
Relational Algebra &
MapReduce 2

Relational Algebra

• Primitives
– Projection (π)
– Selection (σ)
– Cartesian product (×)
– Set union (∪)
– Set difference (−)
– Rename (ρ)

• Other operations
– Join (⋈)
– Group by… aggregation

Relational Join

Types of Relations

Join in MapReduce

• Reduce-side join

• join is done by the reducers

• Map-side join

• join is done my the mappers

Reduce-side Join
• Key idea: group by join key

• Mapper:

• read tuples from two datasets/directories

• emit key-values as:

• tuple plus tag to indicate from which dataset the record came as value (tag, tuple)

• join attribute as key

• framework group tuples that share the same key

• Reducer:

• all values from the two datasets with the same join key arrives at the same reducer

• perform the join

Reduce-side Join
1-to-1

Map phase

Reduce phase

* order of values is not guaranteed, use the tag to check the origin

Example

• given the following datasets, we want to know for each
customer: name, amount, date

customer transactions

Example
• given the following datasets, we want to know for each customer: name, amount, date

• solution:

•Map phase:

• we need mapper for each dataset; for example CustomerMapper, TransactionMapper

• emit /context.write()

• the needed attributes with relation name (customer or transactions) as value

• the join key (custID) as the key

• reduce phase

• receives all tuples of the same join key

• job conf

• add the two mappers

MultipleInputs.addInputPath(job, new Path(args[0]),TextInputFormat.class, CustomerMapper.class);

MultipleInputs.addInputPath(job, new Path(args[1]),TextInputFormat.class, TransactionMapper.class);

customer transactions

References

• Data-Intensive Text Processing with MapReduce

• pdf available on https://lintool.github.io/
MapReduceAlgorithms/MapReduce-book-final.pdf

• Reduce-side join full example

• https://www.edureka.co/blog/mapreduce-example-
reduce-side-join/

https://lintool.github.io/MapReduceAlgorithms/MapReduce-book-final.pdf
https://lintool.github.io/MapReduceAlgorithms/MapReduce-book-final.pdf
https://www.edureka.co/blog/mapreduce-example-reduce-side-join/
https://www.edureka.co/blog/mapreduce-example-reduce-side-join/

Reduce-side Join
1-to-1

• Map phase

• the map reads the tuple from one of the two datasets

• emit key-value pair

• where key is the join key

• value consists of

1. the tuple (row), it can be the whole row or part of it

2. with a tag to indicate from which dataset it originates

• for example from dataset S; key-value -> (joinKey, “S” + “,” + tuple)

Reduce-side Join
1-to-1

• Reduce phase

• reducer receive all values for the same key

• the framework guarantees that all values of the same key goes to the same reducer

• but the order of values is not guaranteed

• for the 1-to-1 join the reducer will receive two values for the join key

• one from each dataset

• reducer can read the two values, keep them in memory

• the value consist of the tuple from the dataset plus a tag indicating from which dataset
the value originates

• for example, (“S”, tuple) indicates that this tuple is from S

Reduce-side Join
1-to-many

Map phase

Reduce phase

…..

Reduce-side Join
1-to-many

• Map phase is the same as we have in the Reduce-side join 1-to-1

• Reduce phase

• we need to cross the 1 tuple with many tuples

• but remember that the order of values is not guaranteed

• if we are joining tuples from relation R (one) with relation S (many)

• we need to cross the one value from R with all tuples from S that
have the same join key and we don’t know when the value from R
comes

First Solution
• buffer every thing in memory

• pick the value from R and hold it in memory

• each value is tagged with dataset name (either S or R)

• cross it with all values from S

• This solution might cause memory error if there is no
enough memory at the reducer node

• This problem requires a secondary sort of values

Second Solution
• Instead of making the reducer does the sort

• which might cause out of memory problem

• We utilize the framework to do the sorting

• the framework is already doing the sort based on the key

• we update it to do a secondary sort as well for the values

• In the mappers: Move part of the value to the key in order to
form a composite key and let the framework handle the sort.
is known as value-to-key conversion design pattern

Secondary Sort
(Map update)

• Modify the mapper:

• instead of emitting the the join key as the intermediate
key

• emit a composite key: join key and tuple id (whether it
is from S or R relation)

Secondary Sort
(framework)

• We need two modifications:

1.Sort:

• define the sort order to be first based on the join key,

• and then sort tuple from R to be before tuples from S

Secondary Sort
(framework)

• We need two modifications:

2. Partitioner:

• must pay attention to the join key only to make sure that all composite
keys with same join key end up in the same reducer

• otherwise if partitioner is based on the composite key, then data from
the two relation with same join key might end up in different reducers

Secondary Sort
(Reduce update)

• now when the reducer read a new key, it is guaranteed
that the first value is from R, thus

• reducer holds this value in memory

• cross it with other values from S

in Reducer

Reduce-side Join
many-to-many

• same idea

• in reducer

Limitations

• The idea of holding values from S in memory will work,
assuming that tuples from S can fit in memory

Map-side Join

• known as sort-merge join

