
Introduction to
MapReduce

Large Scale Data
Processing

• We want to process large amount of data (Terabytes/
Petabytes)

• We want to parallelize across hundred/thousands of
CPUs

• Do that in an easy way

Divide & Conquer

Parallelization Challenge
• How do we partition data into units?

• How do we assign data units to workers?

• What to do if number of units > number of workers?

• What if workers need to share partial results?

• How do we know when workers finish their jobs?

• How do we aggregate results from all workers?

• What if a worker die? what happened to the data it was processing?
how do we continue what it already processed?

Ideas behind MapReduce
• Scale “out” not “up”

• using large number of commodity computers (scale out) is preferred over small number of
high-end server

• Hardware abstraction

• From the user point of view dealing with Data center is as one computer

• Hide System-level details

• like data partitioning, communication between workers, coordination, handling error &
failure

• The framework takes care of all the challenges listed in the previous slide

• Moving process to data

• run program on the node that has the data

Typical Large Data Problem

• Iterate over large number of records (e.g., lines in text or
rows is a DB)

• Extract something

• Shuffle & sort intermediate results

• Aggregate intermediate results

• Generate Final output

map

reduce

execution framework

MapReduce Implementation
• It was developed by Google

• written in C++

• published as a research paper in 2004 “MapReduce:
Simplified Data Processing on Large Clusters ”

• Hadoop MapReduce is an open-source implementation in
Java

• initially was done by Yahoo

• then became an Apache project

• Apache Hadoop develops open-source tools for reliable,
scalable and distributed processing of a large-scale data

• Two main components in Apache Hadoop project:

• Hadoop distributed File System (HDFS) (Storage)

• MapReduce (Processing)

MapReduce refers to

• Programming model

• Two main functions: map and reduce

• Execution framework

• Specific implementation (the code/program)

Usage usually clear from the context

Programming Model

• Processing large datasets in parallel on cluster, by dividing work into
set of independent tasks

• Programmer specifies two functions

• map (k1 , v1) —> List [(k2 , v2)]

• reduce (k2, List[v2]) —> List [(k3 , v3)]

• All values of same key are sent to the same reducer

Key-Value pairs
•Input & output are key-values

•Examples:

•Text Files

•key: line offset

•value: line content

•in Web collection, which consists of Web pages

•key: URL

•Value: Content

•Graph which consist of nodes and edges

•key: node id

•value: list of target nodes

MapReduce Framework
•Handles:

•scheduling

•assigning workers to map & reduce tasks

•data distribution

•moves process to data

•synchronization

•group intermediate data

•error & faults

•detects workers failure, restart

•Everything happens on top of Distributed File System

Physical View

Word Count Example

World Count
Implementation

• Map

• Reduce

