Introduction to
MapReduce

Large Scale Data
Processing

 \We want to process large amount of data (Terabytes/
Petabytes)

 We want to parallelize across hundred/thousands of
CPUs

e Do that in an easy way

Divide & Conquer

“Work” .
/ l \ Partition
Wi W) W3
work worke work
v v v
r ry r3

“Result” Combine

Parallelization Challenge

* How do we partition data into units?

* How do we assign data units to workers?

 What to do if number of units > number of workers?
* What if workers need to share partial results?

* How do we know when workers finish their jobs?

* How do we aggregate results from all workers?

* What if a worker die? what happened to the data it was processing?
how do we continue what it already processed?

ldeas behind MapReduce

Scale “out” not “up”

e using large number of commodity computers (scale out) is preferred over small number of
high-end server

Hardware abstraction
 From the user point of view dealing with Data center is as one computer
Hide System-level details

e |ike data partitioning, communication between workers, coordination, handling error &
failure

 The framework takes care of all the challenges listed in the previous slide
Moving process to data

e run program on the node that has the data

Typical Large Data Problem

e |terate over large number of records (e.g., lines in text or
rows is a DB)
map

* Extract something
+ Shuffle & sort intermediate results EXecUtion framework

* Aggregate intermediate results reduce

e Generate Final output

MapReduce Implementation

* |t was developed by Google
e written in C++

* published as a research paper in 2004 “MapReduce:
Simplified Data Processing on Large Clusters ”

* Hadoop MapReduce is an open-source implementation in

Java ,
‘@i F_Zaza a/0
* |nitially was done by Yahoo U h [ZI]

* then became an Apache project

o ThEGEEm

* Apache Hadoop develops open-source tools for reliable,
scalable and distributed processing of a large-scale data

» Two main components in Apache Hadoop project:
- Hadoop distributed File System (HDFS) (Storage)
- MapReduce (Processing)

Who uses Hadoop?

(in one or the another form)

7.\ amazoncom &

Adobe Spotify

Linked [f}]
L3 Windows Azure

MapReduce refers to

e Programming model
e Two main functions: map and reduce
e Execution framework

* Specific implementation (the code/program)

Usage usually clear from the context

Programming Model

* Processing large datasets in parallel on cluster, by dividing work into
set of independent tasks

* Programmer specifies two functions
* map (k1,v1) —> List [(k2 , v2)]
* reduce (k2, List[v2]) —> List [(k3 , v3)]

* All values of same key are sent to the same reducer

Key-Value pairs

® Input & output are key-values
® Examples:
® Text Files
®key: line offset
®value: line content
®in Web collection, which consists of Web pages
okey: URL
®Value: Content
® Graph which consist of nodes and edges
®key: node id

e®value: list of target nodes

MapReduce Framework

®Handles:
e®scheduling
® assigning workers to map & reduce tasks
e®data distribution
emoves process to data
e® synchronization
e group intermediate data
ecrror & faults
®detects workers failure, restart

® Everything happens on top of Distributed File System

Physical View

User
Program
' (1) submit
(2) sc/hedL]I/e map (2) ébh\edule reduce
L
worker >
split O
split 1 output
: (3) read _ file O
split 2 (4) local write
split 3 worker >
split 4 worker output
file 1
worker >
Input Map Intermediate files Reduce Output

files phase (on local disk) phase files

Word Count Example

Input

A

the quick
brown fox

the fox ate
the mouse

how now
brown cow

Map

how, 1
now, 1
brown, 1

—P[Map

Shuffle & Sort Reduce
the, 1
brown, 1
quick, 1 adjective, article

y
e mouse, 1

Reduce }——'

noun, verb

Output

V.

brown, 2
how, 1

now, 1

quick, 1
the, 3

ate, 1
cow, 1

mouse, 1

fox, 2

World Count
Implementation

* Map : . .
Map(String docid, String text):

for each word w in text:
Emit(w, |);

* Reduce Reduce(String term, Iterator<int> values):
int sum = 0;
for each v in values:
sum +=v;
Emit(term, sum);

