Relational Algebra &
MapReduce 2

Relational Algebra

e Primitives
— Projection (m)
— Selection (0)
— Cartesian product (x)
— Set union (U)
— Set difference (-)
— Rename (p)
e Other operations
— Join (X)
— Group by... aggregation

Relational Join

— N ™ <t
n n) n

e N ™ bu
4 4 4 4

AN <t N o™
/)] w n 7))

— N ™ <
e e e e

Types of Relations

% ~ <
o

Many-to-Many One-to-Many

Join in MapReduce

Reduce-side join
* join is done by the reducers
Map-side join

* join is done my the mappers

Reduce-side Join

e Key idea: group by join key
 Mapper:
e read tuples from two datasets/directories
e emit key-values as:
e tuple plus tag to indicate from which dataset the record came as value (tag, tuple)
e join attribute as key
e framework group tuples that share the same key
* Reducer:
e all values from the two datasets with the same join key arrives at the same reducer

e perform the join

Reduce-side Join
1-to-1

Map phase keys values
R R,
Ry R,
S, > S,
53 S,

Reduce phase
keys values

R, S,
S; R,

* order of values is not guaranteed, use the tag to check the origin

Example

e given the following datasets, we want to know for each
customer: name, amount, date

customer transactions
| Custib | FistName | lastName | | TransiD | Date | CustiD | Amount |

4000001 Kristina Chung 0000000 06-26-2011 4000001 40.33

Example

e given the following datasets, we want to know for each customer: name, amount, date
e solution:
e Map phase:
e we need mapper for each dataset; for example CustomerMapper, TransactionMapper
e emit /context.write()
e the needed attributes with relation name (customer or transactions) as value
e the join key (custID) as the key
¢ reduce phase
e receives all tuples of the same join key
¢ job conf

¢ add the two mappers

Multiplelnputs.addinputPath(job, new Path(args[0]), TextinputFormat.class, CustomerMapper.class);

MultipleInputs.addinputPath(job, new Path(args[1]), TextiInputFormat.class, TransactionMapper.class);

transactions
customer

o istame lasname T I T

4000001 Kristina Chung N e Wahooo o=

References

e Data-Intensive Text Processing with MapReduce

e pdf available on https://lintool.github.io/
MapReduceAlgorithms/MapReduce-book-final.pdf

 Reduce-side join full example

e https://www.edureka.co/blog/mapreduce-example-
reduce-side-join/

https://lintool.github.io/MapReduceAlgorithms/MapReduce-book-final.pdf
https://lintool.github.io/MapReduceAlgorithms/MapReduce-book-final.pdf
https://www.edureka.co/blog/mapreduce-example-reduce-side-join/
https://www.edureka.co/blog/mapreduce-example-reduce-side-join/

Reduce-side Join
1-to-1

* Map phase
* the map reads the tuple from one of the two datasets
* emit key-value pair
* where key is the join key
* value consists of
1. the tuple (row), it can be the whole row or part of it
2. with a tag to indicate from which dataset it originates

e for example from dataset S; key-value -> (joinKey, “S” + “,” + tuple)

Reduce-side Join
1-to-1

Reduce phase
* reducer receive all values for the same key
* the framework guarantees that all values of the same key goes to the same reducer
* but the order of values is not guaranteed
» for the 1-to-1 join the reducer will receive two values for the join key
e one from each dataset
* reducer can read the two values, keep them in memory

* the value consist of the tuple from the dataset plus a tag indicating from which dataset
the value originates

o for example, (“S”, tuple) indicates that this tuple is from S

Reduce-side Join
1-to-many

Map phase
keys values

o)
A

|)

3

(79 W V)
(78 (¥ "
w

9 9

Reduce phase

keys values

R, S 53

Reduce-side Join
1-to-many

* Map phase is the same as we have in the Reduce-side join 1-to-1
* Reduce phase
* we need to cross the 1 tuple with many tuples
* but remember that the order of values is not guaranteed
* if we are joining tuples from relation R (one) with relation S (many)
* we need to cross the one value from R with all tuples from S that

have the same join key and we don’t know when the value from R
comes

First Solution

e buffer every thing in memory
* pick the value from R and hold it in memory
 each value is tagged with dataset name (either S or R)
e cross it with all values from S

e This solution might cause memory error if there is no
enough memory at the reducer node

* This problem requires a secondary sort of values

Second Solution

* |nstead of making the reducer does the sort
* which might cause out of memory problem

* We utilize the framework to do the sorting
* the framework is already doing the sort based on the key
* we update it to do a secondary sort as well for the values

* |n the mappers: Move part of the value to the key in order to
form a composite key and let the framework handle the sort.
IS Known as value-to-key conversion design pattern

Secondary Sort
(Map update)

 Modify the mapper:

* nstead of emitting the the join key as the intermediate
key

* emit a composite key: join key and tuple id (whether it
is from S or R relation)

Secondary Sort
(framework)

e We need two modifications:
1.Sort:
* define the sort order to be first based on the join key,

* and then sort tuple from R to be before tuples from S

Secondary Sort
(framework)

e \We need two modifications:
2. Partitioner:

* must pay attention to the join key only to make sure that all composite
keys with same join key end up in the same reducer

e otherwise if partitioner is based on the composite key, then data from
the two relation with same join key might end up in different reducers

Secondary Sort
(Reduce update)

* now when the reducer read a new key, it is guaranteed
that the first value is from R, thus

* reducer holds this value in memory

e cross it with other values from S

IN Reducer

keys values

R ¢ New key encountered: hold in memory

S Cross with records from other dataset
2

S3

S
? v

Ry ¢ New key encountered: hold in memory

S Cross with records from other dataset
3

S7

Reduce-side Join
many-to-many

e same idea

e | keys values
RI
Rs Hold in memory
Rg
S, Cross with records from other dataset
53
S9

Limitations

* The idea of holding values from S in memory will work,
assuming that tuples from S can fit in memory

Map-side Join

 known as sort-merge join

R I SZ

R, S,

R3 S I
\ 4

merge to join

