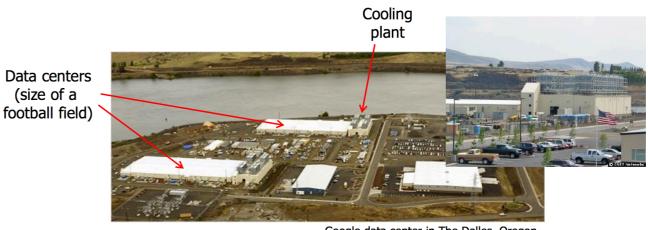
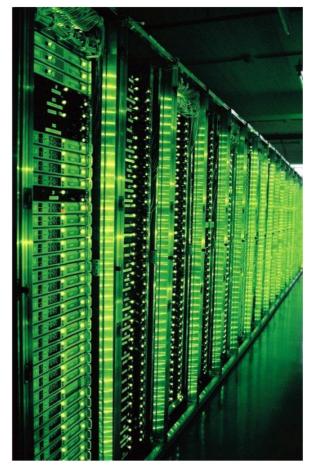
Advanced Topics in DB


Big Data Parallel Computing

Recap

- To change big data into value, we need
 - infrastructure that supports
 - computation power
 - analytic tools that works at scale
- Companies own huge amount of data
 - No single machine can store and process this data
 - We need cluster of computers
- Thus, we need new technologies to deal with the huge and the rapid increasing amount of data


Data Center

- If the cluster becomes too big to fit in one building
 - build another building
- This will result in the need to have a data center

Google data center in The Dalles, Oregon

Hundreds or thousands of racks

Source: 1&1

• Massive networking

Source: 1&1

• Emergency power supplies

Source: 1&1

• Massive cooling

Source: 1&1

Energy Matters

- Google pays \$ 38 M per year, for a data center of 500,000 servers
 - build cluster near sources of cheap electricity
 - power consumed is turned into heat
 - thus we need cooling, and cooling is a big issue

Global Distribution

- Data centers are often globally distributed
 - need to be physically close to users
 - close to cheaper resources
 - to save for cooling put them in cold areas

Problems with scaling up

- Difficult to dimension
 - load can vary considerably
 - at peak hours load can exceed average load by 2x-10x factor
 - server utilization is 5%-20%
 - waste of resources

Problems with scaling up

• Expensive

- invest a lot of many on hardware
 - for example, Microsoft invest \$ 499 million on one data center
- need experts
 - setting up cluster is not a trivial task
- need maintenance

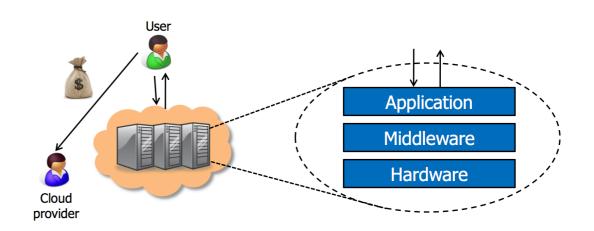
Problems with scaling up

- Difficult to scale
 - scaling up is difficult
 - need to order new machines, install them, integrate them with existing machine
 - major scaling might require redesign; new storage design, new interconnect, new building
 - scaling down is difficult
 - what to do with unused hardware
 - energy is consumed even if the server is not doing work

Summary

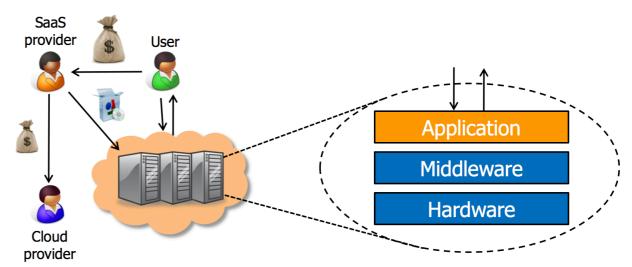
- Modern applications require processing huge mount of data
 - measured in petabytes, millions of users
 - need special hardware & algorithms to store, organize, and process the data
 - Clusters & data centers may provide the resources we need, but ..
 - they are difficult to dimension, expensive, and difficult to scale

Utility Computing / Cloud Computing


- The cluster/data center challenge is similar to the power plant problem
 - need large up-front investment, expertise to operate, difficulty of scaling up/down
- For the power plant
 - it used to be that every one had their own power resources
 - then it was scaled to use large, centralized power plants with very large capacity
 - usage is metered and customers pay for what they use

Cloud Computing

- The idea of power plant was utilized in the computing power → Cloud Computing
- is a model for enabling convenient, on-demand access to a shared pool of computing resources; networks, servers, storage, applications, and services
- it can be rapidly provisioned (created) and released with minimal management effort
- pay as you go


Everything as a Service

- Software as a Service (SaaS)
 - cloud provides an entire application
 - a third-party provider hosts an application and makes it available for users on the Internet
 - customers pay cloud provider
- Example:
 - Google Apps
 - DropBox

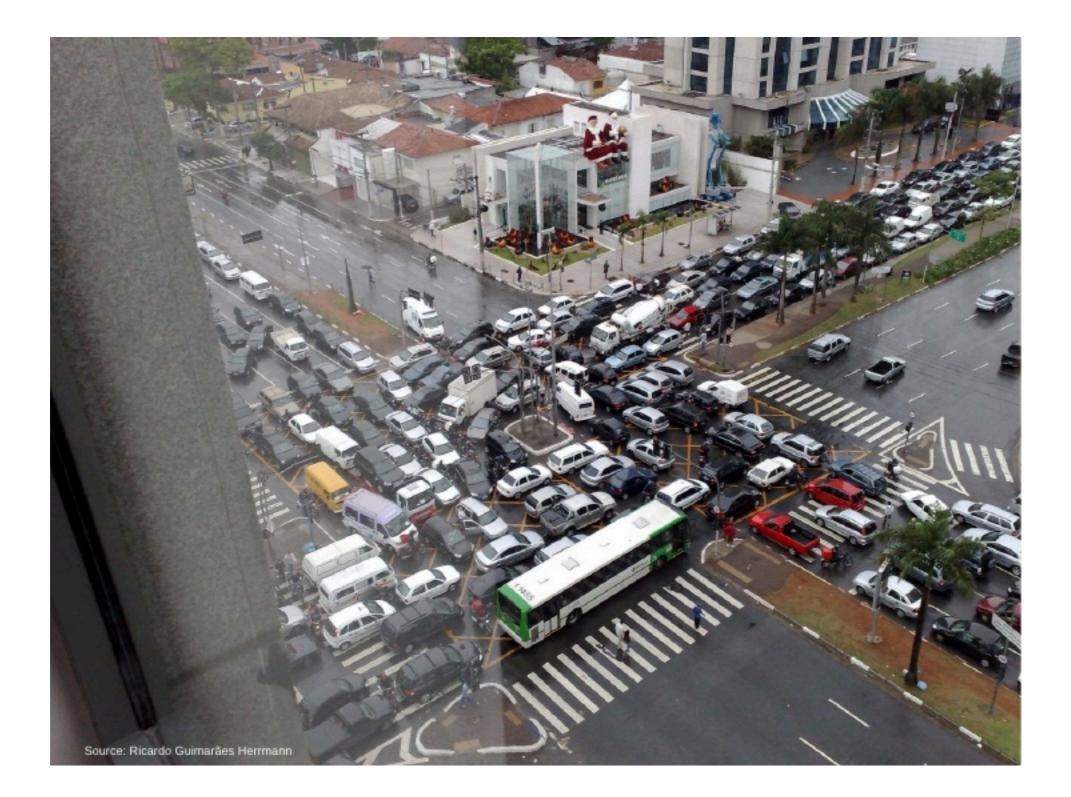
Everything as a Service

- Platform as a Service (PaaS)
 - cloud provides infrastructure
 - customers pay to PaaS provider, and PaaS provider pay to cloud for the infrastructure

Everything as a Service

- Infrastructure as a Service (laaS)
 - cloud provides raw computing resources
 - customers pay to laaS provider, and laaS provider pay to cloud for the infrastructure
- Amazon EC2

Wrap Up


- Modern applications require processing huge mount of data
 - measured in petabytes, millions of users
 - need special hardware & algorithms to store, organize, and process the data
 - Clusters & data centers may provide the resources we need, but ...
 - they are difficult to dimension, expensive, and difficult to scale
 - Cloud Computing
 - on-demand access to shared resources on the network, in easy and convenient way

Processing Big Data

- divide & conquer
 - make use of thousands of CPUs
- challenges:
 - unit of work: how to split data into partitions
 - assigning work units to workers: what if number of units > # of workers
 - aggregating & combining results: aggregate results from all workers
 - coordination & communication between workers: if a worker needs data from other workers
 - tracking of workers progress: how do we know when workers finish
 - managing work failure: what will happen if a worker die

Parallel Precessing Problems

- All of the previous challenges are common problems in parallel computing
 - Work load balancing
 - communication between workers
 - access to shared locations, for example accessing the same data
- we need a synchronization mechanism or ...

Ideas behind the development of Big Data Technologies

- Hide system level details from the developers
 - no need to worry about, reliability, fault tolerance, data partitioning, assigning tasks to workers
- Separating the how from the what
 - developers specify computation power they need
 - execution framework handle that
- MapReduce was the first instantiation of these ideas (Next)