
Pig Latin
User Defined Functions


Wrapping

Examples



User Defined 
functions (UDF)



UDFs
• Apache Pig provides an extensive support for User 
Defined Functions 

• This gives the programmers the ability to define their 
own function and use them in the Pig Latin script 

• These functions can be written in any of the following 
languages 
• Java, Python, Ruby, JavaScript, Groovy, Jython



Write UDFs in Java
• you need to add the pig-x-x-x.jar file in your project 
• if your are managing your project using maven, then you 

can add dependencies in your pom.xml file

<dependency>             
         <groupId>org.apache.pig</

groupId>             
         <artifactId>pig</

artifactId>             
         <version>0.15.0</version>      
</dependency>



Create a Java class
import java.io.IOException;  

import org.apache.pig.EvalFunc;  

import org.apache.pig.data.Tuple;  

public class Eval_Upper extends EvalFunc<String>{  

   public String exec(Tuple input) throws IOException {    

      if (input == null || input.size() == 0)       

      return null;       

      String str = (String)input.get(0);       

      return str.toUpperCase();   

   }  

}



Code
• The UDF class must 
•  inherit the EvalFunc from the pig library 
• imported: import org.apache.pig.EvalFunc;  

• implement exec() method 

• After finishing the code, create a jar file



Use the UDF
• First, we need to register the jar file containing the new function


• > REGISTER ‘jarFile’ ;


• Second, we need to give it an alias (name)


• > DEFINE Eval_Upper Eval_Upper() ;


• Now, we can use it by its name in the Pig Latin code

grunt> student_details = LOAD 'student_details.txt' USING PigStorage(‘,') as (id:int, name:chararray, city:chararray);

grunt> student_upper = foreach student_details  Generate Eval_Upper (name);



Pig Latin
Wrapping 

Examples



Word Count Example 
Pig Latin

• Input files contain lines of text


• The output should contains two fields; word & frequency



Pig Latin code

1. Load the input files


1. input_lines = load ‘files.txt’ AS (line:chararray);


2. For each line tokenize it and generate rows; each row represent one word in the line


words = FOREACH input GENERATE Flatten(TOKENIZE(line)) AS word; 

TOKENIZE(line) produces bag of words first line: {(pig), (latin), (is), (a), (data), (flow), (language)} 

Flatten will covert columns into rows 

Pig Latin is a data flow language 
Pig runs on top of Hadoop 
……

(pig)

(latin)

(is)

(a)

(data)

(flow)

(language)



Pig Latin code

3. Group by word


group_word = group words BY word ; 

4. Count


word_count = FOREACH group_word GENERATE group, COUNT(words) 

5. store result 


1. STORE word_count INTO ‘’ ; 

(pig)

(latin)

(is)

(a)

(data)

(flow)

(language)

(pig)

(runs)

(on)

(top)

(of)

(Hadoop)

words



Data Analysis Task
• Top 10 most visited pages for each category

visits Url Info

• Draw the flow of how to achieve the task 
• Write Pig Latin code (assume that the datasets above 

are comma separated text file ) 



Flow



Pig Latin code
visits = load ‘/data/visits’ as (user, url, time); 
gVisits = group visits by url; 
visitCounts  = foreach gVisits generate url, count(visits); 

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank); 

visitCounts  = join visitCounts by url, urlInfo by url;  

gCategories = group visitCounts by category; 
topUrls = foreach gCategories generate top(visitCounts,10); 

store topUrls into ‘/data/topUrls’;



Compilation Into MapReduce
Every group or join 
operation forms a map-
reduce boundary

Other operations 
pipelined into map 
and reduce phases



Data Flow Language
• Step-by-step procedural Language 

• Users specify a sequence of steps where each step 
represents a single high-level data transformation 

• Compared to a SQL, it is easier to keep track of the 
variable and where are you in the process



Pig Latin vs. SQL

• (url, category, pagerank) dataset, 
•  query that finds, 

•  For each sufficiently large category (> 106), the average pagerank of high-
pagerank urls (pagerank > 0.2) in that category

• Write the SQL query to achieve the above 
task 

• Then write the Pig Latin code



Pig Latin vs. SQL
• (url, category, pagerank) dataset, 
•  query that finds, 

•  For each sufficiently large category (> 106), the average pagerank of high-
pagerank urls (pagerank > 0.2) in that category

SELECT category, Avg(pagerank) 
FROM urls WHERE pagerank > 0.2 
GROUP BY category HAVING COUNT(*) > 106

good_urls = FILTER urls BY pagerank > 0.2; 
groups = GROUP good_urls BY category; 
big_groups = FILTER groups BY  COUNT(good_urls) > 106 ; 
output = FOREACH big_groups GENERATE   category, AVG(good_urls.pagerank);



Schema is optional  
can be assigned dynamically 

visits = load ‘/data/visits’ as (user, url, time); 
gVisits = group visits by url; 
visitCounts  = foreach gVisits generate url, count(visits); 

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank); 

visitCounts  = join visitCounts by url, urlInfo by url;  

gCategories = group visitCounts by category; 
topUrls = foreach gCategories generate top(visitCounts,10); 

store topUrls into ‘/data/topUrls’;



User Defined function are very supported
visits = load ‘/data/visits’ as (user, url, time); 
gVisits = group visits by url; 
visitCounts  = foreach gVisits generate url, count(visits); 

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank); 

visitCounts  = join visitCounts by url, urlInfo by url;  

gCategories = group visitCounts by category; 
topUrls = foreach gCategories generate top(visitCounts,10); 

store topUrls into ‘/data/topUrls’;



Nested Data Model
• Atomic values, tuples, bags, map 

• helpful 
• avoid having expensive joins



Testing data sets
 http://www.gutenberg.org/cache/epub/100/pg100.txt   
http://www.gutenberg.org/cache/epub/31100/pg31100.txt    
http://www.gutenberg.org/cache/epub/3200/pg3200.txt   
http://www.gutenberg.org/cache/epub/2253/pg2253.txt   
http://www.gutenberg.org/cache/epub/1513/pg1513.txt 
 
http://www.gutenberg.org/cache/epub/1120/pg1120.txt  

http://www.gutenberg.org/cache/epub/100/pg100.txt
http://www.gutenberg.org/cache/epub/31100/pg31100.txt
http://www.gutenberg.org/cache/epub/3200/pg3200.txt
http://www.gutenberg.org/cache/epub/2253/pg2253.txt
http://www.gutenberg.org/cache/epub/1513/pg1513.txt
http://www.gutenberg.org/cache/epub/1120/pg1120.txt

