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UNIT FIVE 
 

DETERMINANTS 
 

5.1   INTRODUCTION 
 
In unit one the determinant of a 22×  matrix was introduced and used in the evaluation of 
a cross product.  In this chapter we extend the definition of a determinant to any size 
square matrix.  The determinant has a variety of applications.  The value of the 
determinant of a square matrix A can be used to determine whether A is invertible or 
noninvertible.  An explicit formula for A–1 exists that involves the determinant of A.  
Some systems of linear equations have solutions that can be expressed in terms of 
determinants.   
 
5.2   DEFINITION OF THE DETERMINANT   

Recall that in chapter one the determinant of the 22×  matrix A = 








2221

1211

aa
aa

 was 

defined to be the number 21122211 aaaa −  and that the notation det (A) or A  was used to 
represent the determinant of A.   For any given nn×  matrix [ ]

nnija
×

=A , the notation ijA  
will be used to denote the )1()1( −×− nn  submatrix obtained from A by deleting the ith 
row and the jth column of A.  The determinant of any size square matrix [ ]

nnija
×

=A  is 
defined recursively as follows. 
 
Definition of the Determinant  Let [ ]

nnija
×

=A  be an nn×  matrix. 

(1)  If n = 1,  that is A = [a11],  then we define  det (A) = 11a . 

(2)  If 1 k
1 1

1
1,   we define  det(A)  (-1) det(A )

n

k k
k

n a+

=

> = ∑  

 
Example 
 
If [ ]5A = , then by part (1) of the definition of the determinant, det (A) = 5. 
 

If 







=

54
32

A , then by parts (2) and (1),  det (A) = (–1)1+1(2)det[5] + (–1)1+2 (3)det[4]  

                                                                               = (1)(2)(5) + (–1)(3)(4) = 10 – 12 = –2 
 

 

 If   















=

198
765
432

A , then using parts (2) and (1), we calculate the det (A) as follows. 
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







−+








−+








−= +++

98
65

det)4()1(
18
75

det)3()1(
19
76

det)2()1(det(A)  312111  

  = (1)(2)(–57) + (–1)(3)(–51) + (1)(4)(–3) = –114 + 153 –12 = 27. 
 
Cofactor  If A is a square matrix, the ijth cofactor of A is defined to be (–1)i+jdet(Aij).   
The notation Cij will sometimes be used to denote the ijth cofactor of A.   
 

Example  Let 















=

987
654
321

A .  Then C11 = (–1)1+1det 







98
65

= (1)(45 – 48) = –3 , 

C12 = (–1)1+2det 







97
64

= (–1)(36–42) = 6 and C23 = (–1)2+3det 







87
21

= (–1)(8–14) = 6.  

 
 In the definition of the determinant, part (2) consists of multiplying each first row entry 
of A by its cofactor and then summing these products.  For this reason it is called a first 
row cofactor expansion.   
 

Example Let 



















=

5324
1435
4231
5432

A .  Use a first row cofactor expansion to evaluate det(A). 

Solution     det(A) = 
























































+−++−++−++−

324
435
231

det)5(41)1(
524
135
431

det)4(31)1(
534
145
421

(3)det21)1(
532
143
423

det)2(11)1(

=(1)(2)
















−+








−+








− +++

32
43

det)4()1(
52
13

det)2()1(
53
14

det)3()1( 312111  

+(–1)(3)
















−+








−+








− +++

34
45

det)4()1(
54
15

(2)det)1(
53
14

det)1()1( 312111  

+(1)(4)
















−+








−+








− +++

24
35

det)4()1(
54
15

(3)det)1(
52
13

det)1()1( 312111  

+(–1)(5)
















−+








−+








− +++

24
35

det)2()1(
34
45

(3)det)1(
32
43

det)1()1( 312111  

=(1)(2){(1)(3)(20–3) + (–1)(2)(15–2) + (1)(4)(9–8)} 
   +(–1)(3){(1)(1)(20–3) + (–1)(2)(25–4) + (1)(4)(15–16)} 
   +(1)(4){(1)(1)(15–2) + (–1)(3)(25–4) + (1)(4)(10–12)} 
   +(–1)(5){(1)(1)(9–8) + (–1)(3)(15–16) + (1)(2)(10–12)} 
=(1)(2){51–26+4} + (–1)(3){17–42–4} + (1)(4){13–63–8} + (–1)(5){1+3–4} 
=58 + 87 – 232 + 0 = –87 
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Although the definition of the determinant uses a first row cofactor expansion, the 
determinant of A may be calculated by taking any row (or column) and multiplying the 
entries of that row (or column) by their cofactors and summing the products.  This result 
is given in the next theorem whose proof is omitted. 
 
Theorem  Let A be a square nn×  matrix, then 

 ∑∑
=

+

=

+ −==
n

k
kjkj

jk
ik

n

k
ik

ki aa
11

)det(A)1()det(A(-1)det(A) .     

 
 
 
 
 

Example  Let 















=

013
102
431

A .  Evaluate det (A) by 

(a) a second row cofactor expansion. 
(b) a third column cofactor expansion. 
 
Solution 

(a)  det (A) = 







−+








−+








− +++

13
31

det)1()1(
03
41

(0)det)1(
01
43

det)2()1( 322212  

        = (–1)(2)(–4) + (1)(0)(–12) + (–1)(1)(–8) = 8 + 0 + 8 = 16. 
 

(b)  det (A) = 







−+








−+








− +++

02
31

(0)det)1(
13
31

det)1()1(
13
02

det)4()1( 333231  

       = (1)(4)(2) + (–1)(1)(–8) + (1)(0)(–6) = 8 + 8 + 0 = 16. 
 
Theorem If A is a square matrix containing a row (or column) of zeros, then det(A) = 0. 
 
Proof   Use a cofactor expansion along the row (or column) of zeros. 
 
 
Theorem  If A is an nn×  matrix with two identical rows (or columns), then det (A) = 0. 

Proof  The theorem is certainly true for n = 2 since 0det 12111211
1211

1211 =−=







aaaa

aa
aa

. 

If n = 3, use a cofactor expansion along the row different from the two identical rows.  
Let this row be the kth  row.  Using a cofactor expansion along this row gives  
det (A) = (–1)k+1(ak1)det(Ak1) + (–1)k+2(ak2)det(Ak2) + (–1)k+3(ak3)det(Ak3).  But each of 
the submatrices Ak1, Ak2 and Ak3 has two identical rows so their determinants are 0, 
hence det (A) = 0 for any 3 3×  matrix. 
If 3>n  proceed as above writing det (A) as a sum of products involving submatrices 
with two identical rows whose determinants are 0. 

 ith row cofactor 
   expansion 

 jth column cofactor 
     expansion 
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Triangular and Diagonal Matrices  A square matrix is said to be an upper 
triangular matrix if all the entries below the main diagonal are zero.  A square matrix is 
said to be a lower triangular matrix if all the entries above the main diagonal are zero.   
A square matrix is said to be a diagonal matrix if all entries not on the main diagonal are 
zero.  A diagonal matrix is both upper triangular and lower triangular. 
 
Example 

















600
540
321

 is an upper triangular matrix.         
















654
032
001

 is a lower triangular matrix. 

 

















300
020
001

 is a diagonal matrix.  It is both upper and lower triangular. 

 
Theorem  If A is upper triangular, lower triangular or diagonal, nnaaa 2211det(A) = . 
 
Proof  Suppose A is upper triangular.  To evaluate det(A) use a cofactor expansion along 
the first column.  Since there is only one nonzero entry in the first column the expansion 
gives det(A) = (-1)1+1a11det(A11) = a11det(A11).  Now A11 is upper triangular so proceed as 
above to use a cofactor expansion along its first column to get det (A11) = a22det(A22) 
where A22 is A11 with its first row and first column deleted.  Combining the results gives 
det(A) = a11a22det(A22).   Continuing in this fashion, we eventually get det (A) = 

nnaaa 2211  as required.  If A is lower triangular or diagonal, the argument is similar. 
 

Example   70)7)(5)(2(
700
650
432

det ==















.         det

















500
030
002

 = (2)(3)(5) = 30 

 
Theorem  det(In) = 1 for all n. 
 
Proof   Since In is a diagonal matrix, det(In) = 1)1()1)(1( =  
 
Basket-Weave Method   The following method is an alternative way to evaluate the 
determinant of a 3×3 matrix.  This method is only applicable to 3×3 matrices and is 
sometimes called the basket-weave method.  
Construct a 3×5 array by writing down the entries of the 3×3 matrix and then repeating 
the first two columns.  Calculate the products along the six diagonal lines shown in the 
diagram.  The determinant is equal to the sum of products along diagonals labeled 1, 2 
and 3 minus the sum of the products along the diagonals labeled 4, 5 and 6. 
    a11 a12 a13 a11 a12 

    a21 a22 a23 a21 a22 

    a31 a32 a33 a31 a32 

 1  2  3 4  5  6



 72

Example   Use the basket-weave method to calculate the determinant of A = .
523
412
321
















 

Solution 
 
 1 2 3 1 2       det (A) = (5 + 24 + 12) – (9 + 8 + 20) 
 2 1 4 2 1                   = (41) – (37) = 4      
 3 2 5 3 2 
 
 
 
5.2   PROBLEMS 
 
1.  Use the definition of the determinant to evaluate the determinant of the given matrix. 

(a) 
















223
132
121

  (b) 
















201
534
312

  (c) 
















235
412
311

  (d) 
















543
012
101

 

 

(e)



















4132
3420
1312
0101

 (f) 



















2013
2040
2305
1023

  (g) 



















1320
4213
2140
1345

 (h) 



















3014
0132
3420
1203

 

 
2.  Use the basket-weave method to evaluate the determinants 1(a), 1(b), 1(c) and 1(d). 
 
3.  Evaluate the determinants of the following matrices by inspection. 
 

(a) 
















100
650
432

  (b) 
















200
360
953

  (c) 
















231
035
004

  (d) 
















400
030
002

 

 

4.  Let .
146
532
321

A















=   Find the following cofactors of A. 

 
(a) C11  (b) C12  (c) C13  (d) C21  (e) C22  (f) C32 
 
 

5.  Find all values of k for which
1- 3

det 0.
2 2
k

k
 

= − 
 

 5  24  12 9  8  20 
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5.3   ELEMENTARY ROW OPERATIONS ON DETERMINANTS 
 
The evaluation of the determinant of an nn×  matrix using the definition involves the 
summation of n! terms, each term being a product of n factors.  As n increases, this 
computation becomes too cumbersome and so another technique has been devised to 
evaluate the determinant.  This technique uses the elementary row operations to reduce 
the matrix to a triangular form.  The effect of each elementary row operation on the value 
of the determinant is taken into account and then the determinant of the triangular matrix 
is evaluated by finding the product of the entries on the main diagonal.   
 
Theorem  If A and B are square matrices and B is obtained from A by interchanging 
two rows (or columns) of A, then det (B) = – det (A). 

Proof  Let A and B be nn×  matrices.  If n = 2, then A = 








2221

1211

aa
aa

 and B = 








1211

2221

aa
aa

 

so det(B) = )( 2112221122111221 aaaaaaaa −−=− = –det(A).  
If n = 3, then we use a cofactor expansion for B along the row that was not interchanged.  
Let this be row k.  Then det(B) = (–1)k+1ak1det(Bk1) + (–1)ak2det(Bk2) + (–1)ak3det(Bk3).  
Each submatrix Bkj is the submatrix Akj with its rows interchanged so det(Bkj) = –det(Akj).  
Hence det(B) = (–1)k+1ak1(–1)det(Ak1) + (–1)ak2(–1)det(Ak2) + (–1)ak3(–1)det(Ak3) 
           = (–1) [(–1)k+1ak1det(Ak1) + (–1)ak2det(Ak2) + (–1)ak3det(Ak3)] 
           = (–1) det(A) = – det (A) as required. 
If 3>n  proceed as above using cofactor expansions along rows that were not 
interchanged to get the final result.   The proof for interchanged columns is similar. 
 
Theorem Let A and B be nn×  matrices with B obtained from A by multiplying all the 
entries of some row (or column) of A by a scalar k.  Then det (B) = k det (A). 
 
Proof   Suppose B is obtained from A by multiplying the entries of the jth row of A by k.  
Use a cofactor expansion for B along its jth row to evaluate the determinant of B and 
noting that these cofactors for B are equal to the corresponding cofactors for A we get 
det (B) = (–1)j+1kaj1det(Bj1) + (–1)j+2 kaj2det(Bj2) ++  (–1)j+n kajndet(Bjn) 
            = (–1)j+1kaj1det(Aj1) + (–1)j+2 kaj2det(Aj2) ++  (–1)j+n kajndet(Ajn) 
 = k[(–1)j+1aj1det(Aj1) + (–1)j+2 aj2det(Aj2) ++  (–1)j+n ajndet(Ajn)] 
 = k det(A). 
The proof in the case where B is obtained from A by multiplying a column of A by k is 
similar. 

 

Example  det 55)314)(5(
21
37

det 5
105
37

=−=







=








 

 
Corollary   det (kA) = kn det (A). 
 
Proof  Since all n rows of A are multiplied by the scalar k to get kA, using the above 
theorem n times gives det (kA) ))(( kk= (k) det (A) = kn det (A). 

5 is a common factor in row 2 of the given matrix. 
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Example  det 90)10)(9()212)(9(
31
24

det 3
31
24

det)3)(3(
93
612 2 ==−=








=








=








 

 
 
Example   Let A be a 33×  matrix and let det(A) = 5.  Find det(2A). 
 
Solution   det(2A) = 23 det(A) = (8)(5) = 40 
 
 

Example   det 0)0)(3(
654
321
321

det3
654
963
321

==















=
















.  Notice that row 2 of the 

original matrix is 3 times row 1.  This leads to the following corollary. 
 
 
Corollary   If A is a square matrix that has a row (or column) that is a scalar multiple of 
another row (or column), then det (A) = 0. 
 
Proof  Suppose the jth row of A is k times the ith row of A.  Then det (A) = k det ( Â ) 
where Â  is the matrix A with the jth row multiplied by 1/k. But Â  has two identical 
rows, (row i = row j), so det( Â ) = 0.  Hence det (A) = k det( Â ) = .00 =⋅k  
 
 
Theorem    Let A be a square matrix and let B be the matrix obtained from A by adding 
a multiple of one row (or column) of A to another row (or column) of A.  
Then det (B) = det (A).  
 
Proof  Suppose B is obtained from A by adding c times row i to row j.   

Evaluate det (B) using a cofactor expansion along row j.  Then 

det(B)  ∑
=

+−=
n

1k
kjkj

kj )det(B)1( b = ∑
=

+ +−
n

1k
kjkjki

kj )det(B)()1( aca  

 = ∑
=

+ +−
n

1k
kjkjki

kj )det(A)()1( aca       since jkjk AB =  for all k. 

 = ∑∑
=

+

=

+ −+−
n

1k
jkjk

kj
kj

n

1k
ki

kj )det(A)1()det(A)1( aac  

 = c det ( Â ) + det (A)     where Â  is obtained from A by replacing the jth row of  
        A by its ith row. 
 = 0⋅c  + det (A)         det ( Â ) = 0  because Â  has two identical rows 
 = det (A) 

since matrix has 2 identical rows

3 is factor in row 1 and row 2 
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Example   Evaluate det 
















1563
421
962

 

Solution 

det 















−=
















−=
















−=

















100
120
421

det)3)(1(
521
962
421

det)3)(1(
1563
962
421

det)1(
1563
421
962

 

 
 
= (–1)(3)(1)(2)(1) = –6. 
 
 
 
 
 
The previous example outlines an efficient technique using elementary row 
transformations to evaluate the determinant of a square matrix.  The procedure consists of 
using elementary row transformations to transform the given matrix into a triangular 
matrix (in the above example into an upper triangular matrix), taking into account the 
effect of each transformation, then finally evaluating the determinant of the resulting 
triangular matrix by multiplying the entries along the main diagonal.   
 
 
5.3   PROBLEMS 
 
1.  Use elementary row operations to evaluate the determinants of the following matrices. 
 

(a)  
















963
341
432

      (b)  
















231
862
513

      (c)  
















693
862
484

      (d) 
















824
936
321

 

 

 (e)



















0363
4642
2031
4532

 (f) 



















2963
5142
7441
4321

 (g) 



















5426
1239
7356
4213

 

 
5.4   PROPERTIES OF DETERMINANTS 
 
Let A be a square matrix.  Let Â  be the matrix resulting from performing one or more 
elementary row operation on A.  Since the effect of performing an elementary row 
operation on the value of the determinant is either to reverse the sign or multiply the 
value of the determinant by a nonzero number, and since the elementary row operations 

 rows 1 & 2 interchanged  row 3 has factor 3  multiples of row 1 
 added to rows 2 & 3 

 product of entries 
 on main diagonal 
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are invertible operations; therefore det( 0)Â ≠ if and only if det(A) 0≠  and similarly 
0)Âdet( =  if and only if det(A) = 0.  

       
Let a sequence of elementary row operations be performed on the n n× matrix A so as to 
reduce A to its reduced row-echelon form R.  Now A is invertible if and only if R = I. But 
det (R) = det (I) = 1 0≠  if and only if det (A) 0≠ .  We therefore conclude that A is 
invertible if and only if det(A) 0≠  and state this result in the form of a theorem. 
 
Theorem   The square matrix A is invertible if and only if det (A) 0≠ . 
 

Example   det 0286
34
21

≠−=−=






 so 







34
21  is an invertible matrix. 

det 0
42
21

=






  so 







42
21 is not invertible. 

 
A direct consequence of the above theorem is the following result. 
 
Theorem   Let A be a square matrix.  Then the linear system Ax = b has a unique 
solution for every b if and only if det (A) 0≠ . 
 
Proof   Suppose det (A) 0≠ , then A is invertible.  Then A–1b is a solution to Ax = b 
since A(A–1b) = b.  To show that this is the only solution to Ax = b, suppose that x0 is 
also a solution to Ax = b.  Then Ax0  = b so A–1(A x0) = A–1b and hence x0 = A–1b.  This 
shows that A–1b is the unique solution to Ax = b. 
On the other hand, if Ax = b has a unique solution, then when solving this system by 
matrix methods the coefficient matrix is reduced to the identity matrix I and so A is 
invertible and hence det(A) 0≠ . 
 
Theorem  Let A be an nn×  matrix and let E be an nn×  elementary matrix. 
       Then det(EA) = det(E) det(A). 
 
Proof  The proof consists in showing that the result is true for each one of the three types 
of elementary matrices. 
Let E be the elementary matrix obtained from I by interchanging two rows of I.  Then EA 
is the matrix resulting from interchanging the corresponding two rows of A. 
Then det(EA) = – det(A) = (–1) det(A) = det(E) det(A) since det(E) = –1. 
Let E be the elementary matrix obtained from I by multiplying the entries of some row of 
I by a nonzero scalar k.  Then EA is the matrix resulting from multiplying the entries of a  
row of A by k.  Then det(EA) = k det(A) = det(E) det(A) since det(E) = k. 
Let E be the elementary matrix obtained from I by adding a multiple of one row of I to 
another row of I.  Then EA is the result of adding a multiple of a row of A to another row 
of A.  Then det(EA) = det(A) = (1) det(A) = det(E) det(A) since det(E) = 1. 
 
The result in the above theorem can be generalized to any two nn×  matrices.  The proof 
is omitted but stated in the following theorem. 



 77

Theorem  If A and B are square matrices of the same size, then det(AB) = det(A) 
det(B). 
 
 

Example  Let 







=








=








=

2316
5239

AB  then  ,
85
76

Blet  and  ,
21
34

A .  

 
det(A) = 8 – 3 = 5 det(B) = 48 – 35 = 13   and det (AB) = 897 – 832 = 65 
 
det(A) det(B) = (5)(13) = 65 = det(AB). 
 
 
 
Theorem   If A is an invertible matrix, then det(A–1) = 1/det(A) 
 
Proof      det(A)./1)det(A1det(A))det(Adet(I)A)det(AIAA -1-1-1-1 =⇒=⇒=⇒=  
 
 
 
Theorem   If A is a square matrix, then det(AT) = det(A). 
 
Proof  A cofactor expansion along the first row of AT gives the same terms as a cofactor 
expansion along the first column of A. 
 
 

Example  Let A 







=

34
12

,  then AT








=

31
42

.  det(A) = (2)(3) – (1)(4) =  6 – 4 = 2. 

det (AT) = (2)(3) – (4)(1) = 6 – 4 = 2.   So det (A) = det(AT) = 2. 
 
 
 
Theorem   Let A and B be square matrices with AB = I.  Then BA = I. 
 
Proof  We first show that there exists a matrix C such that CA = I and then show that in 
fact C = B. 
Since AB = I and since det(I) 0≠ , therefore det(A) 0≠ .  But det(AT) = det(A), so 
det(AT) 0≠  and hence AT is invertible.  Let D denote the inverse of AT; so D = (AT)–1.  
Then IADI)A(DID)(AIDA TTTTTTTTT =⇒=⇒=⇒=  so C.DT =  
We now show C  = B as follows.   C = CI = C(AB) = (CA)B = IB = B. 
 
When computing the inverse of a matrix A one should verify the correctness of the 
computation by demonstrating that both the products AA–1 and A–1A equal I.  The 
preceding theorem proves that in fact that it is sufficient to show that only one of these 
two products needs to be shown equal to I. 
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5.4   PROBLEMS 
 
1.  Determine whether the matrix is invertible or not by calculating its determinant. 
 

(a) 







43
21

 (b) 







63
21

 (c) 
















743
412
321

     (d) 
















987
654
321

   (e) 
















253
321
132

 

 
2.  Use determinants to show that the following systems of linear equations have unique 
solutions. 

(a) 
2 3

3 4 1
x y
x y
+ =
+ =

       (b) 
3 4 7
2 5 9
x y
x y
− =
+ =

      (c) 
2 3 5

2 4 3
3 4 7 6

x y z
x y z

x y z

+ + =
+ + =
+ + =

      (d) 
2 3 2

2 3 4
3 5 2 5

x y z
x y z
x y z

+ + =
+ + =
+ + =

 

 
3.  Let A and B be 2 2×  matrices with det(A) = 3 and det(B) = 4.  Find the following. 
 
(a)  det(AB) (b) det(A2) (c) det(AB–1)     (d) det(AB)–1        (e) det(ATB) 
 
 
4.  Let A and B be 33×  matrices with det(A) = 2 and det(B) = 5.  Find the following. 
 
(a)  det(AB) (b) det(A2) (c) det(AB–1)     (d) det(AB)–1        (e) det(ATB) 
 
 
5.5   THE ADJOINT MATRIX 
 
Recall the kth  row cofactor expansion of an nn×  matrix A for 2≥n  was defined to be 

)det(A)1()det(A)1()det(A)1(det(A) knk2
2

2k1
1

1
nk

kn
k

k
k

k aaa +++ −++−+−= where 
the quantity )Adet()1( kj

jk+− is called the kjth cofactor of A.  To simplify our notation we 
will denote this quantity by the symbol Ckj.  Thus the kth row cofactor expansion for 
det(A) can be written more simply as det(A) = knk22k11 CCC knkk aaa +++ .  Suppose 
that in this expression we replace the kth row entries knkk aaa ,, 21 by the jth row 
entries jnjj aaa ,, 21  to get knk22k11 CCC jnjj aaa +++ .  Such an expression 
would arise if the entries of the kth row of A were replaced by the entries of the jth  row of 
A and a cofactor expansion along this new kth row were done.  But the value of this 
determinant would be 0 since the matrix has two identical rows (rows k and j are same).  
We have thus established the following theorem. 
 

Theorem  If A is a square matrix, then ∑
= 




≠
=

=
n

k
jkik ji

ji
a

1  if            0
 if    det(A)

C  

 
In a similar fashion, we can deduce the following result for a column cofactor expansion. 
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If a cofactor expansion along a column is used then  ∑
= 




≠
=

=
n

k
kjki ji

ji
a

1  if            0
 if    det(A)

C . 

 
 
 
Cofactor Matrix  Let A be a square matrix.  The cofactor matrix of A, denoted cof(A) 
is the matrix obtained from A by replacing every entry of A by its cofactor. 
 
 
Example 

















−−
−

−
=

























−

−−

−

=















=

22334
3410

152011

85
21

75
61

78
62

30
21

40
61

43
62

30
85

40
75

43
78

cof(A)  then ,
430
785
621

A If . 

 
 
Adjoint Matrix  If A is a square matrix, the adjoint of A, denoted adj(A) is the 
transpose of the cofactor matrix; that is adj(A) = [cof(A)]T. 
 
 
 
Example    Continuing with the previous example, 
 
















==
















=
















=

2-3-15
23420-
34-1011

[cof(A)]adj(A)  so and    
2-2334-
3-410

1520-11
cof(A)    ,

430
785
621

A T

 

Consider now the product 















=

















−−
−

−
















=⋅

6100
0610
0061

2315
23420
341011

430
785
621

adj(A)A  

But 

det(A) .61)15)(6()20)(2()11)(1(
30
85

det)6(
40
75

det)2(
43
78

det)1( =+−=







+








−








=  

 
We see that the product adj(A)A ⋅ is a diagonal matrix with the diagonal entries = det(A). 
 
This example suggests the following theorem. 
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Theorem  If A is a square matrix, then Idet(A)adj(A)A ⋅=⋅  
 
Proof   =⋅ adj(A)A  
 

  
 

Idet(A)

10000
01000
00100
00010
00001

det(A)

det(A)0000
0det(A)000
00det(A)00
000det(A)0
0000det(A)

⋅=























=























 

 

Theorem  If det(A) 0≠ , then A is invertible and A–1 adj(A).
det(A)

1
⋅=  

 
Proof  From the previous theorem we have Idet(A)adj(A)A ⋅=⋅ .  Since det(A) 0≠  we 

can divide by det(A) to get    Iadj(A)
det(A)

1A =⋅⋅    so A–1 adj(A).
det(A)

1
⋅=  

 

Example  Use the preceding theorem to find A–1 for the matrix .
430
785
621

A















=  

 
 Solution   This is the same matrix used in the previous example where we found  
 

adj(A) = 
















−−
−

−

2315
23420
341011

 and det(A) = 61.  Using A–1 adj(A)
det(A)

1
=  we get 

  

A–1 = 
















−−
−

−
=

















−−
−

−

61/261/361/15
61/2361/461/20
61/3461/1061/11

2315
23420
341011

61
1 . 

=























••
•••••
•••••

••
••























••
•••••
•••••

••
••

   

CCC

CCC
CCC

nn2n1n

n22212

n12111

21

22221

11211

nnnn

n

n

aaa

aaa
aaa

=

































••

•••••
•••••

••

••

∑∑∑

∑∑∑

∑∑∑

===

===

===

n

k
nk

n

k
nk

n

k
nk

n

k
k

n

k
k

n

k
k

n

k
k

n

k
k

n

k
k

aaa

aaa

aaa

1
nk

1
2k

1
1k

1
nk2

1
2k2

1
1k2

1
nk1

1
2k1

1
1k1

CCC

CC  C

C C  C
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5.5   PROBLEMS 
 
1.  For each of the following matrices find its adjoint,  then use the adjoint (and the value 
of the determinant) to find  the inverse of the matrix. 
 

(a)  







43
21

             (b)  







10
11

  (c)  






 −
11
11

 

 

(d)  
















210
102
021

 (e)  
















312
012
101

 (f)  
















213
101
312

 

 
2.  Let A be an nn×  matrix with det(A) 0≠ .  Show that det[adj(A)] = [det(A)]n–1. 
 
3.  Let A be a 33×  matrix with det(A) = 5.   Find  det[adj(A)]. 
 
4.  Let A be a 44× matrix with det(A) = 3.   Find  det[adj(A)]. 
 
5.  Let A be a 55× matrix with det(A) = 2.   Find  det[adj(A)]. 
  
 
 
5.6   CRAMER'S RULE   
 
Cramer's rule provides a formula  for solving a system of n linear equations in n variables 
when the system has a unique solution. 
 
 
Theorem (Cramer's Rule)   Let Ax = b be a system of n linear equations in n 
variables with det(A) .0≠   Let Ak be the matrix obtained from A by replacing the kth 
column of A by the column vector b.  Then the system has the unique solution 

 nx , 2, 1,k  ,
det(A)

)det(Ak
k == . 

 
Proof  Since det(A) 0≠ ,  A is invertible and the system Ax = b has the unique solution  

x = A–1b.  Therefore 























•
•























••
•••••
•••••

••
••

=⋅=

nb

b
b

2

1

nn2n1n

n22212

n12111

CCC

CCC
CCC

det(A)
1adj(A)

det(A)
1 bx  
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   = 























+++
•
•

+++
+++

nn2n21n1

n2222121

n1212111

CCC

CCC
CCC

det(A)
1

n

n

n

bbb

bbb
bbb

. 

 

Thus n. , 2, 1, k for   
det(A)

CCC nk2k21k1 =
+++

= n
k

bbbx  

 
Now the numerator of kx  consists of the kth column cofactors of A multiplied by the 
corresponding entries of b. We get the same result if we use a kth column cofactor 

expansion of Ak so 
det(A)

)det(Ak=kx  for k = 1, n.,2  

 
 
Example   Use Cramer's rule to solve the following system of linear equations. 

  
103
72
92

=++
=++
=++

zyx
zyx
zyx

 

 
Solution   

1
7
7

311
112
121

det

3110
117
129

det

=
−
−

=

































=x    3
7
21

311
112
121

det

3101
172
191

det

=
−
−

=

































=y    
7

14

311
112
121

det

1011
712
921

det

−
−

=

































=z  = 2 

 
 
 
4.6   PROBLEMS 
 
1.  Use Cramer’s rule to solve the following systems of linear equations. 
 
(a)  2x + 3y = 8  (b)  4x + y = 13  (c)  x + 2y = 1 
        x – 2y = –3         x + 3y = 6         2x + y = 5 
  
(d)   x + y + z = 6  (e)   2x + y – z = 0  (f)    x + y + z = 3 
       x – y + z = 0          x + 2y – z = 1        2x + y –3z = 2 
       x + y – z = 2                 x + y = 2     3x + 4y + 2z = 7 
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5.7   APPLICATIONS USING THE DETERMINANT 
 
In this section two applications using the determinant will be considered.  The first is a 
convenient method for evaluating a cross product.  The second application is finding the 
volume of a parallelepiped. 
 
Cross Product   Recall if  then),,,( and ),,( 321321 vvvuuu == vu  
     ),,( 122131132332 vuvuvuvuvuvu −−−=× vu  
   = kji )()()( 122131132332 vuvuvuvuvuvu −+−+−  

where i = (1, 0, 0),  j = (0, 1, 0)  and k = (0, 0, 1). 
 

A convenient method for arriving at the cross product vu×  is to use the matrix form 

















321

321

vvv
uuu
kji

 and do a first row cofactor expansion as you would do to evaluate a 

determinant. 
 
Example   Let u = (3, 2, 1) and let v = (4, 5, 6).  Find vu× . 
 

Solution  
2 1 3 1 3 2

3 2 1 7 14 7 (7, 14,7)
5 6 4 6 4 5

4 5 6
× = = − + = − + = −

i j k
u v i j k i j k  

 
 
Volume of a Parallelepiped   Recall that if a parallelepiped has the vectors u, v and w 
as edges, then the volume of the parallelepiped is )( vuw ×• .  A straight forward 

calculation shows that 















=
















=×•

321

321

321

321

321

321

detdet)(
www
vvv
uuu

vvv
uuu
www

vuw  

Hence the volume of the parallelepiped can be found by taking the absolute value of 
either of the above determinants. 
 
 
Example  Find the volume of the parallelepiped having the vectors (1, 0, 1), (2, 3, 4) 
and (3, 5, 5) as edges. 
 
Solution   

Volume = 44
553
432
101

det =−=















. 
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5.7   PROBLEMS 
 
1.  Calculate the following cross products. 
 
(a)  )4,1,3()1,3,2( ×  (b)  )4,5,3()2,0,1( ×  (c)  )1,0,2()4,3,5( ×  (d) (3,0,1) (2,5,4)×  
 
2.  Find the volume of the parallelepiped having the following vectors as edges. 
 
(a)  (2, 3, 1),  (3, 4, 6),  (5, 7, 9) (b)  (1, 0, 2),  (3, 5, 7),  (5, 6, 8) 
 
(c)  (2, 0, 1),   (5, 4, 6),  (7, 8, 8) (d)  (4, 6, 5),  (2, 1, 3),  (7, 8, 7) 
 
 


