Gaussian Elimination

Gaussian elimination for the solution of a linear system transforms the system Sx = f into an equivalent system Ux = c with upper triangular matrix U (that means all entries in U below the diagonal are zero). This transformation is done by applying three types of transformations to the augmented matrix $(S \mid f)$.

Type 1: Interchange two equations; and

M. Heinkenschloss - CAAM335 Matrix Analysis

Type 2: Replace an equation with the sum of the same equation and a multiple of another equation.

Once the augmented matrix $(U \mid f)$ is transformed into $(U \mid c)$, where U is an upper triangular matrix, we can solve this transformed system Ux = c using backsubstitution.

Example 1

Suppose that we want to solve

$$\begin{pmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 8 \\ 10 \end{pmatrix}.$$
 (1)

We apply Gaussian elimination. To keep track of the operations, we use, e.g., $R_2=R_2-2\ast R_1$, which means that the new row 2 is computed by subtracting 2 times row 1 from row 2.

$$\begin{pmatrix} 2 & 4 & -2 & | & 2 \\ 4 & 9 & -3 & | & 8 \\ -2 & -3 & 7 & | & 10 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 4 & -2 & | & 2 \\ 0 & 1 & 1 & | & 4 \\ 0 & 1 & 5 & | & 12 \end{pmatrix} \begin{array}{c} R_2 = R_2 - 2 * R_1 \\ R_3 = R_3 + R_1 \\ \rightarrow \begin{pmatrix} 2 & 4 & -2 & | & 2 \\ 0 & 1 & 1 & | & 4 \\ 0 & 0 & 4 & | & 8 \end{pmatrix} \\ R_3 = R_3 - R_2$$

The original system (1) is equivalent to

$$\begin{pmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 8 \end{pmatrix}.$$
 (2)

The system $\left(2\right)$ can be solved by backsubstitution. We get the solution

$$x_3 = 8/4 = 2$$
, $x_2 = (4-1*2)/1 = 2$, $x_1 = (2-4*2-(-2)*2)/2 = -1$.

M. Heinkenschloss - CAAM335 Matrix Analysis Gaussian Elimination and Matrix Inverse (updated September 3, 2010)

Example 2

Suppose that we want to solve

$$\begin{pmatrix} 2 & 3 & -2\\ 1 & -2 & 3\\ 4 & -1 & 4 \end{pmatrix} \begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = \begin{pmatrix} f_1\\ f_2\\ f_3 \end{pmatrix}.$$
 (3)

Gaussian Elimination and Matrix Inverse (updated September 3, 2010)

We apply Gaussian elimination.

$$\begin{pmatrix} 2 & 3 & -2 & | & f_1 \\ 1 & -2 & 3 & | & f_2 \\ 4 & -1 & 4 & | & f_3 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 3 & -2 & | & f_1 \\ 0 & -7/2 & 4 & | & f_2 - f_1/2 \\ 0 & -7 & 8 & | & f_3 - 2f_1 \end{pmatrix} \begin{array}{c} R_2 = R_2 - 0.5 * R_1 \\ R_3 = R_3 - 2 * R_1 \\ \end{array} \\ \rightarrow \begin{pmatrix} 2 & 3 & -2 & | & f_1 \\ 0 & -7/2 & 4 & | & f_2 - f_1/2 \\ 0 & 0 & 0 & | & f_3 - 2f_2 - f_1 \end{pmatrix} \begin{array}{c} R_3 = R_3 - 2R_2 \end{array}$$

The original system (3) is equivalent to

$$\begin{pmatrix} 2 & 3 & -2 \\ 0 & -7/2 & 4 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 - f_1/2 \\ f_3 - 2f_2 - f_1 \end{pmatrix}.$$
 (4)

The last equation in system (4) reads $0x_1 + 0x_2 + 0x_3 = f_3 - 2f_2 - f_1$. This can only be satisfied of the right hand side satisfies $f_3 - 2f_2 - f_1 = 0$, for example if $f_1 = f_2 = f_3 = 1$.

M. Heinkenschloss - CAAM335 Matrix Analysis Gaussian Elimination and Matrix Inverse (updated September 3, 2010)

Example 2 (cont.)

x

If $f_3 - 2f_2 - f_1 = 0$, then x_3 can be chosen arbitrarily and x_2, x_1 can be determined by backsubstitution. If $f_3 - 2f_2 - f_1 = 0$, then

 $x_3 = \text{any scalar}, \quad x_2 = (f_2 - f_1/2 - 4x_3) * (-2/7), \quad x_1 = (f_1 - 3x_2 + 2x_3)/2.$

For example if $f_1 = f_2 = f_3 = 1$, and if we choose $x_3 = 0$, then

$$x_3 = 0, \quad x_2 = -1/7, \quad x_1 = 5/7.$$

The Matrix Inverse

A square matrix $S\in\mathbb{R}^{n\times n}$ is invertible if there exists a matrix $X\in\mathbb{R}^{n\times n}$ such that

XS = I and SX = I.

The matrix X is called the inverse of S and is denoted by S^{-1} .

- An invertible matrix is also called non-singular.
 A matrix is called non-invertible or singular if it is not invertible.
- A matrix $S \in \mathbb{R}^{n \times n}$ cannot have two different inverses. In fact, if $X, Y \in \mathbb{R}^{n \times n}$ are two matrices with XS = I and SY = I, then

X = XI = X(SY) = (XS)Y = IY = Y.

- The property SX = I (right inverse) is important for the existence of a solution. In fact, if there is a matrix X with SX = I, then x = Xf satisfies Sx = SXf = If = f, i.e., x = Xf is a solution to the linear system.
- ▶ The property XS = I (left inverse) is important for the uniqueness of the solution. In fact, if there is a matrix X with XS = I and if x and y satisfy Sx = f and Sy = f, then S(x - y) = Sx - Sy = f - f = 0 and x - y = X0 = 0.
- It can be shown that if the square matrix S has a left inverse XS = I, then X is also a right inverse, SX = I, and vice versa.
- If S is invertible, then for every f the linear system Sx = f has the unique solution $x = S^{-1}f$.
- We will see later that if for every f the linear system Sx = f has a unique solution x, then S is invertible.

M. Heinkenschloss - CAAM335 Matrix Analysis

Computation of the Matrix Inverse

We want to find the inverse of $S\in\mathbb{R}^{n\times n}$, that is we want to find a matrix $X\in\mathbb{R}^{n\times n}$ such that SX=I.

Let X_{:,j} denote the jth column of X, i.e., X = (X_{:,1},...,X_{:,n}). Consider the matrix-matrix product SX. The jth column of SX is the matrix-vector product SX_{:,j}, i.e., SX = (SX_{:,1},...,SX_{:,n}). The jth column of the identity I is the jth unit vector e_j = (0,...,0,1,0,...,0)^T. Hence SX = (SX_{:,1},...,SX_{:,n}) = (e₁,...,e_n) = I implies that we can compute the columns X_{:,1},...,X_{:,n} of the inverse of S by

solving n systems of linear equations

$$SX_{:,1} = e_1,$$

$$\vdots$$

$$SX_{:,n} = e_n.$$

Note that if for every f the linear system Sx = f has a unique solution x, then there exists a unique $X = (X_{:,1}, \ldots, X_{:,n})$ with SX = I.

Gaussian Elimination and Matrix Inverse (updated September 3, 2010)

Example 3

Suppose that we want the inverse of

$$S = \begin{pmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{pmatrix}.$$

We can use Gaussian Elimination to solve the systems $SX_{:,1} = e_1, SX_{:,2} = e_2, SX_{:,3} = e_3$ for the three columns of $X = S^{-1}$

$$\begin{pmatrix} 2 & 4 & -2 & | & 1 & 0 & 0 \\ 4 & 9 & -3 & | & 0 & 1 & 0 \\ -2 & -3 & 7 & | & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 4 & -2 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & -2 & 1 & 0 \\ 0 & 1 & 5 & | & 1 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 2 & 4 & -2 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & -2 & 1 & 0 \\ 0 & 0 & 4 & | & 3 & -1 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 2 & 4 & 0 & | & 5/2 & -1/2 & 1/2 \\ 0 & 1 & 0 & | & -11/4 & 5/4 & -1/4 \\ 0 & 0 & 1 & | & 3/4 & -1/4 & 1/4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & | & 27/4 & -11/4 & 3/4 \\ 0 & 1 & 0 & | & -11/4 & 5/4 & -1/4 \\ 0 & 0 & 1 & | & 3/4 & -1/4 & 1/4 \end{pmatrix} .$$

$$S^{-1} = \frac{1}{4} \begin{pmatrix} 27 & -11 & 3 \\ -11 & 5 & -1 \\ 3 & -1 & 1 \end{pmatrix} .$$

Example 4

Suppose that we want the inverse of

M. Heinkenschloss - CAAM335 Matrix Analysis

$$S = \begin{pmatrix} 2 & 3 & -2 \\ 1 & -2 & 3 \\ 4 & -1 & 4 \end{pmatrix}.$$

We can use Gaussian Elimination to solve the systems $SX_{:,1} = e_1, SX_{:,2} = e_2, SX_{:,3} = e_3$ for the three columns of $X = S^{-1}$

$$\begin{pmatrix} 2 & 3 & -2 & | & 1 & 0 & 0 \\ 1 & -2 & 3 & | & 0 & 1 & 0 \\ 4 & -1 & 4 & | & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 3 & -2 & | & 1 & 0 & 0 \\ 0 & -7/2 & 4 & | & -1/2 & 1 & 0 \\ 0 & -7 & 8 & | & -2 & 0 & 1 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 2 & 3 & -2 & | & 1 & 0 & 0 \\ 0 & -7/2 & 4 & | & -1/2 & 1 & 0 \\ 0 & 0 & 0 & | & -1 & -2 & 1 \end{pmatrix}$$

None of the linear systems $SX_{:,1} = e_1, SX_{:,2} = e_2, SX_{:,3} = e_3$ has a solution. Therefore, S is not invertible.

Gaussian Elimination and Matrix Inverse (updated Sen