
Relation Algebra In
MapReduce 3

Map-side Join

• known as sort-merge join

Map-side Join

• Works if

• the two datasets are partitioned in the same way using the join key

• each partition is sorted by the join key

• For example if we have two datasets R & S, if

• both are divided into n files, partitioned & sorted

• then, we simply join first partition from S with first partition from R

Map-side Join
• MapReduce implementation

• map over one dataset (the larger one), read from other corresponding
partition which is in memory

• In Hadoop MapReduce there is something called Distributed Cache

• if you have one small file then you can ship it with the MapReduce
code

• it will be copied in every node running map task

• the node will load this file in memory so it will be available when
needed

Difference (-)

• To get the difference between two relations

• The two relations must have the same schema

• same attributes

• R - S -> tuples in R but not in S

Difference in MapReduce
• Two relations R and S, we want to do R - S

• Mappers

• for each tuple t emit a key-value pair

• key is the tuple itself t

• value is a tag indicating the dataset containing the tuple; if it is from relation R then value = “R”

• so key-value is (t,”R”) or (t,”S”)

• Reducers:

• get all values related to the same tuple t which could be one or two

• key t might have the following possible values [“R”,”S”], [“S”,”R”] [“S”] or [“R”]

• if t is associated with [“R”], then emit (t , t)

• if t is associated with [“R”,”S”], [“S”,”R”] [“S”], then ignore it

Union (∪)

• Union between two relation will result in a relation that has
rows from either of them or both (no duplicates)

• The two relations must have the same schema; same
attributes

Union in MapReduce
• R ∪ S

• Mappers:

• for each tuple t from ’S’ or ‘R’

• emit key-value pairs: (t, t)

• Reducers:

• for each key t, reducer will get either one or two values

• one value: if either R or S has the tuple

• two values: if both relations has the tuple

• in either case, reducer emit (t , t) once

Intersection (∩)

• Intersection between two relations R ∩ S will result in
having a relation that contains tuples which exist in both

• both must have the same schema

Intersection in MapReduce
• R ∩ S

• Mappers:

• for each tuple t emit key-value pair (t, t)

• it does not matter from which relation the tuple comes

• Reducers

• reducer will get for each key t one or two values

• if key has list of values (2), then we know both relations have the tuple

• emit (t, t)

• if the key has one value then ignore it

Summary

• MapReduce algorithms for processing relational data:

• Group by, sorting, partitioning are handled automatically by
MapReduce framework

• Selection, projection, and other computations (e.g., AVG, MIN,
…), are performed either in mapper or reducer

• Multiple strategies for relational joins

• Reduce-side join

• Map-Side

Need for Higher-level
Language

• Complex operations require multiple MapReduce jobs

• Example: top ten URLs in terms of average time spent

• Input data: url, user, spent time

• We need two MapReduce jobs

• one for computing the average,

• a second one reads the output from the first job and get

the top 10

• Might require to write a lot of code and multiple jobs

• Therefore, we need higher-level language

• for example Pig Latin: next

Computing Mean
• Find average of integers associated with the same key

• input to the mapper is key-value pairs (key, value)

• for example: (key1, 2) , (key1, 4)

• final output should be (key , average(values))

• mean = sum / cnt = (2 + 4)/2

• -> (key1 , 3)

SELECT key, AVG(value) FROM r GROUP BY key;

Implementing Mean in
MapReduce

• There are three ways to compute the mean

• with and without including the combiner

• form groups and find two possible implementation of the
Mean

• up to you what to do in Map, Reduce, combiner

Computing the Mean
(v1)

Computing the Mean
(v2)

Pair

Computing the Mean
(v3)

Need for Higher-level
Language

• Complex operations require multiple MapReduce jobs

• Example: top ten URLs in terms of average time spent

• MapReduce job for computing the average, a second one reads

the output from the first job and sort and get the top 10

• Might require to write a lot of code and multiple jobs

• Therefore, we need higher-level language

• for example Pig Latin: next

