Hadoop

- an open source implementation of the MapReduce; parallel processing framework
- includes
 - data distribution to processing nodes
 - handle failures; restarting nodes, or reassigning task to another node
 - execution of user programs
 - collecting final result

Hadoop Components

- Hadoop Distributed File System (HDFS)
 - for data storage distribution
- MapReduce framework
 - for parallel data processing
 - execute user programs written as map & reduce functions

Typical Hadoop Cluster

- Hundreds/ thousands of nodes (1000 - 4000)
- 40 nodes /rack
- Node specs (Yahoo)
 - 8 cores, 8 GB memory, 4 disks (=4 TB)

MapReduce

- Automatic parallelization & distribution
- Provides status & monitoring tools
- clean abstraction for the programmers
 - only need to define the map & reduce functions

Programming Model

MapReduce Workflow

- Master node is the JobTracker
 - the main functionality is to manage resources
 - keeps track of the running tasks
 - re-assign task to another node in case of failure
- All other nodes are TaskTracker

Hadoop Distributed File System (HDFS)

- An open-source implementation of Google File System (GFS)
- A filesystem designed to store large files, running on cluster of commodity machines
- Files in HDFS are split into block called chunks, these chunks are stored independently
 - example, chunk size is 64 MB

HDFS Architecture

- The NameNode (master node)
 - holds file/directory structure
 - mapping chunks to files
 - metadata; ownership, permissions
 - directs clients to where to the DataNode that contains the data
 - takes care of distributing data on the DataNodes
- DataNodes (workers) store the data

HDFS Design

- Files are stored as chunks
 - fixed size
- Reliability
 - no data loss because chunks are replicated (default is 3 replicas)
- Single master node to manage access, keep metadata about the data

HDFS commands

- Unix shell-like commands (ls, rm, mkdir)
- Every command starts with \$ bin/hadoop dfs
- Examples:
 - bin/hadoop dfs -ls /user/hduser (list the content of / user/hduser)
 - bin/hadoop dfs -copyFromLocal ~/test.txt /user/ hduser/input (copy file from local computer to the HDFS)

Putting Everything Together

MapReduce Job

- Refers to the unit of work that the client wants to be performed
- It consists of:
 - MapReduce program,
 - and job configuration; such as type of the input, where to find data, where to store data, types of the key-value pairs

Hadoop Running Mode

- Standalone (local) mode
 - this mode is good running MapReduce during development; easy to test & debug
 - Hadoop daemons; JobTracker, TaskTracker, NameNode, DataNode
- Pseudo-distributed mode
 - Hadoop daemons run on single machine, thus simulate the cluster at small scale utilizing cores available on the machine
- Full-distributed mode
 - runs on cluster of machines

MapReduce Complete Data Flow

- Input
- Map
- Combine
- Intermediate output
- Partition
- Shuffle & Sort (aggregate key-value pairs by key)
- Reduce
- Output

Input Format

- Defines how to read data from the input file into the map
- Based on the input data, you choose the input format
- Hadoop comes with several implementation for input format
 - For example, TextInputFormat
 - key: line offset
 - value: line content

Combiner

- It is optional
- It is a local mini-reducer
- The goal is to minimize data transfer between map and reduce tasks
- Combiners compact the map's output,
 - so there is less data to be written on local disk, and to be transferred to reduce
- The output from the map can be reduced by using compression
 - this can be configured in the code; Boolean to allow compression, and which compression method to be used

