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UNIT FIVE

DETERMINANTS

5.1 INTRODUCTION

In unit one the determinant of a 2 x 2 matrix was introduced and used in the evaluation of
a cross product. In this chapter we extend the definition of a determinant to any size
square matrix. The determinant has a variety of applications. The value of the
determinant of a square matrix A can be used to determine whether A is invertible or
noninvertible. An explicit formula for A™' exists that involves the determinant of A.
Some systems of linear equations have solutions that can be expressed in terms of
determinants.

5.2 DEFINITION OF THE DETERMINANT

: , . a, a
Recall that in chapter one the determinant of the 2x2 matrix A = { " 12} was
ay dp

defined to be the number a,,a,, —a,,a,, and that the notation det (A) or |A| was used to
represent the determinant of A. For any given nxn matrix A = [a , Jm , the notation A,

will be used to denote the (n—1)x(n—1) submatrix obtained from A by deleting the it
row and the j™ column of A. The determinant of any size square matrix A = [a[jJ is

nxn

defined recursively as follows.

Definition of the Determinant Let A = l"anx,, be an nx n matrix.
(1) If n=1, thatis A =[ay,], then we define det (A) = q,,.

(2) If n>1, we define det(A) = Y (-1)"*a,det(A,,)

k=1
Example

IfA= [5] , then by part (1) of the definition of the determinant, det (A) = 5.

If A= E ﬂ then by parts (2) and (1), det (A)=(-1)""'(2)det[5] + (~1)""* (3)det[4]

=(H@)G) + DH3)H =10 -12=-2

If A= , then using parts (2) and (1), we calculate the det (A) as follows.

o W N
O N W
e I -
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det(A) = 1”12dt67 1”23dt57 1”34dt56
et(A) =(-1)" (2)de 9 1+(—) (3)de 2 1+(—) (4)de g 9
= (DQ2)=57) + (<D)B)(=51) + (1)(4)(=3) =—114 + 153 —12 = 27.

Cofactor If A is a square matrix, the ij™ cofactor of A is defined to be (—1)i+jdet(Aij).
The notation C;; will sometimes be used to denote the ijth cofactor of A.

Example Let A = {

o W N

L2 {s 6}
4 6|. Then Cy; = (1) det . = (1)(45-48)=-3,
7 9
4 6 1 2
Cp= (l)szetL 9} (-1)(36-42) = 6 and C,3 = (l)mdetL 8} (-1)(8-14) =6.

In the definition of the determinant, part (2) consists of multiplying each first row entry
of A by its cofactor and then summing these products. For this reason it is called a first
row cofactor expansion.

2 3 45
1 3 2 4 .

Example Let A = s 3 4 1| Use a first row cofactor expansion to evaluate det(A).
4 2 35

Solution det(A) =

32 4 12 4 13 4 13 2
)M 2det 3 4 1]+ )P E)ded 5 4 1|+ )PP @det 5 3 1|+ )T G)det| 5 3 4

235 435 4 25 423
=(1)(2) {(—1)l+1 (3)det[4 1} + (=D (2)det{3 1} +(=DH (4)det{3 4}}
35 2 5 2 3
+(=1)(3) {(— H'! (l)det[4 1} +(=D"? (2)det{5 1} +(-D"™ (4)det[
35 4 5 4

5 4
3

+(1)(4 1“‘1dt3 : 1”23dt5 : 1”34dt53
(HH4(=D ()e2 5+(—) ()e4 5+(—) ()e4 5

+-1)(5 1”‘1dt34 1“23dt54 1‘*32dt53
=D&){(=1) ()e2 3+(—) ()64 3+(—) ()64 5

=(D@)UD(3)(20-3) + (=1)(2)(15-2) + (1)(4)(9-8)}
H=DE){(1)(20-3) + (—D(2)(25-4) + (I)(H(15-16)}
HDH@UDHMD)(A5-2) + (=1)(3)(25-4) + (1)(4)(10-12)}
+H=DE){MM)O-8) + (=D(3)(15-16) + (1)(2)(10-12)}

=(1)(2){51-26+4} + (—1)(3){17-42-4} + (1)(4){13-63-8} + (-1)(5){1+3-4}

=58 +87-232+0=-87

|
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Although the definition of the determinant uses a first row cofactor expansion, the
determinant of A may be calculated by taking any row (or column) and multiplying the
entries of that row (or column) by their cofactors and summing the products. This result
is given in the next theorem whose proof is omitted.

Theorem Let A be a square n x n matrix, then

det(A) = Zn:(-n”" a,det(A, ) = Z (D" a,det(A,).

St

Th Th
1 row cofactor j column cofactor
expansion expansion

"
1 |. Evaluate det (A) by

1 3
Example Let A={2 0
310

(a) a second row cofactor expansion.
(b) a third column cofactor expansion.

Solution
det (A) = 12“2dt34 12+20dt14 12+31dt13
(a) det (A)= (-1 ()e1 0+(—) ()e3 O+(—) ()e3 |
= (=D)(2)(=4) + (1)(0)(=12) + (=1)(1)(-8) =8 + 0 + 8 = 16.

by det (A) = (=) (4ydet| > D2 (det] - D 0)det] - >

(b) det (A)= (=1)""(4)de 3 1+(—) ()de 3 1+(—) (0)de 5 0
=(1)@)Q2) + () (1)(=8) + (1)(0)(-6)=8 + 8 + 0 = 16.

Theorem If A is a square matrix containing a row (or column) of zeros, then det(A) = 0.

Proof Use a cofactor expansion along the row (or column) of zeros.

Theorem If A is an n x n matrix with two identical rows (or columns), then det (A) = 0.

Proof The theorem is certainly true for n = 2 since det{a11 6112} =a,a,—a,a,=0.
a,, dp

If n = 3, use a cofactor expansion along the row different from the two identical rows.

Let this row be the k™ row. Using a cofactor expansion along this row gives

det (A) = (=D (ax)det(A) + (1) (ar)det(A) + (=1)(as)det(Axs). But each of

the submatrices Ay, Ax, and Axs has two identical rows so their determinants are 0,

hence det (A) = 0 for any 3 x3 matrix.

If n>3 proceed as above writing det (A) as a sum of products involving submatrices

with two identical rows whose determinants are 0.



71

Triangular and Diagonal Matrices A square matrix is said to be an upper
triangular matrix if all the entries below the main diagonal are zero. A square matrix is
said to be a lower triangular matrix if all the entries above the main diagonal are zero.
A square matrix is said to be a diagonal matrix if all entries not on the main diagonal are
zero. A diagonal matrix is both upper triangular and lower triangular.

Example
1 23 1 00
0 4 5] is an upper triangular matrix. 2 3 0] is a lower triangular matrix.
0 0 6 4 5 6

is a diagonal matrix. It is both upper and lower triangular.

Theorem If A is upper triangular, lower triangular or diagonal, det(A) = a,,a,, ==+ a

Proof Suppose A is upper triangular. To evaluate det(A) use a cofactor expansion along
the first column. Since there is only one nonzero entry in the first column the expansion
gives det(A) = (—l)mandet(A“) = aydet(A,)). Now A,, is upper triangular so proceed as
above to use a cofactor expansion along its first column to get det (A,)) = andet(A,,)
where Ay i1s Ay with its first row and first column deleted. Combining the results gives
det(A) = ajanpdet(Ay). Continuing in this fashion, we eventually get det (A) =

Ay Ay v a,, asrequired. If A is lower triangular or diagonal, the argument is similar.
2 3 4 200

Example detf0 5 6|=(2)(5)(7)=70. detf0 3 0|=(2)3)5)=30
0 0 7 0 05

Theorem det(I,) = 1 for all n.

Proof Since I, is a diagonal matrix, det(I,) = (1)(1)------ H=1

Basket-Weave Method The following method is an alternative way to evaluate the
determinant of a 3x3 matrix. This method is only applicable to 3x3 matrices and is
sometimes called the basket-weave method.

Construct a 3x5 array by writing down the entries of the 3 x3 matrix and then repeating
the first two columns. Calculate the products along the six diagonal lines shown in the
diagram. The determinant is equal to the sum of products along diagonals labeled 1, 2
and 3 minus the sum of the products along the diagonals labeled 4, 5 and 6.

G Ow. Gl QT Ars
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1
Example Use the basket-weave method to calculate the determinant of A =| 2
3

N =N
wm B~ W

Solution

det (A) = (5 +24 + 12) — (9 + 8 + 20)
=(41)-(37)=4

5.2 PROBLEMS

1. Use the definition of the determinant to evaluate the determinant of the given matrix.

1 2 1 21 3 11 3 1 0 1
(@2 3 1 b)|4 3 5 |2 1 4 @l2 1 0
322 1 0 2 53 2 13 45
1 010 3201 (5 4 3 1 (3 0 2 1
21 3 1 50 3 2 0 41 2 0 2 4 3
(6)0243 (30402 (g)3124 (h)2310
2 31 4 310 2 0 2 3 1 4 1 0 3

2. Use the basket-weave method to evaluate the determinants 1(a), 1(b), 1(c) and 1(d).

3. Evaluate the determinants of the following matrices by inspection.

2 3 4 359 4 0 0 2 00
a0 5 6 (b)|0O 6 3 ©|5 3 0 djo 3 0
0 0 1 0 0 2 1 3 2 0 0 4
1 2 3
4. Let A=|2 3 5| Find the following cofactors of A.
6 4 1
(a) Cy (b) Ci2 (c) Ci3 (d) Ca (e) Coz () Csz

1-k 3
5. Find all values of & for which det[ 5 k} =0.
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5.3 ELEMENTARY ROW OPERATIONS ON DETERMINANTS

The evaluation of the determinant of an »nxn matrix using the definition involves the
summation of n! terms, each term being a product of »n factors. As n increases, this
computation becomes too cumbersome and so another technique has been devised to
evaluate the determinant. This technique uses the elementary row operations to reduce
the matrix to a triangular form. The effect of each elementary row operation on the value
of the determinant is taken into account and then the determinant of the triangular matrix
is evaluated by finding the product of the entries on the main diagonal.

Theorem If A and B are square matrices and B is obtained from A by interchanging
two rows (or columns) of A, then det (B) =— det (A).

P - _ _ |:a11 a12:| _ |:a21 azz}
roof Let A and B be nxn matrices. If n =2, then A and B
ay A4y a, 4ap

so det(B) = aya,, —a,,a,, = —(a,,ay, —ay,a,)=—det(A).
If n = 3, then we use a cofactor expansion for B along the row that was not interchanged.
Let this be row k. Then det(B) = (—1)"audet(By) + (=1)andet(Bs) + (—1)apsdet(Bys).
Each submatrix By; is the submatrix Ay with its rows interchanged so det(By;) = —det(Ay)).
Hence det(B) = (—1)"ap(=1)det(Ax) + (=D)ar(=1)det(Ar) + (—1)aw(—1)det(Ass)

=(-1) [(—1)k+1ak1det(Ak1) + (—Dagdet(Ar) + (—1)apdet(Aws)]

= (—1) det(A) = — det (A) as required.
If n>3 proceed as above using cofactor expansions along rows that were not
interchanged to get the final result. The proof for interchanged columns is similar.

Theorem Let A and B be nxn matrices with B obtained from A by multiplying all the
entries of some row (or column) of A by a scalar k. Then det (B) = k& det (A).

Proof Suppose B is obtained from A by multiplying the entries of the j"™ row of A by *.
Use a cofactor expansion for B along its j"™ row to evaluate the determinant of B and
noting that these cofactors for B are equal to the corresponding cofactors for A we get
det (B) = (-1)"'kajdet(B;,) + (~1)  kapdet(Bp) +-+++-- + (1) kaj,det(B;y)

= (—l)Jﬂlkajldet(Ajl) + (fl)ﬁ.2 kajpdet(Ap) +------ + (*l)lﬂl kai,det(A;y,)

= k(1Y apdet(Aj) + (~1)" ajdet(Ap) + -+ (<1)" ajpdet(A;,)]

= k det(A).
The proof in the case where B is obtained from A by multiplying a column of A by £ is

similar.

Example det| |~ |=5def | > |=(5)14-3)=55
(¢ - (] = —_ =
P 5 10 1 2

5 is a common factor in row 2 of the given matrix.

Corollary det (kA) = k" det (A).

Proof Since all n rows of A are multiplied by the scalar £ to get kA, using the above
theorem 7 times gives det (kA) = (k)(k)--------- (k) det (A) = K" det (A).
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| 3 is factor in row 1 and row 2 |

Example det| = =) det| T 2 |=37det] T |=(9)12-2) = (9)10) =90
ple det) = 1=()3)det) = _|=37det . |=0O)(12-2)=(9)10)=

Example Let A be a 3x3 matrix and let det(A) = 5. Find det(2A).

Solution det(2A) = 2° det(A) = (8)(5) = 40

since matrix has 2 identical rows |
1 2 3 1 2 3

Example det{3 6 9|=3det|1 2 3|=(3)(0)=0. Notice that row 2 of the
4 5 6 4 5 6

original matrix is 3 times row 1. This leads to the following corollary.

Corollary If A is a square matrix that has a row (or column) that is a scalar multiple of
another row (or column), then det (A) = 0.

Proof Suppose the j" row of A is k times the i™ row of A. Then det (A) = k det (A)
where A is the matrix A with the i™ row multiplied by 1/k. But A has two identical
rows, (row i = row j), so det(A) =0. Hence det (A) =k det(A )=k-0=0.

Theorem Let A be a square matrix and let B be the matrix obtained from A by adding
a multiple of one row (or column) of A to another row (or column) of A.
Then det (B) = det (A).

Proof Suppose B is obtained from A by adding ¢ times row i to row j.
Evaluate det (B) using a cofactor expansion along row j. Then

det(B) =Y (-1)"*b, det(B;, )= > (-1)"*(ca;, +a)det(B;,)
k=1 k=1
= > (1) (ca,, +ay)det(A )  since B, = A, forallk.
k=1

= o) (=) a,det(A )+ D (1) a,det(A )
k=1 k=1

c det (A )+det(A) where A is obtained from A by replacing the jth row of
A by its i" row.

=c-0 +det(A) det (A ) =0 because A has two identical rows

=det (A)
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2 6 9
Example Evaluatedet|1 2 4
3 6 15

Solution
2 6 9 1 2 4 1 2 4 1 2

4
det{1 2 4|=(=Ddet|2 6 9 |=(=D@)det{2 6 9|=(=1)3)det{ 0 2 1
1

36 15 \6615 125 0 0

[rows 1 & 2 interchanged| Tféliiltiéﬂes of rO;VSIL X
= (=DHE)MHE)(1) = -6. added to rows
7/

\

—
»

product of entries
on main diagonal

The previous example outlines an efficient technique using elementary row
transformations to evaluate the determinant of a square matrix. The procedure consists of
using elementary row transformations to transform the given matrix into a triangular
matrix (in the above example into an upper triangular matrix), taking into account the
effect of each transformation, then finally evaluating the determinant of the resulting
triangular matrix by multiplying the entries along the main diagonal.

5.3 PROBLEMS

1. Use elementary row operations to evaluate the determinants of the following matrices.

2 3 4 315 4 8 4 12 3

@ |1 4 3| ® |26 8 @26 8 @]|6 3 9
369 13 2 396 4 28
2 35 4 1 2 3 4 31 2 4
1 30 2 1 4 47 6 5 3 7

@2 464 DN2airs| ©@logs o
3630 3609 2 62 45

5.4 PROPERTIES OF DETERMINANTS

Let A be a square matrix. Let A be the matrix resulting from performing one or more
elementary row operation on A. Since the effect of performing an elementary row
operation on the value of the determinant is either to reverse the sign or multiply the
value of the determinant by a nonzero number, and since the elementary row operations
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are invertible operations; therefore det( A) # 0if and only if det(A) # 0 and similarly
det(A) = 0 if and only if det(A) = 0.

Let a sequence of elementary row operations be performed on the nx n matrix A so as to
reduce A to its reduced row-echelon form R. Now A is invertible if and only if R = I. But
det (R) = det (I) =1 #0 if and only if det (A) # 0. We therefore conclude that A is
invertible if and only if det(A) # 0 and state this result in the form of a theorem.

Theorem The square matrix A is invertible if and only if det (A) # 0.

1 2 1 2. . . .
Example det L 3} =6-8=-2#0S0 L 3} is an invertible matrix.

1 2 1 2. . .
det =0 SO is not invertible.
2 4 2 4

A direct consequence of the above theorem is the following result.

Theorem Let A be a square matrix. Then the linear system Ax = b has a unique
solution for every b if and only if det (A) # 0.

Proof Suppose det (A) =0, then A is invertible. Then A™'b is a solution to Ax = b
since A(A"'b) =b. To show that this is the only solution to Ax = b, suppose that x, is
also a solution to Ax = b. Then Ax, =b so A*I(A X)) = A'b and hence x, = A'b. This
shows that A™'b is the unique solution to Ax = b.

On the other hand, if Ax = b has a unique solution, then when solving this system by
matrix methods the coefficient matrix is reduced to the identity matrix I and so A is
invertible and hence det(A) # 0.

Theorem Let A be an nxn matrix and let E be an n x n elementary matrix.
Then det(EA) = det(E) det(A).

Proof The proof consists in showing that the result is true for each one of the three types
of elementary matrices.

Let E be the elementary matrix obtained from I by interchanging two rows of I. Then EA
is the matrix resulting from interchanging the corresponding two rows of A.

Then det(EA) = — det(A) = (—1) det(A) = det(E) det(A) since det(E) =—1.

Let E be the elementary matrix obtained from I by multiplying the entries of some row of
I by a nonzero scalar &. Then EA is the matrix resulting from multiplying the entries of a
row of A by k. Then det(EA) = k det(A) = det(E) det(A) since det(E) = £.

Let E be the elementary matrix obtained from I by adding a multiple of one row of I to
another row of I. Then EA is the result of adding a multiple of a row of A to another row
of A. Then det(EA) = det(A) = (1) det(A) = det(E) det(A) since det(E) = 1.

The result in the above theorem can be generalized to any two #n x n matrices. The proof
is omitted but stated in the following theorem.
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Theorem If A and B are square matrices of the same size, then det(AB) = det(A)
det(B).

4 3 6 7
Example Let A = e andletB = s gf then AB =

det(A)=8-3=5  det(B)=48-35=13 and det (AB)=897 — 832 =65

det(A) det(B) = (5)(13) = 65 = det(AB).

Theorem If A is an invertible matrix, then det(A™") = 1/det(A)

Proof A'A=1= det(A"A)=det(l) = det(A")det(A) =1 = det(A™) = 1/ det(A).

Theorem If A is a square matrix, then det(A") = det(A).

Proof A cofactor expansion along the first row of A" gives the same terms as a cofactor
expansion along the first column of A.

21 2 4
Example LetA=|" |, then A'=| " . det(A)=@2)3) - (@)= 6-4=2

det (AN =(2)3)-4)(1)=6—-4=2. Sodet(A)=det(A")=2.

Theorem Let A and B be square matrices with AB=1. Then BA =1.

Proof We first show that there exists a matrix C such that CA =1 and then show that in
fact C =B.

Since AB = I and since det(I) # 0, therefore det(A) #0. But det(A") = det(A), so
det(A") # 0 and hence A’ is invertible. Let D denote the inverse of A'; so D = (A")™.
Then A'D=1=(A"D)' =1" = D'"(A")' =1" =D'A=1s0 D' =C.

We now show C =B as follows. C=CI=C(AB)=(CA)B=1IB=B.

When computing the inverse of a matrix A one should verify the correctness of the
computation by demonstrating that both the products AA™ and A”'A equal I. The
preceding theorem proves that in fact that it is sufficient to show that only one of these
two products needs to be shown equal to I.
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5.4 PROBLEMS

1. Determine whether the matrix is invertible or not by calculating its determinant.

1 2 3 1 2 3 2 3 1

b2 by |l 2 2 1 4] @|4 5 6| (|1 2 3
(3)34()36(6) e

3 4 7 7 8 9 352

2. Use determinants to show that the following systems of linear equations have unique
solutions.

x+2y+3z=5 2x+3y+z=2
x+2y=3 3x—4y=7
a b (c) 2x+y+4z=3 (d) x+2y+3z=4
3x+4y=1 2x+5y=9
3x+4y+7z=6 3x+5y+2z=5

3. Let A and B be 2x2 matrices with det(A) = 3 and det(B) = 4. Find the following.

(a) det(AB) (b)det(A?) (c)det(AB")  (d)det(AB)'  (e) det(A'B)

4. Let A and B be 3x3 matrices with det(A) =2 and det(B) = 5. Find the following.

(a) det(AB) (b)det(A?)  (c)det(AB")  (d)det(AB)"'  (e) det(A'B)

5.5 THE ADJOINT MATRIX

Recall the k™ row cofactor expansion of an nx n matrix A for n > 2 was defined to be
det(A) = a,, (=1)""det(A ) + a,, (1) P det(A ) +--eveeee +a,, (-1)*"det(A,, ) where
the quantity (—1)"*/ det(A i )1s called the kjth cofactor of A. To simplify our notation we

will denote this quantity by the symbol Cy;. Thus the k™ row cofactor expansion for

det(A) can be written more simply as det(A) = a,,C,, +4a,,C,, +---- +a,,C,,. Suppose
that in this expression we replace the k™ row entries a,,,a,, - ,a, by the j" row
entries @, @, -+ ,a, to get a,C,+a,C,+-- +a,;C,, . Such an expression

would arise if the entries of the k™ row of A were replaced by the entries of the j™ row of
A and a cofactor expansion along this new k™ row were done. But the value of this
determinant would be 0 since the matrix has two identical rows (rows k and j are same).
We have thus established the following theorem.

Theorem If A is a square matrix, then Zaiijk =
k=1

det(A) ifi=j
0 ifi#j

In a similar fashion, we can deduce the following result for a column cofactor expansion.



If a cofactor expansion along a column is used then Za WCr =

k=1
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{det(A) ifi=j

0 ifizj

Cofactor Matrix Let A be a square matrix. The cofactor matrix of A, denoted cof(A)
is the matrix obtained from A by replacing every entry of A by its cofactor.

Example
‘8 7‘ ‘5 7‘ ‘5 8‘
1 2 6 34 0 4 03 11 =20 15
2 6 |1 6 1 2
IfA=|5 8 7|, thencof(A)=|- — 10 4 -3
0 3 4 34 04 03 34 23 -2
2 6 1 6 |1 2 - B
187 57 5 8§ |

Adjoint Matrix If A is a square matrix, the adjoint of A, denoted adj(A) is the
transpose of the cofactor matrix; that is adj(A) = [cof(A)]".

Example Continuing with the previous example,

1 2 6 11 -20 15 11 10 -34
A=|5 8 7| cof(A)=|10 4 -3| andso adj(A)=[cof(A)]' =|-20 4 23
0 3 4 -34 23 -2 15 -3 -2
1 2 6| 11 10 -34 61 0 O
Consider now the product A-adj(A)=|5 8 7|-20 4 23 |=|0 61 O
0 3 415 -3 -2 0 0 ol
But

th)—ldt87—(2dt57+6dt58—(111—220+615—61
t(A)=(Ddet] | |~@pde | |+ (6)det D |=(DID=(20)+(6)15) =61.

We see that the product A -adj(A)is a diagonal matrix with the diagonal entries = det(A).

This example suggests the following theorem.
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Theorem If A is a square matrix, then A -adj(A)=det(A)-I

Proof A-adj(A)=

_ . - a,;,C a,;,C o o a;,C
ay a, ® o a, [C, Cy o o C, kzz:‘ 1“1k ; 1“2k kzz; 1k Cnk
ayp aypy ® ® a4y, |[Cp Cyp e o Cp < < <
. ° o o ° ° ° e o ° = Zay‘clk ZGZkCZk ¢ ZGZkan
k=1 k=1 k=1 =
an Ay, © ® ann__cln CZn e o Cnn_ b b e o b
a4, Ciy a, Co ¢ o A, Coi
L k=l k=1 k=1 i

_det(A) 0 0 0 0 | 1 0 0 0 O]

0 det(A) 0 0 0 01 0 0 O

0 0 det(A) 0 0 =det(A))0 0 1 0 O|=det(A)-I

0 0 0 det(A) 0 0 0 01 O
| 0 0 0 0 det(A)_ 100 0 0 1]

.. . _ 1 )
Theorem If det(A)# 0, then A is invertible and A~ = m -adj(A).
()

Proof From the previous theorem we have A -adj(A)=det(A)-1. Since det(A)= 0 we

-adj(A)=1 soA™ = -adj(A).

can divide by det(A) to get A
det(A) det(A)

EENE B

1 2
Example Use the preceding theorem to find A~ for the matrix A =|5 8
0 3

Solution This is the same matrix used in the previous example where we found

11 10 —34]
adj(A)=|-20 4 23 |anddet(A)=61. Using A" = ] tl(A) adj(A) we get
€
15 -3 =2

[ 11 10 -34] 11/61 10/61 -34/61
—-20 4 23 |=|-20/61 4/61 23/61
15 -3 =2 15/61 -=3/61 =2/61

Atl=L
61
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5.5 PROBLEMS

1. For each of the following matrices find its adjoint, then use the adjoint (and the value
of the determinant) to find the inverse of the matrix.

1 2 b‘11 1 -1
(a)_34 ()_01 © 1
1 2 0 1 0 1 2 1 3
(d |2 0 1 e |2 1 0 () 0 1
01 2 21 3 31 2

2. Let A be an nxn matrix with det(A)=0. Show that det[adj(A)] = [det(A)]"".
3. Let A be a 3x3 matrix with det(A) =5. Find det[adj(A)].
4. Let A be a 4x 4 matrix with det(A) =3. Find det[adj(A)].

5. Let A be a 5x 5 matrix with det(A) =2. Find det[adj(A)].

5.6 CRAMER'S RULE

Cramer's rule provides a formula for solving a system of » linear equations in # variables
when the system has a unique solution.

Theorem (Cramer's Rule) Let Ax = b be a system of n linear equations in »
variables with det(A) #0. Let A, be the matrix obtained from A by replacing the k™
column of A by the column vector b. Then the system has the unique solution
det(A,)
X, =—,
det(A)

Proof Since det(A) # 0, A is invertible and the system Ax = b has the unique solution

Ch, Cy o o C, |5
1 1 C, Cy e o C,|b
x=A"'b. Therefore x = ——adj(A)-b = J e o o o |o
det(A) det(A)
[ ] [ ] [ ] [ ] [ ] [ ]
_Cln C2n b ® Cnn__b’l_
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bCi +b,Cop oo +b,C,
bCpy +b,Cop 4-mmeeeee +b,C,
det(A)
[ ]
blcln +b2C2n e +annn_
Thus X, = blclk +bzczze—:(A) ..... +b"an fork=1,2,-------- , 1.

Now the numerator of x, consists of the k™ column cofactors of A multiplied by the
corresponding entries of b. We get the same result if we use a k™ column cofactor

det(A,) fork=1, 2::eeeee ,n.
det(A)

expansion of Ay so x, =

Example Use Cramer's rule to solve the following system of linear equations.

x+2y+z=9
2x+y+z=T7
x+y+3z=10
Solution
9 21 1 9 1 1 2 9
detf 7 1 1 det|2 7 1 det|2 1 7
10 1 3| -7 1 10 3| -21 1 1 10| -14
X = =—=1 y= = =3 z= = =2
1 21 -7 1 21 -7 1 21 -7
det|2 1 1 det|2 1 1 det|2 1 1
1 13 1 1 3 1 1 3

4.6 PROBLEMS

1. Use Cramer’s rule to solve the following systems of linear equations.

(a) 2x+3y=28 (b) 4x+y=13 (c) x+2y=1
x—2y=-3 x+3y=6 2x+y=5

(d x+y+z=6 (e) 2x+y—-z=0 ) x+y+z=3
x—y+z=0 x+2y—z=1 2x+y-3z=2

xX+ty—z=2 x+ty=2 3x+4y+2z=7
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5.7 APPLICATIONS USING THE DETERMINANT

In this section two applications using the determinant will be considered. The first is a
convenient method for evaluating a cross product. The second application is finding the
volume of a parallelepiped.

Cross Product Recall if u = (u,,u,,u;)and v =(v,,v,,v;), then
UXV = (UyVy = U3V, UsVy = U V3, U V) = U V)
= (Uyvy —uvy) i+ (uyv, —uwvy)j+ v, —u,v, )k
wherei=(1,0,0), j=(0,1,0) and k=(0,0, 1).

A convenient method for arriving at the cross product uxv is to use the matrix form
i j k
u, u, u,| and do a first row cofactor expansion as you would do to evaluate a
vV, v

determinant.
Example Letu=(3,2,1)andletv=(4,5,6). Find uxv.

i
3

4

Solution uxv=|3 j+

4

2 1. 31
l_
5 6 |46

2
5‘k=7i—14j+7k =(7,-14,7)

DN N e
N~ =

Volume of a Parallelepiped Recall that if a parallelepiped has the vectors u, v and w
as edges, then the volume of the parallelepiped is |w0(u><v)|. A straight forward
W W, W u, U, U
calculation shows that we (uxv)=detl 4, u, u; |=detjv, v, v,
Vi Vo Vs W, W, W
Hence the volume of the parallelepiped can be found by taking the absolute value of
either of the above determinants.

Example Find the volume of the parallelepiped having the vectors (1, 0, 1), (2, 3, 4)
and (3, 5, 5) as edges.

Solution
1 0 1

Volume = |[det| 2 3 4 =|—4|=4.
3 55
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5.7 PROBLEMS

1. Calculate the following cross products.

(@A (23H)x31L4) (b)) (1,0,2)x(3,54) (c) (53,4)x(2,0,1) (d) (3,0,1)x(2,5,4)
2. Find the volume of the parallelepiped having the following vectors as edges.

(@ (2,3,1), (3,4,6), (5,7,9) (b) (1,0,2), (3,5,7), (5,6,8)

(c) (2,0,1), (5,4,6), (7,8,8) (d) 4,6,5), (2,1,3), (7,8,7)



