stage in the adder will be in its *steady-state final value only after the input carry to that stage hasbeen propagated*.

4.5 Binary Adder-SubtractorCarry Propagation

- •The signal from the input carry C_i to the output carry C_{i+1} propagates through an AND gate and an OR gate, whichconstitute two gate levels.
	- and the state of the - If there are four full adder, the output carry C_4 would have $2 * 4 = 8$ gate level from C_0 to C_4 .
- For an *n*-bit adder, there are 2*n* gate levels for the carry to propagate from input to output.

4.5 Binary Adder-Subtractor

Carry Propagation

- •There are several techniques for reducing the carry propagation timein parallel adder.
- • The most widely used technique employs the principle of *carrylook-ahead logic*.
- Let $P_i = A_i \oplus B_i$, and $G_i = A_i B_i$
	- Then $S_i = P_i \bigoplus C_i$, and $C_{i+1} = G_i + P_i C_i$
		- –*Gi* is called a *carry generate*
		- –*Pi*is called a *carry propagate*
- C_0 = input carry
- $C_1 = G_0 + P_0 C_0$
- $C_2 = G_1 + P_1 C_1 = G_1 + P_1(G_0 + P_0 C_0) = G_1 + P_1 G_0 + P_1 P_0 C_0$
- $C_3 = G_2 + P_2 C_2 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0$
- Since the Boolean function for each output carry is expressed in • sum-of-product form, each function can be implemented with onelevel of AND gates followed by an OR gate.

4.5 Binary Adder-SubtractorCarry Propagation – carry look-ahead

4.5 Binary Adder-SubtractorBinary Adder with Carry Lookahead

4.5 Binary Adder-SubtractorBinary Subtractor

- The subtraction $A B$ can be done by taking the 2's complement of *B* and adding it to *A*.
	- and the state of the Take the 1's complement
	- and the state of the Add 1 to the least significant pair of bits
- 1's complement can be implemented with *XOR*s
- •A 1 can be added to the sum through the *input carry*
- •The *addition* and *subtraction* operations can be combined into one circuit
- The mode input *M* controls the operation:
	- and the state of the When $M = 0$, the circuit is an adder $(B \oplus 0 = B, C_0 = 0)$
When $M = 1$, the circuit is a subtractor $(B \oplus 1 = B \cap C_0$
	- and the state of the When $M = 1$, the circuit is a subtractor $(B \oplus 1 = B', C_0 = 1)$

Digital Circuits Design I (10636221) $\sqrt{30}$

4.5 Binary Adder-SubtractorBinary Subtractor

4.5 Binary Adder-SubtractorOverflow

- When two numbers with *n* digits each are added and the sum is a number occupying *n*+1 digits, wesay that an *overflow* occurred.
	- Overflow is a problem in digital computers
	- and the state of the state *n*+1 bits cannot be accommodated by an *n*-bit word
- 1. For *unsigned numbers*, an overflow is detected from the *end carry out of the most significantposition* (C_{n+1}) *.*
- 2. For *signed numbers*, an overflow cannot occur after an addition if one number is positive andthe other is negative (*V*).

4.5 Binary Adder-SubtractorOverflow – Singed Numbers

- •An overflow may occur if the two numbers added are both positive or both negative, but the result isan opposite sign
- An overflow can be detected by observing *the carry into the sign bit position* and *the carry outof the sign bit position*.
	- and the state of the state See the output variable $V = C_3 \bigoplus C_4$ in the previous 141 QII diagram for four-bit adder-subtractor.

- Suppose we apply two BCD digits to a four-bit binary adder:
	- and the state of the state – The adder will form the sum in binary
	- and the state of the state - It will produce a result that ranges from 0 through 19 $(9 + 9 + 1$ carry).
- The output sum of two decimal digits must berepresented in BCD
- Problem: find a rule by which the binary sum is converted to the correct BCD digit representationof the number in the BCD sum?

Digital Circuits Design I (10636221)

- •When carry occurs, the addition of **0110**(**6**) to the binary sum converts it to the correct BCDrepresentation.
- From truth table, output carry:

C $c =$ $K + Z_8 Z_4 + Z_8 Z_2$

• When $C = 1$, binary 0110 is added to the binary sum through the bottom four-bit adder

• When $C=1$, binary **0110** is added to the binarsum through thebottom four-bitadder

4.7 Binary Multiplier

• Binary multiplication is performed as decimal multiplication A_0

 $_1\mathcal{C}_0$

4.7 Binary Multiplier

- Multiplicand:
- Multiplier:
- ×*A*2*A*1*A*• Adder 1: *A*0*B*3*A*0*B*2*A*0*B*1*A*0*B*

*A*1*B*3*A*1*B*2*A*1*B*1*A*1*B*0

B

3

B

2

B

1

B

0

 $\rm 0$

0

- •Adder 2: *A*2*B*3*A*2*B*2*A*2*B*1*A*2*B*0
- The result will be (4×3) bits
	- and the state of the We need (4×3) AND gates and two four-bit adders to produce a product of seven bits.

4.7 Binary Multiplier

• Four-bit by three-bit binary Multiplier*B*3*B*2*B*1*B*0 \times A_2 A_1 *A*0

Dr. Emad Natsheh

4.8 Magnitude Comparator

- The comparison of two numbers is an operation that determines whether one number is *greaterthan*, *less than* or *equa^l* to the other number.
- The circuit for comparing two *n-bit* numbers has 22*n* entries in the truth table
- Consider two numbers, A and *B,* with four bitseach:

$$
A = A_3 A_2 A_1 A_0
$$

$$
B=B_3 B_2 B_1 B_0
$$

 \equiv When the num $-$ When the numbers are binary, the digits are either 1 or 0

4.8 Magnitude Comparator

- The two numbers are equal if: $A_3 = B_3$, $A_2 = B_2$, $A_1 = B_1$, and $A_0^{\vphantom{\dag}}$ $_{0} = B$ 0
	- and the state of the *expressed logically with an exclusive-NOR*
- To determine whether *A* is *greater* or *less* than *B,*compare the next lower significant pair of digits
- So, let $x_i = (A_i \oplus B_i)' = A_i B_i + A_i' B_i'$, for $i = 0, 1, 2, 3$ Then:

1. (*A* $A =$ $B) = x_3 x_2 x_1 x_0$ 2. $(A > B) = A_3B_3' + x_3A_2B_2' + x_3x_2A_1B_1' + x_3x_2x_1A_0B_0$ 3. $(A < B) = A_3' B_3 + x_3 A_2' B_2 + x_3 x_2 A_1' B_1 + x_3 x_2 x_1 A_0$ *'* $x_3 + x_3A_2'B_2$ $_2 + x$ $_3x_2A_1$ [']B₁ $_1 + x$ $_3x_2x_1A_0$ [']B₀

 $\left(\begin{array}{c} 42 \end{array} \right)$

4.8 Magnitude Comparator

• A combinational circuit that *converts* binary information from *n* input lines to a maximumof 2*n* unique output lines

- The three inputs are decoded into eightoutputs
	- and the state of the Each representing one of the mintermof the three inputvariables
- The input variables represents a binarynumber

Two-to-four-line Decoder with Enable Input

- •Some decoders are constructed with NAND gates
- • Some also include one *or* more *enable* inputs to control the circuit operation
	- It operates with complemented outputs and a complemented enable –
	- – The circuit is disabled when *E* is equal to 1, regardless of the values of the other two inputs
	- The output whose value is equal to 0 represents the minterm selected by inputs –*A* and *B*

- Decoders with enable inputs can be connectedtogether to form a larger decoder circuit
- $A 4 \times 16$ decoder can be constructedwith two 3×8 decoder with enable
	- and the state of the $-$ When $w = 0$, the top decoder is enabled
	- and the state of the $-$ When $w = 1$, the enable conditionsare reversed

Combinational Logic Implementation

- A decoder provides the 2*ⁿ* minterms of *n* input variables
- Any Boolean function can be expressed in *sumof-minterms* form
- A decoder together with an external OR gate that forms their logical sum, provides a hardwareimplementation of the function
	- The inputs to each OR gate are selected from the decoder outputs according to the list of minterms ofeach function

4.9 DecodersCombinational Logic Implementation

• Implementation of a full adder with a 3×8 decoder.

$$
\bullet \ \mathbf{S}=\Sigma(1,2,4,7)
$$

- Construct a 5-to-32-line decoder with four 3-to-8-line decoders with enable and a 2-to- 4.25 4-line decoder. Use block diagrams for the components. (HDL—see Problem 4.63.)
- 4.26 Construct a 4-to-16-line decoder with five 2-to-4-line decoders with enable.
- 4.27 A combinational circuit is specified by the following three Boolean functions:

 $F_1(A, B, C) = \Sigma(1, 4, 6)$ $F_2(A, B, C) = \Sigma(3, 5)$ $F_3(A, B, C) = \Sigma(2, 4, 6, 7)$

Implement the circuit with a decoder constructed with NAND gates (similar to Fig. 4.19) and NAND or AND gates connected to the decoder outputs. Use a block diagram for the decoder. Minimize the number of inputs in the external gates.

- 4.28 Using a decoder and external gates, design the combinational circui defined by the following three Boolean functions:
	- (a) $F_1 = x'yz' + xz$ (b) $F_1 = (y' + x)z$ $F_2 = y'z' + x'y + yz'$ $F_2 = xy'z' + x'y$ $F_3 = x'v'z' + xv$ $F_3 = (x + y)z$
- •Given a three-input Boolean function $F(A, B, C) = \Sigma m$ (0, 2, 4, 6, 7) + $\Sigma d(1)$.
Implement the function using a minimal number of 2-to-4 with enable decod Implement the function using a minimal number of **2-to-4 with enable decodersand a NOR gate**

Digital Circuits Design I (10636221) $\begin{pmatrix} 50 \end{pmatrix}$

4.10 Encoders

- •A digital circuit that performs the *inverseoperation of a decoder*
	- –An encoder has 2*n* (*or fewer*) input lines and *n*output lines
- The output lines, generates the binary code corresponding to the input value
- It can be implemented with OR gates
	- and the state of the Their inputs are determined directly from the truthtable

4.10 EncodersOctal-to-Binary Encoder

• The encoder defined above has the limitation that only one input can be active at any given time.

4.10 Encoders

- An encoder circuit that includes the priority function
- The operation of the priority encoder is suchthat if two or more inputs are equal to 1 at thesame time, the input having the highest prioritywill take precedence.

4.10 Encoders

Four-input Priority Encoder

- • Output variable *^V* indicates whether a *valid input occurs.*
- It can be seen that the input variable D_3 is with the highest migrity. the highest priority.

Truth Table of a Priority Encoder

Digital Circuits Design I (10636221)

4.10 EncodersFour-input Priority Encoder

4.11 Multiplexers

- •A combinational circuit that selects binary information from*one of many input lines* and directs it to a *single output line*
- The selection of a particular input line is controlled by a set of *selection* lines
	- –2*n* input lines and *n* selection lines whose bit combinationsdetermine which input is selected

4.11 MultiplexersFour-to-one-line multiplexer

4.11 MultiplexersQuadruple 2-to-1-line multiplexer

- Multiplexer circuits can be combined withcommon selection inputs to providemultiple-bit selectionlogic.
- Select 4 bits

4.11 Multiplexers

Boolean Function Implementation

- •The minterms of a function are generated in a multiplexer by the circuit associated with theselection inputs
	- The individual minterms can be selected by the data input
- A Boolean function of *n* variables can be implemented with a multiplexer that has *n-*1selection input
	- –– The first *n*-1 variables of the function are connected to the selection inputs of the multiplexer
	- and the state of the state - The remaining single variable of the function is used for the data input

4.11 Multiplexers

Boolean Function Implementation

- •Consider the Boolean function $F(x, y, z) = \sum (1, 2, 6, 7)$
	- It can be implemented with a four-to-one-line multiplexer using x and y at the select lines

4.11 MultiplexersBoolean Function Implementation

- Consider the Boolean function $F(x, y, z) = \sum (1,2,6,7)$
	- and the state of the - Another solution method using x and y at the select lines

4.11 MultiplexersBoolean Function Implementation

•Consider the Boolean function $F(A, B, C, D) = \sum(1, 3, 4, 11, 12, 13, 14, 15)$ using inputs A, B and C at the select line

4.11 MultiplexersBoolean Function Implementation•Consider the Boolean function $F(A, B, C, D) = \sum (1, 3, 4, 11, 12, 13, 14, 15)$ using inputs B, C and D at the select lines I_0 ${\rm I}_1$ ${\rm I}_2$ ${\rm I}_3$ ${\rm I}_4$ ${\rm I}_5$ ${\rm I}_6$ ${\rm I}_7$ A' Ω $\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}\hline 0&1&2&3&4&5&6&7 \ \hline \end{array}$ AA 8 9 10 (11) (12) (13) (14) (15 0 | A' | 0 | 1 | 1 | A | A | A

4.11 MultiplexersBoolean Function Implementation

4.11 Multiplexers

Boolean Function Implementation

- •Consider the Boolean function $F(A, B, C, D) = \sum(1, 3, 4, 11, 12, 13, 14, 15)$ using inputs A and C at the select lines, while inputs B and D at the input lines lines
	- –It can be implemented with a four-to-one-line multiplexer

4.11 Multiplexers

Boolean Function Implementation

- Construct a 16×1 multiplexer with two 8×1 and one 2×1 multiplexers. Use block dia- 4.31 grams.
- Implement the following Boolean function with a multiplexer 4.32

(a)
$$
F(A, B, C, D) = \Sigma(0, 2, 5, 7, 11, 14)
$$

(b)
$$
F(A, B, C, D) = \Pi(3, 8, 12)
$$

- Implement a full adder with two 4×1 multiplexers. 4.33
- 4.34 An 8 \times 1 multiplexer has inputs A, B, and C connected to the selection inputs S_2 , S_1 , and S_0 , respectively. The data inputs I_0 through I_7 are as follows:

(a)*
$$
I_1 = I_2 = I_7 = 0
$$
; $I_3 = I_5 = 1$; $I_0 = I_4 = D$; and $I_6 = D'$.

(b)
$$
I_1 = I_2 = 0
$$
; $I_3 = I_7 = 1$; $I_4 = I_5 = D$; and $I_0 = I_6 = D'$.

Determine the Boolean function that the multiplexer implements.

4.35 Implement the following Boolean function with a 4×1 multiplexer and external gates.

$$
(a)*F(A, B, C, D) = \Sigma(1, 3, 4, 11, 12, 13, 14, 15)
$$

(b)
$$
F(A, B, C, D) = \Sigma(1, 2, 4, 7, 8, 9, 10, 11, 13, 15)
$$

Connect inputs A and B to the selection lines. The input requirements for the four data lines will be a function of variables C and D . These values are obtained by expressing F as a function of C and D for each of the four cases when $AB = 00, 01, 10,$ and 11. The functions may have to be implemented with external gates and with connections to power and ground.

•Design a **full adder** with a minimal number of **2-to-1 multiplexers** (**Do not use any other gate**).

