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Relational Algebra

• Primitives 
– Projection (π) 
– Selection (σ) 
– Cartesian product (×) 
– Set union (∪) 
– Set difference (−) 
– Rename (ρ) 

• Other operations 
– Join (⋈) 
– Group by… aggregation



Relational Join



Types of Relations



Join in MapReduce

• Reduce-side join


• join is done by the reducers


• Map-side join


• join is done my the mappers



Reduce-side Join
• Key idea: group by  join key


• Mapper:


• read tuples from two datasets/directories 


• emit key-values as: 


• tuple plus tag to indicate from which dataset the record came as value (tag, tuple)


• join attribute as key


• framework group tuples that share the same key 


• Reducer:


• all values from the two datasets with the same join key arrives at the same reducer


• perform the join



Reduce-side Join  
1-to-1

Map phase

Reduce phase

* order of values is not guaranteed, use the tag to check the origin



Example

• given the following datasets, we want to know for each 
customer: name, amount, date


customer transactions



Example
• given the following datasets, we want to know for each customer: name, amount, date 

• solution: 

•Map phase:  

• we need mapper for each dataset; for example CustomerMapper, TransactionMapper 

• emit /context.write() 

• the needed attributes with relation name (customer or transactions) as value 

• the join key (custID) as the key 

• reduce phase 

• receives all tuples of the same join key 

• job conf 

• add the two mappers 

MultipleInputs.addInputPath(job, new Path(args[0]),TextInputFormat.class, CustomerMapper.class); 

MultipleInputs.addInputPath(job, new Path(args[1]),TextInputFormat.class, TransactionMapper.class); 

customer transactions



References

• Data-Intensive Text Processing with MapReduce


• pdf available on https://lintool.github.io/
MapReduceAlgorithms/MapReduce-book-final.pdf 


• Reduce-side join full example 


• https://www.edureka.co/blog/mapreduce-example-
reduce-side-join/ 

https://lintool.github.io/MapReduceAlgorithms/MapReduce-book-final.pdf
https://lintool.github.io/MapReduceAlgorithms/MapReduce-book-final.pdf
https://www.edureka.co/blog/mapreduce-example-reduce-side-join/
https://www.edureka.co/blog/mapreduce-example-reduce-side-join/


Reduce-side Join  
1-to-1 

• Map phase


• the map reads the tuple from one of the two datasets


• emit key-value pair


• where key is the join key


• value consists of


1.  the tuple (row), it can be the whole row or part of it


2. with a tag to indicate from which dataset it originates


• for example from dataset S; key-value -> (joinKey, “S” + “,” + tuple)



Reduce-side Join  
1-to-1 

• Reduce phase


• reducer receive all values for the same key


• the framework guarantees that all values of the same key goes to the same reducer


• but the order of values is not guaranteed


• for the 1-to-1 join the reducer will receive two values for the join key


• one from each dataset


• reducer can read the two values, keep them in memory


• the value consist of the tuple from the dataset plus a tag indicating from which dataset 
the value originates


• for example, (“S”, tuple) indicates that this tuple is from S



Reduce-side Join  
1-to-many

Map phase

Reduce phase

…..



Reduce-side Join  
1-to-many

• Map phase is the same as we have in the Reduce-side join 1-to-1


• Reduce phase


• we need to cross the 1 tuple with many tuples


• but remember that the order of values is not guaranteed


• if we are joining tuples from relation R (one) with relation S (many)


• we need to cross the one value from R with all tuples from S that 
have the same join key and we don’t know when the value from R 
comes



First Solution
• buffer every thing in memory


• pick the value from R and hold it in memory


• each value is tagged with dataset name (either S or R)


• cross it with all values from S


• This solution might cause memory error if there is no 
enough memory at the reducer node 


• This problem requires a secondary sort of values



Second Solution
• Instead of making the reducer does the sort


• which might cause out of memory problem


• We utilize the framework to do the sorting


• the framework is already doing the sort based on the key


• we update it to do a secondary sort as well for the values


• In the mappers: Move part of the value to the key in order to 
form a composite key and let the framework handle the sort.   
is known as value-to-key conversion design pattern



Secondary Sort  
(Map update)

• Modify the mapper:


• instead of emitting the the join key as the intermediate 
key


• emit a composite key: join key and tuple id (whether it 
is from S or R relation)



Secondary Sort  
(framework)

• We need two modifications: 


1.Sort: 


• define the sort order to be first based on the join key,


• and then sort tuple from R to be before tuples from S



Secondary Sort  
(framework)

• We need two modifications: 


2. Partitioner: 


• must pay attention to the join key only to make sure that all composite 
keys with same join key end up in the same reducer


• otherwise if partitioner is based on the composite key, then data from 
the two relation with same join key might end up in different reducers



Secondary Sort  
(Reduce update)

• now when the reducer read a new key, it is guaranteed 
that the first value is from R, thus


• reducer holds this value in memory


• cross it with other values from S



in Reducer



Reduce-side Join  
many-to-many

• same idea


• in reducer




Limitations

• The idea of holding values from S in memory will work, 
assuming that tuples from S can fit in memory



Map-side Join

• known as sort-merge join



