Gaussian Elimination

Gaussian elimination for the solution of a linear system transforms the system $Sx = f$ into an equivalent system $Ux = c$ with upper triangular matrix U (that means all entries in U below the diagonal are zero). This transformation is done by applying three types of transformations to the augmented matrix $(S | f)$.

- Type 1: Interchange two equations; and
- Type 2: Replace an equation with the sum of the same equation and a multiple of another equation.

Once the augmented matrix $(U | f)$ is transformed into $(U | c)$, where U is an upper triangular matrix, we can solve this transformed system $Ux = c$ using backsubstitution.

Example 1

Suppose that we want to solve

$$
\begin{pmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 8 \\ 10 \end{pmatrix}.
$$
 (1)

We apply Gaussian elimination. To keep track of the operations, we use, e.g., $R_2 = R_2 - 2 * R_1$, which means that the new row 2 is computed by subtracting 2 times row 1 from row 2.

$$
\left(\begin{array}{ccc|c}2&4&-2&2\\4&9&-3&8\\-2&-3&7&10\end{array}\right)\rightarrow\left(\begin{array}{ccc|c}2&4&-2&2\\0&1&1&4\\0&1&5&12\end{array}\right)\begin{array}{c}R_2=R_2-2*R_1\\R_3=R_3+R_1\\\hline\\+&3&12\end{array}\right)
$$

$$
\rightarrow\left(\begin{array}{ccc|c}2&4&-2&2\\0&1&1&4\\0&0&4&8\end{array}\right)\begin{array}{c}R_2=R_2-2*R_1\\R_3=R_3-R_2\end{array}
$$

The original system (1) is equivalent to

$$
\begin{pmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 8 \end{pmatrix}.
$$
 (2)

The system (2) can be solved by backsubstitution. We get the solution

$$
x_3 = 8/4 = 2
$$
, $x_2 = (4-1*2)/1 = 2$, $x_1 = (2-4*2-(-2)*2)/2 = -1$.

M. Heinkenschloss - CAAM335 Matrix Analysis Gaussian Elimination and Matrix Inverse (updated September 3, 2010) – 2

Example 2

Suppose that we want to solve

$$
\begin{pmatrix} 2 & 3 & -2 \\ 1 & -2 & 3 \\ 4 & -1 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix}.
$$
 (3)

M. Heinkenschloss - CAAM335 Matrix Analysis Gaussian Elimination and Matrix Inverse (updated September 3, 2010) – 1

We apply Gaussian elimination.

$$
\left(\begin{array}{ccc|c}2 & 3 & -2 & f_1 \\ 1 & -2 & 3 & f_2 \\ 4 & -1 & 4 & f_3\end{array}\right) \rightarrow \left(\begin{array}{ccc|c}2 & 3 & -2 & f_1 \\ 0 & -7/2 & 4 & f_2 - f_1/2 \\ 0 & -7 & 8 & f_3 - 2f_1\end{array}\right) \begin{array}{c}R_2 = R_2 - 0.5 * R_1 \\ R_3 = R_3 - 2 * R_1 \\ R_3 = R_3 - 2 * R_1 \\ \end{array}
$$

$$
\rightarrow \left(\begin{array}{ccc|c}2 & 3 & -2 & f_1 \\ 0 & -7/2 & 4 & f_2 - f_1/2 \\ 0 & 0 & 0 & f_3 - 2f_2 - f_1\end{array}\right) \begin{array}{c}R_2 = R_2 - 0.5 * R_1 \\ R_3 = R_3 - 2 R_2\end{array}
$$

The original system ([3\)](#page-0-1) is equivalent to

$$
\begin{pmatrix} 2 & 3 & -2 \ 0 & -7/2 & 4 \ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix} = \begin{pmatrix} f_1 \ f_2 - f_1/2 \ f_3 - 2f_2 - f_1 \end{pmatrix}.
$$
 (4)

The last eq[ua](#page-0-0)tion in system (4) reads $0x_1 + 0x_2 + 0x_3 = f_3 - 2f_2 - f_1$. This can only be satisfied of th[e ri](#page-0-2)ght hand side satisfies $f_3 - 2f_2 - f_1 = 0$, for example if $f_1 = f_2 = f_3 = 1$.

M. Heinkenschloss - CAAM335 Matrix Analysis Gaussian Elimination and Matrix Inverse (updated September 3, 2010)

Example 2 (cont.)

If $f_3 - 2f_2 - f_1 = 0$, then x_3 can be chosen arbitrarily and x_2, x_1 can be determined by backsubstitution. If $f_3 - 2f_2 - f_1 = 0$, then

 x_3 = any scalar, $x_2 = (f_2 - f_1/2 - 4x_3)*(-2/7), \quad x_1 = (f_1 - 3x_2 + 2x_3)/2.$

For example if $f_1 = f_2 = f_3 = 1$, and if we choose $x_3 = 0$, then

$$
x_3 = 0
$$
, $x_2 = -1/7$, $x_1 = 5/7$.

The Matrix Inverse

A square matrix $S \in \mathbb{R}^{n \times n}$ is invertible if there exists a matrix $X \in \mathbb{R}^{n \times n}$ such that

 $XS = I$ and $SX = I$.

The matrix X is called the inverse of S and is denoted by S^{-1} .

- \blacktriangleright An invertible matrix is also called non-singular. A matrix is called non-invertible or singular if it is not invertible.
- A matrix $S \in \mathbb{R}^{n \times n}$ cannot have two different inverses. In fact, if $X, Y \in \mathbb{R}^{n \times n}$ are two matrices with $XS = I$ and $SY = I$, then

 $X = XI = X(SY) = (XS)Y = IY = Y.$

- \blacktriangleright The property $SX = I$ (right inverse) is important for the existence of a solution. In fact, if there is a matrix X with $SX = I$, then $x = Xf$ satisfies $Sx = SXf = If = f$, i.e., $x = Xf$ is a solution to the linear system.
- \blacktriangleright The property $XS = I$ (left inverse) is important for the uniqueness of the solution. In fact, if there is a matrix X with $XS = I$ and if x and y satisfy $Sx = f$ and $Sy = f$, then $S(x - y) = Sx - Sy = f - f = 0$ and $x - y = X0 = 0$.
- It can be shown that if the square matrix S has a left inverse $XS = I$, then X is also a right inverse, $SX = I$, and vice versa.
- If S is invertible, then for every f the linear system $Sx = f$ has the unique solution $x = S^{-1}f$.
- \triangleright We will see later that if for every f the linear system $Sx = f$ has a unique solution x , then S is invertible.

Computation of the Matrix Inverse

We want to find the inverse of $S \in \mathbb{R}^{n \times n}$, that is we want to find a matrix $X \in \mathbb{R}^{n \times n}$ such that $SX = I$.

In Let $X_{:,j}$ denote the *j*th column of X, i.e., $X = (X_{:,1}, \ldots, X_{:,n})$. Consider the matrix-matrix product SX . The jth column of SX is the matrix-vector product $SX_{:,j}$, i.e., $SX = (SX_{:,1}, \ldots, SX_{:,n})$. The *j*th column of the identity I is the *j*th unit vector $e_j = (0, \ldots, 0, 1, 0, \ldots, 0)^T.$ Hence $SX = (SX_{n1}, \ldots, SX_{n1}) = (e_1, \ldots, e_n) = I$ implies that we can compute the columns $X_{:1}, \ldots, X_{:n}$ of the inverse of S by solving n systems of linear equations

> $SX_{1} = e_{1}$, . . .

$$
SX_{:,n}=e_n.
$$

Note that if for every f the linear system $Sx = f$ has a unique solution x, then there exists a unique $X = (X_{:1}, \ldots, X_{:n})$ with $SX = I$.

M. Heinkenschloss - CAAM335 Matrix Analysis Gaussian Elimination and Matrix Inverse (updated September 3, 2010) – 6

Example 3

Suppose that we want the inverse of

$$
S = \begin{pmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{pmatrix}.
$$

We can use Gaussian Elimination to solve the systems

 $SX_{:,1}=e_1, SX_{:,2}=e_2, SX_{:,3}=e_3$ for the three columns of $X=S^{-1}$

$$
\begin{pmatrix}\n2 & 4 & -2 & 1 & 0 & 0 \\
4 & 9 & -3 & 0 & 1 & 0 \\
-2 & -3 & 7 & 0 & 0 & 1\n\end{pmatrix}\n\rightarrow\n\begin{pmatrix}\n2 & 4 & -2 & 1 & 0 & 0 \\
0 & 1 & 1 & -2 & 1 & 0 \\
0 & 1 & 5 & 1 & 0 & 1\n\end{pmatrix}
$$
\n
$$
\rightarrow\n\begin{pmatrix}\n2 & 4 & 0 & 5/2 & -1/2 & 1/2 \\
0 & 1 & 0 & -11/4 & 5/4 & -1/4 \\
0 & 0 & 1 & 3/4 & -1/4 & 1/4\n\end{pmatrix}\n\rightarrow\n\begin{pmatrix}\n1 & 0 & 0 & 27/4 & -11/4 & 3/4 \\
0 & 1 & 0 & -11/4 & 5/4 & -1/4 \\
0 & 0 & 1 & 0 & 3/4 & -1/4 & 1/4\n\end{pmatrix}\n\rightarrow\n\begin{pmatrix}\n1 & 0 & 0 & 27/4 & -11/4 & 3/4 \\
0 & 1 & 0 & -11/4 & 5/4 & -1/4 \\
0 & 0 & 1 & 3/4 & -1/4 & 1/4\n\end{pmatrix}.
$$
\n
$$
S^{-1} = \frac{1}{4} \begin{pmatrix}\n27 & -11 & 3 \\
-11 & 5 & -1 \\
3 & -1 & 1\n\end{pmatrix}.
$$

M. Heinkenschloss - CAAM335 Matrix Analysis Gaussian Elimination and Matrix Inverse (updated September 3, 2010)

Example 4

Suppose that we want the inverse of

$$
S = \begin{pmatrix} 2 & 3 & -2 \\ 1 & -2 & 3 \\ 4 & -1 & 4 \end{pmatrix}.
$$

We can use Gaussian Elimination to solve the systems $SX_{:,1}=e_1, SX_{:,2}=e_2, SX_{:,3}=e_3$ for the three columns of $X=S^{-1}$

$$
\left(\begin{array}{rrr}2 & 3 & -2 & | & 1 & 0 & 0 \\ 1 & -2 & 3 & | & 0 & 1 & 0 \\ 4 & -1 & 4 & | & 0 & 0 & 1\end{array}\right) \rightarrow \left(\begin{array}{rrr}2 & 3 & -2 & | & 1 & 0 & 0 \\ 0 & -7/2 & 4 & | & -1/2 & 1 & 0 \\ 0 & -7 & 8 & | & -2 & 0 & 1\end{array}\right) \rightarrow \left(\begin{array}{rrr}2 & 3 & -2 & | & 1 & 0 & 0 \\ 0 & -7/2 & 4 & | & -1/2 & 1 & 0 \\ 0 & 0 & 0 & | & -1 & -2 & 1\end{array}\right).
$$

None of the linear systems $SX_{:,1} = e_1, SX_{:,2} = e_2, SX_{:,3} = e_3$ has a solution. Therefore, S is not invertible.